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ABSTRACT
An Investigation into Isogeometric Blended Shells

David Scott Willoughby II
Department of Civil and Environmental Engineering, BYU
Master of Science

Improvements to isogeometric blended shells are introduced which blend traditional Reissner-
Mindlin shells, and Kirchhoff-Love shells, with an exact interpolation of the shell director incre-
ment. A gradient extraction operator is introduced which allows derivatives of basis functions to be
exactly expressed as a linear combination of the basis functions themselves. Several benchmarks
are investigated and the new blended shell is compared with different shell elements in ABAQUS
and NASTRAN. In addition, the effect of different quadrature schemes is included in the compar-
isons. The new isogeometric blended shell performs comparably in some benchmarks, and even
outperforms commercial shell finite elements in some benchmarks. Future improvements to the
formulation are discussed.

Keywords: IGA, Kirchhoff-Love shells, Reissner-Mindlin shells, blended shells
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CHAPTER 1. INTRODUCTION

1.1 Isogeometric Analysis

Engineering design can be thought of as the process of delineating and drawing out a plan
for a structure that will meet the desired needs. Engineering analysis is then the determination of
displacements or stresses of a certain design under prescribed loads. Before computers, design en-
gineers worked at drawing boards and designs were drawn with pencils on vellum and Mylar. The
design drawings were passed to stress analysts and the interaction between designer and analyst
was simple and direct [6]. Although design and analysis are generally distinct tasks, there clearly
exists an interconnectedness between the two. An analysis can not be done without a design, and
a design may be altered in accordance with analysis results. Although design and analysis are in-
separably connected, these two industries have evolved separately. Over the past six decades, two
major branches of computational engineering have emerged: Computer Aided Design [CAD] and
Finite Element Analysis [FEA], both multi-billion dollar industries. Because they have evolved
separately, CAD and FEA do not interface efficiently. The current engineering process of design

and analysis is as follows:
1. A geometric design is made using a CAD program.

2. The geometry of the design is decomposed into simpler, more manageable pieces and a finite

element mesh is created, approximating curved geometry.
3. A finite element analysis is run using an FEA program.

4. If the designer is satisfied with the analysis, then this is the end. He/she may want to change
the design because of the results of step 3. If this is the case, then the designer must return

to step 1.



This process is very time consuming and, therefore, very costly. The conversion from the CAD ge-
ometry to the FEA mesh, the bridge between CAD and FEA, is the most time-consuming part of the
engineering design-analysis process. It is estimated that 80% of analysis time is spent converting
CAD geometry to an approximate FEA mesh [6]. There are many other disadvantages of having
to convert the CAD geometry to the FEA mesh. For example, any curved surface will usually be
approximated by linear or parabolic segments (as pointed out in step 2 above). This can cause
major problems in shell structures that are very sensitive to geometric imperfections. In addition,
FEA meshes that use linear or parabolic interpolating functions lack the inter-element smoothness
required by some kinematic descriptions. Isogeometric Analysis (IGA), as proposed by Hughes
et al. originally in 2005 [7], is intended to be a technology that unites or integrates the two into
one system, thus eliminating the need to approximate the geometry: the original design geometry
is used in the analysis. This is done by using Non-Uniform Rational B-Splines (NURBS), com-
monly used to represent curves, surfaces, and volumes in commercial CAD programs, as a basis
for analysis. IGA has application to many fields such as fluid flow, fracture mechanics, elasticity,
and even modeling in the biomedical field. Because there is no need to approximate the geometry,
engineering design and analysis becomes much less costly.

One area that IGA has unlocked has been thin-shelled structures based on the Kirchhoff-
Love kinematic description. This shell description is not able to be modeled in traditional FEA
programs because these shells require inter-element smoothness that traditional FEA basis func-
tions lack. These shell elements have several advantages. For example, the kinematic description
only contains 3 degrees of freedom (DOF) per node, as opposed to traditional 6 DOF FEA ele-
ments. This decrease in DOFs can lead to great increases in speed in the analysis of thin-walled
structures. Another major advantage to Kirchhoff-Love shells is that they do not have shear lock-
ing because classical Kirchhoff-Love shells do not have shear strains. This feature of not capturing
shear strains creates an obvious disadvantage: Kirchhoff-Love shells can’t capture shear deforma-
tion, which could lead to misleading results in thick shells. Another disadvantage of these shells is
that it is hard to enforce clamped boundary conditions because they have no rotational DOFs. In
this work these shells will be referred to as KL3.

A hierarchic family of Kirchhoff-Love shells was proposed in [8]. This family of shells has

its base in the classical Kirchhoff-Love shell as described above with three displacement DOFs



of the shell midsurface. It creates a hierarchic director rotation vector that is used to capture the
rotations of the director due to shear deformation. This improves the classical Kirchhoff-Love
shell by allowing shear deformation without shear locking. Boundary conditions are still difficult
to enforce, however. These shells will be referred to as KLS5.

Traditional FEA for the most part uses shell elements that are based on the Reissner-
Mindlin shell kinematic description. This kinematic description does not require smoothness.
Traditional shell finite elements have six DOFs, three displacement and three global rotations,
as previously mentioned. The advantages are that they do not require C'smoothness, they can
capture transverse shear deformation, and they facilitate the imposition of clamped or symmetry
boundary conditions because of their 3 global rotational DOFs. The main disadvantage of these
shells is that they are susceptible to shear-locking. These shells will be referred to as RM6.

There is an equivalent shell element which we will refer to as RMS, that has three displace-
ment DOFs of the shell midsurface and two rotational DOFs about local axes that lie tangent to
the shell. An advantage of this kinematic description is that these shells have one less DOF than
RMB6 shells. One disadvantage to these shells is that imposition of symmetry boundary conditions
is difficult because you can only constrain rotation about local axes, when usually we would like to
constrain rotation about the global coordinate axes. In addition, although only C? basis functions
are required, these shells do require smooth geometry.

Because each shell kinematic description has advantages and disadvantages, it is useful to
be able to blend the different shell kinematic descriptions. For example, it is useful to have the
nodes on the boundary be RM6 in order to facilitate the imposition of boundary conditions, nodes
in thin smooth areas be KL3 to reduce the number of DOFs, and nodes in thicker areas be KL5 in
order to reduce the number of DOFs, avoid shear locking, and still be able to capture transverse
shear deformation. An isogeometric blended shell was presented in [9] which blended RM6/RM5
shells and KL3 shells. The present work introduces KL5 shells into the blending.

An extensive suite of benchmarks is presented that not only tests the performance of the
proposed isogeometric blended shell, but also compares the results to the isogeometric blended
shell presented in [9] and to commercial shell finite elements from ABAQUS and NASTRAN.

The proposed isogeometric blended shell outperforms the isogeometric blended shell presented in



[9]. It also performs comparably to commercial finite elements, and in some cases outperforms

them. It is the first such comparison of isogeometric shell elements to commercial finite elements.



CHAPTER 2. B-SPLINE AND NURBS FUNDAMENTALS

As we will use non-uniform rational B-splines (NURBS) as a basis for our analysis, a brief
treatment on the subject is necessary. A B-spline, short for basis-spline, is a piecewise function
of Bezier curves connected with CP~! continuity in the general case, where p is equal to the
polynomial degree of the B-spline basis functions. This continuity is extremely important in order

to be able to use shell formulations based on Kirchhoff-Love thin shell theory.

2.1 Univariate B-spline Basis Functions

2.1.1 Knot Vectors

B-spline basis functions are defined with a knot vector and a polynomial order. A knot
vector is a set of non-decreasing parametric coordinates, denoted = = {s 1552, s St pt1 } where s;
is the " knot in the knot vector, n is the number of B-spline basis functions and p is the polynomial
order. A knot vector contains p end condition knots at each end, that provide no meaningful
information. Knots that are not end condition knots are called interior knots, and the differences in
neighboring interior knots are called knot spans. Each knot span corresponds to one Bezier curve
in the B-spline, and one element in IGA. A uniform knot vector is a knot vector where all of the
knots are equally spaced. A non-uniform knot vector does not necessarily have equally spaced

knots. This is what the non-uniform in NURBS comes from.

2.1.2 B-spline Basis Functions

B-spline basis functions can be evaluated using the Cox-de Boor recursion formula where

higher order basis functions are defined recursively in terms of lower order basis functions, starting



with the piecewise constant function:

0 I, if s4<s<sa41
N4(s) = 2.1)

0, otherwise

(2.2)
Basis functions of first order and higher are then defined as:
S —5A _ SA 1—S _
ND(s) = ——2- NI (s) + 252 NP K(s). (2.3)
SA+p — SA SA+p+1 — SA+1

B-spline basis functions have many desirable properties. For example, they form a partition of
unity, and are therefore coordinate system independent, are linearly independent, interpolate the

end control points, obey the convex hull property, and obey the variation diminishing property.

2.1.3 B-spline Basis Function Derivatives

Derivatives of B-spline basis functions of degree p are able to be represented in terms of
degree p — 1 B-spline basis functions, because of their recursive definition. The derivative of the

A" basis function of degree p can be represented as:

d B B
EN(s) = —L NPT () - —L NPT (s) (2.4)

A
ds Sitp —Si Sitp+1 = Sitl

Higher order derivatives, which will be necessary for Kirchhoff-Love shells, can be expressed as

d¥ p dk1 _q p 451 1
NP (s) = ( NP ) . ( NP ) 25
dks A (5) Si+p — Si i ) Sitpr1 — Siy1 \dk—lg AT (s) (23)

It will later be shown that derivatives of B-spline basis functions of degree p can be ex-

pressed as a linear combination of the degree p basis functions themselves.



2.2 B-spline Curves

A B-spline curve is constructed by assigning a vector valued coefficient P4 to each B-spline
basis function, N4 (s). The vector valued coefficients are called control points. Each basis function,
therefore, acts as a weighting function of its control point. Thus, a B-spline curve of degree p is

defined as:
C(s) = ) PAN(s) (2.6)
A

The vector-valued control points have d components where d is the dimension of the space that

they are in. The piecewise linear interpolation of sequential control points is called the control

polygon.

2.2.1 h-Refinement: Knot Insertion

One way to enrich the basis functions is knot insertion. Knots may be inserted into the
original knot vector while preserving the exact same geometry and parametrization of the curve.
This may sound counter-intuitive because we know that the parametric continuity of a B-spline
curve depends on the knot multiplicity. By carefully choosing the new control points, however, the
original geometric continuity and parametrization at every point on the curve can be maintained.
Let the original knot vector be = = {s 1552+ > St ptl } We can add m knots to obtain a new knot

vector £ = {51,5,...,5n4mip+1 = Snip+1}. The new basis functions can be evaluated as was

done previously and the new corresponding control points can be calculated as:
B=T"B 2.7)

where B is the vector of the original control points, f is the vector of updated control points after

inserting the knots, and T? is a second order tensor that maps between the original control points



and the updated control points. T? is defined recursively as:

1, if §,‘E[Sj,Sj+1)
T = (2.8)

0, otherwise

(2.9)

and

g+l _ Sitg —Sj

Sjtg+1 — Sitq T4
ij j

q
T;; + i+l

1
Sji+g—Sj ' Sjtgr1 —Sjt

forg=0,1,2,....p—1 (2.10)

Because each knot interval corresponds to an element in IGA, knot insertion can function as a
mechanism to refine the mesh, analogous to As-refinement in traditional FEA, provided that knots
are inserted in between current knot values. The case of inserting a knot that increases the multi-

plicity of an already existing knot will be discussed in Section 2.2.3.

2.2.2 p-Refinement: Degree Elevation

Degree elevation is another method to enrich the basis functions while keeping the original
geometry and parametrization of the B-spline curve. Degree elevation is done by inserting knots
until all original knot values have a multiplicity of p — 1 (see Bézier Extraction section). The new
B-spline control points are the same as the control points for each corresponding Bézier curve.
Then the polynomial order is increased on each individual Bézier curve segment. Finally, extra

knots from the process are removed in order to obtain the degree elevated B-spline control points.

2.2.3 k-Refinement: Smoothness Reduction

One final way to enrich the basis functions is to increase the multiplicity of existing knots.
The process is the same as inserting a new unique knot. By increasing the multiplicity of existing
knots the smoothness of the basis functions can be reduced. This also reduces the support of the

basis functions. There is no analagous refinement method in traditional FEA. One example of



when smoothness reduction would be useful is in the case of a point load. You could insert knots

around the point load, thus isolating the basis functions in that area.

2.3 B-spline Surfaces

Shells, as analyzed in FEA and IGA, will be treated as a two-dimensional surface in R3. A
B-spline surface is the tensor product of two univariate B-spline curves. Thus a B-spline surface

can be represented as
n m
S(s,1) =Y. Y NY(s)ML(1)Pa g (2.11)
A B

where P4 p are the control net of control points, Nf (s) are the n number of degree p basis functions

corresponding to a knot vector X = {sl,sz, K S | } and Mg(r) are the m number of degree ¢
basis functions corresponding to a knot vector 11 = {t1 25 g }
2.4 NURBS

B-spline curves as described thus far are very powerful and able to capture many interesting
geometries. They are incapable, however, of representing conic sections (circles, ellipses, etc.)
exactly. We can greatly expand the geometries we can model by introducing a scalar weight that
pairs with each basis function and control point pair. By doing so we are able to change our basis
functions from piecewise polynomial functions to piecewise rational functions. NURBS basis

functions are defined as

RE(s) = M (2.12)
YA—1 waN, (s)
where NX (s) are the n number of non-rational B-spline basis functions and wy are the weights
that correspond to each basis function. Notice that if all the weights are equal to one then the
denominator of Equation (2.12) is equal to one because of the partition of unity, and the NURBS
basis functions degenerate into B-spline basis functions.

The weight for each control point/basis function determines how much influence that con-

trol point basis function pair has on the curve. Although negative weights are possible, the present
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work will only consider positive weights. As the weight of a control point approaches positive
infinity the curve approaches that control point. As the weight of a control point approaches zero,
that control point loses any influence on the curve.

The B-spline refinement techniques discussed previously can be performed on a NURBS
curve by converting the control points to homogeneous coordinates, performing the refinement, and
then converting back to spatial coordinates. Homogeneous coordinates are the spatial coordinates
multiplied by the weight, and storing the weight as an additional coordinate. For example, control
points with coordinates (x4,y4,z4) and weights wy would have homogenous coordinates (x4
WA, VA *Wa,Z4 *Wa,wa ). Then the refinement technique could be applied as would be done on a
non-rational B-spline curve, and then the weights would be divided out at the end.

A NURBS surface is the tensor product of two univariate NURBS curves, analogous to

what is done for non-rational B-splines.

2.5 NURBS as a Basis for FEA

In the previous sections NURBS have been explained as a representation of geometry.
Isogeometric analysis uses NURBS, not only to represent geometry, but also as basis functions
to approximate a solution space. In traditional FEA this is called an isoparametric element; an
element that uses the same basis functions to interpolate the known geometry and the unknown
displacement field. The difference between an isoparametric element in traditional FEA and iso-
geometric analysis is that in isogeometric analysis basis functions are used that are able to exactly

represent the geometry. Thus it is not necessary to make any geometric approximations.

2.5.1 The Finite Element Method

The finite element method is a numerical method to obtain an approximate solution to
boundary value problems for partial differential equations. The governing partial differential equa-
tions for the problem in their original form are called the strong form of the boundary value prob-
lem. This strong form is then converted to an equivalent integral expression called the weak form.
This is done so that the approximate solution will not to have to satisfy the governing differential

equations everywhere, but rather it will only have to satisfy them in an integral or average sense.
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Our approximate solution will also have to strictly satisfy the displacement and traction boundary
conditions.

The geometric domain upon which the problem is to be solved is decomposed into smaller
sub-domains, or elements. This process is called discretization. As the elements get smaller and
smaller the approximate solution that only satisfies the PDE’s in an average sense will approach
the actual solution that satisfies the PDE’s everywhere.

The solution is computed on each element as the linear combination of a chosen basis
that minimizes the error. The approximation of the weak form as a linear combination of the
chosen basis is called the Galerkin form. In traditional FEA Lagrangian interpolating polynomials
are normally used as the chosen basis. The theory of isogeometric analysis is to use the same
basis functions that CAD programs use to describe the geometry (usually NURBS). By doing so
the geometry can be exactly represented, eliminating any geometric approximations. There are
numerous other advantages to using NURBS basis functions as a basis for the solution. The most
obvious advantage is that it streamlines the engineering design-analysis process, eliminating the
costly step of geometry decomposition/approximation. There are also mathematical advantages to
using NURBS as a basis for analysis. For example NURBS basis functions are, in general, CP~!
continuous on the element boundaries. Many classes of analysis problems require a certain degree

of continuity that is very difficult to achieve using traditional piecewise-linear basis functions.

2.5.2 The Bézier Extraction Operator

One minor complication in using NURBS as a basis for analysis is that in general NURBS
basis functions span multiple elements, making it difficult to apply local element routines like in-
tegration of the basis over an element. The solution is to extract the Bernstein basis functions from
the NURBS basis functions and corresponding control points. By doing so, all isogeometric local
element routines can be integrated seamlessly into an existing FEA framework. This process is
called Bézier extraction. This is done by performing knot insertion, as previously described, until
each knot has a multiplicity of p, which results in basis functions that are C? at the element bound-
aries. Thus Bézier basis functions and control points can be extracted from a NURBS geometry,

and element routines can be performed on the Bézier basis functions.
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2.5.3 The Gradient Extraction Operator

The evaluation of the increment of director, Ad, for different shell formulations requires that
certain quantities be lifted to control points. The lifting is achieved through a simple application of
Bézier projection [10] on the element level. We compute an element gradient extraction operator
G¢ = [G},] such that the gradients of the local B-spline basis functions are represented as a linear

combination of the B-spline basis functions themselves on the level of elements as
Ngo =) GgNa. (2.13)
A

where A and B here are the basis function index. As an example, the gradients of B-spline ba-
sis functions of degree 2 are calculated this way and depicted in Figure 2.1. The third gradient

extraction operator is given in Equation (2.14).

-9 -3 3
G'=|12 0 -12 (2.14)
-3 3 9

Since the B-spline basis are one order higher than their derivatives, the latter can be exactly repre-
sented by the original B-spline basis. In other words, Bézier projection results in exact derivatives
of the basis in this case. Using the gradient extraction operator, the gradient of any field, y, with

respect to the parametric coordinates can be lifted to the control points as

Yo=Y NpaVs (2.15)
B
=Y.) GEaNavs (2.16)
B A
=Y Nayg (2.17)
A
where
vi =Y GE v (2.18)
B
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0 1/6 2/6 3/6 4/6 5/6

Figure 2.1: Gradient extraction operator on element e = 3 (top: B-spline basis, p = 2. bottom:
derivatives of B-spline basis).

is the control values of the gradient field. Thus, the extraction operator, which only needs to be
calculated once during the whole analysis process, offers an unified framework to calculate all
gradient fields exactly for polynomial geometry. This will improve the computational accuracy,
especially for geometrically nonlinear problems. Meanwhile, as can be seen later, it also facilitates
the construction of blended shell formulations for various shell kinematics by lifting the gradient
field to the control points. Other shell or beam kinematics can easily be included within this

framework.

13



CHAPTER 3. SHELL GEOMETRY AND KINEMATICS

In this section, we will discuss four different shell kinematic descriptions. The geometry
and notation explained in this section will apply to all four shells. They will also have the same
mid-surface displacement, ii. The subsequent sections will discuss the variation of the current shell
director, d, for each particular shell.

As shown in Figure 3.1, a shell in the reference configuration is described by a reference

midsurface X and an inextensible director vector field D,
1.2 3 o/l 2 3h 1 2
X(s',s7,57) =X(s',5°)+s §D<S ,87) (3.1)

where  is the shell thickness, and s° is the thickness coordinate ranging from —1 to 1. The director

D is chosen to be the unit normal to the reference surface

X’] XXZ

D: %
X1 x X

(3.2)

Reference configuration Current configuration

Figure 3.1: Reference and current configuration of the shell
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where (-) o denotes d(-)/ds*. Similarly, the current configuration x can be written as
h
x(s',s?,5%) =i(s1,s2)+s3§d (sl,s2) (3.3)

where X is the midsurface in the current configuration and d is the current director vector. The

displacement of the shell is written as

u=x—X (3.4)
:ﬁ+s3g[d—D] (3.5)
—i+s°Ad (3.6)

where u is the displacement of the reference surface and Ad is the increment of the director. Using
standard techniques [11] we can construct an orthonormal lamina basis, {ef 1-3:1, with coordinates
(8',62,6%) at any point on the midsurface. Note that eg is normal to the surface. The lamina basis
is used to enforce the zero normal stress condition common to shell models. The transformation

from global to lamina coordinates is
4 4 avi
q=[gij] =e; e e (3.7)
and the gradient of lamina coordinates with respect to parametric coordinates is
8 Gi Vi aX

5 =€ 5 (3.8)

The displacement in lamina coordinates is u’ = qu and the displacement gradient in lamina coor-

dinates is

ou’ ou dsk

967 ~ 955 967 (3:9)
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where

Jdu ds*  Ju
— ===t 3.10
dsk 90/ JskTki (3.10)
du _, Jdu __,
:gﬁ"‘” + 557 (3.1
Jua 3 -1
:ZWJO” +s Za—a +AdU3; (3.12)
—ZuaJ o +s3§Ad,aJ;j +AdJ! (3.13)

3.1 Reissner-Mindlin Shells, RM6 and RMS5

3.1.1 RMG6 Shell Director

The most predominant shell theory used in traditional FEA programs is Reissner-Mindlin
shell theory or “thick-shell” theory. This is because the Reissner-Mindlin shell formulation only
requires C° continuous basis functions. Standard linear piecewise “hat” functions typically used in
FEA are able to satisfy that requirement. In contrast, Kirchhoff-Love shells require C! smoothness
between elements, a requirement that these “hat” functions are not able to satisfy. This is the reason
that Reissner-Mindlin shells are so ubiquitous in FEA.

The basic concept of this shell theory is that each node has three global translational DOFs
and three global rotational DOFs. The shell director, which begins normal to the shell midsurface
in the reference configuration, is not required to remain normal in the current or deformed config-
uration. Reissner-Mindlin shells are able to capture transverse shear deformation because of this
feature. The current shell director can be expressed as the reference shell director rotated about

three global axes.
dfM6 — R(w)D (3.14)
The rotation can be expressed as an infinite series,

R(w)=exp(®)=) — (3.15)
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where

O = skew(w) (3.16)

3.1.2 Increment of RM6 Shell Director, Ad*M¢

We can interpolate the variation of the current shell director as

h

A=Y SN AdRM (3.17)
AGRM62
h

= Y Naskew(ds) @y (3.18)
AERM6

= Y Huw, (3.19)
AERM6

where @4 = (W41 a2 a)A3]T. Note that only C” basis functions are required by this theory.
Since three global rotations are used this kinematic description can be used in the presence of

kinks and intersections with other structural members.

3.1.3 Increment of RM5 Shell Director, Ad*M>

A standard Reissner-Mindlin shear deformable shell theory with two local rotations can be

formulated as

h
AR = Y SNy AT (3.20)
AERMS2
h
:AE§M55NAskew(dA)T [e£1 eﬁz} B 3.21)
= Y GuB, (3.22)
AERMS
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where
0 daz  —dp

skew(dA)T = —dA3 0 dAl (323)

dyp —dar 0]

and B, = [Ba1 Baz]” are the local rotations. Note that {eﬁi} is the fiber basis constructed at node
A that lie tangent to the shell using standard techniques [11]. Note that smooth geometry but only

CY basis functions are required by this theory.

3.2 Kirchhoff-Love Shell, KL.3

Kirchhoff-Love shell theory has rarely been used in the field of FEA because the formula-
tion requires C! smoothness, something not easily achieved using standard FEA basis functions.
KL3 shells have 3 global displacement DOFs. The KL3 formulation is free from shear locking
because it doesn’t take into account transverse shear deformation. For KL3 “thin-shell” theory
the current director vector d is set to the unit normal vector with respect to the current reference

surface. In other words,

d=-P_ (3.24)
[Ipll
where
P=X1 XXp>. (3.25)
3.2.1 Increment of KL3 Shell Director, AdZ3
In the linear setting Ad = dd = d . By differentiating Equation ( 3.24) we obtain,
d,OC _ ((p,OC ®p)p_p(p®p7a)) d. (326)
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where & denotes the tensor product and
Po=X10 XX2+X ] XX2q (3.27)
Then, the linearized increment AdXE3 can be written as

ho1
AdKE3 = 3Tl I-d®d)(@; xx,+x X)) (3.28)

Standard approximate interpolation of the increment of director

Since the blended shell kinematics is formulated based on the degenerated shell, a standard

approach in FEA to interpolate the increment of director is used in [12] as

h
AP~ = ) Nyadk (3.29)
A€KL3
where
1
AdKP = M(I—dA@@dA) (a4 xx3) + (x4 x 83)) (3.30)
(3.31)

where p4, da, ﬁ/‘i‘ and XX are the nodal values of p, d, u o and x o, respectively.

Proposed exact interpolation of the increment of director

The proposed approach does not interpolate the whole AdXZ3, but only the unknown vari-
able @. Thus, we can make full use of exact geometry benefits IGA offered. This leads to very

accurate shell formulations for highly curved geometry regardless of mesh density. Keeping the
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exact geometry quantities, Equation (3.28) can be interpolated as

h 1
AdKL?’:Em(I_d@d)( Z NA(Z G}gAﬁB> XX

A€EKL3 BeS
+x1% Y, Na| Y Giaus (3.32)
A€eKL3 BeS
=-——(I—-dod) ) Ni) (G4 skew(x 1)
2||pl| A€KL3  BeS
— Gy skew(x2)) g (3.33)
= Y E5Su, (3.34)
BeS
where the abbreviation
KL3 h 1 2 1
B = -— (I-d®d) ) Ni(Gpyskew(x 1) —Gpyskew(x2)) (3.35)
2||pll AEKL3

and the superscript on E denotes the node set which is used in the underlying sum. In this case the
node set is KL3.

We demonstrate the benefits of exact increment of the director on solution accuracy in
Section 6.1.5. Compared with the approximate interpolation of the increment of director, the
proposed approach needs more computational cost. But as mentioned before, since we have lifted
all gradient fields to the control points by using the gradient extraction operator, the exact geometric
quantities, such as, d and x ¢, can be calcualted with minimal compuational efforts. Thus, for a
predefined error bound, the proposed approach still yields considerable savings in computational

cost, and also makes the blended shell more robust regardless of the mesh density.

3.3 Hierarchic Kirchhoff-Love Shell, KL.5

This work uses a hierarchic Kirchhoff-Love shell based on that presented by Echter et. al
in [8]. The KLS5 shell has the same three global displacement DOF as KL3 shells. KL5 shells have
a hierarchic difference vector that is added to the KL3 director. This hierarchic difference vector,

w, contains two parameters that capture only shear deformation. The KLS5 shell director can then
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be expressed as,
d* = dkb 4w (3.36)
where
W=Ww|X|+WX>) (3.37)

Note that w is a function of the in-plane parametric coordinates only, and does not vary through

the thickness of the shell.

3.3.1 Increment of KL5 Shell Director, Ad¥%

In the linear setting, the variation of the director can be expressed as

AdKLS — AGKL3 1 Aw (3.38)
where
h
Aw = 5 (W11X 1 +w22X2) (3.39)
h
) Z Na Z (G]]BAWBIX,I +G%;AWBZX72) (3.40)
A€KL5  BeKL5
h
BeKL5 \AeKL5
= ) Faws. (3.42)
BeKL5
Therefore
AdKE = Y EEPac+ Y Fpws (3.43)
CeS BeKL5
= Z <EgL5ﬁC+ ( Z FBSBC) WC) . (3.44)
ceS BeKL5
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Note that Aw in Equation (3.39) is constructed via derivatives of the primitives of shear angles
instead of the shear angles themselves. This yields improved shear stress quality due to the equal
order interpolation. Also, approximations similar to those described in Section 3.2.1 can also be

employed in the definition of AKX,
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CHAPTER 4. BLENDING

4.1 Final Blending

Recall that
u—iLs (AdKLS 1 AdKLS 1 AGRMS +AdRM6> '
Plugging in the definitions of each kinematic description yields

u= Z Nty + Z S3E§L3ﬁA

AES Acs
+Y S (EfPa0+ | Y Fslpa | wa
AES BEKLS

+A§S< ) S3GC5CA> Bi+ Y ( y s3HD<SDA> 04

CeRMS AeS \DeRM©6

which can be further simplified to

u=Y <NA +s (Ef“ +E§L5>> iy

AceS

+ Z 5 Z Fgops | wa + Z 53 Z Gcoca ﬁA
AceS BeKLS AcS CeRMS

+ Z 5 Z Hpops | ®4.
AeS DERM6
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CHAPTERS. THE PRINCIPAL OF VIRTUAL WORK

In this paper, we restrict the geometrically exact blended shell formulation to linear elastic

problems. The starting point is the principle of virtual work in the spatial configuration,
5H(u):/O'(u):5£dQ—/t'5udF—/b~5udQ:O (5.1)
Q r Q

where Q is the current configuration, I' is the boundary of the current configuration, ¢ is the

Cauchy stress, € is the small strain tensor, # is the traction, and b is the body force.

5.0.1 Reduced Constitutive Equation

The linear elastic constitutive equations of three-dimensional elasticity are written in the
lamina coordinate system. In the lamina coordinate system, the zero normal-stress assumption,
Gf3 =0, is enforced by solving for the strain component 83{3 in terms of the other strain components.

This resulting reduced constitutive equation is written as
&' =D& (5.2)

where

6 =160 ¢ (5.3)
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( aull )
4 3 Sal
~/ 20
€ 5 .
ouy
&, 99,
14 0
D VI G
€ 28, 06! T 96! (> (5.4)
28! duy | 9y
&3 26! * 0!
25‘3?1 814% oul
— 4+
‘ g (96] ' 965
and
1 v 0 0 0
v 1 0 0 0
R v (5.5)
2|00 5 0 0 :
00 0 x5 o
00 0 0 x5

where E is the Young’s modulus, Vv is the Poisson’s ratio, and K is a shear correction factor, which

is used to improve the shear deformation approximation and commonly taken to be g [13]

5.0.2 Strain-Displacement Matrix
Substituting (4.1) into the definition of strain (5.4) and rewriting the result in terms of the

nodal strain-displacement matrix B4 yields

g =Y B, {" (5.6)
A P

where 1y is the vector of nodal displacements and @, is the vector of nodal rotations. The inter-

pretation of the nodal rotations depends on the associated nodal director.
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5.0.3 Discretization of the Weak Form

The weak form (5.1) can be written in matrix form as
Ku=f (5.7

where K is the stiffness matrix and f is the external force vector. K and f are assembled from
element stiffness matrices K¢ and external force vectors f¢ where e denotes an element index. The

entries of K° = [K$,] and f* = { f{} are calculated as

fp = /Q _B,DB3dQ (5.8)

fa= / NpbdQ + [ NjtdT (5.9)
Qe Fe

where b and t are the equivalent body force and boundary traction vectors, respectively.
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CHAPTER 6. NUMERICAL RESULTS

6.1 Numerical Results

We present an extensive suite of benchmark problems to assess the accuracy and robustness
of the blended shell formulation. We exercise the different kinematic descriptions in the blending
in both the thick and thin shell regimes. In all cases, we leverage RM5 and RM6 nodes for the im-
position of boundary conditions. Interior nodes are set to KL.3, KLL5, RMS5, or RM6 to demonstrate
the behavior of the blending. We denote an example where boundary nodes are set to RM6 and
interior nodes are set to KLL3 by RM6/KL3. Other blendings follow the same notational pattern.
By increasing smoothness and employing different quadrature schemes we explore the behavior of
shear and membrane locking for thick and very thin shells. We denote a Gauss quadrature scheme
with p 4 1 points in each direction over an element by QP1, a reduced Gauss quadrature scheme
with p points in each direction over an element by QPO, and the non-uniform, reduced Gauss
quadrature scheme described in [14—16] by QNU. The quadrature points for these three schemes
are illustrated with an exemplary NURBS patch in Figure 6.1. Note that QNU is essentially a one-
point quadrature scheme for all orders away from the shell boundaries so it is the most efficient

quadrature scheme of the three.

(a) Full integration (QP1). (b) Reduced integration (QP0). (c) Non-uniform integration (QNU).

Figure 6.1: Different integration rules for a NURBS patch, p = 4.
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Where appropriate, we benchmark our shell formulation against the workhorse shell ele-
ments in both Nastran and Abaqus. To the best of the authors knowledge this is the first extensive
head-to-head comparison between IGA shell elements and standard FEA shell elements. The

benchmarks we solve are:
* In-plane bending of a straight cantilever beam (Section 6.1.1).
* Qut-of-plane bending of a straight cantilever beam (Section 6.1.2).
» Simply supported rectangular plate subject to a distributed load (Section 6.1.3)
* Clamped rectangular plate subject to a distributed load (Section 6.1.4).
* Cylindrical shell subject to an end load acting in the radial direction (Section 6.1.5).
* The Scordelis-Lo roof problem (Section 6.1.6).
* The pinched cylinder problem (Section 6.1.7).
* The hemispherical shell with a hole (Section 6.1.8).
* The pinched sphere problem (Section 6.1.9).

The commercial element types used in our study are shown in Table 6.2. For each element
type we list the number of nodes per element, the number of degrees-of-freedom per node, and the
quadrature scheme (full, reduced, or either). For Abaqus shell elements S4 and S4R a Reissner-
Mindlin description is used for thick shells which transitions to a discrete Kirchhoff shell theory as
the shell thickness decreases. For Abaqus shell elements S4RS5 and S8R5 a discrete Kirchhoff shell
theory is employed. All the Nastran shell elements employ a Reissner-Mindlin shell theory where
several approaches to drilling stiffness can be selected by the user. For the beam and plate problems
we study the convergence behavior for both thick and thin shells and demonstrate the ability of an
element to capture the effects of thickness changes robustly. When plots of comparisons are made
the plots in the left column will be comparisons against Abaqus shell elements while the plots in

the right column will be comparisons against Nastran elements.
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Table 6.1: Commercial FEA shell elements (Abaqus [1,2] and Nastran [3,4]) used in this study.

Element Types # Nodes | # Dofs/Node | Quadrature
Abaqus S4 4 6 Full
S4R 4 6 Reduced
Nastran QUAD4 4 6 Either
QUADR 4 6 Either

We make most comparisons on a per degree-of-freedom basis or for a fixed number of
degrees-of-freedom with decreasing thickness. Although higher-order shell elements are tradition-
ally more expensive to assemble than low-order shell elements this picture is changing dramati-
cally with the introduction of new quadrature and assembly schemes optimized for higher-order
smooth basis functions [17]. We present most comparisons in graphical form but include all com-
puted values in the form of tables in Appendix A for the reader interested in conducting additional

benchmarking.

6.1.1 In-Plane Bending of a Straight Cantilever Beam

The straight cantilever beam exercises the principal element deformation modes such as
constant and linearly varying strains and curvatures [18]. In this case, we subject the beam to in-
plane bending as shown in Figure 6.2. The beam has a length of L = 6, width » = 0.2, and thickness,
t =0.1. Itis fixed on the left end and subject to a traction g, = 5.0 on the right end. The material has
Young’s modulus, E = le’, and Poisson’s ratio, v = 0.3. The maximum downward displacement
at the free end is monitored. The exact Bernoulli beam theory solution is uexqr = 0.1080.

The results of the test for B-spline basis functions of degree p = 2 and maximal smoothness
are shown in Figure 6.3 while the results for p = 3 are shown in Figure 6.4. Notice that, even for
QP1, increasing smoothness alleviates locking. For a fixed degree p reduced quadrature QNU
effectively alleviates locking and enjoys efficiency advantages over the other quadrature schemes
QP1 and QPO. Surprisingly, the Abaqus shell elements perform very poorly for this benchmark.
The IGA and Nastran results are virtually indistinguishable. Tabulated results for this problem can

be found in Appendix A.1.
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Table 6.2: Benchmark Parameters.

Benchmark Geometry Material Properties Loading
L=6 E =1.0e7 q.=5.0
In-Plane Bending of Cantilever Beam b=0.2 v=03
t=0.1
L=6 E =1.0e7 q.=5.0
Out-of-Plane Bending of Cantilever Beam 5 =0.2 v=0.3
t=0.1
. L=10 E =1.0e3 g.=1.06°
Simply Supported Plate/Clamped Plate  varies V=03
R=10 E =1.0e3 gx=0.173
Cylindrical Shell b=1 v=0
t varies
R =300 E =3.0e6 gravity loading
) L =600 v=0.3
Scordelis-Lo Roof F—130 p=53971e—4
80° arc g =386
R=3.0 E =3.0e10 P=1.0
Pinched Cylinder L=6.0 v=03
t=0.03
R=10.0 E = 6.825¢7 P=20
Hemispherical Shell with Hole 18° hole v=03
t=0.04
. R=120.0 E =1.0¢ P=10.0
Pinched Sphere —0.04 V023
p 7,
S ¢
@ 17
L
!
Al
!

Figure 6.2: Schematic for the in-plane bending of a straight cantilever beam.
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Figure 6.3: Maximum deflection for in-plane bending of a cantilever beam, p = 2.
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Figure 6.5: Schematic for the out-of-plane bending of a straight cantilever beam.

6.1.2 Out-of-Plane Bending of a Straight Cantilever Beam

In this case we subject a straight cantilever beam to to out-of-plane bending as shown in
Figure 6.5. The beam has a length of L = 6, width b = 0.2, and thickness r = 0.1. It is fixed on
the left end and subject to a traction g, = 5.0 on the right end. The material has Young’s modulus,
E = lé’, and Poisson’s ratio, v = 0.3. The maximum downward displacement at the free end is
monitored. The exact Bernoulli beam theory solution is uey,s = 0.4321.

The results of the test for B-spline basis functions of degree p = 2 and maximal smoothness
are shown in Figure 6.6 while the results for p = 3 are shown in Figure 6.7. Notice that RM5/KL3
approaches the exact solution faster than any of the other element types for all quadrature rules
and degrees. It is also interesting to note that RM5/RMS and RM5/KL6 perform identically in
the in-plane bending problem because of the absence of transverse shear locking. They perform
differently, however, in the out-of-plane bending problem where shear locking is present. This is
due to the formulation of KL5 being shear locking free. As can be seen from Figure 6.3 to 6.7,
IGA shell elements perform well in both in-plane and out-of-plane bending, more so than Abaqus
or Nastran elements. This generality is very desirable in structural elements. Tabulated results for

this problem can be found in Appendix A.2.
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Figure 6.6: Maximum deflection for out-of-plane bending of a cantilever beam, p = 2.
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Figure 6.7: Maximum deflection for out-of-plane bending of a cantilever beam, p = 3.
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6.1.3 Simply Supported Square Plate

In this section, we investigate the representation of shear stress for RMS5/KLS5 and RM5/RMS5
through a simply supported square plate under uniform transverse loading. This simple problem
is chosen due to the absence of membrane stress, which allows us to study the shear stress inde-
pendently. The schematic of this problem is shown in Figure 6.8, with length L = 10, Young’s
modulus £ = 1000, and Poisson’s ratio v = 0.3. Two cases of slenderness, % =100 and 10000, are
investigated. The load is set to be g, = 3. The geometry is discretized with 10 B-spline elements
in both x nand y directions.

The contour plots of transverse shear stress g, for p =2 and % = 100 are shown in Figure 6.9.
As can be seen, significant oscillations occur for the standard RMS5/RMS elements for all three
quadrature rules, among which the reduced quadrature rule and the non-uniform show worse trans-
verse shear stress representation due to the inaccurate integration. The oscillations occur along the
boundaries for RMS5/KL3 with all quadrature rules, since the RM5 kinematics is assigned along
the boundaries. They are dramatically reduced in the interior, however, and even disappeared with

the full quadrature rule.

Y

4

A A A A A A A

Figure 6.8: Schematic for the simply supported plate.
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The superiority of RM5/KL3 in representing the transverse shear results from that the rota-
tion, Aw, is defined in terms of the derivatives of shear angles as shown in Equation (3.40). Thus,

the imbalance of function spaces in approximating AdX3

and Aw is now removed. Similar phe-
nomena is observed in the very thin shell with slenderness If = 10000, even though the shear shear
itself is relatively small in this case. As shown in Figure 6.11 and 6.12, for p = 3, the oscillations
decrease significantly for RMS5/RMS due to the fact that higher order basis increase the approxima-
tion ability. However, the superiority of RM5/KL5 to RM5/RMS in representing the shear stress is

still apparent.

6.1.4 Clamped Square Plate Subject to a Uniformly Distributed Load

We analyze the clamped square plate subject to a uniform distributed load as shown in
Figure 6.13. The square plate has length L = 10, Young’s modulus E = 1000, and Poisson’s ratio
v = 0.3. The thickness ¢ is varied to give a slenderness ratio % The distributed load is set to
g = 13. The maximum displacement at the center of the plate is monitored. The exact solution
1S Umgy = 0.138173. The plate is modeled with both quadratic and cubic B-splines of maximal
smoothness. In all cases, the boundary nodes are set to RMS5 simplifying the imposition of clamped
boundary conditions. The internal nodes are set to either KLL3, KL.5, or RMS.

Figure 6.14 shows the behavior of the blended shell for increasing slenderness. Note
the shear locking free behavior for RM5/KL3 and RMS5/KLS5 for increasing slenderness. Setting
boundary nodes to RMS5 does not appear to disrupt the shear locking free behavior of KLL3 and KLL5
and simplifies the imposition of clampled boundary conditions. The shear locking in RM5/RMS
is alleviated by both reduced quadrature (QNU) and increasing polynomial degree. Figures 6.15
and 6.16 compare the blended shell to commercial shell elements in Abaqus and Nastran (see Ta-
ble 6.2) for a slenderness ratio % = 1000. In all cases, the blended shell is competitive with the
FEA shell elements. Note that for higher degrees and smoothness the IGA accuracy deteriorates
slightly. This is because the maximal smoothness basis functions have difficulty capturing the
sharp boundary layers created by the clamped boundary conditions. Locally reducing smoothness

will alleviate this discrepancy but is not pursued in this work. Note that additional data for this

problem is tabulated in Appendix A.3.
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Figure 6.9: Shear stress, ¢, for simply supported plate with p =2 and L/t = 100.
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Figure 6.10: Shear stress, gy, for simply supported plate with p =2 and L/t = 10000.
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Figure 6.11: Shear stress, gy, for simply supported plate with p =3 and L/t = 100.
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Figure 6.12: Shear stress, gy, for simply supported plate with p =3 and L/t = 10000.
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Figure 6.13: Schematic for a clamped square plate subject to a uniform distributed load.
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Figure 6.14: Maximum deflection for a square clamped plate with 16 x 16 elements, subject to a
uniform distributed load for different quadrature rules QP1, QP2, QNU and polynomial degrees
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Figure 6.15: Maximum deflection for a square clamped plate subject to a uniform distributed load
with L/t = 1,000 for commercial FEA elements and the blended shell with different quadrature
rules QP1, QPO, and QNU and polynomial degree p = 2.
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Figure 6.16: Maximum deflection for a square clamped plate subject to a uniform distributed load
with L/t = 1,000 for commercial FEA elements and the blended shell with different quadrature
rules QP1, QPO, and QNU and polynomial degree p = 3.
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6.1.5 Cylindrical Shell Subject to Transverse Loading in the Radial Direction

Figure 6.17 shows a schematic for a cylindrical shell subject to transverse loading in the
radial direction. The beam has a radius R = 10 m, a width ¥ = 1 m, and the thickness varies.
Young’s modulus and Poisson’s ratio are £ = 1000 Pa and v = 0, respectively. The curved beam is
clamped at one end and subjected to a traction, g, = 0.1¢°, at the other end. An analytical solution
based on Bernoulli beam theory gives a value of approximately 0.942 for the radial displacement at
the free end [8]. The beam is modeled with quadratic and cubic NURBS of maximal smoothness.
We also employ all three quadrature schemes QP1, QPO, QNU.

Figure 6.18 illustrates the importance of using exact geometric quantities in the isogeo-
metric blended shell formulation. We compare the solution computed using the exact formulations
described in Sections 3.2.1 and 3.3 to one computed using the geometric approximations described
in Section 3.2.1 (denoted KL3 approximate in the plots). Note that these geometric approximations
are the same as those described in the first blended isogeometric shell paper [12]. This problem
suffers from both shear and membrane locking. RMS5/KL3 and RMS5/KLS5 are essentially shear
locking free but still suffer from membrane locking as shown in Figures 6.18a and 6.18b. How-
ever, the reduced quadrature schemes QPO and QNU alleviate locking, producing locking free
solutions for RM5/KL3, RM5/KLS5, and RM5/RMS5 as shown in Figures 6.18e and 6.18f. Notice,
however, that RM5/KL3 approximate remains inaccurate for all quadrature schemes. The inaccu-
racy is due to the geometric error in the underlying approximations which are employed in the shell
formulation. These errors cannot be overcome through reduced quadrature schemes and worsen
for increasing polynomial degree.

Figures 6.19 and 6.20 compare commercial FEA shell elements to the isogeometric blended
shell for a slenderness ratio of § = 100. In this case, the membrane locking can be overcome by
reduced quadrature (QP0O and QNU) or increasing polynomial degree and is very competitive with

shell elements in Abaqus and Nastran. All data for this problem is tabulated in Appendix A.4.
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Figure 6.17: A cylindrical shell subject to tranverse loading in the radial direction.
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Figure 6.18: Maximum radial deflection for cylindrical shell problem with 8 x 1 elements, for
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Figure 6.19: Maximum radial deflection for cylindrical shell problem for different quadrature rules
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Figure 6.20: Maximum radial deflection for cylindrical shell problem for different quadrature rules
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6.1.6 Scordelis-Lo Roof

The Scordelis-Lo roof problem is part of the shell obstacle course [18] and tests a shell
element’s ability to handle both membrane and bending stresses. An 80" arc of a cylinder with
radius, R = 300, length, L = 600, and thickness, t = 3.0 is supported on each end by a rigid
diaphragm. It is loaded with its own weight. The material has Young’s Modulus, E = 3.0e6,
Poisson’s ratio, v = 0.3, and mass density, p = 0.00053971. The acceleration of gravity is, g = 386.
Figure 6.21 shows the problem setup. Only one quarter of the geometry was modeled due to
symmetry.

The maximum displacement occurs on the free edge at y = % Multiple theoretical solutions
have been reported in the literature and these solutions have varied slightly based on whether thin
or thick-shell theory was used. The exact solution was reported as 3.70331 for thin shell theory
and 3.59 for thick shell theory [19]. In our examples, the thick shell solution is adopted and used
in the comparisons shown in Figures 6.22 and 6.23. For this example the isogeometric blended
shell demonstrates superior accuracy when compared to FEA shell elements. Tabulated results for

this problem can be found in Appendix A.5.

rigid diaphragm

40;

Figure 6.21: Schematic for the Scordelis-Lo roof problem.
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Figure 6.22: Maximum deflection for the Scordelis-Lo roof problem, p = 2.
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Figure 6.23: Maximum deflection for the Scordelis-Lo roof problem, p = 3.



6.1.7 Pinched Cylinder

The pinched cylinder problem is from the shell obstacle course [18] and tests a shell ele-
ment’s ability to handle membrane and bending stresses. A cylinder with radius, R = 3.0, thickness,
t = 0.03, and length, L = 6 is constrained at each end by a rigid diaphragm. The material has a
Young’s modulus of, E = 3.0e10, and Poisson’s ratio, v = 0.3. The cylinder is loaded with two
opposing point loads at mid-cylinder with magnitude, P = 1.0 as shown in Figure 6.24. One eighth
of the cylinder is modeled due to symmetry. The inward radial displacement at the location of the
point load is monitored and compared against a reference displacement of u,,r = 1.83 % e, based
on thin shell theory.

The behavior of the blended shell is shown in Figures 6.25 and 6.26. Similar trends to
those seen in previous problems, in terms of accuracy and competitiveness with commercial FEA
elements, can be observed for this problem. Tabulated results for this problem can be found in

Appendix A.6.

rigid diaphragm

I L L l
2 P 2

Figure 6.24: Schematic for the pinched cylinder problem.
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Figure 6.25: Maximum deflection for the pinched cylinder problem, p = 2.

55



2.0

Maximum Displacement

—
[

=
o

@—@ RM6/KL3
A—A RM6/RM5
V—V¥ RMG6/KL5

B3 S4R5
05 o0 s
o0 SIR
— = Reference
0.0 - L i
10% 10% 10 10°
DOF
(a) p =3, QP1 quadrature.
9.0 %1077 : ,
£ 15}
&
Cj LOf @—e RM6/KL3
é A—A RM6/RM5
g ¥—¥ RM6/KL5
;: B3 S4R5
= 05 0 s1
o @ S4R
- - Reference
0.0 . . _
10% 10% 10 10°

2.0

£ 15}
£
=3
&

A 10}
205}
0.0

1

DOF

(c) p =3, QPO quadrature.

x10-7

@—e RM6/KL3
A—A RM6/RM5
¥—¥ RM6/KL5

S4R5
Q@ s4
o—@ S4R
= = Reference
0? 10° 10! 10°

DOF

(e) p = 3, QNU quadrature.

2.0

Maximum Displacement

—_
o

=
=)

®—@ RM6G/KL3
A—A RM6/RM5
v—¥ RM6/KL5

0.5 B3 QUAD4
©—<© QUADR
- Reference
0.0 - . .
10% 10° 10" 10°
DOF
(b) p = 3, QP1 quadrature.
9,0 X107 , ,
£ 15}
g
5
<
e
A 10t
g ®—@ RM6/KL3
g A—A RM6/RM5
% V—¥ RM6/KL5
205 o8
= 0. QUAD4
©—< QUADR
- - Reference
0.0 ‘, . .
10% 10° 10" 10°
DOF
(d) p = 3, QPO quadrature.
2,0 X107 ‘
£15
g
&
£
5
A 10
g ®—@ RMG/KL3
g A—A RM6/RM5
= v—V RM6/KL5
=05 )
= U =8 QUAD4
©—< QUADR
-- Reference
0.0 . . .
10? 10% 101 10°

DOF

(f) p = 3, QNU quadrature.

Figure 6.26: Maximum deflection for the pinched cylinder problem, p = 3.
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6.1.8 Hemispherical Shell with Hole

The hemispherical shell problem tests a shell element’s ability to represent combined mem-
brane and bending stresses [5]. The geometry is a hemisphere with radius, R = 10, thickness,
t = 0.04, and an 18" hole as shown in Figure 6.27. The hemisphere is loaded with four point loads
on the equator with alternating signs. Only one quarter of the hemisphere is modeled due to sym-
metry. The radial displacement at the location of one of the point loads is monitored and compared
against a reference solution of 0.0940 [5].

The behavior of the blended shell is shown in Figures 6.28 and 6.29. Similar trends to
those seen in previous problems, in terms of accuracy and competitiveness with commercial FEA
elements, can be observed for this problem. Tabulated results for this problem can be found in

Appendix A.7.

Figure 6.27: Schematic for the hemispherical shell problem [5].
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Figure 6.28: Maximum deflection for the hemispherical shell with hole problem, p = 2.
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Figure 6.29: Maximum deflection for the hemispherical shell with hole problem, p = 3.



6.1.9 Pinched Sphere

The pinched sphere problem tests a shell element’s ability to handle regions of primarily
bending stresses (near the poles) in addition to regions dominated by membrane stresses (near the
equator). The geometry is a sphere with radius, R = 20, and thickness, ¢t = 0.04. The sphere is
loaded with two point loads on the poles with alternating signs and magnitude, P = 10.0. The
material has a Young’s modulus of, E = 10.0e6, and Poisson’s ratio, v = 0.3. The problem setup
is shown in Figure 6.30. Only one eighth of the sphere is modeled due to symmetry. The radial
displacement at the location of one of the point loads is monitored, and normalized by a factor of
% . The reference solution is 21.2 [20].

The behavior of the blended shell is shown in Figures 6.31 and 6.32. Similar trends to
those seen in previous problems, in terms of accuracy and competitiveness with commercial FEA
elements, can be observed for this problem. In this case, all solutions converge to values higher

then the exact solution. Tabulated results for this problem can be found in Appendix A.8.

P

Figure 6.30: Schematic for the pinched sphere problem.
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Figure 6.31: Maximum deflection for the pinched sphere problem for p = 2.
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Figure 6.32: Maximum deflection for the pinched sphere problem for p = 3.



CHAPTER 7. CONCLUSIONS

The benchmarks and numerical results discussed in Chapter 6 demonstrate numerous ad-
vantages of the geometrically exact isogeometric blended shell in comparison to: (1) commercially
available shell elements from ABAQUS and NASTRAN, (2) the isogeometric blended shell pro-
posed in [9], and (3) Reissner-Mindlin shell elements, RM5 and RM6.

Using Reissner-Mindlin shell elements on the boundaries enabled us to simulate any bound-
ary condition. When blended with Kirchhoff-Love shell elements, KLL3 or KL35, on the interior we
were able to avoid shear locking. The Reissner-Mindlin elements on the boundaries did not cause
any shear locking in any of the benchmarks.

Marked improvements were seen when gradient quantities were exactly lifted to the control
points as compared with the approximations, as discussed in Section 3.2.1. The gradient extraction
operator, discussed in Section 2.5.3, made this possible by enabling the blending of different shell
descriptions. The cylindrical shell benchmark in Section 6.1.5 clearly illustrates the improved
performance.

The KLS shell element performed very well in all benchmarks, avoiding shear locking at
the theoretical level, yet still capturing deformation due to transverse shear. It also produced more
accurate shear stress fields, as seen in Section 6.1.4.

Overall the proposed isogeometric blended shell performed competitively with the com-
mercial shell elements, sometimes outperforming them. This is crucial because it demonstrates
that IGA is not only a viable option, but a clearly superior one. It shows that simulations can be
run at the same computational cost as with commercial FEA shell elements, but with far better
displacement and stress results. Furthermore, these simulations can be done without the time-
consuming step of decomposing the geometry.

Another advantage of the proposed isogeometric blended shell is the generality. It per-

formed competitively in the whole suite of benchmarks that tested all of the deformation modes.
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Even the commercial FEA shell elements had benchmarks in which they performed poorly (see
Section 6.1.1).

Although shear locking was avoided by using Kirchhoff-Love shell elements, membrane
locking was still a major issue, as seen in Section 6.1.5. This locking was ameliorated by using
different quadrature schemes and by increasing the smoothness, but it was clearly evident when full
quadrature was used with degree p = 2. Eliminating the membrane locking could be the subject of

future research.
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APPENDIX A. TABULATED RESULTS FOR BENCHMARK PROBLEMS

We include the tabulated results for each benchmark problem. We include both isogeomet-
ric blended shell element results as well as commercial shell elements results from both Abaqus
and Nastran. Where appropriate we include both thick and thin shell solutions. For the FEA results
we occasionally specify when transverse shear (TS) is included or neglected in the underlying shell

formulation.

A.1 Results for the in-plane bending of a cantilever beam problem
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different blended shell elements, p = 2.

Table A.1: Maximum displacement for the in-plane bending of a cantilever beam problem for

Element Degree Mesh DOF QP1 QPO QNU
RMS5/KL3 2 2x1 27 0.0853529 0.106372 0.106372
RMS5/KL3 2 4x1 45 0.101664 0.107081 0.109197
RMS5/KL3 2 8x1 81 0.107089 0.107582 0.10833
RM5/KL3 2 16x1 153 0.10776  0.107834 0.108046
RMS5/KL3 2 32x1 297 0.10792  0.107957 0.108014
RMS/KL3 2 64x1 585 0.107979 0.108018 0.108033
RMS5/RMS 2 2x1 45 0.0853529 0.106372 0.106372
RMS5/RMS 2 4x1 75 0.101664 0.107081 0.109197
RMS5/RMS5 2 8x1 135 0.107089 0.107582  0.10833
RMS5/RMS5 2 16x1 255 0.10776  0.107834 0.108046
RMS5/RMS5 2 32x1 495 0.10792  0.107957 0.108014
RMS5/RMS 2 64x1 975 0.107979 0.108018 0.108033
RMS5/KLS 2 2x1 45 0.0853529 0.106372 0.106372
RMS5/KLS 2 4x1 75 0.101664 0.107081 0.109197
RMS5/KLS 2 8x1 135 0.107089 0.107582 0.10833
RMS5/KLS 2 16x1 255 0.10776 ~ 0.107834 0.108046
RMS/KLS 2 32x1 495 0.10792  0.107957 0.108014
RMS5/KLS 2 64x1 975 0.107979 0.108018 0.108033
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different blended shell elements, p =3

Table A.2: Maximum displacement for the in-plane bending of a cantilever beam problem for

Element Degree Mesh DOF QP1 QPO QNU

RM5/KL3 3 2x1 48 0.10674 0.106823 0.106823
RM5/KL3 3 4x1 72 0.10736  0.107379 0.108793
RMS5/KL3 3 8x1 120 0.107725 0.107734 0.108644
RMS5/KL3 3 16x1 216  0.107904 0.107909 0.108412
RM5/KL3 3 32x1 408 0.107985 0.107989 0.108246
RM5/KL3 3 64x1 792 0.108014 0.108022 0.108148
RM5/RM5 3 2x1 80 0.10674 0.106823 0.106823
RM5/RM5 3 4x1 120 0.10736  0.107379 0.108793
RM5/RM5 3 8x1 200 0.107725 0.107734 0.108644
RM5/RM5 3 16x1 360 0.107904 0.107909 0.108412
RM5/RM5 3 32x1 680 0.107985 0.107989 0.108246
RM5/RM5 3 64x1 1320 0.108014 0.108022 0.108148
RMS5/KL5 3 2x1 80 0.10674 0.106823 0.106823
RMS5/KLS5 3 4x1 120 0.10736  0.107379 0.108793
RMS5/KL5 3 8x1 200 0.107725 0.107734 0.108644
RMS5/KLS5 3 16x1 360 0.107904 0.107909 0.108412
RMS5/KL5 3 32x1 680 0.107985 0.107989 0.108246
RMS5/KL5 3 64x1 1320 0.108014 0.108022 0.108148

Table A.3: Maximum displacement for the in-plane bending of a cantilever beam problem for
different commercial FEA elements.

Mesh DOF Quad4 QuadR S4 S4R

4x1 48 0.1064 0.1064 0.0646 0.0681
6x1 72 0.1073 0.1073 0.0770 0.0821
&x1 96 0.1077 0.1077 0.0849 0.0911
12x1 144 0.1079 0.1079 0.0938 0.1015
16x1 192 0.1080 0.1080 0.0985 0.1069
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different blended shell elements, p = 2.

Table A.4: Maximum displacement for the out-of-plane bending of a cantilever beam problem for

Element Degree Mesh DOF QP1 QPO QNU

RMS5S/KL3 2 2x1 27 0.400144 0.403269 0.403269
RMS5/KL3 2 4x1 45 0.421265 0.422  0.422565
RM5/KL3 2 8x1 81 0.42798 0.428319 0.428528
RM5/KL3 2 16x1 153 0.43015 0.430344 0.430414
RMS5/KL3 2 32x1 297 0.430812 0.430965 0.430989
RMS/KL3 2 64x1 585 0.430905 0.431082 0.43109
RM5/RMS 2 2x1 45 0.328552 0.425263 0.425263
RMS/RMS 2 4x1 75 0.379747 0.428049 0.436548
RMS5/RMS5 2 8x1 135 0.424467 0.430028 0.433051
RMS5/RMS5 2 16x1 255 0.430357 0.430986 0.431861
RM5/RMS5 2 32x1 495 0.43109 0.431399 0.431643
RM5/RMS 2 64x1 975 0.431215 0.431577 0.431631
RM5/KLS 2 2x1 45 0.400316 0.403686 0.403686
RMS5/KLS 2 4x1 75 0.421386 0.422211 0.42282
RMS/KLS 2 8x1 135 0.4281  0.428529 0.428743
RMS/KLS 2 16x1 255 0.430301 0.430663 0.430756
RMS5/KLS 2 32x1 495 0431008 0.431428 0.431516
RM5/KLS 2 64x1 975 0.43119 0.43169 0.431825
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different blended shell elements, p = 3.

Table A.5: Maximum displacement for the out-of-plane bending of a cantilever beam problem for

Element Degree Mesh DOF QP1 QPO QNU
RM5/KL3 3 2x1 48 0.426526 0.426823 0.426823
RM5/KL3 3 4x1 72 0.428945 0.429011 0.433243
RMS5/KL3 3 8x1 120 0.430314 0.430342 0.431807
RMS5/KL3 3 16x1 216 0.430892 0.430903 0.431315
RM5/KL3 3 32x1 408 0.43104 0.431043 0.43115
RM5/KL3 3 64x1 792 0.430964 0.430965 0.430993
RM5/RM5 3 2x1 80 0.426601 0.426932 0.426932
RM5/RM5 3 4x1 120  0.429052 0.429128 0.433636
RM5/RM5 3 8x1 200 0.430446 0.430478 0.433096
RM5/RM5 3 16x1 360 0.431039 0.431052 0.432662
RM5/RM5 3 32x1 680 0.431224 0.431229 0.432071
RM5/RM5 3 64x1 1320 0.431267 0.431274 0.431668
RMS5/KL5 3 2x1 80 0.42663 0.426934 0.426934
RMS5/KLS5 3 4x1 120 0.429061 0.42913 0.433373
RM5/KLS5 3 8x1 200 0.430446 0.430479 0.431957
RMS5/KLS5 3 16x1 360 0.431038 0.431051 0.431458
RMS5/KL5 3 32x1 680 0.431207 0.431211 0.431316
RMS5/KL5 3 64x1 1320 0.431232 0.431233 0.431266

Table A.6: Maximum displacement for the out-of-plane bending of a cantilever beam problem for
different commercial FEA elements.

Mesh DOF Quad4 QuadR S4 S4R

4x1 48 0.4237 0.4217 0.4172 0.4248
6x1 72 0.4265 0.4254 0.4235 0.4282
&x1 96 0.4279 0.4271 0.4261 0.4294
12x1 144  0.4293 0.4287 0.4284 0.4303
16x1 192 04300 0.4294 0.4294 0.4306
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Table A.7: Maximum displacement for the clamped plate problem for % =10,p=2.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 2 2x2 72 0.0397253 0.0412743 0.0412743
RM5/KL3 2 4x4 148 0.132547  0.133351  0.129574
RM5/KL3 2 8x8 372 0.143237  0.143514  0.143806
RMS5/KL3 2 16x16 1108 0.140616  0.140671  0.140905
RMS5/KL3 2 32x32 3732 0.138598  0.138602  0.138685
RM5/KL3 2 64x64 13588 0.138189  0.138189  0.138213
RM5/RMS5 2 2x2 80 0.0541941 0.0695444 0.0695444
RM5/RMS5 2 4x4 180 0.154547  0.165162  0.180805
RMS5/RM5 2 8x8 500 0.163558  0.164229 0.17107
RM5/RMS5 2 16x16 1620  0.164253  0.164301  0.167195
RMS5/RM5 2 32x32 5780  0.164302  0.164305 0.1652
RMS5/RM5 2 64x64 21780 0.164305  0.164305 0.16455
RMS5/KLS 2 2x2 80 0.0541941 0.0695444 0.0695444
RM5/KLS 2 4x4 180 0.152259  0.157515 0.156678
RM5/KLS 2 8x8 500 0.1606 0.160958 0.16236
RM5/KLS 2 16x16 1620  0.163084 0.163103  0.163471
RMS5/KLS 2 32x32 5780  0.163933  0.163934  0.164011
RMS5/KLS 2 64x64 21780 0.164202  0.164202  0.164219

A.3 Results for the clamped rectangular plate subject to a distributed load
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Table A.8: Maximum displacement for the clamped plate problem for % =10,p =3.

Element Degree Mesh  DOF QP1 QPO QNU

RMS5/KL3 3 2x2 107 0.530556 0.530083 0.530083
RM5/KL3 3 4x4 195 0.198428 0.198442 0.217874
RM5/KL3 3 8x8 443 0.155103 0.155117 0.169115
RM5/KL3 3 16x16 1227 0.143357 0.143361 0.148632
RM5/KL3 3 32x32 3947  0.139527 0.139528 0.141226
RMS5/KL3 3 64x64 13995 0.138458 0.138458 0.138853
RM5/RM5 3 2%x2 125 0.544672 0.561587 0.561587
RM5/RM5 3 4x4 245 0.216534 0.216144 0.197133
RM5/RM5 3 8x8 605 0.175661 0.175662 0.177799
RM5/RM5 3 16x16 1805 0.167069 0.16707 0.168942
RMS5/RMS5 3 32x32 6125 0.164992 0.164992 0.165956
RM5/RM5 3 64x64 22445 0.164477 0.164477 0.164927
RMS5/KLS 3 2x2 125 0.563442 0.554227 0.554227
RMS5/KLS5 3 4x4 245 0.213402 0.213416 0.259083
RMS5/KLS5S 3 8x8 605 0.175611 0.175612 0.201568
RM5/KLS5S 3 16x16 1805 0.167069 0.167069 0.172577
RM5/KLS 3 32x32 6125 0.164992 0.164992 0.166056
RMS5/KLS 3 64x64 22445 0.164477 0.164477 0.164712
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Table A.9: Maximum displacement for the clamped plate problem for If =100,p =2.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 2 2%x2 72 0.000406158 0.000422158 0.000422158
RM5/KL3 2 4x4 148 0.108129 0.108439 0.106006
RM5/KL3 2 8x8 372 0.130674 0.130696 0.131135
RMS5/KL3 2 16x16 1108 0.136349 0.136353 0.136598
RMS5/KL3 2 32x32 3732 0.137743 0.137745 0.137828
RMS5/KL3 2 64x64 13588 0.138076 0.138077 0.138101
RM5/RM5 2 2x2 80 0.000648533 0.000980525 0.000980525
RM5/RM5 2 4x4 180 0.0135136 0.0462474 0.154172
RM5/RMS5 2 8x8 500 0.0984809 0.137783 0.143859
RM5/RMS5 2 16x16 1620 0.134769 0.138396 0.1411
RM5/RM5 2 32x32 5780 0.138185 0.138448 0.139347
RM5/RM5 2 64x64 21780 0.138433 0.13845 0.138708
RMS5/KLS 2 2x2 80 0.000648533 0.000980525 0.000980525
RMS5/KLS 2 4x4 180 0.108633 0.109623 0.107414
RM5/KLS 2 8x8 500 0.131084 0.131497 0.132724
RM5/KLS 2 16x16 1620 0.136691 0.13684 0.137403
RM5/KLS 2 32x32 5780 0.138027 0.138051 0.138167
RMS5/KLS 2 64x64 21780 0.138342 0.138344 0.13837
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Table A.10: Maximum displacement for the clamped plate problem for % =100, p = 3.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 3 2x2 107 0.578044 0.579696 0.579696
RM5/KL3 3 4x4 195 0.183263 0.183279 0.190787
RM5/KL3 3 8x8 443 0.14862 0.14862 0.156299
RMS5/KL3 3 16x16 1227 0.140739 0.140739 0.142946
RMS5/KL3 3 32x32 3947 0.13882 0.13882 0.139378
RM5/KL3 3 64x64 13995 0.138339 0.138339 0.138481
RM5/RM5 3 2x2 125 0.0870593 0.166056 0.166056
RMS5/RM5 3 4x4 245 0.181453 0.188348 0.19239
RM5/RMS5 3 8x8 605 0.148938  0.14893 0.150358
RM5/RMS5 3 16x16 1805 0.140976  0.140978 0.142329
RMS5/RMS5 3 32x32 6125 0.139078 0.139078 0.139872
RM5/RM5 3 64x64 22445 0.138607 0.138607 0.13901
RMS5/KLS 3 2x2 125 0.57792  0.578573 0.578573
RMS5/KLS5 3 4x4 245 0.183429 0.183448 0.19167
RM5/KLS 3 8x8 605 0.148829 0.148829 0.157485
RM5/KLS 3 16x16 1805 0.140979  0.140979 0.143983
RM5/KLS 3 32x32 6125 0.139078 0.139078 0.139905
RMS5/KLS 3 64x64 22445 0.138607 0.138607 0.138792
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Table A.11: Maximum displacement for the clamped plate problem for % = 1,000, p = 2.

Element Degree Mesh  DOF QP1 QPO QNU

RM5/KL3 2 2%x2 72 4.06E-06 4.22E-06 4.22E-06
RM5/KL3 2 4x4 148 1.08E-01 1.08E-01 0.105735
RM5/KL3 2 8x8 372 1.30E-01 1.31E-01 0.130957
RMS5/KL3 2 16x16 1108  1.36E-01 1.36E-01 0.136498
RM5/KL3 2 32x32 3732  0.137692 0.137693 0.137776
RM5/KL3 2 64x64 13588 0.138053 0.138053 0.138077
RMS5/RMS5 2 2x2 80 6.50E-06 9.85E-06 9.85E-06
RMS5/RM5 2 4x4 180 1.49E-04 0.000675559 0.153904
RM5/RMS5 2 8x8 500 3.20E-03  0.0357875  0.143572
RM5/RMS5 2 16x16 1620 4.17E-02 0.135888 0.140822
RMS5/RM5 2 32x32 5780  0.120443 0.138103 0.139071
RMS5/RM5 2 64x64 21780 0.136667 0.138174 0.138433
RMS5/KLS 2 2%x2 80 6.50E-06 9.85E-06 9.85E-06
RMS5/KLS 2 4x4 180 1.08E-01 1.08E-01 0.105749
RMS5/KLS 2 8x8 500 1.31E-01 1.31E-01 0.130978
RM5/KLS 2 16x16 1620  1.36E-01 1.36E-01 0.136523
RM5/KLS 2 32x32 5780 0.137696 0.137698 0.1378

RMS5/KLS 2 64x64 21780 0.138056 0.138057 0.13809
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Table A.12: Maximum displacement for the clamped plate problem for % =1,000,p = 3.

Element Degree Mesh  DOF QP1 QPO QNU
RMS5/KL3 3 2x2 107 0.578664 0.580351 0.580351
RM5/KL3 3 4x4 195 0.183114 0.183131 0.190491
RM5/KL3 3 8x8 443 0.148545 0.148545 0.156098
RMS5/KL3 3 16x16 1227 0.1407 0.1407 0.142853
RMS5/KL3 3 32x32 3947 1.39E-01 0.138801 0.139338
RM5/KL3 3 64x64 13995 1.38E-01 0.13833 0.138462
RM5/RM5 3 2x2 125 0.00102938 0.00235151 0.00235151
RM5/RM5 3 4x4 245 0.0150572  0.0237003 0.195381
RM5/RMS5 3 8x8 605 0.132796 0.139056 0.150056
RMS5/RM5 3 16x16 1805 0.140583 0.140596 0.141825
RMS5/RMS 3 32x32 6125 0.138796 0.138799 0.139283
RM5/RM5 3 64x64 22445  0.138332 0.138332 0.138527
RMS5/KLS 3 2x2 125 0.578662 0.580339 0.580339
RMS5/KLS5 3 4x4 245 0.183115 0.183132 0.1905
RMS5/KLS5 3 8x8 605 0.148547 0.148547 0.156111
RM5/KLS 3 16x16 1805 0.140703 0.140703 0.142867
RM5/KLS5 3 32x32 6125 0.138803 0.138803 0.139351
RMS5/KLS 3 64x64 22445  0.138332 0.138332 0.138473
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Table A.13: Maximum displacement for the clamped plate problem for If = 10,000, p = 2.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 2 2%x2 72 4.06E-08 4.22E-08 4.22E-08
RM5/KL3 2 4x4 148 1.08E-01 1.08E-01 0.105732
RM5/KL3 2 8x8 372 1.30E-01 1.31E-01 0.130955
RMS5/KL3 2 16x16 1108  1.36E-01 1.36E-01 0.136497
RM5/KL3 2 32x32 3732  0.137692 0.137692 0.137775
RM5/KL3 2 64x64 13588 0.138053 0.138053 0.138077
RMS5/RMS5 2 2x2 80 6.50E-08 9.85E-08 9.85E-08
RMS5/RM5 2 4x4 180 1.49E-06 6.79E-06 0.153902
RM5/RMS5 2 8x8 500 3.27E-05 0.000473325 0.143569
RM5/RMS5 2 16x16 1620 5.93E-04 0.0256329 0.14082
RMS5/RM5 2 32x32 5780  0.009272 0.133304 0.139068
RMS5/RM5 2 64x64 21780 0.074124 0.138075 0.13843
RMS5/KLS 2 2%x2 80 6.50E-08 9.85E-08 9.85E-08
RMS5/KLS 2 4x4 180 1.08E-01 1.08E-01 0.105732
RMS5/KLS 2 8x8 500 1.30E-01 1.31E-01 0.130955
RM5/KLS 2 16x16 1620  1.36E-01 1.36E-01 0.136497
RM5/KLS 2 32x32 5780 0.137692 0.137692 0.137776
RMS5/KLS 2 64x64 21780 0.138053 0.138053 0.138077
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Table A.14: Maximum displacement for the clamped plate problem for

L

?:

10,000, p = 3.

Element Degree Mesh  DOF QP1 QPO QNU

RMS5/KL3 3 2x2 107 0.57867 0.580357 0.580357
RM5/KL3 3 4x4 195 0.183112 0.183129 0.190488
RM5/KL3 3 8x8 443 0.148544 0.148544 0.156096
RMS5/KL3 3 16x16 1227 0.1407 0.1407 0.142852
RMS5/KL3 3 32x32 3947 1.39E-01 0.138801 0.139337
RM5/KL3 3 64x64 13995 1.38E-01 0.13833 0.138461
RM5/RM5 3 2x2 125 1.03E-05 2.36E-05 2.36E-05
RM5/RM5 3 4x4 245 0.000162351 0.000267821 0.195416
RM5/RMS5 3 8x8 605 0.0079066 0.0110308  0.150053
RMS5/RM5 3 16x16 1805 0.116086 0.123716 0.141817
RMS5/RMS 3 32x32 6125 0.138642 0.138646 0.139265
RM5/RM5 3 64x64 22445 0.138319 0.138322 0.13849
RMS5/KLS 3 2x2 125 0.57867 0.580357 0.580357
RMS5/KLS5 3 4x4 245 0.183112 0.183129 0.190489
RMS5/KLS5 3 8x8 605 0.148544 0.148544 0.156096
RM5/KLS 3 16x16 1805 0.1407 0.1407 0.142852
RM5/KLS5 3 32x32 6125 0.138801 0.138801 0.139337
RMS5/KLS 3 64x64 22445 0.13833 0.13833 0.138461
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Table A.15: Maximum displacement for the clamped plate problem for NASTRAN Quad4,
QuadR.

L/t Mesh DOF Quad4 w/oTS Quad4 QuadR w/oTS QuadR

10 4x4 150 0.1486 0.1960 0.1387 0.1779
10 6x6 294 0.1466 0.1811 0.1422 0.1725
10 8x8 486 0.1445 0.1742 0.1420 0.1692
10 10x10 726 0.1429 0.1707 0.1413 0.1675
10 20x20 2646 0.1397 0.1659 0.1393 0.1651

10 40x40 10086 0.1386 0.1647 0.1385 0.1645
10 80x80 39366 0.1383 0.1644 0.1383 0.1644

100 4x4 150 0.1486 0.1505 0.1387 0.1341
100 6x6 294 0.1466 0.1487 0.1422 0.1399
100 8x8 486 0.1445 0.1461 0.1420 0.1410
100 10x10 726 0.1429 0.1442 0.1413 0.1409
100 20x20 2646 0.1397 0.1402 0.1393 0.1393

100 40x40 10086 0.1386 0.1389 0.1385 0.1387
100 80x80 39366 0.1383 0.1386 0.1383 0.1385

1000 4x4 150 0.1486 0.1486 0.1387 0.1346
1000  6x6 294 0.1466 0.1466 0.1422 0.1393
1000 8x38 486 0.1445 0.1445 0.1420 0.1400
1000 10x10 726 0.1429 0.1429 0.1413 0.1399
1000 20x20 2646 0.1397 0.1397 0.1393 0.1389
1000  40x40 10086 0.1386 0.1386 0.1385 0.1384
1000  80x80 39366 0.1383 0.1383 0.1383 0.1382
10000 4x4 150 0.1486 0.1486 0.1387 0.1346
10000 6x6 294 0.1466 0.1466 0.1422 0.1393
10000 8x38 486 0.1445 0.1445 0.1420 0.1400
10000 10x10 726 0.1429 0.1429 0.1413 0.1399
10000 20x20 2646 0.1397 0.1397 0.1393 0.1389
10000 40x40 10086 0.1386 0.1386 0.1385 0.1384
10000 80x80 39366 0.1383 0.1383 0.1383 0.1382

82



Table A.16: Maximum displacement for the clamped plate problem for ABAQUS S4, S4R.

L/t Mesh DOF S4 w/oTS S4 S4R w/o TS S4R

10 4x4 150 0.1325  0.1575 0.1417 0.1658
10 6x6 294 0.1356  0.1619 0.1395 0.1654
10 8&x8 486 0.1369  0.1629 0.139 0.1649
10 10x10 726 0.1374  0.1634 0.1388 0.1647
10 20x20 2646 0.1382  0.1641 0.1385 0.1644
10 40x40 10086  0.1384  0.1643 0.1385 0.1643
10 80x80 39366  0.1384  0.1643 0.1385 0.1643
100 4x4 150 0.1323  0.1325 0.1414 0.1417
100 6x6 294 0.1354  0.1356 0.1392 0.1395
100 8x8 486 0.1366  0.1369 0.1387 0.1390
100 10x10 726 0.1372  0.1374 0.1385 0.1388
100 20x20 2646 0.1379  0.1382 0.1383 0.1385
100 40x40 10086  0.1381 0.1384 0.1382 0.1385
100 80x80 39366  0.1382  0.1384 0.1382 0.1385
1000 4x4 150 0.1323  0.1323 0.1414 0.1415
1000 6x6 294 0.1354  0.1354 0.1392 0.1392
1000  8x8 486 0.1366  0.1366 0.1387 0.1387
1000 10x10 726 0.1371 0.1372 0.1385 0.1385
1000  20x20 2646 0.1379  0.1379 0.1383 0.1383
1000 40x40 10086  0.1381 0.1381 0.1382 0.1382
1000 80x80 39366  0.1382  0.1382 0.1382 0.1382
10000 4x4 150 0.1323  0.1323 0.1414 0.1414
10000 6x6 294 0.1354  0.1354 0.1392 0.1392
10000 8x8 486 0.1366  0.1366 0.1387 0.1387
10000 10x10 726 0.1371 0.1371 0.1385 0.1385
10000 20x20 2646 0.1379  0.1379 0.1383 0.1383
10000 40x40 10086  0.1381 0.1381 0.1382 0.1382
10000 80x80 39366  0.1382  0.1382 0.1382 0.1382
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Table A.17: Maximum radial displacement for the cylindrical shell problem for % =10and p =2.

Element Degree Mesh  DOF QP1 QPO QNU

RMS5/KL3 2 2x1 42 0.225159 0.793012 0.793012
RMS5/KL3 2 4x1 60 0.785359 0.913523 0.890282
RM5/KL3 2 8x1 96 0.926749 0.936237 0.924779
RMS5/KL3 2 16x1 168 0.939284 0.939883 0.936596
RMS/KL3 2 32x1 312 0.94073 0.940767  0.9399

RMS5/KL3 2 64x1 600 0.940987 0.94099 0.940767
RMS5/KL3 2 128x1 1176 0.941045 0.941045 0.940989
RMS5/KL3 2 256x1 2328 0.941059 0.941059 0.941045
RMS5/KL3 2 512x1 4632 0.941063 0.941063 0.941059
RMS5/RMS5 2 2x1 60 0.239022 0913872 0.913872
RMS5/RMS 2 4x1 90 0.829483 0.984962 1.01348
RMS5S/RMS5 2 8x1 150  0.948672 0.959554 0.964562
RMS5/RMS 2 16x1 270  0.946675 0.947339 0.948625
RMS5/RMS5 2 32x1 510 0.944026 0.944067 0.944397
RMS5/RM5 2 64x1 990 0.943227 0.94323 0.943314
RMS5/RMS 2 128x1 1950 0.943018 0.943018 0.943039
RMS5/RMS 2 256x1 3870 0.942965 0.942965 0.942971
RMS5/RMS5 2 512x1 7710 0.942952 0.942952 0.942953
RMS/KLS 2 2x1 60 0.227361 0.796101 0.796101
RMS5/KLS 2 4x1 90 0.786811 0915311 0.892065
RMS5/KLS 2 8x1 150  0.928566 0.938087 0.926629
RMS5/KLS 2 16x1 270 0941158 0.941759 0.938468
RMS5/KLS 2 32x1 510 0.942612 0.942649 0.94178
RMS5/KLS 2 64x1 990  0.94287 0.942873 0.94265
RMS5/KLS 2 128x1 1950 0.942929 0.942929 0.942872
RMS5/KLS 2 256x1 3870 0.942943 0.942943 0.942929
RMS5/KLS 2 512x1 7710 0.942904 0.943013 0.942949

A.4 Results for the cylindrical shell
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Table A.18: Maximum radial displacement for the cylindrical shell problem for If =10and p =3.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 3 2x1 68 0.880924 0.894634 0.894634
RMS5/KL3 3 4x1 92 0.938437 0.938863 0.967695
RMS5/KL3 3 8x1 140 0.941004 0.941011 0.948472
RM5/KL3 3 16x1 236 0.941062 0.941062 0.943058
RM5/KL3 3 32x1 428 0.941064 0.941064 0.941589
RM5/KL3 3 64x1 812 0.941066 0.941068 0.941199
RMS5/KL3 3 128x1 1580  0.941064 0.941064 0.941101
RMS5/KL3 3 256x1 3116  0.941064 0.941064 0.941074
RM5/KL3 3 512x1 6188 0.941064 0.941064 0.941067
RM5/RMS5 3 2x1 100 1.02016  1.03548  1.03548
RM5/RMS5 3 4x1 140 1.01246  1.01324  1.01765
RM5/RM5 3 8x1 220 0.964393 0.964403 0.967796
RM5/RM5 3 16x1 380 0.948677 0.948677 0.95068
RM5/RM5 3 32x1 700 0.944424 0.944424 0.945474
RM5/RM5 3 64x1 1340 0.943322 0.943322 0.943856
RM5/RM5 3 128x1 2620 0.943042 0.943042 0.943311
RM5/RM5 3 256x1 5180 0.942971 0.942971 0.943106
RM5/RM5 3 512x1 10300 0.942953 0.942953 0.943021
RMS5/KL5 3 2x1 100 0.884585 0.898638 0.898638
RMS5/KLS5 3 4x1 140 0.940367 0.940799 0.970018
RMS5/KLS 3 8x1 220 0.942888 0.942895 0.950496
RMS5/KL5 3 16x1 380 0.942945 0.942945 0.944987
RM5/KLS 3 32x1 700 0.942962 0.942947 0.943506
RMS5/KL5S 3 64x1 1340 0.94311 0.943076 0.943201
RM5/KLS5 3 128x1 2620  0.942947 0.942947 0.942988
RMS5/KLS 3 256x1 5180 0.942948 0.942985 0.962903
RMS5/KL5 3 512x1 10300 0.942822 0.519298 1.01125
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Table A.19: Maximum radial displacement for the cylindrical shell problem for If = 100 and

p=2.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 2 2x1 42 0.00303845 0.73782  0.73782
RMS5/KL3 2 4x1 60 0.0519076  0.781418 0.891118
RMS5/KL3 2 8x1 96 0.465018  0.923616 0.925822
RM5/KL3 2 16x1 168 0.885042  0.941031 0.93794
RM5/KL3 2 32x1 312 0.93845 0.942163 0.941296
RM5/KL3 2 64x1 600 0.942156  0.942389 0.942166
RMS5/KL3 2 128x1 1176 0.94243 0.942445 0.942389
RMS5/KL3 2 256x1 2328  0.942458  0.942459 0.942445
RMS5/KL3 2 512x1 4632  0.942463  0.942463 0.942459
RM5/RMS5 2 2x1 60 0.00310376 0.859315 0.859315
RMS5/RM5 2 4x1 90 0.0496456 0.741359 1.00876
RMS5/RMS5 2 8x1 150 0.450769  0.935216 0.964036
RM5/RMS5 2 16x1 270 0.884661  0.946413 0.948172
RMS5/RMS5 2 32x1 510 0.939491  0.943597 0.943936
RM5/RMS5 2 64x1 990 0.942508  0.942766 0.94285
RM5/RM5 2 128x1 1950  0.942538  0.942554 0.942575
RMS5/RMS5 2 256x1 3870  0.942499 0.9425  0.942506
RM5/RMS5 2 512x1 7710  0.942487  0.942487 0.942488
RMS5/KLS 2 2x1 60 0.00307756 0.771117 0.771117
RM5/KLS 2 4x1 90 0.0519738 0.782246 0.891391
RMS5/KLS 2 8x1 150 0.465055 0.923642 0.925879
RMS5/KLS 2 16x1 270 0.88506 0.94105 0.937981
RMS5/KL5 2 32x1 510 0.938469 0.942181 0.941316
RM5/KLS5 2 64x1 990 0.942175 0.942408 0.942185
RM5/KLS 2 128x1 1950 0.942449  0.942464 0.942408
RM5/KLS 2 256x1 3870 0942476 0.942478 0.942464
RMS5/KLS 2 512x1 7710  0.942482  0.957747 0.944448
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Table A.20: Maximum radial displacement for the cylindrical shell problem for If = 100 and

p=23.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 3 2x1 68 0.720376 0.752267 0.752267
RMS5/KL3 3 4x1 92 0.866042 0.883212 0.965761
RM5/KL3 3 8x1 140 0.940142 0.94079 0.949711
RM5/KL3 3 16x1 236 0.942427 0.942438 0.944428
RMS5/KL3 3 32x1 428 0.942463 0.942463 0.942974
RM5/KL3 3 64x1 812 0.942465 0.942466 0.942592
RMS5/KL3 3 128x1 1580 0.942464 0.942464 0.942497
RMS5/KL3 3 256x1 3116  0.942464 0.942464 0.942472
RMS5/KL3 3 512x1 6188  0.942464 0.942464 0.942466
RMS5/RMS5 3 2x1 100 0.754246  0.82203  0.82203
RM5/RM5 3 4x1 140 0.910032 0.931565 0.996332
RM5/RM5 3 8x1 220 0.960558 0.961514 0.963904
RM5/RM5 3 16x1 380 0.948177 0.948191 0.948773
RM5/RMS5 3 32x1 700 0.943962 0.943962 0.9446
RMS5/RMS5 3 64x1 1340 0.942858 0.942858 0.943317
RM5/RM5 3 128x1 2620  0.942577 0.942577 0.942835
RMS5/RM5 3 256x1 5180 0.942506 0.942506 0.94264
RM5/RM5 3 512x1 10300 0.942488 0.942488 0.942556
RMS5/KLS 3 2x1 100 0.720472 0.753252 0.753252
RM5/KLS 3 4x1 140 0.866098 0.883274 0.965798
RMS5/KLS 3 8x1 220 0.940161 0.940809 0.949731
RMS5/KLS 3 16x1 380 0.942446 0.942456 0.944448
RMS5/KLS 3 32x1 700 0.942489 0.942482 0.942994
RMS5/KLS 3 64x1 1340 0.942485 0.942533 0.942634
RM5/KLS 3 128x1 2620  0.942482 0.942483 0.942516
RM5/KLS 3 256x1 5180 0.941906 0.801469 0.871817
RMS5/KLS 3 512x1 10300 2.14761  20.8036  1.14343
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Table A.21: Maximum radial displacement for the cylindrical shell problem for % = 1,000 and

p=2.

Element Degree Mesh  DOF QP1 QPO OQNU

RM5/KL3 2 2x1 42 3.05E-05 1.39E-01 1.39E-01
RMS5/KL3 2 4x1 60 5.50E-04 6.07E-01 8.65E-01
RMS5/KL3 2 8x1 96 9.29E-03 7.73E-01 9.25E-01
RMS5/KL3 2 16x1 168 1.31E-01 9.20E-01 9.38E-01
RM5/KL3 2 32x1 312 6.77E-01 9.42E-01 9.41E-01
RM5/KL3 2 64x1 600 9.20E-01 942E-01 9.42E-01
RMS5/KL3 2 128x1 1176 0.941006 9.42E-01 9.42E-01
RMS5/KL3 2 256x1 2328 0.942382 9.42E-01 9.42E-01
RMS5/KL3 2 512x1 4632 0942474 9.42E-01 9.42E-01
RM5/RMS5 2 2x1 60 3.11E-05 8.59E-01 8.59E-01
RM5/RM5 2 4x1 90 5.24E-04 6.72E-02 1.01E+00
RMS5/RMS5 2 8x1 150 8.59E-03 6.59E-01 9.64E-01
RMS5/RMS5 2 16x1 270 1.22E-01 9.14E-01 9.48E-01
RMS5/RM5 2 32x1 510 6.61E-01 943E-01 9.44E-01
RM5/RMS5 2 64x1 990 9.18E-01 9.43E-01 9.43E-01
RM5/RM5 2 128x1 1950 9.41E-01 9.43E-01 9.43E-01
RMS5/RMS5 2 256x1 3870 9.42E-01 9.42E-01 9.43E-01
RMS5/RMS5 2 512x1 7710 9.42E-01 9.42E-01 9.42E-01
RMS5/KLS 2 2x1 60 3.09E-05 7.71E-01 7.71E-01
RM5S/KLS 2 4x1 90 5.51E-04 6.37E-01 8.91E-01
RMS5/KLS 2 8x1 150 9.29E-03 7.73E-01 9.26E-01
RMS5/KLS 2 16x1 270 1.31E-01 9.20E-01 9.38E-01
RMS5/KLS 2 32x1 510 6.77E-01 9.42E-01 9.41E-01
RM5/KLS 2 64x1 990 9.20E-01 9.42E-01 9.42E-01
RM5S/KLS 2 128x1 1950 9.41E-01 9.42E-01 9.42E-01
RM5/KLS 2 256x1 3870 9.42E-01 942E-01 9.42E-01
RMS5/KLS 2 512x1 7710 9.42E-01 9.43E-01 9.42E-01
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Table A.22: Maximum radial displacement for the cylindrical shell problem for % = 1,000 and

p=3.

Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 3 2x1 68 0.146749 0.598412 0.598412
RMS/KL3 3 4x1 92 0.71725  0.721199 0.961793
RMS5/KL3 3 8x1 140 0.846753 0.864026 0.949658
RM5/KL3 3 16x1 236 0.939176 0.940156 0.94443
RM5/KL3 3 32x1 428 0.942427 0.942441 0.942991
RM5/KL3 3 64x1 812 0.942482  0.942479 0.942615
RMS5/KL3 3 128x1 1580 0.942478 0.942478 0.942511
RMS5/KL3 3 256x1 3116 0.942477 0.942478 0.942486
RMS5/KL3 3 512x1 6188 0.942478  0.942479 0.942481
RMS5/RMS5 3 2x1 100 0.0539724 0.125083 0.125083
RMS5/RM5 3 4x1 140 0.428783 0.493852 0.980543
RMS5/RM5 3 8x1 220 0.846367 0.86676 0.963579
RM5/RMS5 3 16x1 380 0.943645 0.944956 0.948261
RMS5/RMS5 3 32x1 700 0.943887 0.943909 0.944047
RMS5/RMS5 3 64x1 1340 0.942859 0.942871 0.942936
RM5/RM5 3 128x1 2620 0.942572  0.942572 0.942643
RM5/RMS5 3 256x1 5180 0.942502 0.942502 0.942572
RM5/RMS5 3 512x1 10300 0.942483 0.942483 0.942542
RMS5/KLS5 3 2x1 100 0.146795 0.632785 0.632785
RM5/KLS 3 4x1 140 0.717254 0.721264 0.964464
RMS5/KLS 3 8x1 220 0.846754 0.864028 0.949668
RMS5/KLS 3 16x1 380 0.939181 0.940164 0.944444
RMS5/KLS 3 32x1 700 0.942427 0.942449 0.943167
RM5/KLS 3 64x1 1340 0.942491 0.942485 0.942821
RM5/KLS 3 128x1 2620 0.942478 0.942478 0.942511
RM5/KLS 3 256x1 5180 0.942725 0.711158 0.942489
RMS5/KLS 3 512x1 10300 0.940971 0.936717 0.955089
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Table A.23: Maximum radial displacement for the cylindrical shell problem for % = 10,000 and
p=2.

Element Degree Mesh  DOF QP1 QPO QNU

RM5/KL3 2 2x1 42 0 0.00169 0.00169
RM5/KL3 2 4x1 60 0.00001 0.02964 0.56406
RM5/KL3 2 8&x1 96 0.00009 0.51404 0.89565
RM5/KL3 2 I6x1 168 0.00153 0.76409 0.93751
RM5/KL3 2 32x1 312 0.02399 091159 0.94128
RM5/KL3 2 64x1 600 0.27607 09418 0.94218
RM5/KL3 2 128x1 1176 0.81683 0.94248 0.9424
RM5/KL3 2 256x1 2328 0.93346 0.94247 0.94245
RM5/KL3 2 512x1 4632 0.94208 0.94276 0.94257
RMS5/RMS 2 2x1 60 0 0.8586  0.8586
RMS5/RMS 2 4x1 90 0.00001 0.00073 1.00869
RMS5/RMS 2 8x1 150  0.00009 0.03932 0.96404
RMS5/RMS 2 16x1 270  0.0014 0.58904 0.94817
RMS5/RMS 2 32x1 510 0.02206 0.89808 0.94393
RMS5/RMS 2 64x1 990 0.26017 0.94164 0.94285
RMS5/RMS 2 128x1 1950 0.80689 0.94254 0.94258
RMS5/RMS 2 256x1 3870 0.93253 0.94254 0.94253
RMS5/RMS 2 512x1 7710 0.94211 0.94278 0.94257
RMS5/KL5 2 2x1 60 0 0.77079 0.77079
RM5/KLS5 2 4x1 90 0.00001 0.03827 0.89138
RM5/KLS5 2 8x1 150  0.00009 0.52363 3.20304
RMS5/KLS 2 I6x1 270 0.00153 0.76422 0.93787
RMS5/KLS 2 32x1 510 0.02399 091159 0.94127
RMS5/KLS5 2 64x1 990 0.27607 0.9418 0.94218
RM5/KLS5 2 128x1 1950 0.81684 0.94245 0.94242
RM5/KLS5 2 256x1 3870 0.93347 0.94167 0.94354
RMS5/KLS 2 512x1 7710 0.94137 0.94116 1.53406
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Table A.24: Maximum radial displacement for the cylindrical shell problem for % = 10,000 and

p=23.
Element Degree Mesh  DOF QP1 QPO QNU
RM5/KL3 3 2x1 68 0.0018241 0.0299509  0.0299509
RMS5/KL3 3 4x1 92 0.129832 0.144528 0.738002
RMS5/KL3 3 8x1 140 0.732106 0.726584 0.948353
RMS5/KL3 3 16x1 236 0.828009 0.844341 0.944481
RM5/KL3 3 32x1 428 0.937478 0.939145 0.943242
RM5/KL3 3 64x1 812 0.943238 0.942422 0.942523
RM5/KL3 3 128x1 1580 0.942482 0.942482 0.942506
RMS5/KL3 3 256x1 3116 0.942499 0.94252 0.942473
RMS5/KL3 3 512x1 6188 0.942626 0.942716 0.942643
RMS5/RMS5 3 2x1 100 0.000575448 0.00146227 0.00146227
RM5/RM5 3 4x1 140 0.0091087 0.0126177 0.980242
RM5/RM5 3 8x1 220 0.346302 0.416947 0.963585
RM5/RM5 3 16x1 380 0.810296 0.830804 0.948246
RM5/RMS5 3 32x1 700 0.937853 0.939356 0.944354
RMS5/RMS5 3 64x1 1340 0.943863 0.944103 0.942997
RM5/RM5 3 128x1 2620 0.942598 0.942606 0.942573
RM5/RMS5 3 256x1 5180 0.942558 0.94252 0.942504
RM5/RM5 3 512x1 10300 0.942639 0.942679 0.942335
RM5/KLS5 3 2x1 100 0.00182481  0.0410149  0.0410149
RM5/KLS 3 4x1 140 0.129837 0.144743 0.88315
RMS5/KLS 3 8x1 220 0.732095 0.726608 0.949551
RMS5/KLS 3 16x1 380 0.838221 0.844338 0.944523
RMS5/KLS 3 32x1 700 0.938386 0.938941 0.961458
RMS5/KLS5 3 64x1 1340 0.942975 0.941754 0.944656
RM5/KLS5S 3 128x1 2620 0.94248 0.942504 0.942478
RM5/KLS 3 256x1 5180 0.94249 0.942585 0.942708
RMS/KLS 3 512x1 10300 0.942544 0911414 1.46567
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Table A.25: Maximum radial displacement for the cylindrical shell problem for NASTRAN
Quad4, QuadR.

R/t Mesh DOF Quad4 w/o TS Quad4 QuadRw/oTS QuadR

10 2x1 36 0.8295 0.8314 0.8295 0.8202
10 4x1 60 0.9135 0.9153 0.9135 0.9124
10 &x1 108 0.9357 0.9376 0.9357 0.9369
10 16x1 204 0.9414 0.9433 0.9414 0.9431
10 32x1 396 0.9428 0.9447 0.9428 0.9446
10 64x1 780 0.9431 0.9450 0.9432 0.9450
100 2x1 36 0.8288 0.8288 0.8288 0.8176
100 4x1 60 0.9127 0.9127 0.9127 0.9097
100 8x1 108 0.9349 0.9350 0.9349 0.9342
100 16x1 204 0.9406 0.9406 0.9406 0.9404
100 32x1 396 0.9420 0.9420 0.9420 0.9420
100 64x1 780 0.9424 0.9424 0.9424 0.9424
1000 2x1 36 0.8288 0.8288 0.8288 0.8176
1000 4x1 60 0.9127 0.9127 0.9127 0.9097
1000  8x1 108 0.9349 0.9349 0.9349 0.9342
1000  16x1 204 0.9406 0.9406 0.9406 0.9404
1000 32x1 396 0.9420 0.9420 0.9420 0.9420
1000 64x1 780 0.9424 0.9424 0.9424 0.9423
10000 2x1 36 0.8288 0.8288 0.8288 0.8176
10000 4x1 60 0.9127 0.9127 0.9127 0.9097
10000 8x1 108 0.9349 0.9349 0.9349 0.9342
10000 16x1 204 0.9406 0.9406 0.9406 0.9404
10000 32x1 396 0.9420 0.9420 0.9420 0.9420
10000 64x1 780 0.9423 0.9424 0.9424 0.9423
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Table A.26: Maximum radial displacement for the cylindrical shell problem for ABAQUS S4,
S4R.

R/t Mesh DOF S4 w/o TS S4 S4R w/o TS  S4R

10 2x1 36 0.7847  0.7865 0.7847 0.7865
10 4x1 60 0.9016  0.9034 0.9016 0.9034
10 8x1 108 0.9327  0.9346 0.9327 0.9346
10 16x1 204 0.9407  0.9425 0.9407 0.9425
10 32x1 396 0.9426  0.9445 0.9426 0.9445
10 64x1 780 0.9431 0.9450 0.9431 0.9450
100 2x1 36 0.7839  0.7840 0.7839 0.7840
100 4x1 60 0.9008  0.9008 0.9008 0.9008
100 &x1 108 0.9319  0.9320 0.9319 0.9320
100 16x1 204 0.9398  0.9399 0.9398 0.9399
100 32x1 396 09418  0.9418 0.9418 0.9418
100 64x1 780 0.9423  0.9423 0.9423 0.9423
1000 2x1 36 0.7839  0.7839 0.7839 0.7839
1000 4x1 60 0.9008  0.9008 0.9008 0.9008
1000 8x1 108 0.9319  0.9319 0.9319 0.9319
1000 16x1 204 0.9398  0.9398 0.9398 0.9398
1000 32x1 396 0.9418  0.9418 0.9418 0.9418
1000  64x1 780 0.9423  0.9423 0.9422 0.9423
10000 2x1 36 0.7839  0.7839 0.7839 0.7839
10000 4x1 60 0.9008  0.9008 0.9008 0.9008
10000 8x1 108 0.9319  0.9319 0.9319 0.9319
10000 16x1 204 0.9398  0.9398 0.9398 0.9398
10000 32x1 396 0.9418  0.9418 0.9418 0.9418
10000 64x1 780 0.9423  0.9423 0.9423 0.9423
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Table A.27: Maximum displacement for the Scordelis-Lo problem for different blended shell
elements, p = 2.

Elements Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 2 2x2 168 0.878 3.292 3.292
RM6/KL3 2 4x4 336 2910 3.561 3.509
RM6/KL3 2 8x8 816 3.554 3.604 3.618
RM6/KL3 2 16x16 2352  3.603 3.607 3.622
RM6/KL3 2 32x32 7728 3.607 3.607 3.613
RM6/KL3 2 64x64 27696 3.607 3.607 3.609
RM6/RMS 2 2x2 184 0.859 3.353 3.353
RM6/RMS 2 4x4 400 2785 3.588 3.549
RM6/RMS 2 8x8 1072 3.541 3.614 3.637
RM6/RMS 2 16x16 3376  3.609 3.614 3.632
RM6/RMS 2 32x32 11824 3.615 3.616 3.623
RM6/RMS 2 64x64 44080 3.617 3.617 3.619
RM6/KLS5 2 2x2 184 0.879 3.294 3.294
RM6/KLS5 2 4x4 400 2911 3.562 3.510
RM6/KLS5 2 8x8 1072 3.556 3.607 3.621
RM6/KLS5 2 16x16 3376  3.606 3.611 3.627
RM6/KLS5 2 32x32 11824 3.609 3.610 3.617
RM6/KLS5 2 64x64 44080 3.608 3.608 3.610

A.5 Results for the Scordelis-Lo roof problem
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Table A.28: Maximum displacement for the Scordelis-Lo problem for different blended shell
elements, p = 3.

Elements  Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 3 2x2 246 3471 3.534 3.534
RM6/KL3 3 4x4 438 3.604 3.605 3.620
RM6/KL3 3 8x8 966 3.608 3.608 3.645
RM6/KL3 3 16x16 2598  3.608 3.608 3.630
RM6/KL3 3 32x32 8166 3.607 3.607 3.616
RM6/KL3 3 64x64 28518 3.607 3.607 3.610
RM6/RMS5 3 2x2 282 3.508 3.569 3.569
RM6/RMS5 3 4x4 538 3.619 3.621 3.625
RM6/RMS5 3 8x8 1290 3.616 3.616 3.654
RM6/RMS5 3 16x16 3754 3.615 3.615 3.642
RM6/RMS5 3 32x32 12522 3.617 3.617 3.629
RM6/RMS5 3 64x64 45418 3.618 3.618 3.622
RM6/KLS 3 2x2 282 3.472 3.535 3.535
RM6/KL5 3 4x4 538 3.605 3.607 3.622
RM6/KL5 3 8x8 1290 3.611 3.611 3.650
RM6/KL5 3 l16x16 3754 3.613 3.613 3.637
RM6/KL5 3 32x32 12522 3.612 3.612 3.623
RM6/KL5 3 64x64 45418 3.609 3.609 3.614

Table A.29: Maximum displacement for the Scordelis-Lo problem for NASTRAN Quad4,
QuadR.

Mesh Load DOF Quad4 w/oTS Quad4 QuadR w/oTS QuadR

4x4 39219 150 3.8390 3.8440 3.8283 3.8213
8x8 39256 486 3.6628 3.6698 3.6767 3.6771
12x12 39263 1014 3.6338 3.6411 3.6447 3.6480
16x16 39266 1734 3.6232 3.6308 3.6311 3.6357
20x20 39267 2646 3.6183 3.6262 3.6241 3.6297
24x24 39268 3750 3.6153 3.6235 3.6197 3.6259
32x32 39268 6534 3.6123 3.6209 3.6150 3.6221

64x64 39269 25350 3.6089 3.6183 3.6097 3.6184
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Table A.30: Maximum displacement for the Scordelis-Lo problem for ABAQUS S4, S4R.

Mesh Load DOF S4w/oTS S4 S4R w/o TS~ S4R

4x4 39219 150 3.638 3.7580 4.138 4.2970
8x8 39256 486 3.5040  3.6350 3.633 3.7750
12x12 39263 1014 3.4970  3.6200 3.555 3.6830
16x16 39266 1734 3.5040  3.6160 3.537 3.6510
20x20 39267 2646 3.5160  3.6150 3.5370 3.6380
24x24 39268 3750 3.5270  3.6150 3.5420 3.6300
32x32 39268 6534 3.5470  3.6150 3.5550 3.6230
64x64 39269 25350  3.5850  3.6160 3.5870 3.6180
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elements, p = 2.

Table A.31: Maximum displacement for the pinched cylinder problem for different blended shell

Element Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 2 2x2 168 -7.140E-09 -7.820E-09 -7.820E-09
RM6/KL3 2 4x4 336 -1.960E-08 -2.430E-08 -4.090E-08
RM6/KL3 2 8x8 816 -8.630E-08 -1.080E-07 -1.340E-07
RM6/KL3 2 16x16 2352  -1.640E-07 -1.720E-07 -1.750E-07
RM6/KL3 2 32x32 7728 -1.811E-07 -1.820E-07 -1.826E-07
RM6/KL3 2 64x64 27696 -1.837E-07 -1.839E-07 -1.842E-07
RM6/RMS 2 2x2 184 -7.450E-09 -8.400E-09 -8.400E-09
RM6/RMS 2 4x4 400 -1.790E-08 -2.510E-08 -6.990E-08
RM6/RMS5 2 8x8 1072 -6.820E-08 -9.990E-08 -1.650E-07
RM6/RMS5 2 16x16 3376 -1.490E-07 -1.730E-07 -1.870E-07
RM6/RMS5 2 32x32 11824 -1.804E-07 -1.840E-07 -1.882E-07
RM6/RMS 2 64x64 44080 -1.848E-07 -1.852E-07 -1.869E-07
RM6/KLS5 2 2x2 184 -7.300E-09 -8.030E-09 -8.030E-09
RM6/KLS 2 4x4 400 -2.020E-08 -2.600E-08 -6.790E-08
RM6/KLS 2 8x8 1072 -8.810E-08 -1.110E-07 -1.470E-07
RM6/KLS 2 16x16 3376 -1.650E-07 -1.740E-07 -1.780E-07
RM6/KLS5 2 32x32 11824 -1.816E-07 -1.828E-07 -1.841E-07
RM6/KLS5 2 64x64 44080 -1.845E-07 -1.847E-07 -1.852E-07

A.6 Results for the pinched cylinder problem
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elements, p = 3.

Table A.32: Maximum displacement for the pinched cylinder problem for different blended shell

Element Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 3 2x2 246 -1.280E-08 -1.310E-08 -1.310E-08
RM6/KL3 3 4x4 438 -6.050E-08 -6.380E-08 -7.580E-08
RM6/KL3 3 8x8 966 -1.610E-07 -1.640E-07 -1.840E-07
RM6/KL3 3 16x16 2598  -1.830E-07 -1.830E-07 -1.890E-07
RM6/KL3 3 32x32 8166 -1.843E-07 -1.844E-07 -1.867E-07
RM6/KL3 3 64x64 28518 -1.846E-07 -1.846E-07 -1.855E-07
RM6/RMS5 3 2x2 282 -1.290E-08 -1.330E-08 -1.330E-08
RM6/RMS 3 4x4 538 -5.730E-08 -6.150E-08 -7.360E-08
RM6/RMS 3 8x8 1290  -1.520E-07 -1.570E-07 -1.750E-07
RM6/RMS5 3 16x16 3754  -1.820E-07 -1.830E-07 -1.870E-07
RM6/RMS5 3 32x32 12522 -1.849E-07 -1.850E-07 -1.878E-07
RM6/RMS5 3 64x64 45418 -1.855E-07 -1.855E-07 -1.871E-07
RM6/KLS5 3 2x2 282 -1.310E-08 -1.360E-08 -1.360E-08
RM6/KLS5 3 4x4 538 -6.070E-08 -6.400E-08 -7.620E-08
RM6/KLS 3 8x8 1290  -1.610E-07 -1.640E-07 -1.850E-07
RM6/KLS 3 16x16 3754  -1.830E-07 -1.830E-07 -1.890E-07
RM6/KLS5 3 32x32 12522 -1.849E-07 -1.849E-07 -1.875E-07
RM6/KLS5 3 64x64 45418 -1.854E-07 -1.854E-07 -1.865E-07

Table A.33: Maximum displacement for the pinched cylinder problem for NASTRAN Quad4,

QuadR.

Mesh DOF Quad4 w/o TS Quad4 QuadR w/o TS QuadR

10x10 726 1.6906E-05  1.7380E-05 1.6234E-05 1.6196E-05
20x20 2646 1.8158E-05  1.8624E-05 1.7858E-05 1.8067E-05
35x35 7776 1.8321E-05  1.8679E-05 1.8195E-05 1.8427E-05
75x75 34656 1.8315E-05  1.8581E-05 1.8280E-05 1.8505E-05
100x 100 61206 1.8305E-05  1.8563E-05 1.8284E-05 1.8516E-05
200%200 242406 1.8287E-05  1.8558E-05 1.8281E-05 1.8544E-05
400x400 964806 1.8280E-05  1.8581E-05 1.8278E-05 1.8577E-05
800x 800 3849606 1.8277E-05  1.8615E-05 1.8277E-05 1.8614E-05
1600x 1600 15379206  1.8276E-05  1.8652E-05 1.8276E-05 1.8652E-05
3200x3200 61478406  1.8265E-05  1.8690E-05 1.8265E-05 1.8690E-05
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Table A.34: Maximum displacement for the pinched cylinder problem for ABAQUS S4, S4R.

Mesh DOF S4 S4R

10x10 726 1.5185E-05 1.5913E-05
20%20 2646 1.7503E-05 1.7786E-05
35%35 7776 1.8131E-05 1.8248E-05
50x50 15606 1.8313E-05 1.8378E-05
75%775 34656 1.8389E-05 1.8422E-05
100x100 61206 1.8473E-05 1.8493E-05
200200 242406 1.8544E-05 1.8550E-05
400400 964806 1.8591E-05 1.8593E-05
800800 3849606  1.8632E-05 1.8632E-05
1600x1600 15379206 1.8670E-05 1.8671E-05
3200x3200 61478406 1.8709E-05 1.8709E-05
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Table A.35: Maximum displacement for the hemispherical shell with hole problem for different
blended shell elements, p = 2.

Element Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 2 2x2 72 8.24E-05 1.43E-04 1.43E-04
RM6/KL3 2 4x4 144 1.71E-03 8.40E-03 4.75E-02
RM6/KL3 2 8x8 360 2.30E-02 7.73E-02 8.83E-02
RM6/KL3 2 16x16 1080  7.77E-02 9.22E-02 9.28E-02
RM6/KL3 2 32x32 3672 9.20E-02 9.33E-02 9.33E-02
RM6/KL3 2 64x64 13464 9.34E-02 9.35E-02 9.35E-02
RM6/RMS 2 2x2 105 8.66E-05 1.93E-04 1.93E-04
RM6/RMS 2 4x4 189 1.40E-03 8.85E-03 6.01E-02
RM6/RMS5 2 8x8 429 1.94E-02 7.87E-02 9.29E-02
RM6/RMS5 2 16x16 1197  7.51E-02 9.25E-02 9.40E-02
RM6/RMS5 2 32x32 3885 9.20E-02 9.35E-02 9.38E-02
RM6/RMS 2 64x64 13869 9.35E-02 9.36E-02 9.37E-02
RM6/KLS5 2 2x2 105 8.32E-05 1.44E-04 1.44E-04
RM6/KLS5 2 4x4 189 1.72E-03 8.51E-03 5.54E-02
RM6/KLS 2 8x8 429 2.33E-02 7.80E-02 9.06E-02
RM6/KLS 2 16x16 1197  7.83E-02 9.24E-02 9.31E-02
RM6/KLS5 2 32x32 3885 9.23E-02 9.34E-02 9.35E-02
RM6/KLS5 2 64x64 13869 9.34E-02 9.35E-02 9.36E-02
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Table A.36: Maximum displacement for the hemispherical shell with hole problem for different
blended shell elements, p = 3.

Element Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 3 2x2 88 1.66E-03 3.02E-03 3.02E-03
RM6/KL3 3 4x4 192 2.81E-02 3.59E-02 5.33E-02
RM6/KL3 3 8x8 520 8.15E-02 8.52E-02 8.72E-02
RM6/KL3 3 16x16 1656 9.21E-02 9.26E-02 9.30E-02
RM6/KL3 3 32x32 5848 9.33E-02 9.34E-02 9.35E-02
RM6/KL3 3 64x64 21912 9.35E-02 9.35E-02 9.36E-02
RM6/RMS5 3 2x2 135 1.94E-03 3.92E-03 3.92E-03
RM6/RMS 3 4x4 259 3.90E-02 4.78E-02 8.58E-02
RM6/RMS5 3 8x8 627 9.01E-02 9.08E-02 9.33E-02
RM6/RMS5 3 16x16 1843  9.33E-02 9.34E-02 9.37E-02
RM6/RMS5 3 32x32 6195 9.36E-02 9.36E-02 9.37E-02
RM6/RMS5 3 64x64 22579 9.37E-02 9.37E-02 9.38E-02
RM6/KLS5 3 2x2 135 1.73E-03 3.35E-03 3.35E-03
RM6/KLS5 3 4x4 259 3.02E-02 3.98E-02 6.44E-02
RM6/KLS 3 8x8 627 8.40E-02 8.78E-02 9.03E-02
RM6/KLS5 3 16x16 1843  9.26E-02 9.30E-02 9.35E-02
RM6/KLS5 3 32x32 6195 9.35E-02 9.35E-02 9.37E-02
RM6/KLS5 3 64x64 22579 9.36E-02 9.36E-02 9.37E-02

Table A.37: Maximum displacement for the hemispherical shell with hole problem for
NASTRAN Quad4, QuadR.

Mesh DOF Quad4 w/oTS Quad4 QuadR w/oTS QuadR
2x2 54 0.0898 0.0898 0.0006 0.0006
4x4 150  0.0952 0.0952 0.0227 0.0227
6x6 294 0.0950 0.0950 0.0721 0.0718
8x8 486  0.0944 0.0945 0.0887 0.0884
10x10 726  0.0941 0.0941 0.0922 0.0920
12x12 1014 0.0938 0.0939 0.0932 0.0929
16x16 1734 0.0937 0.0937 0.0935 0.0934
32x32 6534 0.0936 0.0937 0.0936 0.0936
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Table A.38: Maximum displacement for the hemispherical shell with hole problem for ABAQUS
S4, S4R.

Mesh  DOF S4 w/o TS S4 S4R w/o TS~ S4R

2x2 54 0.0805 0.0805 0.0842 0.0842
4x4 150  0.0920 0.0920 0.0956 0.0956
6x6 294 0.0924 0.0924 0.0947 0.0947
8x8 486  0.0926 0.0926 0.0943 0.0943
10x10 726  0.0927 0.0927 0.0941 0.0941
12x12 1014 0.0928 0.0928 0.0940 0.0940
16x16 1734 0.0930 0.0930 0.0938 0.0938
32x32 6534 0.0934 0.0934 0.0936 0.0936
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Table A.39: Maximum normalized displacement for the pinched sphere problem for different
blended shell elements (normalized by %).

Element Degree Mesh  DOF QP1 QPO QNU

RM6/KL3 2 2x2 156 324 355 355
RM6/KL3 2 4x4 312 6.26 621 554
RM6/KL3 2 8x8 768 13.43 1325 1191
RM6/KL3 2 16x16 2256  20.57 20.25 19.68
RM6/KL3 2 32x32 7536 22775 2258 2251
RM6/KL3 2 64x64 27312 22.27 2235 22.38
RM6/RMS 2 2x2 180 321 343 343
RM6/RMS 2 4x4 392 6.75 6.76  6.25
RM6/RMS 2 8x8 1056 14.71 14.27 14.34
RM6/RMS 2 16x16 3344  22.02 21.85 222
RM6/RMS 2 32x32 11760 23.34 2359 23.73
RM6/RMS5 2 64x64 43952 23.61 24.01 24.14
RM6/KLS 2 2x2 180 329 356 3.56
RM6/KLS5 2 4x4 392 6.37 627 5.59
RM6/KLS5 2 8x8 1056  13.64 1341 12.04
RM6/KLS5 2 16x16 3344 21 20.67 20.07
RM6/KLS5 2 32x32 11760 23.18 23.07 23

RM6/KLS5 2 64x64 43952 2277 2288 229

A.8 Results for the pinched sphere problem

A.9 Results for the L-bracket problem
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Table A.40: Maximum normalized displacement for the pinched sphere problem for different
blended shell elements (normalized by %).

Element Degree Mesh  DOF QP1 QPO QNU
RM6/KL3 3 2%x2 228 462 472 4.2
RM6/KL3 3 4x4 408 9.05 9.05 10.7
RM6/KL3 3 8x8 912 19.01 1896 20
RM6/KL3 3 16x16 2496 22.64 22.64 23.15
RM6/KL3 3 32x32 7968 22.8 22.83 23.03
RM6/KL3 3 64x64 28128 2233 2239 22.53
RM6/RM5 3 2x2 276 526 525 5.25
RM6/RM5 3 4x4 528 10.59 10.35 11.72
RM6/RMS5 3 8x8 1272 2047 19.95 20.97
RM6/RMS5 3 16x16 3720 23.22 23.36 23.81
RM6/RMS5 3 32x32 12456 23.53 23.78 23.98
RM6/RMS5 3 64x64 45288 23.83 24.09 24.15
RM6/KLS 3 2x2 276 4774 484 4.84
RM6/KLS5S 3 4x4 528 9.21 9.2 10.89
RM6/KLS5 3 8x8 1272 19.13 19.06 20.1
RM6/KLS5 3 16x16 3720 22.86 22.86 234
RM6/KLS5 3 32x32 12456 23.38 234 23.59
RM6/KLS 3 64x64 45288 2295 23.01 23.03

Table A.41: Maximum normalized displacement for the pinched sphere problem for NASTRAN

Quad4, QuadR (normalized by %).

Elements DOF Quad4 w/o TS Quad4 QuadR w/o TS QuadR

58 438 20.769628 22.852684 20.682064 22.243764
175 1194 21.239888 23.118268 21.21116 22.808556
406 2664 21.267936 23.120728 21.255668 23.000136
1097 6966 21.211128 23.44242 21.221772 23.435428

Table A.42: Maximum normalized displacement for the pinched sphere problem for ABAQUS
S4, S4R (normalized by £0).

Elements DOF S4 w/o TS S4 S4R w/o TS S4R
58 438 17.4416  20.7688 17.9092 21.5036
175 1194 19.3668 22.0632 19.6264 22.38
406 2664 20.582 22.872 20.6676 22.9668
1097 6966 21.0224  23.5356 21.0432 23.5568
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Table A.43: Maximum displacement for the L-bracket problem for different blended shell

elements.

Elements Degree Mesh DOF QP1 QPO QNU

RM6/KL3 2 2x2 114 3.75E-01 3.75E-01 3.75E-01
RM6/KL3 2 4x4 246 4.13E-01 4.13E-01 4.16E-01
RM6/KL3 2 8x8 654 439E-01 4.39E-01 4.39E-01
RM6/KL3 2 16x16 2046 448E-01 4.48E-01 4.48E-01
RM6/KL3 2 32x32 7134 4.50E-01 4.50E-01 4.51E-01
RM6/KL3 2 64 x64 26526  4.52E-01 4.52E-01 4.52E-01
RM6/KL3 2 128x128 102174 4.52E-01 4.52E-01 4.52E-01
RM6/RM5 2 2%x2 150 2.51E-01 4.25E-01 4.25E-01
RM6/RMS5 2 4x4 346 2.61E-01 4.10E-01 4.41E-01
RM6/RMS5 2 8x8 978 3.32E-01 4.10E-01 4.51E-01
RM6/RMS5 2 16x16 3202 4.08E-01 4.41E-01 4.52E-01
RM6/RM5 2 32x32 11490 4.41E-01 4.51E-01 4.53E-01
RM6/RM5 2 64 x64 43426  4.51E-01 4.53E-01 4.53E-01
RM6/RMS5 2 128128 168738 4.53E-01 4.53E-01 4.53E-01
RM6/KLS 2 2%x2 150 3.75E-01 3.76E-01 3.76E-01
RM6/KLS 2 4x4 346 4.13E-01 4.13E-01 4.16E-01
RM6/KLS 2 8x8 978 439E-01 4.39E-01 4.40E-01
RM6/KLS 2 16x16 3202 448E-01 4.48E-01 4.49E-01
RM6/KLS 2 32x32 11490 4.51E-01 4.52E-01 4.52E-01
RM6/KLS 2 64 x64 43426  4.53E-01 4.53E-01 4.53E-01
RM6/KLS 2 128128 168738 4.53E-01 4.53E-01 4.53E-01
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