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ABSTRACT

GPU Implementation of Data-Aided Equalizers

Jeffrey Thomas Ravert
Department of Electrical and Computer Engineering, BYU

Master of Science

Multipath is one of the dominant causes for link loss in aeronautical telemetry. Equalizers
have been studied to combat multipath interference in aeronautical telemetry. Blind equalizers
are currently being used with SOQPSK-TG. The Preamble Assisted Equalization (PAQ) project
studied data-aided equalizers with SOQPSK-TG. PAQ compares, side-by-side, no equalization,
blind equalization, and five data-aided equalization algorithms: ZF, MMSE, MMSE-initialized
CMA, and frequency domain equalization. This thesis describes the GPU implementation of data-
aided equalizer algorithms. Static lab tests, performed with channel and noise emulators, showed
that the MMSE, ZF, and FDE1 show the best and most consistent performance.

Keywords: equalization, SOQPSK-TG, GPU, CUDA, aeronautical telemetry
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CHAPTER 1. INTRODUCTION

1.1 Multipath in Aeronautical Telemetry

Multipath interference is one of the dominant causes for link loss in aeronautical teleme-

try. Strong multipath interference occurs when the transmitted signal is received via multiple

paths when a test article is in a low elevation angle scenario, as shown in Figure 1.1. Multi-

path propagation is modeled as linear, time-invariant system with a finite length impulse response.

Equalizers have been studied to combat this form of multipath interference in aeronautical teleme-

try [1, 2]. There are two general classes of equalizers, blind and data-aided. Blind equalizers are

adaptive filters whose coefficient update algorithm is based on the known statistical properties of

the transmitted signal, but have no knowledge of the specific data or multipath channel is assumed.

Data-aided equalizers are also filters whose impulse responses are calculated from the propaga-

tion conditions. One method of obtaining an estimate of this knowledge is to periodically insert a

known bit sequence called a “pilot” into the data stream. The receiver compares the received signal

corresponding to the pilot with a locally stored copy to estimate parameters such as the multipath

channel, frequency offset, phase offset, and noise variance.

Figure 1.1: Multipath interference can occur when a signal is received from multiple paths.
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1.2 Problem Statement

The real-time signal processing for a digital communications system with data-aided equal-

izers is computationally heavy. Digital communication algorithms implemented in a high perfor-

mance Central Processing Unit (CPU) cannot meet the real-time requirement. Graphic Processing

Units (GPUs) can be used to perform real-time processing because of their massively parallel ar-

chitecture.

This thesis studies how signal processing can be reformulated to run quickly and efficiently

in GPUs. Optimized libraries harness GPU resources to make signal processing implementation

relatively easy and extremely fast. If algorithms can be reformulated for batch processing and use

matrix/vector multiplication or Fast Fourier Transform libraries, GPUs can provide vast speed ups.

1.3 Organization

Chapter 2 describes the Preamble Assisted Equalization (PAQ) system and introduces the

digital signal processing algorithms. Chapter 3 provides an overview of signal processing in GPUs.

Chapter 4 describes how the five equalizers are implemented in GPUs. The thesis concludes with

the summary and conclusions in Chapter 5.
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CHAPTER 2. PAQ PROJECT

Data-aided equalization in aeronautical telemetry has been studied and tested by the Pream-

ble Assisted Equalization (PAQ) project [3]. Under PAQ, a system was built that compared five

data-aided equalizers to blind equalization and no equalization. Laboratory tests were performed

using a static RF multipath channel emulator and a noise source to produce bit error rate (BER)

curves. The five data-aided equalizers studied are:

• zero-forcing (ZF) equalizer,

• minimum mean-square error (MMSE) equalizer,

• MMSE-initialized constant modulus algorithm (CMA) equalizer,

• frequency domain equalizer one (FDE1), and

• frequency domain equalizer two (FDE2).

Bit error rate statistics were used as the figure or merit for the equalization algorithms.

Figure 2.1: The received signal has multipath interference, frequency offset, phase off-
set, and additive white Gaussian noise. The received signal is down-converted, filtered,
sampled, and resampled to produce the sample sequence r(n).

3



Figure 2.2: A diagram showing each PAQ packet comprises a preamble, ASM, and a data
field.

2.1 System Overview

The system is summarized by the block diagram in Figure 2.1. To enable data-aided equal-

ization, the PAQ bit stream has a packetized structure shown in Figure 2.2. Each packet comprises

a preamble (defined in the iNET standard [4]), the attached sync marker (ASM), and a 6144-bit

data field. The preamble and ASM bits form a known sequence of bits, together called the pilot

bits, that are periodically inserted every 6144 bits. The iNET preamble comprises eight repetitions

of the 16-bit sequence CD98hex and the ASM field is

034776C7272895B0hex. (2.1)

The data payload is a known length-(211− 1) PN sequence. Each packet contains 128 preamble

bits, 64 ASM bits and 6,144 data bits making each iNET packet 6,336 bits. The data bit rate is

10 Mbits/s. After preamble and ASM insertion, the bit rate presented to the modulator is 10.3125

Mbits/s.

After modulation, the transmitted signal experiences multipath interference modeled as an

LTI system with the channel impulse response h(t). The transmitted signal also experiences a

frequency offset ω0, a phase offset φ and additive white Gaussian noise w(t). The received signal

is down-converted, filtered, sampled at 931/3 Msamples/second by the ADC, and down-converted

to baseband and resampled by 99/448 using a polyphase filterbank based on the principles outlined

in [5, chap. (9)]. The result is r(n), a sampled version of the complex-valued lowpass equivalent

waveform at a sample rate of 20.625 Msamples/second or 2 samples/bit.
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Figure 2.3: A block diagram of the physical PAQ hardware. The components inside the
rack mounted server are in the dashed box. All the components in the dashed and dotted
box are housed in a rack mounted case.

2.2 Hardware Overview

A block diagram of PAQ physical system is shown in Figure 2.3. A picture of the physical

components is shown in Figure 2.4. The major components, and their functions are summarized

as follows:

• The T/M receiver down-converts the received signal from L- or C-band RF to 70 MHz IF.

The IF filter plays the role of an anti-aliasing filter.

• The ADC produces 14-bit samples of the real-valued bandpass IF signal. The sample rate is

931/3 Msamples/s. The samples are transferred to the host CPU via the PCIe bus.

• The host CPU initiates memory transfers between itself and the ADC, GPUs and FPGA via

the PCIe bus. The host CPU also launches the digital signal processing algorithms on the

GPUs.

• The three GPUs are where the detection, estimation, equalization and demodulation resides.
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Figure 2.4: A picture of the physical PAQ hardware refrencing blocks from Figure 2.3.
Right: Components in the dashed and dotted box. Left: Components in the dashed box.
Note that the T/M Receiver is not pictured.

• The bit error rate tester (BERT) counts the errors in each bit stream by comparing the streams

to the transmitted PN sequence.

• The FPGA is the interface between the host CPU and the BERT. After the GPUs produce

bit decisions, the host CPU transfers the decisions from the GPUs to the FPGA via the PCIe

bus. The FPGA then clocks the bits out to the BERT for BER testing.

• The T/M Receiver & Demodulator demodulates the RF signal outputting two bit streams

for blind equalization and no equalization for BER comparison.

• The rack mounted server is a high powered computer that houses an ADC, a FPGA and

three GPUs slotted into a 32 pin PCIe bus.
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2.3 Digital Signal Processing

A high-level digital signal processing flow and notation is shown in Figure 2.5. The se-

quence r(n) represents a continuous stream of samples. Because the frequency offset, channel,

and noise variance are estimated using the preamble and ASM, the first step is to find the sam-

ples corresponding to the preamble in the received sample sequence r(n). The preamble detector

identifies the sample indices in the sequence r(n) corresponding to the starting position of each

occurrence of the waveform samples corresponding to the preamble. To simplify the notation used

to describe the signal processing algorithms, we represent the output of the preamble detector

by the vector rp, a sequence of Lpkt samples starting with the waveform samples corresponding

to the preamble and ASM bits. In this way the signal processing algorithms are described on a

packet-by-packet basis.

Starting with the block diagram in Figure 2.5, the preamble samples are used first to es-

timate the frequency offset. The estimated frequency offset ω̂0 rads/sample is then used to “de-

rotate” the vector of samples rp to produce a vector denoted r̃. The de-rotated preamble and ASM

samples in the vector r̃ are used to estimate the channel ĥ and noise variance σ̂2
w as shown.

The estimates are used to compute the equalizer filter coefficients as illustrated in Figure

2.6. The figure shows five independent branches, each branch computing an equalizer filter. On

the top three branches, lower case boldface variables c, with a subscript, represent the impulse

responses of the FIR equalizer filters. On the lower two branches, the upper case boldface C

with a subscript represent the FFT-domain transfer function of the equalizers. In all five cases,

the equalizer and a detection filter (described below) are applied to r̃. The result processed by a

symbol-by-symbol OQPSK detector to produce bit decisions for each equalizer.

The GPUs in Figure 2.3 and 2.4 perform all the digital signal processing in parallel. To in-

troduce as much parallelism as possible, the received samples are processed in a batch comprising

39,321,600 samples. At 20.625 Msamples/second, each batch of 39,321,600 samples represents

1907 milliseconds of data. Each batch has at most 3104 12,672-sample iNET packets.1 The GPU

processes 3104 packets in parallel by leveraging batched processing. To meet the real-time re-

quirement, all processing must be completed in less than 1907 ms.

1Because the batch length (39,321,600 samples) is not a multiple of the packet length (12,672), each batch com-
prises 3103 or 3104 packets.
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Figure 2.6: A block diagram of the computation and application of the equalizer and de-
tection filters. The bold box emphasizes the focus of this thesis.

This thesis illustrates how the five PAQ data-aided equalizers were computed and applied in

GPUs. The bold box in Figure 2.6 emphasizes processing blocks on which this thesis focuses. Even

though the GPUs process 3104 packets in parallel, the signal processing algorithms are described

on a packet-by-packet basis.

2.3.1 Preamble Detection

To compute the impulse responses or transfer functions of the five data-aided equalizers, an

estimate of the channel and noise variance must be available. The required estimates are derived
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from the received waveform samples corresponding to the preamble and ASM bits. Consequently,

the location of the waveform samples corresponding to the preamble and ASM bits must be found.

The preamble detector identifies the sample indices in the sequence r(n) corresponding to the

starting position of each occurrence of the waveform samples corresponding to the preamble. The

preamble detector computes the function L(n) for each sample in the batch. Peaks in L(n) identify

the starting indices of the waveform samples corresponding to each occurrence of the preamble

bits. The function L(n) is given by [6]

L(n) =
7

∑
m=0

[
I2(n,m)+Q2(n,m)

]
, (2.2)

where

I(n,m)≈ ∑
`∈L1

rR(`+32m+n)− ∑
`∈L2

rR(`+32m+n)+ ∑
`∈L3

rI(`+32m+n)

− ∑
`∈L4

rI(`+32m+n)+0.7071

[
∑

`∈L5

rR(`+32m+n)− ∑
`∈L6

rR(`+32m+n)

+ ∑
`∈L7

rI(`+32m+n)− ∑
`∈L8

rI(`+32m+n)

]
, (2.3)

and

Q(n,m)≈ ∑
`∈L1

rI(`+32m+n)− ∑
`∈L2

rI(`+32m+n)

− ∑
`∈L3

rR(`+32m+n)+ ∑
`∈L4

rR(`+32m+n)

+0.7071

[
∑

`∈L5

rI(`+32m+n)− ∑
`∈L6

rI(`+32m+n)

− ∑
`∈L7

rR(`+32m+n)+ ∑
`∈L8

rR(`+32m+n)

]
, (2.4)
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with

L1 = {0,8,16,24}

L2 = {4,20}

L3 = {2,10,14,22}

L4 = {6,18,26,30}

L5 = {1,7,9,15,17,23,25,31}

L6 = {3,5,11,12,13,19,21,27,28,29}

L7 = {1,3,9,11,12,13,15,21,23}

L8 = {5,7,17,19,25,27,28,29,31}.

(2.5)

The index of a peak in L(n) indicates the start of a preamble. Suppose L(i) is a peak (i.e., i is the

index of the peak). Then the vector rp in Figure 2.5 is

rp =


r(i)

...

r(i+Lpkt−1)

=


rp(0)

...

rp(Lpkt−1)

 . (2.6)

The first Lp = 256 samples of rp correspond to the preamble bits and the following LASM = 128

samples of rp correspond to the ASM bits.

2.3.2 Frequency Offset Compensation

The preamble sequence comprises eight copies of the bit sequence CD98hex. Consequently,

the waveform samples rp(0), . . . ,rp(Lp−1) comprise eight copies of Lq = 32 SOQPSK-TG wave-

form samples corresponding to CD98hex.2 The frequency offset estimator shown in Figure 2.5 is

the estimator taken from [7, eq. (24)]. With the notation adjusted slightly, the frequency offset

estimate is

ω̂0 =
1
Lq

arg

{
i+7Lq−1

∑
n=i+2Lq

rp(n)r∗p(n−Lq)

}
for i = 1,2,3,4,5. (2.7)

2This statement is only approximately true. Because of the memory in SOQPSK-TG, the first block of Lq samples
is a function of both the bit sequence CD98hex and the seven unknown bits preceding the first occurrence of CD98hex.
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The frequency offset is estimated for every packet or each vector of samples rp in the batch. Fre-

quency offset compensation is performed by de-rotating the received samples by −ω̂0:

r̃(n) = rp(n)e− jω̂0n. (2.8)

Equations (2.7) and (2.8) are easily implemented into GPUs.

2.3.3 Channel Estimation

Let the SOQPSK-TG samples corresponding to the preamble and ASM bits be

p =


p(0)

p(1)
...

p(LP +LASM−1)

 . (2.9)

The multipath channel is defined by the impulse response

ĥ =



ĥ(−N1)
...

ĥ(0)
...

ĥ(N2)


. (2.10)

Note that at 2 samples/bit, the complex-valued lowpass equivalent channel impulse response is

assumed to have a non-causal component comprising N1 samples and a causal component com-

prising N2 samples. Figure 2.7 shows the full discrete-time Lh = N1 +N2 +1 sample channel.

The ML estimate is [2, eq. 8]

ĥ =
(

X†X
)−1

X†︸ ︷︷ ︸
Xlpi

r̃x, (2.11)
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Figure 2.7: An illustration of the discrete-time channel of length N1 +N2 + 1 with a non-
causal component comprising N1 samples and a causal component comprising N2 samples.

where

X =



p(N2)
... p(N2)

p(Lp +LASM−N1)
... . . .

p(Lp +LASM−N1) p(N2)
...

p(Lp +LASM−N1)


, (2.12)

is the (Lp +LASM−N1−N2)× (N1 +N2 + 1) convolution matrix formed from the SOQPSK-TG

waveform samples corresponding to the preamble and ASM bits and r̃x is the vector of de-rotated

received waveform samples corresponding to the “middle” portion of the preamble and ASM bits:

r̃x =


r̃(N2)

r̃(N2 +1)
...

r̃(LP +LASM−N1)

 . (2.13)

The (N1 +N2 +1)× (Lp +LASM−N1−N2) matrix Xlpi is the left pseudo-inverse of X. Note that

Xlpi is independent of the data and therefore may be computed once and stored. The matrix vector

multiplication Xlpir̃x is implemented simply and efficiently in GPUs.
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2.3.4 Noise Variance Estimation

The noise variance estimator is [2, eq. 9]

σ̂
2
w =

1
2ρ

∣∣r̃x−Xĥ
∣∣2 , (2.14)

where

ρ = Trace
{

I−X
(

X†X
)−1

X†
}
, (2.15)

where r̃x is given by Equation (2.13) and X is given by Equation (2.12). Equation (2.14) is easily

implemented into GPUs.

2.3.5 Equalizers

Zero-Forcing Equalizer

The ZF equalizer is an FIR filter defined by the Leq = L1 +L2 +1 coefficients

cZF =



cZF(−L1)
...

cZF(0)
...

cZF(L2)


. (2.16)

The filter coefficients are the solution to [3]

RĥcZF = ĝ, (2.17)

where

Rĥ =


rĥ(0) r∗

ĥ
(1) · · · r∗

ĥ
(Leq−1)

rĥ(1) rĥ(0) · · · r∗
ĥ
(Leq−2)

...
... . . .

rĥ(Leq−1) rĥ(Leq−2) · · · rĥ(0)

 , (2.18)
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ĝ =



ĥ∗(L1)
...

ĥ∗(0)
...

ĥ∗(−L2)


, (2.19)

and

rĥ(k) =
N2

∑
n=−N1

ĥ(n)ĥ∗(n− k). (2.20)

MMSE Equalizer

The MMSE equalizer is an FIR filter defined by the Leq = L1 +L2 +1 coefficients

cMMSE =



cMMSE(−L1)
...

cMMSE(0)
...

cMMSE(L2)


. (2.21)

The filter coefficients are the solution to [3]

RcMMSE = ĝ, (2.22)

where

R = Rĥ + σ̂
2
wI, (2.23)

Rĥ is given by (2.18), σ̂2
w is given by (2.14), and ĝ is given by (2.19).
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Constant Modulus Algorithm Equalizer

The CMA equalizer is an adaptive FIR filter where the Leq = L1+L2+1 coefficients at the

b-th iteration are

c(b)CMA =



c(b)CMA(−L1)
...

c(b)CMA(0)
...

c(b)CMA(L2)


. (2.24)

The equalizer output at the b-th iteration is

ŝ(b) = c(b)CMA ∗ r̃. (2.25)

Note that in this implementation the CMA filter coefficients are constant for the duration of a

packet [2]. The filter coefficients are updated on a packet-by-packet basis using a steepest descent

algorithm as follows:

c(b+1)
CMA = c(b)CMA−µ∇J, (2.26)

where

∇J =
2

Lpkt

Lpkt−1

∑
n=0

[
ŝ(b)(n)

(
ŝ(b)(n)

)∗
−1
]

ŝ(b)(n)r̃∗(n). (2.27)

In Equation (2.27), ŝ(b)(n) is the n-th element of the vector ŝ(b) and

r̃∗(n) =



r̃∗(n+L1)
...

r̃∗(n)
...

r̃∗(n−L2)


. (2.28)

The CMA equalizer filter coefficients are initialized by the MMSE equalizer filter coefficients

c(0)CMA = cMMSE. (2.29)
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Figure 2.8: A diagram showing how the iNET packet is used as a cyclic prefix.

Frequency Domain Equalizer One

Frequency-domain equalization leverages the efficiency of the FFT algorithm to perform

equalization filtering in the FFT domain. The difference between frequency-domain equalization

and applying the previous three equalizer filters in the FFT domain is that the frequency-domain

equalizer is computed directly in the FFT domain. To enable this, some provision must be made for

the fact that point-by-point multiplication in the FFT domain corresponds to circular convolution

in the time domain. This provision is most often in the form of a cyclic prefix prepended to the data

packet [8–11]. Even though the PAQ format does not include any special provision for frequency-

domain equalization such as a cyclic prefix, frequency-domain equalization is still possible using

the ideas described by Coon et al [12]. Because of the repetitive nature of the preamble sequence,

the second half of the preamble bits at the beginning of the packet are the same the first half of

the preamble bits following the packet. Consequently, the second half of the preamble bits at the

beginning of the packet form a cyclic prefix for the block comprising the ASM, the data, and the

first half of the preamble following the packet as illustrated in Figure 2.8.
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The FFT domain transfer function of FDE1 is [13, eq. (11)]

CFDE1(e jωk) =
Ĥ∗(e jωk)

|Ĥ(e jωk)|2 + 1
σ̂2

w

ωk =
2π

NFFT
for k = 0,1, · · · ,NFFT−1, (2.30)

where NFFT = 2u = 16,384, where u =
⌈
log2

(
Lpkt
)⌉

= 14, where dxe means the smallest integer

greater than or equal to x. In Equation (2.30), Ĥ(e jωk) is the k-th element of the length-NFFT FFT

of ĥ and σ̂2
w is given by (2.14). FDE1 is the MMSE equalizer formulated in the frequency domain,

where power spectral density of SOQPSK-TG is a constant.

Frequency Domain Equalizer Two

The FFT domain transfer function of FDE1 is [13, eq. (12)]

CFDE2(e jωk) =
Ĥ∗(e jωk)

|Ĥ(e jωk)|2 + Ψ(e jωk )
σ̂2

w

ωk =
2π

NFFT
for k = 0,1, · · · ,NFFT−1, (2.31)

where NFFT = 2u = 16,384, where u =
⌈
log2

(
Lpkt
)⌉

= 14, where dxe means the smallest integer

greater than or equal to x. In Equation (2.31), Ĥ(e jωk) is the k-th element of the length-NFFT

FFT of ĥ and σ̂2
w is given by (2.14). Like FDE1, FDE2 is the MMSE equalizer formulated in the

frequency domain. The difference is FDE2 uses an estimate of the true power spectral density

of SOQPSK-TG. The SOQPSK-TG power spectral density Ψ(e jωk) is illustrated in Figure 2.9.

Ψ(e jωk) was estimated using Welch’s method of periodogram averaging based on length-NFFT

FFTs of SOQPSK-TG sampled at 2 samples/bit, the Blackman window, and 50% overlap.

2.3.6 Symbol-by-Symbol Detector

A block diagram of the symbol-by-symbol detector is shown in Figure 2.11. Note that

the detection filter is applied with the equalizer filter in Figure 2.6. Symbol-by-symbol detection

comprises a detection filter operating at 2 samples/bit, a phase lock loop (PLL) operating at 1

sample/bit, and a decision device also operating at 1 sample/bit. Before the symbols are detected,

the equalized samples ŝ(n) are passed through the detection filter then down-sampled by 2. The
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Figure 2.9: SOQPSK-TG power spectral density.

detection filter d is the length Ld = 23 FIR filter whose response is shown in Figure 2.10 [14, Fig.

3]. The symbol-by-symbol detector block in Figure 2.6 is an OQPSK detector.

A phase lock loop (PLL) is needed in the OQPSK detector to track out residual frequency

offset. The residual frequency offset results from a frequency offset estimation error. Equalizers

mitigate the effects of phase offset, timing offset, and ISI because all of these impairments form the

composite channel seen by the equalizer. A frequency offset is different, and cannot be mitigated

by the equalizer alone. The PLL tracks out the residual frequency offset using a feedback control

loop. The feedback control loop operates in a data-aided mode for k < Lp+LASM using the known

bits of preamble and ASM, denoted a(k) in the figure. Note that y(n) is indexed at 2 samples/bit

while y(k) and ỹ(k) are indexed at 1 sample/bit.

Implementing a PLL may not seem feasible in GPUs because the feedback loop cannot

be parallelized. But the PAQ system processes 3104 packets of data simultaneously in parallel.

Running the PLL and detector serially through a full packet of samples is relatively fast because

the loop requires only 10 floating point operations and a few logic decisions.
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Figure 2.10: SOQPSK detection filter d.

Figure 2.11: Offset Quadrature Phase Shift Keying symbol-by-symbol detector.
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CHAPTER 3. SIGNAL PROCESSING IN GPUS

A graphics processing unit (GPU) is a computational unit with a highly-parallel architecture

well-suited for executing the same function on many data elements. In the past, GPUs were used

to process graphics data but in 2008 NVIDIA released the Tesla GPU. Telsa GPUs are built for

general purpose high performance computing. Figure 3.1 shows the form factor of a Tesla K40c

and K20c.

In 2007 NVIDIA released an extension to C, C++ and Fortran called CUDA (Compute

Unified Device Architecture). CUDA enables GPUs to be used for high performance computing

in computer vision, deep learning, artificial intelligence, and signal processing [15]. CUDA allows

a programmer to write C++ like functions that are massively parallel called kernels. To invoke

parallelism, a GPU kernel executed N times with the work distributed to Nmin total threads that

run concurrently. To achieve the full potential of high performance GPUs, kernels must be written

with some basic concepts about GPU architecture and memory in mind. This chapter will show

the following:

• Optimizing memory access leads to faster execution time, rather than optimizing number of

floating point operations.

• The number of threads per block can significantly affect execution time.

• CPU and GPU processing can be pipelined.

• Convolution maps very well to GPUs using the Fast Fourier Transform (FFT).

• Batched processing leads to faster execution time per batch.
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Figure 3.1: NVIDIA Tesla K40c and K20c.

3.1 GPU and CUDA Introduction

3.1.1 An Example Comparing CPU and GPU

If a programmer has some C++ experience, learning how to program GPUs using CUDA

comes fairly easily. GPU code still runs top to bottom and memory still has to be allocated. The

only real difference is the physical location of the memory and how functions run on GPUs. To

run functions or kernels on GPUs, the memory must be copied from the host (CPU) to the device

(GPU). Once the memory has been copied, parallel GPU kernels operate on the data. After GPU

kernel execution, results are usually copied back from the device (GPU) to the host (CPU).

Listing 3.1 shows a simple program that implements real-valued float vector addition in a

CPU and a GPU. The vector C1 is the sum of the vectors A1 and B1 computed in the CPU. The

vector C2 is the sum of the vectors A2 and B2 computed in the GPU. Line 42 the CPU computes

C1 by summing elements of A1 and B1 together sequentially. Figure 3.2 shows how the CPU se-
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Figure 3.2: A block diagram of how a CPU sequentially performs vector addition.

Figure 3.3: A block diagram of how a GPU performs vector addition in parallel.

quentially computes one element of C1 at time by summing one element from A1 and one element

B1.

The GPU performs all the summations in parallel because each element of C2 is indepen-

dent of all other elements. Before the computation of C2 can execute on the GPU, the vectors in

host memory A1 and B1 are copied to device memory vectors A2 and B2 as shown on lines 60 and

61. Once A2 and B2 are on the GPU, the vector C2 is computed by calling the GPU kernel VecAd-

dGPU on line 75. VecAddGPU computes all the elements of C2 by performing a summation of all

the elements of A2 and B2. The vector C2 is then copied from device memory to host memory on

line 78. Figure 3.3 shows how the GPU computes C2 in parallel.
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Listing 3.1: Comparison of CPU and GPU code.
1 #include <iostream >

2 #include <stdlib.h>

3 #include <math.h>

4 using namespace std;

5

6 void VecAddCPU(float* destination ,float* source0 ,float* source1 ,int myLength){

7 for(int i = 0; i < myLength; i++)

8 destination[i] = source0[i] + source1[i];

9 }

10

11 __global__ void VecAddGPU(float* destination , float* source0 , float* source1 , int lastThread

){

12 int i = blockIdx.x*blockDim.x + threadIdx.x;

13

14 // don’t access elements out of bounds

15 if(i >= lastThread)

16 return;

17

18 destination[i] = source0[i] + source1[i];

19 }

20

21 int main(){

22 int N = pow(2,22);

23 cout << N << endl;

24 /**

25 * Vector Addition on CPU

26 */

27 // allocate memory on host

28 float *A1;

29 float *B1;

30 float *C1;

31 A1 = (float *) malloc (N*sizeof(float));

32 B1 = (float *) malloc (N*sizeof(float));

33 C1 = (float *) malloc (N*sizeof(float));

34

35 // Initialize vectors 0-99

36 for(int i = 0; i < N; i++){

37 A1[i] = rand()%100;

38 B1[i] = rand()%100;

39 }

40

41 // vector sum C1 = A1 + B1

42 VecAddCPU(C1 , A1, B1, N);

43

44 /**

45 * Vector Addition on GPU

46 */

47 // allocate memory on host for result

48 float *C2;

49 C2 = (float *) malloc (N*sizeof(float));

50

51 // allocate memory on device for computation

52 float *A2_gpu;

53 float *B2_gpu;

54 float *C2_gpu;

55 cudaMalloc (&A2_gpu , sizeof(float)*N);

56 cudaMalloc (&B2_gpu , sizeof(float)*N);

57 cudaMalloc (&C2_gpu , sizeof(float)*N);

58

59 // Copy vectors A and B from host to device

60 cudaMemcpy(A2_gpu , A1, sizeof(float)*N, cudaMemcpyHostToDevice);

61 cudaMemcpy(B2_gpu , B1, sizeof(float)*N, cudaMemcpyHostToDevice);

62

63 // Set optimal number of threads per block

64 int T_B = 32;

65
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66 // Compute number of blocks for set number of threads

67 int B = N/T_B;

68

69 // If there are left over points , run an extra block

70 if(N % T_B > 0)

71 B++;

72

73 // Run computation on device

74 //for(int i = 0; i < 100; i++)

75 VecAddGPU <<<B, T_B >>>(C2_gpu , A2_gpu , B2_gpu , N);

76

77 // Copy vector C2 from device to host

78 cudaMemcpy(C2, C2_gpu , sizeof(float)*N, cudaMemcpyDeviceToHost);

79

80 // Compare C2 to C1

81 bool equal = true;

82 for(int i = 0; i < N; i++)

83 if(C1[i] != C2[i])

84 equal = false;

85 if(equal)

86 cout << "C2 is equal to C1." << endl;

87 else

88 cout << "C2 is NOT equal to C1." << endl;

89

90 // Free vectors on CPU

91 free(A1);

92 free(B1);

93 free(C1);

94 free(C2);

95

96 // Free vectors on GPU

97 cudaFree(A2_gpu);

98 cudaFree(B2_gpu);

99 cudaFree(C2_gpu);

100 }

3.1.2 GPU Kernel Using Threads and Thread Blocks

A GPU kernel is executed by launching blocks with a set number of threads per block. In

the Listing 3.1, VecAddGPU is launched on line 75 with 32 threads per block. The total number

of threads launched on the GPU is the number of blocks times the number of threads per block.

VecAddGPU needs to be launched with at least N = 222 (line 22) threads or 222/32 blocks of 32

threads.

CUDA gives each thread launched in a GPU kernel a set of unique indices called threadIdx

and blockIdx. threadIdx is the thread index inside the assigned thread block. blockIdx is the index

of the block to which the thread is assigned. Both threadIdx and blockIdx are three dimensional

(i.e., they both have x, y, and z components). In this thesis only the x dimension is used, because the

GPU kernels operate only on one dimensional vectors. blockDim is the number of threads assigned
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Figure 3.4: 32 threads launched in 4 thread blocks with 8 threads per block.

Figure 3.5: 36 threads launched in 5 thread blocks with 8 threads per block with 4 idle
threads.

per block, in fact blockDim is equal to the number of threads per block because the vectors are one

dimensional.

To convert the CPU “for loop” on line 7 to a GPU kernel, at least N threads are launched

with T threads per thread block. The number of blocks needed is B = N
TB

or B = N
T + 1, if N is

not an integer multiple of T . Figure 3.4 shows N = 32 threads launched in B = 4 thread blocks

with T = 8 threads per block. Figure 3.5 shows N = 36 threads launched in B = 5 thread blocks

with T = 8 threads per block. An full extra thread block is launched with T = 8 threads, but 4

threads are idle. Thread blocks are executed independent of other thread blocks. The GPU does

not guarantee Block 0 will execute before Block 2.

3.1.3 GPU Memory

GPUs have plenty of computational resources, but most GPU kernels are limited by mem-

ory bandwidth to feed the computational units. GPU kernels execute faster if the kernel is designed

to access memory efficiently, rather than reducing the computational burden. NVIDIA GPUs have

many different types of memory to maximize speed and efficiency.

The fastest memory is private local memory, in the form of Registers and L1 Cache/shared

memory. Local memory is fast, but only kilobytes are available. The slowest memory is public

memory in the form of the L2 Cache and Global Memory. Public memory is slow, but gigabytes
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Figure 3.6: Diagram comparing memory size and speed. Global memory is massive but
extremely slow. Registers are extremely fast but there are very few.

are available. Figure 3.6 shows the trade-off of memory speed and the size of different types of

memory.

Figure 3.7 shows a picture of the GPU hardware. The solid boxes show that the L2 cache

and Global Memory are physically located off the GPU chip. The dashed box shows that Registers

and L1 Cache/Shared Memory are physically located on the GPU chip. A public memory access

takes over 60 clock cycles, because the memory is off chip. A local memory access is only a few

clock cycles because the memory is on chip.

Figure 3.8 illustrates where each type of memory is located. Threads have access to their

own Registers and the L1 Cache. Threads in a block can coordinate using shared memory, be-

cause shared memory is private to the thread block. All threads have access to the L2 Cache and

Global Memory. The figure also shows that thread blocks are assigned to streaming multiproces-

sors (SMs). CUDA handles all the thread block assignments to SMs. Table 3.1 lists Telsa K40c

and K20c resources.

3.1.4 Thread Optimization

Most resources listed in Table 3.1 show how much memory per thread block is available.

The number of threads per block and the amount of resources available have an inverse relationship.

Threads have very little memory resources available, if a GPU kernel launches 1024 threads per
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Figure 3.7: Example of an NVIDIA GPU card. The GPU chip with registers and L1/shared
memory is shown in the dashed box. The L2 cache and global memory is shown off chip
in the solid boxes.

Figure 3.8: A block diagram where local, shared, and global memory is located. Each
thread has private local memory. Each thread block has private shared memory. The GPU
has global memory that all threads can access.
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Table 3.1: The resources available with three NVIDIA GPUs used in this thesis (1x Tesla
K40c 2x Tesla K20c). Note that CUDA configures the size of the L1 cache needed.

Feature Per Tesla K40c Tesla K20c

Global Memory GPU 12 GB 5 GB
L2 Cache Size GPU 1.6 GB 1.3 GB
Memory Bandwidth 288 GB/s 208 GB/s
Shared Memory Thread Block 49 kB 49 kB
L1 Cache Size Thread Block variable variable
Registers Thread Block 65536 65536
Maximum Threads Thread Block 1024 1024
CUDA Cores GPU 2880 2496
Base Core Clock 745 MHz 732 MHz

block. Threads have a lot of memory resources available, if a GPU kernel launches 32 threads per

block. This section shows that finding the optimum number of threads per block can dramatically

speed up GPU kernels.

Improving memory accesses should always be the first optimization, when a GPU kernel

needs to be faster. The next step is to find the optimal number of threads per block to launch.

Knowing the perfect number of threads per block to launch is challenging to calculate. Fortu-

nately, the maximum number of possible threads per block is 1024 in the Tesla K40c and K20c

GPUs. Listing 3.2 shows a simple test program that measures GPU kernel execution time, while

varying the number of possible threads per block. The number of threads per block with the fastest

computation time is the optimal number of threads per block for that specific GPU kernel.

Listing 3.2: Code snippet for thread optimization.
1 float milliseconds_opt = pow (2 ,10); // initiaize to "big" number

2 int T_B_opt;

3 int minNumTotalThreads = pow (2 ,20); // set to minimum number of required threads

4 for(int T_B = 1; T_B <=1024; T_B ++){

5 int B = minNumTotalThreads/T_B;

6 if(minNumTotalThreads % T_B > 0)

7 B++;

8 cudaEvent_t start , stop;

9 cudaEventCreate (&start);

10 cudaEventCreate (&stop);

11 cudaEventRecord(start);

12

13 GPUkernel <<<B, T_B >>>(dev_vec0 , dev_vec1);
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14

15 cudaEventRecord(stop);

16 cudaEventSynchronize(stop);

17 float milliseconds = 0;

18 cudaEventElapsedTime (& milliseconds , start , stop);

19 cudaEventDestroy(start);

20 cudaEventDestroy(stop);

21 if(milliseconds <milliseconds_opt){

22 milliseconds_opt = milliseconds;

23 T_B_opt = T_B;

24 }

25 }

26 cout << "Optimal Threads Per Block " << T_B_opt << endl

27 cout << "Optimal Execution Time " << milliseconds_opt << endl;

Most of the time the optimal number of threads per block is a multiple of 32 this is because

at the lowest level of architecture, GPUs perform computations in warps. Warps are groups of 32

threads that perform every computation together in lock step. If the number of threads per block

is not a multiple of 32, some threads in a warp are idle and the GPU has unused computational

resources.

Figure 3.9 shows the execution time of an example GPU kernel. The optimal execution

time is 0.1078 ms at the optimal 96 threads per block. By simply adjusting the number of threads

per block, the execution time of this example kernel can be reduced by a factor of 2.

Adjusting the number of threads per block does not always dramatically reduce execution

time. Figure 3.10 shows the execution time for another GPU kernel with varying threads per block.

The execution time of this example kernel can be reduced by 1.12 by launching 560 threads per

block.

While designing a custom GPU kernel to obtain a major speed up is satisfying, CUDA has

optimized GPU libraries that are extremely useful and efficient with exceptional documentation.

The CUDA libraries are written by NVIDIA engineers to maximize the performance of NVIDIA

GPUs. The libraries explained in this thesis include cuFFT, cuBLAS and cuSolverSp.

3.1.5 CPU and GPU Pipelining

While GPU kernels execute physically on the GPU, the GPU only executes instructions

received from the host CPU. The CPU is idle while it waits for GPU kernels to execute. To
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Figure 3.9: Plot showing how execution time is affected by changing the number of threads
per block. The optimal execution time for an example GPU kernel is 0.1078 ms at the
optimal 96 threads per block.

introduce CPU and GPU pipelining, the CPU can be pipelined by performing other operations

while waiting for the GPU to finish executing kernels.

A basic CPU GPU program with no pipelining is shown in Listing 3.3. The CPU acquires

data from myADC on Line 5. After the CPU takes time to acquire data, the data is copied from the

host (CPU) to the device (GPU) on line 8. The data is processed on the GPU once then the result

is copied back to the device to host on line 9 and 10. The cudaDeviceSynchronize function on line

13 blocks CPU until all GPU instructions are finished executing. Note that the CPU is blocked

during any host to device or device to host transfer. Acquiring and copying data takes processing

time on the CPU and GPU. Figure 3.11 shows a block diagram of what is happening on the CPU

and GPU in Listing 3.3 (end of the section). The GPU is idle while the CPU is acquiring data and

the CPU is idle while the GPU is processing.
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Figure 3.10: Plot showing the number of threads per block doesn’t always drastically affect
execution time.

Figure 3.11: The typical approach of CPU and GPU operations. This block diagram shows
the profile of Listing 3.3.

Listing 3.4 (end of the section) shows how to CPU and GPU operations can be pipelined.

Assuming data is already on the GPU from a prior computation, the CPU gives processing in-

structions to the GPU then acquires data. The CPU then does an asynchronous data transfer to a

temporary vector on the GPU. The GPU first performs a device to device transfer from the tem-
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Figure 3.12: GPU and CPU operations can be pipelined. This block diagram shows a
profile of Listing 3.4.

Figure 3.13: A block diagram of pipelining a CPU with three GPUs.

porary vector. The GPU then runs the GPUkernel and transfers the result to the host. Note that

device to device transfers do not block the CPU. This system suffers a full cycle latency.

Pipelineing can be extended to multiple GPUs for even more throughput, but only suffer

latency of copying memory to one GPU. Figure 3.13 shows a block diagram of how three GPUs

can be pipelined. A strong understanding of the full system is required to pipeline at this level.
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Listing 3.3: Example code Simple example of the CPU acquiring data from myADC, copy-
ing from host to device, processing data on the device then copying from device to host.

No processing occurs on device while CPU is acquiring data.
1 int main()

2 {

3 ...

4 // CPU Acuire Data

5 myADC.acquire(vec);

6

7 // Launch instructions on GPU

8 cudaMemcpy(dev_vec0 , vec , numBytes , cudaMemcpyHostToDevice);

9 GPUkernel <<<1, N>>>(dev_vec0);

10 cudaMemcpy(vec , dev_vec0 , numBytes , cudaMemcpyDeviceToHost);

11

12 // Synchronize CPU with GPU

13 cudaDeviceSynchronize ();

14 ...

15 }

Listing 3.4: Example code Simple of the CPU acquiring data from myADC, copying from
host to device, processing data on the device then copying from device to host. No

processing occurs on device while CPU is acquiring data.
1 int main()

2 {

3 ...

4 // Launch instructions on GPU

5 cudaMemcpy(dev_vec , dev_temp , numBytes , cudaMemcpyDeviceToDevice);

6 GPUkernel <<<N, M>>>(dev_vec);

7 cudaMemcpy(vec , dev_vec , numBytes , cudaMemcpyDeviceToHost);

8

9 // CPU Acuire Data

10 myADC.acquire(vec);

11 cudaMemcpyAsync(dev_temp , vec , numBytes , cudaMemcpyHostToDevice);

12

13 // Synchronize CPU with GPU

14 cudaDeviceSynchronize ();

15 ...

16

17 ...

18 // Launch instructions on GPU

19 cudaMemcpy(dev_vec , dev_temp , numBytes , cudaMemcpyDeviceToDevice);

20 GPUkernel <<<N, M>>>(dev_vec);

21 cudaMemcpy(vec , dev_vec , numBytes , cudaMemcpyDeviceToHost);

22

23 // CPU Acuire Data

24 myADC.acquire(vec);

25 cudaMemcpyAsync(dev_temp , vec , numBytes , cudaMemcpyHostToDevice);

26

27 // Synchronize CPU with GPU

28 cudaDeviceSynchronize ();

29 ...

30 }
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3.2 GPU Convolution

Convolution is one of the most important tools in digital signal processing. The PAQ system

explained uses convolution up to 26 times per packet, depending on the number of CMA iterations.

If convolution execution time can be reduced by 10 ms, the full system execution time can reduced

by 260 ms. This section will use the following notation:

• The signal x is a vector of N complex samples indexed by x(n) where, 0≤≤ N−1.

• The filter h is a vector of L complex samples indexed by h(n) where, 0≤≤ L−1.

• The filtered signal y is a vector resulting from the convolution of x and h. y is C = N+L−1

complex samples and is indexed by y(n) where, 0≤ n≤C−1.

• The forward Fast Fourier Transform (FFT) of the vector x is denoted F (x).

• The inverse Fast Fourier Transform (IFFT) of the vector x is denoted F−1(x).

Discrete time convolution applies the filter h to the signal x resulting in the filter signal y.

Convolution in the time domain is

y(n) =
L−1

∑
m=0

x(m)h(n−m), (3.1)

and the frequency domain is

y = F−1(F (x)×F (h)). (3.2)

Figure 3.14 shows block diagrams for time-domain and frequency domain convolution. This sec-

tion will show:

• GPU convolution is faster than CPU convolution with large data sets using execution time

as a metric.

• GPU convolution execution time is dependent more on memory access than floating point

operations.
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Figure 3.14: Block diagrams showing time-domain convolution and frequency-domain
convolution.

• Performing batched GPU convolution invokes more parallelism and decreases execution

time per batch.

• Batched GPU frequency-domain convolution executes faster than batched GPU time-domain

convolution.

3.2.1 Floating Point Operation Comparison

Traditionally the number of floating point operations (flops) is used to estimate how com-

putationally intense an algorithm is. Each complex multiplication

(A+ jB)× (C+ jD) = (AC−BD)+ j(AD+BC), (3.3)
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requires 6 flops, 4 multiplications and 2 additions/subtractions. Output elements of y in Equation

(3.1) requires 8L = (6+2)L flops, 2 extra flops are required for each summand. The time-domain

convolution requires

8LC flops, (3.4)

where C = N +L−1 is the length of the convolution result.

To leverage the Cooley-Tukey radix 2 Fast Fourier Transform (FFT) in frequency-domain

convolution, common practice is to compute the M point FFT where M = 2u and u = dlog2 (C)e.

Both the CPU based Fastest Fourier Transform in the West (FFTW) library and the NVIDIA GPU

cuFFT library use the Cooley-Tukey radix 2 FFT. Each FFT or IFFT requires 5M log2(M) flops

[16, 17]. As shown by Equation (3.2), frequency-domain convolution requires

3×5M log2(M)+6M flops, (3.5)

from 3 FFTs and M point-to-point multiplications.

Sections 2.2 and 2.3.6 show the PAQ system has one signal length, N = Lpkt = 12,672

samples and two filter lengths L = Ldf = 23 and L = Leq = 186. Figures 3.15 through 3.17 compare

the number of flops required for time-domain and frequency-domain convolution. The figures

compare flops by fixing the signal length with variable filter length or visa versa. These figures

show applying a 186 tap filter to a 12,672 sample signal requires less flops in the frequency domain

and applying a 23 tap filter to a 12,672 sample signal requires less flops in the time domain.

3.2.2 CPU and GPU Single Convolution Using Batch Processing Comparison

This section will show GPU convolution execution time is dependent more on memory ac-

cess than the number of required floating point operations, while CPU convolution execution time

is dependent on the number of floating point operations. To illustrate these points, the execution

time of the code in Listing 3.5 (at the end of the chapter) was measured. The code implements

convolution five different ways:
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Figure 3.15: Comparison of number of floating point operations (flops) required to con-
volve a variable length complex signal with a 186 tap complex filter.

• time-domain convolution in a CPU,

• frequency-domain convolution in a CPU using the FFTW library,

• time-domain convolution in a GPU using global memory,

• time-domain convolution in a GPU using shared memory, and

• frequency-domain convolution in a GPU using the cuFFT library.

The three time-domain convolution implementations compute (3.1) directly. The two

frequency-domain convolution implementations compute (3.2), using the CPU FFTW library and

the GPU based cuFFT library. The cuFFT library uses global memory and shared memory to be as

fast and efficient as possible. For a given signal and filter length, a good CUDA programmer can

make an educated guess on which algorithm is faster. There is no clear conclusion, until all the

algorithms have been implemented and measured.
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Figure 3.16: Comparison of number of floating point operations (flops) required to con-
volve a variable length complex signal with a 23 tap complex filter.

Table 3.2: Defining start and stop lines for timing comparison in Listing 3.5.

Algorithm Function Start Line Stop Line

CPU time domain ConvCPU 208 210
CPU frequency domain FFTW 213 259
GPU time domain global ConvGPU 267 278
GPU time domain shared ConvGPUshared 282 293
GPU frequency domain cuFFT 301 327

All the memory transfers to and from the GPU were timed for a fair comparison of GPU

to CPU execution time. Table 3.2 shows how the execution time was measured for each convo-

lution implementation. Figures 3.18 through 3.21 compare execution time of the five different

convolution implementations by fixing the filter length with variable signal length or vise versa.

Sub-windows emphasize points that are of interest to the PAQ system. The variations in the time-
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Figure 3.17: Comparison of number of floating point operations (flops) required to con-
volve a 12,672 sample complex signal with a variable length tap complex filter.

domain CPU execution times are due to the claims on the host CPU resources by the operating

system. To clean up the time samples, local minima were found in windows ranging from 3 to 15

samples. The smallest windows possible were used to produce the results.

Comparing Figures 3.19 through 3.21 to Figures 3.15 through 3.17 shows CPU and GPU

convolution have the same structure that the number of flops predicted, except GPU convolution

is not affected as much by varied signal or filter lengths. The convolution execution time com-

parison demonstrates the observation that most GPU kernels execution time is limited by memory

bandwidth not computational resources. Tables 3.3 and 3.4 show the GPU time-domain algorithm

using shared memory is fastest for the signal length and filter lengths of the PAQ system, when

performing a single complex convolution.
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Figure 3.18: Comparison of a complex convolution on CPU and GPU. The signal length
is variable and the filter is fixed at 186 taps. The comparison is messy without lower
bounding.

Table 3.3: Convolution computation times with signal length 12,672 and filter length 186
on a Tesla K40c GPU.

Algorithm Function or Library Execution Time (ms)

CPU time domain ConvCPU 6.2683
CPU frequency domain FFTW 0.8519
GPU time domain global ConvGPU 0.3467
GPU time domain shared ConvGPUshared 0.2857
GPU frequency domain cuFFT 0.4490
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Figure 3.19: Comparison of a complex convolution on CPU and GPU. The signal length is
variable and the filter is fixed at 186 taps. A lower bound was applied by searching for a
local minima in 15 sample width windows.

Table 3.4: Convolution computation times with signal length 12,672 and filter length 23 on
a Tesla K40c GPU.

Algorithm Function or Library Execution Time (ms)

CPU time domain ConvCPU 0.6429
CPU frequency domain FFTW 0.8899
GPU time domain global ConvGPU 0.2406
GPU time domain shared ConvGPUshared 0.2346
GPU frequency domain cuFFT 0.3231
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Figure 3.20: Comparison of a complex convolution on CPU and GPU. The signal length
is variable and the filter is fixed at 23 taps. A lower bound was applied by searching for a
local minima in 5 sample width windows.

3.2.3 Convolution Using Batch Processing

Section 3.2.2, illustrated convolving one signal with one filter, does not leverage the full

power of parallel processing in GPUs. The received signal in the PAQ system has a packetized

structure with 3104 packets per 1907 ms. Rather than processing each packet separately, the pack-

ets may be buffered and processed in a batch. Batch processing in GPUs has less CPU overhead

and introduces an extra level of parallelism. Batch processing has faster execution time per packet,

than processing packets separately. CUDA has many libraries that have batch processing, includ-

ing cuFFT, cuBLAS and cuSolverSp. Haidar et al. [18] showed batched libraries achieve more

Gflops, than calling GPU kernels multiple times. Listing 3.6 (at the end of the chapter) shows

three GPU implementations of convolution using batch processing and Table 3.5 shows how the

execution time of the code was measured.
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Figure 3.21: Comparison of a complex convolution on CPU and GPU. The filter length is
variable and the signal is fixed at 12,672 samples. A lower bound was applied by searching
for a local minima in three sample width windows.

Table 3.5: Defining start and stop lines for execution time comparison in Listing 3.6.

Algorithm Function Start Line Stop Line

GPU time domain global ConvGPU 197 204
GPU time domain shared ConvGPUshared 212 219
GPU frequency domain cuFFT 227 245

Figure 3.22 compares execution time of convolution using batch processing as the number

of packets increases, note that no lower bounding was used. This figure shows that frequency-

domain convolution leverages batch processing better than time-domain convolution. As expected,

CPU-based convolution using batch processing is not competitive with GPU-based convolution

using batch processing and thus CPU-batched processing is not explored any further.
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Figure 3.22: Comparison of a batched complex convolution on a CPU and GPU. The num-
ber of batches is variable while the signal and filter length is set to 12,672 and 186.

Now that the GPU and CPU execution time is not being compared, Table 3.5 shows exe-

cution times include only GPU kernels and exclude memory transfers. Figure 3.23 compares GPU

convolution using batch processing execution time per batch as the number of packets increases.

The figure shows execution time per batch decreases as the number of packets increases but stops

improving after 70 packets.

Figures 3.24 through 3.26 compare execution time of the three GPU convolution imple-

mentations by fixing the filter length with variable signal length or vise versa. Tables 3.6 and 3.7

show the execution times for the signal length and filter lengths of the PAQ system when perform-

ing convolution using batch processing. Frequency-domain convolution using batch processing is

fastest for 186 tap filters while time-domain convolution using batch processing and shared mem-

ory is fastest for 23 tap filters.
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Figure 3.23: Comparison on execution time per batch for complex convolution. The num-
ber of batches is variable while the signal and filter length is set to 12,672 and 186.

Table 3.6: Convolution using batch processing execution times with for a 12,672 sample
signal and 186 tap filter on a Tesla K40c GPU.

Algorithm Function or Library Execution Time (ms)

GPU time domain global ConvGPU 201.3
GPU time domain shared ConvGPUshared 180.3
GPU frequency domain cuFFT 36.8

Table 3.7: Convolution using batch processing execution times with for a 12,672 sample
signal and 23 tap filter on a Tesla K40c GPU.

Algorithm Function or Library Execution Time (ms)

GPU time domain global ConvGPU 29.5
GPU time domain shared ConvGPUshared 22.7
GPU frequency domain cuFFT 39.0
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Figure 3.24: Comparison of complex convolution using batch processing on a GPU. The
signal length is variable and the filter is fixed at 186 taps.

Until now, convolving one signal with only one filter has been considered. Figure 2.6

showed the received signal is filtered by two cascaded filters: an equalizer filter and a detection

filter. The block diagrams in Figure 3.27 show the steps required for cascading time-domain and

frequency-domain convolution.

Comparing the block diagrams in Figures 3.27 and 3.14, cascading two filters in the fre-

quency domain only requires an extra FFT and point-by-point complex multiplication, while cas-

cading filters in the time domain requires two time-domain convolutions. The first time-domain

convolution produces a composite filter from the convolution of the 186 sample equalizer fil-

ter with the 23 tap detection filter. The second time-domain convolution applies the composite

208 = 186+ 23− 1 tap filter to a 12,672 sample signal. Table 3.8 shows the execution times for

the signal length and filter lengths of the PAQ system, when performing cascaded convolution us-
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Figure 3.25: Comparison of complex convolution using batch processing on a GPU. The
signal length is variable and the filter is fixed at 23 taps.

Table 3.8: Batched convolution execution times with for a 12,672 sample signal and cas-
caded 23 and 186 tap filter on a Tesla K40c GPU.

Algorithm Function or Library Execution Time (ms)

GPU time domain global ConvGPU 228.8
GPU time domain shared ConvGPUshared 205.0
GPU frequency domain cuFFT 39.0

ing batch processing. Cascaded-convolution using batch processing in the frequency domain is

fastest.
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Figure 3.26: Comparison of complex convolution using batch processing on a GPU. The
filter length is variable and the signal length is set to 12,672 samples.
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Figure 3.27: Block diagrams showing showing cascaded time-domain convolution and
frequency-domain convolution.
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Listing 3.5: CUDA code to performing complex convolution five different ways: time
domain CPU, frequency domain CPU time domain GPU, time domain GPU using

shared memory and frequency domain GPU.
1 #include <iostream >

2 #include <stdlib.h>

3 #include <math.h>

4 #include <cufft.h>

5 #include <fstream >

6 #include <string >

7 #include <fftw3.h>

8 using namespace std;

9

10

11 void ConvCPU(cufftComplex* y,cufftComplex* x,cufftComplex* h,int Lx,int Lh){

12 for(int yIdx = 0; yIdx < Lx+Lh -1; yIdx ++){

13 cufftComplex temp;

14 temp.x = 0;

15 temp.y = 0;

16 for(int hIdx = 0; hIdx < Lh; hIdx ++){

17 int xAccessIdx = yIdx -hIdx;

18 if(xAccessIdx >=0 && xAccessIdx <Lx){

19 // temp += x[xAccessIdx ]*h[hIdx];

20 float A = x[xAccessIdx ].x;

21 float B = x[xAccessIdx ].y;

22 float C = h[hIdx].x;

23 float D = h[hIdx].y;

24 cufftComplex result;

25 result.x = A*C-B*D;

26 result.y = A*D+B*C;

27 temp.x += result.x;

28 temp.y += result.y;

29 }

30 }

31 y[yIdx] = temp;

32 }

33

34 }

35

36 __global__ void ConvGPU(cufftComplex* y,cufftComplex* x,cufftComplex* h,int Lx ,int Lh){

37 int yIdx = blockIdx.x*blockDim.x + threadIdx.x;

38

39 int lastThread = Lx+Lh -1;

40

41 // don’t access elements out of bounds

42 if(yIdx >= lastThread)

43 return;

44

45 cufftComplex temp;

46 temp.x = 0;

47 temp.y = 0;

48 for(int hIdx = 0; hIdx < Lh; hIdx ++){

49 int xAccessIdx = yIdx -hIdx;

50 if(xAccessIdx >=0 && xAccessIdx <Lx){

51 // temp += x[xAccessIdx ]*h[hIdx];

52 float A = x[xAccessIdx ].x;

53 float B = x[xAccessIdx ].y;

54 float C = h[hIdx].x;

55 float D = h[hIdx].y;

56 cufftComplex result;

57 result.x = A*C-B*D;

58 result.y = A*D+B*C;

59 temp.x += result.x;

60 temp.y += result.y;

61 }

62 }

63 y[yIdx] = temp;
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64 }

65

66

67 __global__ void ConvGPUshared(cufftComplex* y,cufftComplex* x,cufftComplex* h,int Lx,int Lh)

{

68 int yIdx = blockIdx.x*blockDim.x + threadIdx.x;

69

70 int lastThread = Lx+Lh -1;

71

72 extern __shared__ cufftComplex h_shared [];

73 if(threadIdx.x < Lh){

74 h_shared[threadIdx.x] = h[threadIdx.x];

75 }

76 __syncthreads ();

77

78 // don’t access elements out of bounds

79 if(yIdx >= lastThread)

80 return;

81

82 cufftComplex temp;

83 temp.x = 0;

84 temp.y = 0;

85 for(int hIdx = 0; hIdx < Lh; hIdx ++){

86 int xAccessIdx = yIdx -hIdx;

87 if(xAccessIdx >=0 && xAccessIdx <Lx){

88 // temp += x[xAccessIdx ]*h[hIdx];

89 float A = x[xAccessIdx ].x;

90 float B = x[xAccessIdx ].y;

91 float C = h_shared[hIdx].x;

92 float D = h_shared[hIdx].y;

93 cufftComplex result;

94 result.x = A*C-B*D;

95 result.y = A*D+B*C;

96 temp.x += result.x;

97 temp.y += result.y;

98 }

99 }

100 y[yIdx] = temp;

101 }

102

103 __global__ void PointToPointMultiply(cufftComplex* v0, cufftComplex* v1 , int lastThread){

104 int i = blockIdx.x*blockDim.x + threadIdx.x;

105

106 // don’t access elements out of bounds

107 if(i >= lastThread)

108 return;

109 float A = v0[i].x;

110 float B = v0[i].y;

111 float C = v1[i].x;

112 float D = v1[i].y;

113

114 // (A+jB)(C+jD) = (AC-BD) + j(AD+BC)

115 cufftComplex result;

116 result.x = A*C-B*D;

117 result.y = A*D+B*C;

118

119 v0[i] = result;

120 }

121

122 __global__ void ScalarMultiply(cufftComplex* vec0 , float scalar , int lastThread){

123 int i = blockIdx.x*blockDim.x + threadIdx.x;

124

125 // Don’t access elements out of bounds

126 if(i >= lastThread)

127 return;

128 cufftComplex scalarMult;

129 scalarMult.x = vec0[i].x*scalar;

130 scalarMult.y = vec0[i].y*scalar;
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131 vec0[i] = scalarMult;

132 }

133

134 int main(){

135 int N = 1000;

136 int L = 186;

137 int C = N + L - 1;

138 int M = pow(2, ceil(log(C)/log(2)));

139

140 cufftComplex *mySignal1;

141 cufftComplex *mySignal2;

142 cufftComplex *mySignal2_fft;

143

144 cufftComplex *myFilter1;

145 cufftComplex *myFilter2;

146 cufftComplex *myFilter2_fft;

147

148 cufftComplex *myConv1;

149 cufftComplex *myConv2;

150 cufftComplex *myConv2_timeReversed;

151 cufftComplex *myConv3;

152 cufftComplex *myConv4;

153 cufftComplex *myConv5;

154

155 mySignal1 = (cufftComplex *) malloc(N*sizeof(cufftComplex));

156 mySignal2 = (cufftComplex *) malloc(M*sizeof(cufftComplex));

157 mySignal2_fft = (cufftComplex *) malloc(M*sizeof(cufftComplex));

158

159 myFilter1 = (cufftComplex *) malloc(L*sizeof(cufftComplex));

160 myFilter2 = (cufftComplex *) malloc(M*sizeof(cufftComplex));

161 myFilter2_fft = (cufftComplex *) malloc(M*sizeof(cufftComplex));

162

163 myConv1 = (cufftComplex *) malloc(C*sizeof(cufftComplex));

164 myConv2 = (cufftComplex *) malloc(M*sizeof(cufftComplex));

165 myConv2_timeReversed= (cufftComplex *) malloc(M*sizeof(cufftComplex));

166 myConv3 = (cufftComplex *) malloc(C*sizeof(cufftComplex));

167 myConv4 = (cufftComplex *) malloc(C*sizeof(cufftComplex));

168 myConv5 = (cufftComplex *) malloc(M*sizeof(cufftComplex));

169

170 srand(time (0));

171 for(int i = 0; i < N; i++){

172 mySignal1[i].x = rand()%100 -50;

173 mySignal1[i].y = rand()%100 -50;

174 }

175

176 for(int i = 0; i < L; i++){

177 myFilter1[i].x = rand()%100 -50;

178 myFilter1[i].y = rand()%100 -50;

179 }

180

181 cufftComplex *dev_mySignal3;

182 cufftComplex *dev_mySignal4;

183 cufftComplex *dev_mySignal5;

184

185 cufftComplex *dev_myFilter3;

186 cufftComplex *dev_myFilter4;

187 cufftComplex *dev_myFilter5;

188

189 cufftComplex *dev_myConv3;

190 cufftComplex *dev_myConv4;

191 cufftComplex *dev_myConv5;

192

193 cudaMalloc (& dev_mySignal3 , N*sizeof(cufftComplex));

194 cudaMalloc (& dev_mySignal4 , N*sizeof(cufftComplex));

195 cudaMalloc (& dev_mySignal5 , M*sizeof(cufftComplex));

196

197 cudaMalloc (& dev_myFilter3 , L*sizeof(cufftComplex));

198 cudaMalloc (& dev_myFilter4 , L*sizeof(cufftComplex));
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199 cudaMalloc (& dev_myFilter5 , M*sizeof(cufftComplex));

200

201 cudaMalloc (& dev_myConv3 , C*sizeof(cufftComplex));

202 cudaMalloc (& dev_myConv4 , C*sizeof(cufftComplex));

203 cudaMalloc (& dev_myConv5 , M*sizeof(cufftComplex));

204

205

206 /**

207 * Time -domain Convolution CPU

208 */

209 ConvCPU(myConv1 ,mySignal1 ,myFilter1 ,N,L);

210

211 /**

212 * Frequency Domain Convolution CPU

213 */

214 fftwf_plan forwardPlanSignal = fftwf_plan_dft_1d(M, (fftwf_complex *)mySignal2 , (

fftwf_complex *) mySignal2_fft , FFTW_FORWARD , FFTW_MEASURE);

215 fftwf_plan forwardPlanFilter = fftwf_plan_dft_1d(M, (fftwf_complex *)myFilter2 , (

fftwf_complex *) myFilter2_fft , FFTW_FORWARD , FFTW_MEASURE);

216 fftwf_plan backwardPlanConv = fftwf_plan_dft_1d(M, (fftwf_complex *) mySignal2_fft ,(

fftwf_complex *) myConv2_timeReversed , FFTW_FORWARD , FFTW_MEASURE);

217

218 cufftComplex zero; zero.x = 0; zero.y = 0;

219 for(int i = 0; i < M; i++){

220 if(i<N)

221 mySignal2[i] = mySignal1[i];

222 else

223 mySignal2[i] = zero;

224

225 if(i<L)

226 myFilter2[i] = myFilter1[i];

227 else

228 myFilter2[i] = zero;

229 }

230

231 fftwf_execute(forwardPlanSignal);

232 fftwf_execute(forwardPlanFilter);

233

234 for (int i = 0; i < M; i++){

235 // mySignal2_fft = mySignal2_fft*myFilter2_fft;

236 float A = mySignal2_fft[i].x;

237 float B = mySignal2_fft[i].y;

238 float C = myFilter2_fft[i].x;

239 float D = myFilter2_fft[i].y;

240 cufftComplex result;

241 result.x = A*C-B*D;

242 result.y = A*D+B*C;

243 mySignal2_fft[i] = result;

244 }

245

246 fftwf_execute(backwardPlanConv);

247

248 // myConv2 from fftwf must be time reversed and scaled

249 // to match Matlab , myConv1 , myConv3 , myConv4 and myConv5

250 cufftComplex result;

251 for (int i = 0; i < M; i++){

252 result.x = myConv2_timeReversed[M-i].x/M;

253 result.y = myConv2_timeReversed[M-i].y/M;

254 myConv2[i] = result;

255 }

256 result.x = myConv2_timeReversed [0].x/M;

257 result.y = myConv2_timeReversed [0].y/M;

258 myConv2 [0] = result;

259

260 fftwf_destroy_plan(forwardPlanSignal);

261 fftwf_destroy_plan(forwardPlanFilter);

262 fftwf_destroy_plan(backwardPlanConv);

263
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264

265 /**

266 * Time -domain Convolution GPU Using Global Memory

267 */

268 cudaMemcpy(dev_mySignal3 , mySignal1 , sizeof(cufftComplex)*N, cudaMemcpyHostToDevice)

;

269 cudaMemcpy(dev_myFilter3 , myFilter1 , sizeof(cufftComplex)*L, cudaMemcpyHostToDevice)

;

270

271 int T_B = 512;

272 int B = C/T_B;

273 if(C % T_B > 0)

274 B++;

275 ConvGPU <<<B, T_B >>>(dev_myConv3 , dev_mySignal3 , dev_myFilter3 , N, L);

276

277 cudaMemcpy(myConv3 , dev_myConv3 , C*sizeof(cufftComplex), cudaMemcpyDeviceToHost);

278

279

280 /**

281 * Time -domain Convolution GPU Using Shared Memory

282 */

283 cudaMemcpy(dev_mySignal4 , mySignal1 , sizeof(cufftComplex)*N, cudaMemcpyHostToDevice)

;

284 cudaMemcpy(dev_myFilter4 , myFilter1 , sizeof(cufftComplex)*L, cudaMemcpyHostToDevice)

;

285

286 T_B = 512;

287 B = C/T_B;

288 if(C % T_B > 0)

289 B++;

290 ConvGPUshared <<<B, T_B ,L*sizeof(cufftComplex)>>>(dev_myConv4 , dev_mySignal4 ,

dev_myFilter4 , N, L);

291

292 cudaMemcpy(myConv4 , dev_myConv4 , C*sizeof(cufftComplex), cudaMemcpyDeviceToHost);

293

294

295 /**

296 * Frequency -domain Convolution GPU

297 */

298 cufftHandle plan;

299 int n[1] = {M};

300 cufftPlanMany (&plan ,1,n,NULL ,1,1,NULL ,1,1,CUFFT_C2C ,1);

301

302 cudaMemset(dev_mySignal5 , 0, M*sizeof(cufftComplex));

303 cudaMemset(dev_myFilter5 , 0, M*sizeof(cufftComplex));

304

305 cudaMemcpy(dev_mySignal5 , mySignal2 , M*sizeof(cufftComplex), cudaMemcpyHostToDevice)

;

306 cudaMemcpy(dev_myFilter5 , myFilter2 , M*sizeof(cufftComplex), cudaMemcpyHostToDevice)

;

307

308 cufftExecC2C(plan , dev_mySignal5 , dev_mySignal5 , CUFFT_FORWARD);

309 cufftExecC2C(plan , dev_myFilter5 , dev_myFilter5 , CUFFT_FORWARD);

310

311 T_B = 512;

312 B = M/T_B;

313 if(M % T_B > 0)

314 B++;

315 PointToPointMultiply <<<B, T_B >>>(dev_mySignal5 , dev_myFilter5 , M);

316

317 cufftExecC2C(plan , dev_mySignal5 , dev_mySignal5 , CUFFT_INVERSE);

318

319 T_B = 128;

320 B = M/T_B;

321 if(M % T_B > 0)

322 B++;

323 float scalar = 1.0/(( float)M);

324 ScalarMultiply <<<B, T_B >>>(dev_mySignal5 , scalar , M);
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325

326 cudaMemcpy(myConv5 , dev_mySignal5 , M*sizeof(cufftComplex), cudaMemcpyDeviceToHost);

327

328 cufftDestroy(plan);

329

330 free(mySignal1);

331 free(mySignal2);

332

333 free(myFilter1);

334 free(myFilter2);

335

336 free(myConv1);

337 free(myConv2);

338 free(myConv2_timeReversed);

339 free(myConv3);

340 free(myConv4);

341 free(myConv5);

342 fftwf_cleanup ();

343

344 cudaFree(dev_mySignal3);

345 cudaFree(dev_mySignal4);

346 cudaFree(dev_mySignal5);

347

348 cudaFree(dev_myFilter3);

349 cudaFree(dev_myFilter4);

350 cudaFree(dev_myFilter5);

351

352 cudaFree(dev_myConv3);

353 cudaFree(dev_myConv4);

354 cudaFree(dev_myConv5);

355

356 return 0;

357 }
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Listing 3.6: CUDA code to perform batched complex convolution three different ways in
a GPU: time domain using global memory, time domain using shared memory and

frequency domain GPU.
1 #include <cufft.h>

2 #include <iostream >

3 using namespace std;

4

5 __global__ void ConvGPU(cufftComplex* y_out ,cufftComplex* x_in ,cufftComplex* h_in ,int Lx ,int

Lh,int maxThreads){

6 int threadNum = blockIdx.x*blockDim.x + threadIdx.x;

7 int convLength = Lx+Lh -1;

8

9 // Don’t access elements out of bounds

10 if(threadNum >= maxThreads)

11 return;

12

13 int batch = threadNum/convLength;

14 int yIdx = threadNum%convLength;

15 cufftComplex* x = &x_in[Lx*batch ];

16 cufftComplex* h = &h_in[Lh*batch ];

17 cufftComplex* y = &y_out[convLength*batch ];

18

19 cufftComplex temp;

20 temp.x = 0;

21 temp.y = 0;

22 for(int hIdx = 0; hIdx < Lh; hIdx ++){

23 int xAccessIdx = yIdx -hIdx;

24 if(xAccessIdx >=0 && xAccessIdx <Lx){

25 // temp += x[xAccessIdx ]*h[hIdx];

26 // (A+jB)(C+jD) = (AC -BD) + j(AD+BC)

27 float A = x[xAccessIdx ].x;

28 float B = x[xAccessIdx ].y;

29 float C = h[hIdx].x;

30 float D = h[hIdx].y;

31 cufftComplex complexMult;

32 complexMult.x = A*C-B*D;

33 complexMult.y = A*D+B*C;

34

35 temp.x += complexMult.x;

36 temp.y += complexMult.y;

37 }

38 }

39 y[yIdx] = temp;

40 }

41

42 __global__ void ConvGPUshared(cufftComplex* y_out ,cufftComplex* x_in ,cufftComplex* h_in ,int

Lx,int Lh,int maxThreads){

43

44 int threadNum = blockIdx.x*blockDim.x + threadIdx.x;

45 int convLength = Lx+Lh -1;

46 // Don’t access elements out of bounds

47 if(threadNum >= maxThreads)

48 return;

49

50 int batch = threadNum/convLength;

51 int yIdx = threadNum%convLength;

52 cufftComplex* x = &x_in[Lx*batch ];

53 cufftComplex* h = &h_in[Lh*batch ];

54 cufftComplex* y = &y_out[convLength*batch ];

55

56 extern __shared__ cufftComplex h_shared [];

57 if(threadIdx.x < Lh)

58 h_shared[threadIdx.x] = h[threadIdx.x];

59

60 __syncthreads ();

61
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62 cufftComplex temp;

63 temp.x = 0;

64 temp.y = 0;

65 for(int hIdx = 0; hIdx < Lh; hIdx ++){

66 int xAccessIdx = yIdx -hIdx;

67 if(xAccessIdx >=0 && xAccessIdx <Lx){

68 // temp += x[xAccessIdx ]*h[hIdx];

69 // (A+jB)(C+jD) = (AC -BD) + j(AD+BC)

70 float A = x[xAccessIdx ].x;

71 float B = x[xAccessIdx ].y;

72 float C = h_shared[hIdx].x;

73 float D = h_shared[hIdx].y;

74 cufftComplex complexMult;

75 complexMult.x = A*C-B*D;

76 complexMult.y = A*D+B*C;

77

78 temp.x += complexMult.x;

79 temp.y += complexMult.y;

80 }

81 }

82 y[yIdx] = temp;

83 }

84

85 __global__ void PointToPointMultiply(cufftComplex* vec0 , cufftComplex* vec1 , int maxThreads)

{

86 int i = blockIdx.x*blockDim.x + threadIdx.x;

87 // Don’t access elements out of bounds

88 if(i >= maxThreads)

89 return;

90 // vec0[i] = vec0[i]*vec1[i];

91 // (A+jB)(C+jD) = (AC -BD) + j(AD+BC)

92 float A = vec0[i].x;

93 float B = vec0[i].y;

94 float C = vec1[i].x;

95 float D = vec1[i].y;

96 cufftComplex complexMult;

97 complexMult.x = A*C-B*D;

98 complexMult.y = A*D+B*C;

99 vec0[i] = complexMult;

100 }

101

102 __global__ void ScalarMultiply(cufftComplex* vec0 , float scalar , int lastThread){

103 int i = blockIdx.x*blockDim.x + threadIdx.x;

104 // Don’t access elements out of bounds

105 if(i >= lastThread)

106 return;

107 cufftComplex scalarMult;

108 scalarMult.x = vec0[i].x*scalar;

109 scalarMult.y = vec0[i].y*scalar;

110 vec0[i] = scalarMult;

111 }

112

113 int main(){

114 int numBatches = 3104;

115 int N = 12672;

116 int L = 186;

117 int C = N + L - 1;

118 int M = pow(2, ceil(log(C)/log(2)));

119 int maxThreads;

120 int T_B;

121 int B;

122

123 cufftHandle plan;

124 int n[1] = {M};

125 cufftPlanMany (&plan ,1,n,NULL ,1,1,NULL ,1,1,CUFFT_C2C ,numBatches);

126

127 // Allocate memory on host

128 cufftComplex *mySignal1;
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129 cufftComplex *mySignal1_pad;

130 cufftComplex *myFilter1;

131 cufftComplex *myFilter1_pad;

132 cufftComplex *myConv1;

133 cufftComplex *myConv2;

134 cufftComplex *myConv3;

135 mySignal1 = (cufftComplex *) malloc(N*numBatches*sizeof(cufftComplex));

136 mySignal1_pad = (cufftComplex *) malloc(M*numBatches*sizeof(cufftComplex));

137 myFilter1 = (cufftComplex *) malloc(L*numBatches*sizeof(cufftComplex));

138 myFilter1_pad = (cufftComplex *) malloc(M*numBatches*sizeof(cufftComplex));

139 myConv1 = (cufftComplex *) malloc(C*numBatches*sizeof(cufftComplex));

140 myConv2 = (cufftComplex *) malloc(C*numBatches*sizeof(cufftComplex));

141 myConv3 = (cufftComplex *) malloc(M*numBatches*sizeof(cufftComplex));

142

143 srand(time (0));

144 for(int i = 0; i < N; i++){

145 mySignal1[i].x = rand()%100 -50;

146 mySignal1[i].y = rand()%100 -50;

147 }

148

149 for(int i = 0; i < L; i++){

150 myFilter1[i].x = rand()%100 -50;

151 myFilter1[i].y = rand()%100 -50;

152 }

153

154 cufftComplex zero;

155 zero.x = 0;

156 zero.y = 0;

157 for(int i = 0; i<M*numBatches; i++){

158 mySignal1_pad[i] = zero;

159 myFilter1_pad[i] = zero;

160 }

161 for(int batch =0; batch < numBatches; batch ++){

162 for(int i = 0; i < N; i++){

163 mySignal1[batch*N+i] = mySignal1[i];

164 mySignal1_pad[batch*M+i] = mySignal1[i];

165 }

166 for(int i = 0; i < L; i++){

167 myFilter1[batch*L+i] = myFilter1[i];

168 myFilter1_pad[batch*M+i] = myFilter1[i];

169 }

170 }

171

172 // Allocate memory on device

173 cufftComplex *dev_mySignal1;

174 cufftComplex *dev_mySignal2;

175 cufftComplex *dev_mySignal3;

176 cufftComplex *dev_myFilter1;

177 cufftComplex *dev_myFilter2;

178 cufftComplex *dev_myFilter3;

179 cufftComplex *dev_myConv1;

180 cufftComplex *dev_myConv2;

181 cufftComplex *dev_myConv3;

182 cudaMalloc (& dev_mySignal1 , N*numBatches*sizeof(cufftComplex));

183 cudaMalloc (& dev_mySignal2 , N*numBatches*sizeof(cufftComplex));

184 cudaMalloc (& dev_mySignal3 , M*numBatches*sizeof(cufftComplex));

185 cudaMalloc (& dev_myFilter1 , L*numBatches*sizeof(cufftComplex));

186 cudaMalloc (& dev_myFilter2 , L*numBatches*sizeof(cufftComplex));

187 cudaMalloc (& dev_myFilter3 , M*numBatches*sizeof(cufftComplex));

188 cudaMalloc (& dev_myConv1 , C*numBatches*sizeof(cufftComplex));

189 cudaMalloc (& dev_myConv2 , C*numBatches*sizeof(cufftComplex));

190 cudaMalloc (& dev_myConv3 , M*numBatches*sizeof(cufftComplex));

191

192 /**

193 * Time -domain Convolution GPU Using Global Memory

194 */

195 cudaMemcpy(dev_mySignal1 , mySignal1 , numBatches*sizeof(cufftComplex)*N,

cudaMemcpyHostToDevice);
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196 cudaMemcpy(dev_myFilter1 , myFilter1 , numBatches*sizeof(cufftComplex)*L,

cudaMemcpyHostToDevice);

197

198 maxThreads = C*numBatches;

199 T_B = 128;

200 B = maxThreads/T_B;

201 if(maxThreads % T_B > 0)

202 B++;

203 ConvGPU <<<B, T_B >>>(dev_myConv1 , dev_mySignal1 , dev_myFilter1 , N, L, maxThreads);

204

205 cudaMemcpy(myConv1 , dev_myConv1 , C*numBatches*sizeof(cufftComplex),

cudaMemcpyDeviceToHost);

206

207 /**

208 * Time -domain Convolution GPU Using Shared Memory

209 */

210 cudaMemcpy(dev_mySignal2 , mySignal1 , numBatches*sizeof(cufftComplex)*N,

cudaMemcpyHostToDevice);

211 cudaMemcpy(dev_myFilter2 , myFilter1 , numBatches*sizeof(cufftComplex)*L,

cudaMemcpyHostToDevice);

212

213 maxThreads = C*numBatches;

214 T_B = 256;

215 B = maxThreads/T_B;

216 if(maxThreads % T_B > 0)

217 B++;

218 ConvGPUshared <<<B, T_B , L*sizeof(cufftComplex) >>>(dev_myConv2 , dev_mySignal2 ,

dev_myFilter2 , N, L,maxThreads);

219

220 cudaMemcpy(myConv2 , dev_myConv2 , C*numBatches*sizeof(cufftComplex),

cudaMemcpyDeviceToHost);

221

222 /**

223 * Frequency -domain Convolution GPU

224 */

225 cudaMemcpy(dev_mySignal3 , mySignal1_pad , M*numBatches*sizeof(cufftComplex),

cudaMemcpyHostToDevice);

226 cudaMemcpy(dev_myFilter3 , myFilter1_pad , M*numBatches*sizeof(cufftComplex),

cudaMemcpyHostToDevice);

227

228 cufftExecC2C(plan , dev_mySignal3 , dev_mySignal3 , CUFFT_FORWARD);

229 cufftExecC2C(plan , dev_myFilter3 , dev_myFilter3 , CUFFT_FORWARD);

230

231 maxThreads = M*numBatches;

232 T_B = 96;

233 B = maxThreads/T_B;

234 if(maxThreads % T_B > 0)

235 B++;

236 PointToPointMultiply <<<B, T_B >>>(dev_mySignal3 , dev_myFilter3 , maxThreads);

237 cufftExecC2C(plan , dev_mySignal3 , dev_mySignal3 , CUFFT_INVERSE);

238

239 T_B = 640;

240 B = maxThreads/T_B;

241 if(maxThreads % T_B > 0)

242 B++;

243 float scalar = 1.0/(( float)M);

244 ScalarMultiply <<<B, T_B >>>(dev_mySignal3 , scalar , maxThreads);

245

246 cudaMemcpy(myConv3 , dev_mySignal3 , M*numBatches*sizeof(cufftComplex),

cudaMemcpyDeviceToHost);

247

248 cufftDestroy(plan);

249

250 // Free vectors on CPU

251 free(mySignal1);

252 free(myFilter1);

253 free(myConv1);

254 free(myConv2);
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255 free(myConv3);

256

257 // Free vectors on GPU

258 cudaFree(dev_mySignal1);

259 cudaFree(dev_mySignal2);

260 cudaFree(dev_mySignal3);

261 cudaFree(dev_myFilter1);

262 cudaFree(dev_myFilter2);

263 cudaFree(dev_myFilter3);

264 cudaFree(dev_myConv1);

265 cudaFree(dev_myConv2);

266 cudaFree(dev_myConv3);

267

268 return 0;

269 }
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CHAPTER 4. EQUALIZER GPU IMPLEMENTATION AND BIT ERROR RATE PER-
FORMANCE

4.1 GPU Implementation

Each equalizer in the PAQ system presents an interesting challenge from a GPU imple-

mentation perspective. The equations for each equalizer were presented in Section 2.3.5. In this

chapter, the equalizer equations are reformulated for fast and efficient GPU implementation,

Every equalizer filter is computed using batch processing. In batch processing, each packet

is independent of all other packets. Each packet in a batch is processed in exactly the same way

with different data. To simplify the figures, every block diagram in this chapter shows how one

packet is processed. The processing is repeated 3104 times to compute a full batch of equalizer

filters.

Convolution is used many times in this chapter. Section 3.2.3 showed that GPU frequency-

domain convolution using batch processing performs best for the PAQ system. To simplify block

diagrams, frequency-domain convolution is shown as one block, as illustrated in Figures 4.1 and

4.2.

Note that the detection filter d and the SOQPSK-TG power spectral density are defined

constants. The SOQPSK-TG power spectral density and D, the 16,384-point FFT of d, are

precomputed and stored. Applying d in the frequency domain does not require an extra FFT, only

extra complex multiplies.
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Figure 4.1: A block diagram representation of y = x ∗ c. Convolution is performed in the
frequency domain. All the required operations in the top part of the figure are represented
by the block in the lower part of the figure.

Figure 4.2: A block diagram representation of y= (x∗c)∗D (cascaded convolution), where
D is the FFT of a filter that does not change with the data (i.e. D is precomputed and stored.
Convolution is performed in the frequency domain. All the required operations in the top
part of the figure are represented by the block in the lower part of the figure.
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4.1.1 Zero-forcing and MMSE GPU Implementation

The ZF and MMSE FIR equalizer filter coefficient computations have exactly the same

form as shown in Equations (2.17) and (2.22). Consequently any algorithm reconstructing that

improves the efficiency of computing the MMSE equalizer coefficients, also applies to computing

the ZF filter coefficients. Three approaches to computing the equalizer filter coefficients were

explored:

• Using the Levinson-Durbin recursion algorithm to solve RcMMSE = ĝ leveraging the toeplitz

property of R.

• Using the cuBLAS LU decomposition library to compute the inverse and matrix vector mul-

tiplication defined by cMMSE = R−1ĝ.

• Using the cuSolver library to solve RcMMSE = ĝ by leveraging the sparse property of R.

For reference, the matrix R is

R =



rĥ(0)+ σ̂2
w r∗

ĥ
(1) · · · r∗

ĥ
(Leq−1)

rĥ(1) rĥ(0)+ σ̂2
w · · · r∗

ĥ
(Leq−2)

...
... . . .

rĥ(Leq−1) rĥ(Leq−2) · · · rĥ(0)+ σ̂2
w


. (4.1)

The Levinson-Durbin recursion algorithm avoids the O(n3) operations normally associated

with solvers by leveraging the Toeplitz or diagonal-constant structure of R [19, Chap. 5]. The first

GPU implementation of the Levinson-Durbin recursion algorithm computed the MMSE equalizer

filter assuming the matrix R and the vector ĝ were real-valued. The Levinson-Durbin recursion

algorithm showed promise by computing 3104 real-valued MMSE equalizer filters in 500 ms. The

GPU implementation of Levinson-Durbin recursion was then converted to the complex-valued

case. The Levinson-Durbin recursion computed 3104 complex-valued MMSE equalizer filters in

2,500 ms, in excess of the 1907 ms maximum for all processing time.
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Figure 4.3: Block diagram showing how the zero-forcing equalizer coefficients are imple-
mented in the GPU.

The next algorithm explored computed the inverse of R using the cuBLAS batch processing

library. The cuBLAS library computes a complex-valued inverse using the LU decomposition in

600 ms. cuBLAS executed faster than the Levinson-Durbin recursion algorithm, but 600 ms is still

31% of the total 1907 ms processing time.

The final and fastest algorithm explored solves cMMSE = R−1ĝ by leveraging the sparse

properties of R using the cuSolverSp batch processing library. The 186× 186) auto-correlation

matrix R comprises the sample auto-correlation rĥ(k) and the noise variance estimate σ̂2
w. Because

the sample auto-correlation rĥ(k) only has support on −37 ≤ k ≤ 37 and the addition of σ̂2
w does

not increase that support, the auto-correlation matrix R is sparse: 63% of its entries are zeroes. “cu-

solverSpCcsrqrsvBatched” is the GPU function used from the cuSolverSp library. cusolverSpCc-

srqrsvBatched is a complex-valued solver that leverages batch processing and the sparse properties

of R by exploiting Compressed Row Storage (CRS) [20]. CRS reduces the large 186×186 matrix

to a 12544 element CSR matrix RCRS. Before cusolverSpCcsrqrsvBatched can be called, the CSR

matrix RCRS has to be built and the vector ĝ has to be built. An example of how to use the CUDA

cusolverSp library can be found in [21].

Figures 4.3 and 4.4 show how the ZF and MMSE equalizer filters are computed and applied

to the received samples, respectively. Note that the equalizer filters are applied in the frequency-

domain with the detection filter. Table 4.1 lists the algorithms researched and their respective

execution times.
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Figure 4.4: Block diagram showing how the minimum mean-squared error equalizer coef-
ficients are implemented in the GPU.

Table 4.1: Algorithms used to compute the ZF and MMSE equalizer filters.

Algorithm Data type Execution Time (ms)

Levinson Recursion Real 500
Levinson Recursion Complex 2500
LU Decomposition Complex 600
cuSolver Complex 356

4.1.2 Constant Modulus Algorithm GPU Implementation

The CMA equalizer is an adaptive FIR filter, where the filter coefficients are updated on

a packet-by-packet basis using a steepest descent algorithm shown in Equation (2.26). The more

iterations the steepest descent algorithm executes, the more effective the CMA equalizer is. The

most computationally heavy operation in the CMA update is computing ∇J, shown in Equation

(2.27) and repeated here for reference

∇J =
2

Lpkt

Lpkt−1

∑
n=0

[
ŝ(b)(n)

(
ŝ(b)(n)

)∗
−1
]

ŝ(b)(n)r̃∗(n), (4.2)

where r̃∗(n) is defined in (2.28). Two approaches to computing the equalizer filter coefficients

were explored:
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• Computing ∇J directly using the summation in Equation (4.2).

• Reformulating ∇J into convolution to leverage the fast computation time of convolution

using batch processing in GPUs.

To simplify the analysis of each option, (4.2) is expressed as

∇J =
1

Lpkt

Lpkt−1

∑
n=0

z(n)r̃∗(n), (4.3)

where

z(n) = 2
[
ŝ(b)(n)(ŝ(b)(n))∗−1

]
ŝ(b)(n). (4.4)

The first (direct) approach required 421.3 ms of one summation. This approach did not

allow for multiple iterations. The poor performance is due to the fact that the GPU kernel is

memory bandwidth limited.

To avoid the problems with the first approach, the second approach refoumulated the sum-

mation (4.3) as a convolution. The reformulations allows the GPUs to leverage the computational

efficiencies of the convolution outlined in Chapter 3.2. To begin, the expression of ∇J is expanded

as follows:

∇J =
z(0)
Lpkt



r̃∗(L1)

...

r̃∗(0)
...

r̃∗(L2)


+

z(1)
Lpkt



r̃∗(1+L1)

...

r̃∗(1)
...

r̃∗(1−L2)


+ · · ·

z(Lpkt−1)
Lpkt



r̃∗(Lpkt−1+L1)

...

r̃∗(Lpkt−1)
...

r̃∗(Lpkt−1−L2)


. (4.5)

This reveals a pattern in the relationship between z(n) and r(n). The kth value of ∇J is

∇J(k) =
1

Lpkt

Lpkt−1

∑
m=0

z(m)r̃∗(m− k), −L1 ≤ k ≤ L2. (4.6)
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The summation almost looks like a convolution accept the conjugate on the element r̃(n). To put

the summation into the familiar convolution form, define

ρ(n) = r̃∗(−n). (4.7)

Now

∇J(k) =
1

Lpkt

Lpkt−1

∑
m=0

z(m)ρ(k−m). (4.8)

Note that z(n) has support on 0≤ n≤ Lpkt−1 and ρ(n) has support on −Lpkt +1≤ n≤ 0,

the result of the convolution sum γ(n) has support on −Lpkt + 1 ≤ n ≤ Lpkt− 1. Putting all the

pieces together, we have

γ(n) =
Lpkt−1

∑
m=0

z(m)ρ(n−m)

=
Lpkt−1

∑
m=0

z(m)r̃∗(m−n), (4.9)

Comparing Equation (4.8) and (4.9) shows that

∇J(k) =
1

Lpkt
γ(−k), −L1 ≤ k ≤ L2. (4.10)

The values of interest are shown in Figure 4.5. This suggests the matlab code shown in Table 4.2

to compute the gradient vector ∇J and implementation of the CMA equalizer.

Using convolution to compute ∇J decreased execution time significantly. 88.8 ms is re-

quired for one CMA iteration. Note that all other frequency-domain convolutions in this thesis

are computed using 16,384-point FFTs. A length 32,768 FFT is required because the result of the

convolution z(n)∗ρ(n) is 2Lpkt−1 = 25,343.

Figure 4.6 shows a block diagram of how the CMA equalizer runs on the GPU. Note that

the detection filter is applied only on the last iteration. Table 4.3 lists the comparison on computing

∇J(k) using convolution. By reformulating the computation of ∇J, the execution time was reduced
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Figure 4.5: Diagram showing the relationships between z(n), ρ(n) and γ(n).

Table 4.2: MATLAB code listing for the CMA equalizer.

1 c_CMA = c_MMSE;

2 for i = 1:its

3 ss = conv(r,c_CMA);

4 s = ss(L1+1:end-L2); % trim s

5 z = 2*(y.*conj(y)-1).*s;

6 Z = fft(z,Nfft);

7 RT = fft(conj(rt(end:-1:1)),Nfft)

8 gamma = ifft(Z.*RT);

9 delJ = gamma(Lpkt-L1:Lpkt+L2)/Lpkt;

10 c_CMA = c_CMA-mu*delJ;

11 end

12 yy = conv(r,c_CMA);

13 y = yy(L1+1:end-L2); % trim yy

69



Figure 4.6: Block diagram showing how the CMA equalizer filter is implemented in the
GPU using frequency-domain convolution twice per iteration.

Figure 4.7: After the final CMA iteration, the de-rotated samples are filtered by the detec-
tion filter and the CMA equalizer in the frequency domain.

by a factor of 4.74. Implementing ∇J directly only provided time for 2 iterations, while using

convolution to compute ∇J(k) provided time for 12 iterations.

4.1.3 Frequency Domain Equalizer GPU Implementations

The FFT-domain transfer function for FDE1 is given by (2.30). The FFT of the equalizer

output is simply the product of the point-by-point multiplication involving (2.30) and the length-

NFFT of the samples in r̃, denoted R̃(e jωk) for k = 0,1, . . . ,NFFT. Consequently, the FFT of the

Table 4.3: Algorithms used to compute the cost function gradient ∇J.

CMA Iteration Algorithm Execution Time (ms)

∇J directly 421.317
∇J using convolution 88.774
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Table 4.4: Execution times for calculating and applying Frequency Domain
Equalizer One and Two.

Algorithm Execution Time (ms)

Frequency Domain Equalizer One 57.156
Frequency Domain Equalizer Two 58.841

Figure 4.8: Block diagram showing frequency domain equalizer one is implemented in the
frequency domain in GPUs.

equalizer output is

ŜFDE1(e jωk) =
Ĥ∗(e jωk)R̃(e jωk)

|Ĥ(e jωk)|2 + 1
σ̂2

w

ωk =
2π

NFFT
for k = 0,1, · · · ,NFFT−1. (4.11)

Applying the detection filter produces

YFDE1(e jωk) =
Ĥ∗(e jωk)R̃(e jωk)D(e jωk)

|Ĥ(e jωk)|2 + 1
σ̂2

w

ωk =
2π

NFFT
for k = 0,1, · · · ,NFFT−1. (4.12)

The computations for FDE2 are identical to (4.11) and (4.12), except for the inclusion of Ψ(e jωk)

[cf, (2.31)]. Figures 4.8 and 4.9 show the block diagrams for GPU implementation of FDE1 and

FDE2. Table 4.4 shows the execution times for calculating and applying FDE1 and FDE2.
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Figure 4.9: Block diagram showing frequency domain equalizer two is implemented in the
frequency domain in GPUs.

4.2 CPU and GPU Pipelining

The diagram and table in Figure 4.10 show how the CPU and GPUs are pipelined. The

MMSE and CMA equalizer filters are computed in GPU0 (Tesla K40c GPU), because they are the

most computationally heavy. Note that the MMSE equalizer filters (corresponding to the packets

in a batch) are computed in the K40c, then transferred to GPU1 (Tesla K20c GPU) for filtering.

This is done to maximize the GPU0 resources available for CMA iterations. The FDE1 and FDE2

equalizers are both computed and applied on GPU2 (Tesla K20c).

4.3 Laboratory Test Results

Static multipath tests were performed to assess the performance each data-aided equalizer.

Figure 4.11 shows a block diagram of the configuration used for static multipath tests. The major

components and their functions are summarized in Appendix A. The parameters of the multipath

channel emulator were configured to produce a “three-ray” channel model motivated by the results

described by Rice, Davis, and Bettwieser [22]. The model parameters are summarized in the tables

in Figures 4.12 – 4.14. The receiver used for these experiments performed two functions. First,

the IF output was used as the input to system described in this thesis. Second, the SOQPSK-TG

demodulator was used to produce the bits for the unequalized case. Because the SOQPSK-TG

demodulator was not designed to use the preamble and ASM bits, the bit decisions corresponding
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Table 4.5: Execution times for blocks in Figure 4.10 in order as they appear
left to right then top to bottom.

Block Execution Time (ms)

Preamble Detector 113
Estimators 18
Compute MMSE 355
CMA Iterations 1070
CMA, ZF, and MMSE Filter 44
OQPSK Demod 14
GPU0 to GPU1 Transfer 195
Compute ZF 406
Resampling Polyphase Filters 296
GPU1 to GPU2 Transfer 195
FDE1 and FDE2 Filter 58
Host to GPU0 Transfer 220
CPU to FPGA Transfer 167
CPU Acquire ADC Data 1000
GPU0 to Host Transfer 11

to the fields appeared in the demodulator output. The preamble and ASM bits in the demodulator

output were removed by the preamble scrubber described by Hogstrom and Nash [23].

The BER results are summarized by the plots in Figures 4.12 – 4.14. For the channel of

Figure 4.12, the ZF, MMSE, and FDE1 equalizers achieve the best performance and the CMA

equalizer displays the worst performance. However all equalizers perform within about 1 dB of

each other. For the channel of Figure 4.13, the CMA equalizer achieves the best performance and

the FDE2 equalizer displays the worst performance. As before, all equalizers perform within about

1 dB of each other. For the channel of Figure 4.14, FDE2 achieves the best performance and CMA

displays the worst performance. Here, all equalizers perform within about 2 dB of each other. Why

the order of best to worst equalizer performance changes with channel parameters is not entirely

clear. As a group, the performance of all of them is more similar than different. It is clear, that the

BER at the equalizer output (for all the equalizers) is always better than the unequalized BER.
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CHAPTER 5. SUMMARY AND CONCLUSIONS

5.1 GPU Implementation

Based on measured execution times of GPU kernels, multiple data-aided equalization fil-

ters were implemented for the purpose of equalizing an aeronautical telemetry channel. Using

GPU libraries and batch processing, rather than custom designed GPU kernels, produced massive

speed ups. Also, reformulating algorithms into frequency-domain convolution produced impres-

sive speed ups.

For implementation in one Tesla K40c and two Tesla K20c GPUs, the execution times for

all equalizers met the real-time constraint. It was shown that the frequency-domain equalizers are

the easiest to implement and have the fastest execution time. The CMA equalizer was shown to be

the hardest to implement and has the slowest execution time. The execution time did not provide

the CMA the opportunity to iterate many times. The ZF and MMSE equalizers were shown to

be computationally challenging to implement, but had an acceptable execution times. Because

data-aided equalizers are implemented for a real-time telemetry receiver system, the execution

time results must be considered along with the bit error rate performance. The FDE1 equalizer is

recommended, marking the best tradeoff between performance and computational complexity.

5.2 Contributions

The contributions of this thesis are:

1. Algorithms were implemented using batch GPU libraries.

2. GPU convolution time was reduced by using GPU libraries, batch processing, and cascading

filters in the frequency domain.
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3. Algorithms were implemented using linear solver libraries to make ZF and MMSE equalizers

feasible and real-time.

4. The CMA equalizer was reformulated to leverage the speed of GPU convolution.

5. A new ADC to was implemented to drive success of the PAQ project.

6. Resampling polyphase filters were implemented in GPUs.

7. A paper was presented on frequency offset compensation for equalized SOQPSK at Interna-

tional Telemetering. Conference (ITC) [24].

5.3 Further Work

The Levinson-Durbin algorithm GPU implementation only leveraged the toeplitz structure

of the channel estimate auto-correlation matrix. A hybrid sparse Levinson-Durbin algorithm could

leverage the sparseness of the channel estimate auto-correlation matrix and the vector ĝ.
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APPENDIX A. DESCRIPTION OF BER TEST SETUP

The major components from the block diagram shown in Figure 4.11 functions are sum-

marized as follows:

• The SOQPSK-TG Transmitter is a PAQ enabled L-band transmitter shown in Figure A.1.

• The Multipath Channel emulator generates multipath interference for a given channel at

RF shown in Figure A.2.

• The Noise Source generates calibrated additive white Gaussian noise for a given Eb/N0

shown in Figure A.3.

• The Power Splitter split the power between the Spectrum Analyzer and the T/M Receiver

& Demodulator shown in Figure A.4.

• The Spectrum Analyzer showed the power spectrum of the multipath channel shown in

Figure A.5.

• The T/M Receiver & Demodulator produced the no equalization bits at 10.3125 Mbits/s

and down-converted RF to 70 MHz IF shown in Figure 2.4.

• The Preamble Scrubber explained in [23] locates and removes the preamble and ASM in

the 10.3125 Mbits/s to produce a data bit stream at 10 Mbits/s shown in Figure A.6.

• The BERT computes the BER for six bit streams shown in Figure 2.4.
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Figure A.1: PAQ enabled L-band transmitter QSX VMR 110 00S 20 2D VP iNET S/N
3901.

Figure A.2: Channel emulator Spirint SR 5500.

Figure A.3: Noise source Fast Bit FB0008.
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Figure A.4: Power splitter Mini-circuits ZB4PD-462W-S+.

Figure A.5: Spectrum analyzer Agilent E4404B ESA-E Series Spectrum Analyzer.
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Figure A.6: Preamble and ASM scrubber.
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