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ABSTRACT

Multipath Channel Considerations in Aeronautical Telemetry

Edem Coffie Gagakuma

Department of Electrical and Computer Engineering, BYU

Master of Science

This thesis describes the use of scattering functions to characterize time-varying multipath

radio channels. Channel Impulse responses were measured at Edwards Air Force Base (EAFB)

and scattering functions generated from the impulse response data. From the scattering functions

we compute the corresponding Doppler power spectrum and multipath intensity profile. These

functions completely characterize the signal delay and the time varying nature of the channel in

question and are used by systems engineers to design reliable communications links. We observe

from our results that flight paths with ample reflectors exhibit significant multipath events.

We also examine the bit error rate (BER) performance of a reduced-complexity equalizer

for a truncated version of the pulse amplitude modulation (PAM) representation of SOQPSK-TG in

a multipath channel. Since this reduced-complexity equalizer is based on the maximum likelihood

(ML) principle, we expect it to perform optimally than any of the filter-based equalizers used in

estimating received SOQPSK-TG symbols. As such we present a comparison between this ML

detector and a minimum mean square error (MMSE) equalizer for the same example channel. The

example channel used was motivated by the statistical channel characterizations described in this

thesis. Our analysis shows that the ML equalizer outperforms the MMSE equalizer in estimating

received SOQPSK-TG symbols.

Keywords: scattering function, multipath, maximum likelihood equalizer, minimum mean square

error equalizer
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NOMENCLATURE

h(τ ; t) Complex-valued impusle response

t Variable representing time
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Rh(τ,Δt) Autocorrelation of a wide-sense stationary uncorrelated scattering (WSSUS) channel
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R(Δf) Spaced-frequency correlation function

Δf Frequency separation

τ̄ Mean excess delay

στ RMS delay spread
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p(t) Pulse shaping filter
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e(k) Equalizer output error
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M−1 indicates the inverse of a square matrix M
[ ]† indicates Hermitian or conjugate transpose of [ ]
[ ](t) indicates [ ] is a function of time, in the t domain

[ ](τ) indicates [ ] is a function of delay, in the τ domain

[ ]0 indicates [ ] is evaluated at time t or τ equal to zero

[ ]p indicates [ ] is referenced by the index p
SOQPSK-TG represents shaped offset quadrature phase shift keying- telemetry group version
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AGC represents automatic gain control
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RHCP represents right-hand-circular polarization

BER represents bit error rate

Pt. represents Point

NAS represents Naval Air Station

EHF represents extremely high frequency

WSSUS represents wide-sense stationary uncorrelated scattering

AWGN represents additive white Gaussian noise

PAM represents pulse amplitude modulation

ML represents maximum likelihood

MMSE represents minimum mean square error
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Multipath interference is one of the dominant channel impairments in aeronautical teleme-

try. This multipath phenomenon is mostly attributed to objects that scatter or diffract propagating

waves. Time variations occurring in the channel are usually caused by mobile transmitters and

receivers coupled with changes in the wireless medium itself.

Significant effort over the past 10 years has characterized multipath fading at L- and S-

bands for low, and medium-altitude flights over desert ranges like EAFB, California and at EHF-

band for low- and medium-altitude flights over the ocean at Pt. Mugu NAS. The mathematical

models derived from these experiments have been published in [2], [3] and [4] and are used in

software simulations by government laboratories, industry development laboratories, and in aca-

demic research efforts. In addition, mathematical models from these publications have been used

to configure hardware for bench testing in most government laboratories. This observation points

to the primary benefit of producing an accurate channel model. Channel models allow new trans-

mission and/or receiver methods to be tested in software simulation. This permits the identification

of promising candidates for improving telemetry without the need for expensive and lengthy hard-

ware developments. A secondary, but important benefit is a fundamental understanding of the

multipath propagation mechanisms. This has the potential to plan “smart” flight profiles. For ex-

ample, it might be possible to schedule critical tests when the airborne transmitter is in a location

that is not susceptible to mutlipath interference.

Statistically characterizing time varying multipath channels is often accomplished using

the scattering function. This function helps us understand two things:

• how fast the channel is changing; and

• channel power as a function of multipath delay.
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We make two fundamental assumptions before proceeding with the mathematical formula-

tion required for deriving scattering functions using multipath channel impulse responses:

1. The multipath channel may be correctly modeled as a wide-sense stationary (WSS) random

process.

2. The scattering (multipath delays) are statistically uncorrelated.

In general, the first assumption is observably untrue. But perhaps over a sufficiently short temporal

window, this assumption is approximately true. The second assumption is also untrue. But we

will temporarily forget that we know this and see what the results give us. We will be cautious in

drawing any firm conclusions in the final analysis, but some general trends can be observed in our

results.

We follow our statistical characterization of multipath channels with an analysis of multi-

path mitigation techniques. We derive the maximum likelihood (ML) equalizer for SOQPSK-TG

over a simple channel motivated by the statistical characterizations. The complexity of the ML

detector is reduced using a truncated version of the pulse amplitude modulation (PAM) repre-

sentation for SOQPSK-TG. SOQPSK-TG is examined because it is the most popular modulation

defined in the standard for aeronautical telemetry, IRIG 106 [5]. As part of our analysis of the

bit error rate performance (BER) of the ML equalizer for the simple channel, we generate the

BER performance for an MMSE equalizer using SOQPSK-TG over the channel for which the ML

equalizer was designed. Our results show that for the example channel used in our simulations,

the reduced-complexity ML equalizer operates on a 64-state trellis and outperforms the MMSE

equalizer by a wide margin.

This thesis is structured as follows: we outline a process for characterizing multipath chan-

nels by generating scattering functions for impulse response data collected during channel sound-

ing experiments at Edwards Air Force Base (EAFB), California. Motivated by the channel charac-

terizations, we present an example multipath channel for which we derive the ML equalizer using a

truncated version of the PAM approximation of SOQPSK-TG. We generate the BER performance

for the ML equalizer, and also generate the BER performance for the same example channel using

the MMSE equalizer so we can compare the ML BER performance with the MMSE BER perfor-

mance. Our analysis provides wireless communications engineers with added tools to understand

2



multipath phenomena and also, design detectors that mitigate against channel distortions caused

by multipath propagation.
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CHAPTER 2. CHARACTERIZING MULTIPATH PROPAGATION

2.1 Statistical Behavior of Linear-Time-Variant Channels

The material from this section is adapted from Hashemi [6] and Chapter 13 of Proakis

and Salehi [2]. The traditional method for modeling multipath propagation in a mobile wireless

communication system is to employ a linear-time-variant system. The linear-time-variant model is

represented by the complex-valued low pass equivalent of a real-valued bandpass channel impulse

response h(τ ; t). This impulse response is two-dimensional and for L propagation paths, is given

by

h(τ ; t) =
L−1∑
k=0

ak(t)δ(τ − τk(t))e
jθk(t), (2.1)

where τ and t are the delay and time variables, respectively. One fixes the time variable t at t = t0

and observes the impulse response h(τ ; t0). For the scenario looked at, this model characterizes

a set of path arrival times τk(t), path amplitudes ak(t), and path phases θk(t). With the channel

impulse response h(τ ; t), we are ready to compute the autocorrelation function. We define the

autocorrelation function as

Rh(τ1, τ2; t1, t2) = E{h(τ1; t1)h∗(τ2; t2)}. (2.2)

Because h(τ ; t) is assumed to be WSS, the autocorrelation can be written as

Rh(τ1, τ2; Δt) = E{h(τ1; t)h∗(τ2; t+Δt)}, (2.3)

where Δt = t1 − t2. Additionally, if h(τ1; t1) is uncorrelated in the delay variable with h(τ2; t2),

then

E{h(τ1; t)h∗(τ2; t+Δt)} = 0 (2.4)
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for τ1 �= τ2. Consequently, the autocorrelation function assumes the form

Rh(τ1; Δt) = Rh(τ1, τ2; Δt)δ(τ1 − τ2). (2.5)

We drop the subscript associated with τ and simply write

Rh(τ1, τ2; t1, t2) = Rh(τ ; Δt)δ(τ). (2.6)

Channels with autocorrelations as defined above are called wide-sense stationary uncorrelated scat-

tering (WSSUS) channels in the open literature.

With the computed autocorrelation function, we can now find the scattering function by

taking the Fourier transform of the autocorrelation function with respect to the Δt variable. The

scattering function is

S(τ ;λ) =

∫ ∞

−∞
Rh(τ ; Δt)e

−j2πλΔtdΔt. (2.7)

The scattering function estimates the average output power of the channel as a function of the time

delay τ and the Doppler frequency λ. From this function, we obtain four other useful functions as

illustrated in Figure 2.1:

• The Doppler power spectrum is a function obtained by integrating the scattering function

with respect to τ and is given by

S(λ) =

∫ ∞

−∞
S(τ ;λ)dτ. (2.8)

The Doppler power spectrum S(λ) quantifies the channel output power as a function of the

Doppler frequency λ. The range of Doppler frequencies for which S(λ) is nonzero is the

Doppler spread Bd. A large Doppler spread results from rapid variations in the channel.

Likewise, a small Doppler spread results from slow variations in the channel. Figure 2.2 is

an example of a typical Doppler power spectrum plot obtained from our channel sounding

experiments.
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Figure 2.2: An example of the Doppler power spectrum corresponding to a multipath event

on Taxiway E run at EAFB.
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• The spaced-time correlation function is obtained by taking the inverse Fourier transform of

the Doppler power spectrum and is expressed as

s(Δt) =

∫ ∞

−∞
S(λ)ej2πλΔtdλ. (2.9)

The spaced-time correlation function quantifies how correlated the channel at time t is to

the channel at t + Δt. The amount of time for which |s(Δt)| is nonzero is called the co-

herence time (Δt)c. Because S(λ) and s(Δt) constitute a Fourier transform pair, (Δt)c is

approximately the reciprocal of Bd.

• The multipath intensity profile is a function obtained by integrating the scattering function

with respect to the Doppler frequency λ and is given by

ρ(τ) =

∫ ∞

−∞
S(τ ;λ)dλ. (2.10)

The multipath intensity profile ρ(τ) quantifies the average power output of the channel as

a function of delay τ . The maximum value of τ for which ρ(τ) is nonzero is called the

multipath spread Tm. A large multipath spread means there are long powerful delays in the

channel. Figure 2.3 represents a multipath intensity profile corresponding to a multipath

event on Taxiway E in our channel sounding experiments.

In analyzing the multipath intensity profile, we find it useful to look at three statistics that

can readily be computed from ρ(τ) [4]: the mean excess delay, the rms delay spread and the

maximum excess delay. The mean excess delay is the first moment (or mean delay) of the

multipath intensity profile. i.e. the mean excess delay is given by

τ̄ =

∑
k

ρ(τk)τk∑
k

ρ(τk)
, (2.11)

where τk represents the delay and ρ(τk) is the multipath intensity value at τk. The rms delay

spread is the square root of the second central moment of ρ(τ), i.e.,

στ =

√
τ 2 − (τ̄)2, (2.12)

7
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Figure 2.3: The multipath intensity profile corresponding to a multipath event on Taxiway E

at EAFB.

where

τ 2 =

∑
k

ρ(τk)τ
2
k∑

k

ρ(τk)
. (2.13)

The maximum excess delay τmax of ρ(τ) is defined to be the time delay at which the multipath

energy falls X dB below the maximum energy. Let ρmax = max
τ

{ρ(τ)}. Then

τmax = argmax
τ

{10 log10(ρ(τ)) > 10 log10(ρmax)− X}. (2.14)

The value of X used in our computations is 20 dB.

• The spaced-frequency correlation function is a function obtained by taking the Fourier trans-

form of the multipath intensity profile and is given by

R(Δf) =

∫ ∞

−∞
ρ(τ)e−j2πΔfτdτ. (2.15)

The spaced-frequency correlation function is a measure of how correlated the channel trans-

fer function is at two frequencies separated by Δf . This might be a useful guide in designing

an orthogonal frequency division multiplexing (OFDM) system such as the OFDM mode

proposed for iNET [7]. The values of Δf over which |R(Δf)| is non-zero is the coherence

bandwidth (Δf)c of the channel. Two OFDM subcarriers separated by more than (Δf)c
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experience uncorrelated fading. Frequency-selective fading results when (Δf)c is small in

comparison to the signal bandwidth. Likewise, frequency-nonselective fading results when

(Δf)c is large in comparison to the signal bandwidth. Because ρ(τ) and R(Δf) are Fourier

transform pairs, (Δf)c and Tm are reciprocals of each other.

2.2 Sounding Experiments at EAFB

We now present a brief description of the sounding experiments conducted at Edwards Air

Force Base to which we apply the channel model described in section 2.1. A comprehensive report

on this research can be found in [8].

2.2.1 The Airborne Platform

The airborne platform was a C-12 aircraft, equipped with 3 transmit antennas whose posi-

tions are illustrated in Figure 2.4. A detailed block diagram of the airborne system is illustrated

in Figure 2.5. The sounding signal was switched between the three transmit antennas using the

RF switch. The three switch outputs were amplified by linear RF power amplifiers and connected

to the transmit antennas via hard line (heliax) cables. Antenna 2 was used to transmit both the

sounding signal and the the housekeeping telemetry link as shown in Figure 2.5.

The switch controller was a custom-made FPGA based circuit that provided a 3.3 V control

signal. The control signal determined which of the three output ports was connected to the input.

Graphical representations of the control signals are illustrated in the next section in the context

of the ground station configurations for L- and C-band. Each of the three transmit antennas was

active for 50 μs in a repeating round-robin fashion. At the end of each cycle, a 50 μs blanking

period was inserted by disabling all outputs. The blanking period was used for synchronizing the

ground station switch. Each ground station antenna is active during a complete 200-μs-cycle.

2.2.2 Ground Station Configuration

The ground station antennas and RF hardware were located in and around Building 4795

at EAFB, California. An aerial view of Building 4795 and the antennas is shown in Figure 2.6.

An alternate view of the relative positions is shown in Figure 2.7. Three physical antennas were
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Antenna 3 (LOWER AFT) 
fuselage station = 222.25″ 
center line = 10″ (left) 
water line = 76″ 

Antenna 2 (LOWER FWD) 
fuselage station = 183.5″ 
center line = 10″ (left) 
water line = 76″ 

Antenna 1 (UPPER) 
fuselage station = 302″ 
center line = 9″ (right) 
water line = 145.5″ 

Figure 2.4: The C-12 aircraft used for the channel sounding experiments at Edwards, AFB. Also

shown are the locations of the three transmit antennas used in the experiments
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Reference 
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UB Corp. A04459 

Figure 2.5: A detailed block diagram of the airborne transmitter on the C-12 aircraft.
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Table 2.1: Description of the receive antennas.

Antenna Diameter Comments

RX1 5 m. Building 4795 “Antenna 5” (EMT Model 150),

tracking performed by conical scan, RHCP.

RX2 5 m. Same as RX1, except LHCP is used.

RX3 8 ft. Tracking performed by conical scan, RHCP.

RX4 4 ft. Tracking performed by steering using GPS data

downlinked from the C-12, RHCP.

involved in the channel sounding experiments. Antennas 1 and 2 were derived from the two avail-

able polarization outputs from the feed of the 5-meter parabolic reflector designated “Antenna 5”

at Building 4795. Antenna 3 was an 8-foot parabolic reflector on loan from Patuxent River Naval

Air Station and was situated on a trailer to the west of Antenna 5 as shown. Antenna 4 was a 4-foot

parabolic reflector known as the “iNet” antenna situated on the east end of the roof of Building

4795. The properties of these antennas are summarized in Table 2.2.2.

2.2.3 System Configuration for L-Band Channel Sounding Experiments

A detailed block diagram of the ground system configuration for the L-band channel sound-

ing experiments is shown in Figure 2.8. The outputs called Antenna 1 and Antenna 2 were de-

rived from the right-hand-circular polarization (RHCP) and left-hand-circular polarization (LHCP)

feeds, respectively, from the antenna called “Antenna 5” (at Building 4795) by the EAFB person-

nel. Antenna 3 and Antenna 4 were the RHCP outputs of the “Pax Antenna” and the “iNet An-

tenna,” respectively, as shown. Gain was applied to the “Pax Antenna” and “iNet Antenna” feeds to

equalize the signal levels presented to the switch input. This was done to remove the AGC effects

of the M/A-Com receiver.

The RF switch applied each input to the M/A-Com 5550i receiver in a round-robin fashion

and in synchronism with the transmitter switching. The relationship between the transmitter and

receiver switches is illustrated in Figure 2.9. The switch output was downconverted to a 70 MHz

IF by a Tyco M/A-Com 5550i receiver. The IF output was sampled at 200 Msamples/s by a
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Antennas 1, 2 Antenna 3 Antenna 4 

to north end 
of taxiway E 

to southwest end 
of taxiway F 

to west end of  
Cords Road and 
Back Mountain 

to east end of  
Cords Road and 
Back Mountain 

Figure 2.6: An aerial view of Building 4795 showing the positions of Antennas 1 - 4. All of the

antennas were used for the L-band channel sounding experiments. Antennas 3 and 4 were used for

the C-band channel sounding experiments.

Wideband Systems data acquisition system. The receiver AGC and synchronization pulse (EVT1

of Figure 2.9) were also recorded. The RHCP output of “Antenna 5” was also used to receive and

demodulate the housekeeping telemetry link whose data was recorded for post-experiment analysis

and for controlling the “iNet” antenna.

2.3 Scattering Functions

We now analyze impulse responses corresponding to Black Mountain East-West run, Cords

Road East-West run and Taxiway North-South run at Edwards AFB, California for L-band (1824

MHz) and C-band (5124 MHz) transmissions. The Black Mountain flight path is illustrated in

Figure 2.10.
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Figure 2.7: The view at Building 4795 showing the relative positions of the three physical antennas.

Antenna 4 is in the foreground on the left, Antenna 3 is on the trailer in the middle, and Antennas

1 and 2 (aka “Antenna 5”) is on the right. Note that in this image, the antennas are facing north,

away from the flight line and toward the Cords Road and Black Mountain flight paths.

For each of these 3 areas, Nt consecutive channel impulse responses were extracted. In

summary, the processed data gives Nt impulse responses from which we estimate the scattering

function. We use the double index notation - the n-th sample of the k-th impulse response is

represented as h(n; k) - in our analysis. We illustrate this in terms of the matrix �.

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(1; 1) h(2; 1) · · · h(Nt; 1)

h(1; 2) h(2; 2) · · · h(Nt; 2)

h(1; 3) h(2; 3) · · · h(Nt; 3)
...

...
. . .

...

h(1;Lh) h(2;Lh) · · · h(Nt;Lh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.16)
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Figure 2.8: A detailed block diagram of the ground station configuration for the L-band channel

sounding experiments at Edwards AFB, California.

The rows of this matrix represent the t axis. The interval between row elements is ΔT = 800 μs.

The columns represent the τ axis. The interval between column elements Δτ = 5 ns.

The unbiased estimator for R(τ ; Δt) is [3]

R̂(nΔτ ;mΔT ) =

⎧⎪⎪⎨
⎪⎪⎩

1
Nt−m

Nt−m∑
�=1

h(n; 	+m, 	)h∗(n; 	) m ≥ 0

1
Nt+m

Nt∑
�=−m+1

h(n; 	+m, 	)h∗(n; 	) m < 0
(2.17)

for −Nt < m < Nt. The scattering function estimate is computed using the length-N DFT of

R̂(nΔτ ;mΔT ) with respect to the second index:

Ŝ(nΔτ ; ΔTk/N) =
Nt−1∑

m=−Nt+1

R̂(nΔτ ;mΔT )e−j2πkm/N (2.18)

14
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50 μs 

TX 1 

TX 2 

TX 3 

RX 1 

RX 2 

RX 3 

RX 4 

EVT 1 

50 μs blank for synchronization 

Figure 2.9: A graphical representation of the switch control used in the L-band channel sounding

experiments at Edwards AFB, California.

for 0 ≤ k < N . Close examination of (2.18) shows that for a given delay (i.e. fixed n), the

scattering function is an estimate of the power spectral density of the sequence

h(n; 1), h(n; 2), . . . , h(n;Nt). (2.19)

Consequently, well-known estimation techniques for the power spectral density, such as those de-

scribed in [3,4], may be used. Nonparametric estimation techniques require the fewest assumptions
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Figure 2.10: The 12 multipath events (reflection points) for the Black Mountain East-to-West run at

EAFB using 1824 MHz. The yellow “thumb tack” markers indicate the multipath event locations.

Event 1 is the rightmost marker and Event 12 is the left-most marker.

about the structure of the power spectral density. Welch’s method for averaging modified peri-

odograms is applied here. When Welch’s method for averaging modified periodograms is applied

with a 50% sequence overlap, we obtain an increase in the resolution of the power spectral density

of the sequence while maintaining the same variance as Bartlett’s method of spectrum estimation

[3]. As a result we applied Welch’s method with a Blackman window and a length N = 512 FFT

with 50% overlap in our analysis of the captured channels.

2.4 Estimation Results

We now analyze the results connected with the areas listed above. Because of the different

power levels and gains of our receivers, some engineering judgment was used in estimating the time

dispersion parameters particularly for our C-Band results. We summarize our findings in Tables

2.2 - 2.7. We’ve used the abbreviations ‘R’ and ‘LPD’ to indicate “rapidly changing channel” and

“long powerful delays”, respectively.
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Figure 2.11: The 3 multipath events (reflection points) for the Black Mountain East-to-West run at

EAFB using 5124 MHz.

It is noted that as the plane flies alone a flight path, multipath is intermittent. Multipath

occurrence is illustrated by the yellow thumb tucks depicted in Figures 2.10 and 2.11 over a short

temporal window. Thus, the channel is modeled as a WSS channel because we assume the that

multipath occurs over a short time span.

2.5 Summary

We have reviewed a method for generating scattering functions for the WSSUS mobile

channel by first structuring our data as described in (2.16) and using Welch’s periodogram to

obtain the scattering function. Applying this technique to analyzing impulse response data from

EAFB, we observe that because the choice of windowing function (Blackman window was used in

our case) and the number of FFT points used in our modeling, we were somewhat constrained in

our frequency resolution.

Figures 2.12 to 2.17 depict multipath intensity profiles and Doppler power spectra corre-

sponding to various flight paths at EAFB using 1824 MHz and 5124 MHz transmit frequencies. We

observe that the multipath intensity profiles related to significant multipath events as those shown
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in Figures 2.13, 2.14 and 2.16 illustrate a strong line of sight component followed by a strong re-

flection with delay XX ns and power YY dB. This observation motivates a simple channel model

that captures the major features of multipath propagation on test ranges:

h(t) = δ(t) + aδ(t− τ). (2.20)

Table 2.2: Black Mountain East-West Run using 1824 MHz transmit frequency.

Event Bd (Hz) τ (ns) στ (ns) Notes

1 4.88 1.60 99.45
2 4.88 9.76 252.91
3 4.88 15.35 535.29 LPD

4 4.88 35.17 900.18
5 4.88 8.25 283.12
6 4.88 4.02 112.65
7 4.88 7.51 147.01 LPD

8 7.32 515.68 3645.00 R, LPD

9 4.88 12.88 156.69
10 4.88 25.10 180.34
11 4.88 4.24 56.39
12 4.88 14.83 103.63

Table 2.3: Black Mountain East-West Run using 5124 MHz transmit frequency.

Event Bd (Hz) τ (ns) στ (ns) Notes

1 4.88 1.76 82.95
2 4.88 0.00 47.65
3 4.88 5.144 73.24

Table 2.4: Cords Road run using 1824 MHz transmit frequency.

Event Bd (Hz) τ (ns) στ (ns) Notes

1 4.88 29.43 812.50
2 4.88 1.57 55.62
3 4.88 22.06 113.25
4 4.88 7.74 80.61
5 4.88 13.90 80.10

18



Table 2.5: Cords Road run using 5124 MHz transmit frequency.

Event Bd (Hz) τ (ns) στ (ns) Notes

1 4.88 2884.00 5514.50 LPD

2 4.88 2921.50 7404.80 LPD

3 4.88 3035.00 7331.30 LPD

4 4.88 2877.70 5439.90 LPD

Table 2.6: Taxiway run using 1824 MHz transmit frequency.

Event Bd (Hz) τ (ns) στ (ns) Notes

1 9.77 2055.40 7453.50 R,LPD

2 56.15 2601.00 3560.90 R,LPD

3 4.88 2218.50 4671.90 LPD

4 4.88 10 967.00 17 521.00 LPD

5 68.36 1682.40 5733.00 R,LPD

6 4.88 43.21 173.40
7 4.88 2259.00 8173.80 LPD

8 4.88 318.06 1687.20

Table 2.7: Taxiway run using 5124 MHz transmit frequency.

Event Bd (Hz) τ (ns) στ (ns) Notes

1 51.26 105.22 3752.40 R

2 4.88 7612.60 21 983.00 LPD

Analyzing the results from the tables above, we see that the Doppler spreads for the Black

Mountain and Cords Road runs show little to no variability. This is largely because those flight

paths do not have ample reflectors like the Taxiway path. As shown in the multipath intensity

profile of Figure 2.3, the Taxiway flight path has a lot of buildings (reflectors). As such we expect to

see large delays which are indicative of multipath propation. Also, because the airplane from which

we are transmitting is relative to a stationary ground receiver, the propagation path constantly

changes and thus we see large channel variations (i.e., large Doppler spreads) such as those shown

in the Doppler power spectrum of Figure 2.17. It would be interesting to see how other frequencies

other than L or S-bands behave in the flight paths used for the above modeling.
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Figure 2.12: Doppler power spectrum (top) and multipath intensity profile (bottom) corresponding

to a multipath event on Black Mountain at EAFB using 1824 MHz transmit frequency.
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Figure 2.13: Doppler power spectrum (top) and multipath intensity profile (bottom) corresponding

to a multipath event on Black Mountain at EAFB using 5124 MHz transmit frequency.
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Figure 2.14: Doppler power spectrum (top) and multipath intensity profile (bottom) corresponding

to a multipath event on Cords Road at EAFB using 1824 MHz transmit frequency.
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Figure 2.15: Doppler power spectrum (top) and multipath intensity profile (bottom) corresponding

to a multipath event on Cords Road at EAFB using 5124 MHz transmit frequency.
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Figure 2.16: Doppler power spectrum (top) and multipath intensity profile (bottom) corresponding

to a multipath event on Taxiway E at EAFB using 1824 MHz transmit frequency.
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Figure 2.17: Doppler power spectrum (top) and multipath intensity profile (bottom) corresponding

to a multipath event on Taxiway E at EAFB using 5124 MHz transmit frequency.
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CHAPTER 3. MAXIMUM LIKELIHOOD EQUALIZATION USING SOQPSK-TG

Before proceeding, it is noteworthy to briefly discuss prior work done in this area. Per-

rins and Rice [9] developed a pulse amplitude modulation (PAM) representation of SOQPSK-TG

over AWGN channels. Their analysis led to the design of a 4-state trellis detector which op-

timally detects transmitted SOQPSK-TG symbols with very minor performance losses. While

their work provides invaluable insight into designing reduced complexity equalizers for partial-

response ternary waveforms such as SOQPSK-TG, it necessary to explore the behavior of such

approximated signal sets in multipath-induced channels.

This section examines the behavior of Perrins and Rice’s PAM representation of SOQPSK-

TG in a multipath channel. We first present the signal model for SOQPSK-TG and its PAM rep-

resentation. We then focus on designing an optimum equalizer based on the ML principle for

the approximated signal model in a multipath setting since this was not previously researched by

Perrins and Rice. The resulting equations from our derivation will be used to build a trellis that op-

erates using the Viterbi algorithm. We then test the designed ML equalizer by running simulations

using Matlab to verify the validity of our analysis.

3.1 SOQPSK-TG Signal Model

SOQPSK-TG is defined as a continuous phase modulation (CPM) of the form

s(t,α) = Aej(φ(t,α)+φ0). (3.1)

The phase is

φ(t,α) = 2πh

∫ t

−∞

k∑
n=−∞

αng(τ − nTb)dτ

= 2πh
k∑

n=−∞
αnq(τ − nTb), (3.2)
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for kTb ≤ t < (k + 1)Tb, where Tb represents the bit interval. The frequency and phase pulses are

g(t) and q(t) respectively, with the relationship

q(t) =

∫ t

−∞
g(τ)dτ. (3.3)

The variables h and φ0(t) are the modulation index and an arbitrary phase respectively. The modu-

lation index h for SOQPSK-TG is equal to a 1
2

and φ0 can be set to 0 without any loss of generality.

Additionally, α, associated with αn ∈ {−1, 0, 1} represents ternary symbols which are related to

the binary input symbols an ∈ {−1, 1} given by

αn =
(−1)n+1an−1(an − an−2)

2
. (3.4)

The binary input symbols an ∈ {−1, 1} and the binary input bits In ∈ {0, 1} have the relationship

an =

⎧⎪⎨
⎪⎩
−1 for In = 0

+1 for In = 1

. (3.5)

The frequency pulse for SOQPSK-TG is a spectral raised cosine windowed by a temporal raised

cosine:

g(t) = C
cos
(

πρBt
2Tb

)
1− 4

(
ρBt
2Tb

)2 ×
sin
(

πBt
2Tb

)
(

πBt
2Tb

) × w(t) (3.6)

w(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for 0 ≤
∣∣∣ t
2Tb

∣∣∣ < T1

1
2

[
1 + cos

(
π
T2

(
t

2Tb
− T1

))]
for T1 ≤

∣∣∣ t
2Tb

∣∣∣ ≤ T1 + T2

0 for T1 + T2 <
∣∣∣ t
2Tb

∣∣∣
. (3.7)

For SOQPSK-TG, the parameters for g(t) and w(t) are ρ = 0.7, B = 1.25, T1 = 1.5 and T2 = 0.5.

The constant C is chosen to make q(t) = 1
2

for t > 2(T1 + T2)Tb. The frequency and phase pulses

for SOQPSK-TG are shown in Figure 3.1.
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Figure 3.1: The frequency pulse g(t) and the phase pulse q(t) for SOQPSK-TG.

3.2 PAM Representation of SOQPSK-TG

The ML equalizer for SOQPSK-TG requires 512 states [10] in the AWGN environment. To

reduce the computational complexity of the equalizer, a trellis derived from a PAM approximation

of SOQPSK-TG is used. The PAM representation of SOQPSK-TG derived by Perrins and Rice [9]

is

s(t) =
R−1∑
k=0

∑
i

bk,ick(t− iTb), (3.8)

where R = 2 × 3L−1 = 4374. Equation (3.8) represents SOQPSK-TG as a linear combination

of 4374 pulses ck(t) whose amplitudes are modulated by pseudosymbols bk,i. Formulae for the

pulses and pseudosymbols are given in [9]. The R pseudosymbols bk,i are derived from the ternary

SOQPSK-TG symbols αi by a nonlinear mapping. Hence, the nonlinear nature of CPM is isolated

in the pseudosymbols.

For the purposes of constructing a reduced-complexity equalizer for SOQPSK-TG, the

approximation resulting from retaining the first two terms of the outer summation of (3.8) is used:

s(t) ≈
∑
i

b0,ic0(t− iTb) +
∑
i

b1,ic1(t− iTb), (3.9)
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where c0(t) and c1(t) are

c0(t) =

(
L−1∏
�=0

ψ(t+ 	Tb)

)2

(3.10)

and

c1(t) = 2

(
L−1∏
�=0

ψ(t+ 	Tb)

)(
L−1∏
�=0

ψ(t+ 	Tb + Tb)

)
, (3.11)

where

ψ(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sin(π
2
q(t))

sin(π
4 )

0 ≤ t < LTb

sin(π
4
−π

2
q(t−LTb))

sin(π
4 )

LTb ≤ t < 2LTb

0 otherwise

. (3.12)

These pulses, known as principal pulses [9] are plotted in Figure 3.2. Pulse c0(t) has support on

0 ≤ t ≤ 9Tb and pulse c1(t) has support on 0 ≤ t ≤ 8Tb. The corresponding pseudosymbols from

(3.9) are

b0,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−jejθi−1 αi = −1

ejθi−1 αi = 0

jejθi−1 αi = +1

b1,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2
(1− j)ejθi−1 αi = −1

1√
2
ejθi−1 αi = 0

1√
2
(1 + j)ejθi−1 αi = +1,

(3.13)

where

i even i odd

θi Ii−2 Ii−1

3π/2 0 0

π 0 1

0 1 0

π/2 1 1

θi Ii−1 Ii−2

3π/2 0 0

π 0 1

0 1 0

π/2 1 1

(3.14)

is the phase state of SOQPSK-TG at the end of bit time i. When working with the Viterbi algorithm,

it is most convenient to express the pseudosymbols in the form

b0,i = β0(αi)e
jθi−1 b1,i = β1(αi)e

jθi−1 , (3.15)
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Figure 3.2: The principal pulses associated with the PAM representation of SOQPSK-TG.

where, after quick inspection of (3.13), we have

β0(αi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−j αi = −1

1 αi = 0

j αi = +1

β1(αi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2
(1− j) αi = −1

1√
2

αi = 0

1√
2
(1 + j) αi = +1.

(3.16)

We now proceed to apply the above PAM representation to develop a reduced-state trellis equal-

izer.

3.3 Reduced-State ML Equalizer

The reduced-state trellis equalizer follows from the ML principle. Let I = [I0I1 . . . Inb−1]

be a sequence of nb bits transmitted during the interval 0 ≤ t ≤ nbTb. Using continuous-time

notation for the moment, let r(t) be the complex-valued baseband equivalent of the received signal

at the input to the SOQPSK-TG equalizer given by

r(t) = s(t) ∗ hc(t) + n(t), (3.17)
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where n(t) is a complex-valued circularly symmetric normal random process with zero mean and

auto-correlation function

E
{
n(t+ τ)n∗(t)

}
= 2N0δ(τ). (3.18)

The log-likelihood function for the symbol sequence I is [2]:

Λ(I) = − 1

2N0

∫ nbTb

0

|r(t)− s(t) ∗ hc(t)|2 dt. (3.19)

Using the approximation (3.9), the log-likelihood function may be expressed as

Λ(I) ≈ − 1

2N0

∫ nbTb

0

∣∣∣∣∣r(t)−
[
nb−1∑
i=0

b0,ic0(t− iTb) +

nb−1∑
i=0

b1,ic1(t− iTb)

]
∗ hc(t)

∣∣∣∣∣
2

dt

= − 1

2N0

∫ nbTb

0

∣∣∣∣∣∣∣r(t)−
⎡
⎢⎣nb−1∑

i=0

b0,i c0(t− iTb) ∗ hc(t)︸ ︷︷ ︸
h0(t−iTb)

+

nb−1∑
i=0

b1,i c1(t− iTb) ∗ hc(t)︸ ︷︷ ︸
h1(t−iTb)

⎤
⎥⎦
∣∣∣∣∣∣∣
2

dt

= − 1

2N0

∫ nbTb

0

∣∣∣∣∣r(t)−
[
nb−1∑
i=0

b0,ih0(t− iTb) +

nb−1∑
i=0

b1,ih1(t− iTb)

]∣∣∣∣∣
2

dt

=
1

2N0

∫ nbTb

0

(
− |r(t)|2 + 2 Re

{
r(t)

[
nb−1∑
i=0

b0,ih0(t− iTb) +

nb−1∑
i=0

b1,ih1(t− iTb)

]∗}

−
nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′h
∗
0(t− iTb)h0(t− i′Tb)−

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′h
∗
0(t− iTb)h1(t− i′Tb)

−
nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′h
∗
1(t− iTb)h0(t− i′Tb)−

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib1,i′h
∗
1(t− iTb)h1(t− i′Tb)

)
dt

= 2 Re

{
nb−1∑
i=0

b∗0,iy0,i +
nb−1∑
i=0

b∗1,iy1,i

}
−

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′x00,i−i′

−
nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′ −
nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′ −
nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib1,i′x11,i−i′ ,

(3.20)
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where

y0,i ≡ y0(iTb) =

∫ nbTb

0

r(t)h∗0(t− iTb)dt, (3.21)

y1,i ≡ y1(iTb) =

∫ nbTb

0

r(t)h∗1(t− iTb)dt, (3.22)

x00,i ≡ x00(iTb) =

∫ nbTb

0

h∗0(t)h0(t+ iTb)dt, (3.23)

x01,i ≡ x01(iTb) =

∫ nbTb

0

h∗0(t)h1(t+ iTb)dt, (3.24)

x10,i ≡ x10(iTb) =

∫ nbTb

0

h∗1(t)h0(t+ iTb)dt, (3.25)

and

x11,i ≡ x11(iTb) =

∫ nbTb

0

h∗1(t)h1(t+ iTb)dt, (3.26)

with

∫ nbTb

0

h∗0(t− iTb)h0(t− i′Tb)dt =
∫ nbTb

0

h∗0(t
′)h0(t′ + iTb − i′Tb)dt′

=

∫ nbTb

0

h∗0(t
′)h0(t′ + (i− i′)Tb)dt′. (3.27)

Note that |r(t)|2 and the constant 1
2N0

were discarded since they have no functional dependence on

I. Because (3.20) has no closed form solution for the ML bit sequence, a search must be conducted.

The most efficient search algorithm for this type of structured problem is the Viterbi algorithm

[2]. The Viterbi algorithm requires a recursive formulation of the log-likelihood function. This

recursion lies at the heart of the Viterbi algorithm. A recursive form for the log-likelihood function

is produced by examining the log-likelihood function for the sequence

In = [I0 I1 . . . In] (3.28)
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for n ≤ nb given by

Λ(In) ≈ 2 Re

{
n∑

i=0

b∗0,iy0,i +
n∑

i=0

b∗1,iy1,i

}
−

n∑
i=0

n∑
i′=0

b∗0,ib0,i′x00,i−i′

−
n∑

i=0

n∑
i′=0

b∗0,ib1,i′x01,i−i′ −
n∑

i=0

n∑
i′=0

b∗1,ib0,i′x10,i−i′ −
n∑

i=0

n∑
i′−0

b∗1,ib1,i′x11,i−i′ .

(3.29)

In the appendix, it is shown that (3.29) may be simplified to

Λ(In) = Re

{
n∑

i=0

b∗0,i

(
2y0,i − 2

Lx∑
m=1

b0,i−mx00,m − b0,ix00,0 − 2
Lx∑
m=1

b1,i−mx01,m − b1,ix01,0

)}

+ Re

{
n∑

i=0

b∗1,i

(
y1,i − 2

Lx∑
m=1

b1,i′x11,i−i′ − b1,ix11,0 − 2
Lx∑
i′=1

b0,i−mx10,m − b0,ix10,0

)}
, (3.30)

where Lx is the time support for the auto- and cross-correlations. Writing (3.30) recursively gives

Λ(In) = Λ(In−1)

+ Re

{
b∗0,n

(
2y0,n − 2

Lx∑
m=1

b0,n−mx00,m − b0,nx00,0 − 2
Lx∑
m=1

b1,n−mx01,m − b1,nx01,0

)}

+ Re

{
b∗1,n

(
2y1,n − 2

Lx∑
m=1

b1,n−mx11,m − b1,nx11,0 − 2
Lx∑
m=1

b0,n−mx10,m − b0,nx10,0

)}
. (3.31)

Equation (3.31) is called the partial path metric (PPM)n for In. The branch metric (BM)n is

BMn = Re

{
b∗0,n

(
2y0,n − 2

Lx∑
m=1

b0,n−mx00,m − b0,nx00,0 − 2
Lx∑
m=1

b1,n−mx01,m − b1,nx01,0

)}

+ Re

{
b∗1,n

(
2y1,n − 2

Lx∑
m=1

b1,n−mx11,m − b1,nx11,0 − 2
Lx∑
m=1

b0,n−mx10,m − b0,nx10,0

)}
. (3.32)

Thus,

PPMn = PPMn−1 + BMn. (3.33)
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Using the definitions (3.15), we have

BMn = Re

{
β∗
0(αn)e

−jθn−1

(
2y0,n − 2

Lx∑
m=1

β0(αn−m)e
jθn−m−1x00,m − β0(αn)e

jθn−1x00,0

− 2
Lx∑
m=1

β1(αn−m)e
jθn−m−1x01,m − β1(αn)e

jθn−1x01,0

)}

+ Re

{
β∗
1(αn)e

−jθn−1

(
2y1,n − 2

Lx∑
m=1

β1(αn−m)e
jθn−m−1x11,m − β1(αn)e

jθn−1x11,0

− 2
Lx∑
m=1

β0(αn−m)e
jθn−m−1x10,m − β0(αn)e

jθn−1x10,0

)}
.

(3.34)

BMn is used to construct a trellis upon which the Viterbi algorithm operates. The trellis is defined

as follows:

1. The branch metric at index n is defined by the ternary symbols αn−Lx , . . . , αn and the phases

θn−Lx−1, . . . , θn−1.

2. Following Equations (3.4) and (3.5), αn−Lx , . . . , αn are defined by In−Lx−2, . . . , In. The

current bit In defines the state transition and the remaining bits In−Lx−2, . . . , In−1 define the

current state. Consequently, the trellis is defined by

Ns = 2Lx+2 (3.35)

states1 each with two transitions to two possible next states.

3. The trellis is time varying [see (3.4)]. Even though the transitions associated with the

even and odd states look similar diagrammatically, the phase states associated with the

even and odd states are not. For even-indexed intervals (n = 2k) the state labels are

I2k−Lx−2, . . . , I2k−1 whereas for odd indexed intervals (n = 2k + 1) the state labels are

I2k−Lx−1, . . . , I2k.

1Following (3.14), the phases θn−Lx−1, . . . , θn−1 are defined by bits In+Lx−2, . . . , In. But only θn−1 defines the

next state. The cumulative phase at the current state is embedded in the bits used as the phase state label.
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4. Each transition through the state machine is represented by a branch in the trellis. Associated

with each branch is an “input/output” pair denoted In/αn. The “input” is the n-th bit In ∈
{0, 1} and the “output” is the ternary symbol αn ∈ {−1, 0,+1}.

3.4 Illustrative Example

In light of the previous chapter’s results, let us develop an ML equalizer for SOQPSK-TG

in a channel with a strong multipath reflection:

hc(t) = δ(t)− 0.9δ(t− Tb), (3.36)

with the transfer function

Hc(f) = 1− 0.9e−j2πfTb . (3.37)

A plot of Hc(f) and its relationship to SOQPSK-TG is given in Figure 3.3. Sampling this channel

at 20 samples/bit, we compute the correlations and illustrate them in Figures 3.5 and 3.6. The

composite channels h0(t) and h1(t) are depicted in Figure 3.4. A look at the downsampled cross-

correlation terms x01,i and x10,i shown in Figure 3.6 reveals the need to incorporate taps from

i = −2 to i = 2. This means that for this example channel, Lx = 2. Thus, we would need

Ns = 2Lx+2 = 22+2 = 16 states (3.38)

to construct the trellis. This gives us 4-bits per state with the fifth bit becoming a branch label. The

trellis diagram for Lx = 2 is shown in Figure 3.7.

3.5 Practical Considerations

While (3.32) may be algorithmically easy to implement, it is necessary to provide some

contextually illuminating strategies to understanding the trellis diagram and effectively deploying

it on a computational platform. In order to achieve this, we provide Figure 3.8 in conjunction with

the trellis diagram to offer some helpful explanations to readers who would implement this system.
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Figure 3.3: Frequency response of channel and power spectral density of SOQPSK-TG.
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Figure 3.4: Composite channels h0(t) and h1(t).

We observe from Figure 3.8 that, for a given x00,i, x01,i, x10,i, and x11,i, the 16-state trellis

operates by receiving correlation inputs y0,i and y1,i which are obtained by convolving r(t) with

the composite channels h∗0(t) and h∗1(t), and sampling at t = iTb. All that is left is determining

appropriate phase states θn−3, θn−2 and θn−1 (using states that precede an even-stage for example)

and corresponding ternary symbols α̃n−2, α̃n−1 and α̃n associated with β(α̃n−2), β(α̃n−1) and

β(α̃n) for each of the 16-states.
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Figure 3.5: Correlations corresponding to the example channel.
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Figure 3.7: The 16-state trellis associated with the PAM representation of SOQPSK-TG transmit-

ted through hc(t) given by (3.36).

It is critical to remember that the binary bit sequence for each state alternates between even

and odd transitions. This alternation needs to be accounted for when calculating the state variables

associated with each state.
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Figure 3.8: System Block Diagram.

Table 3.1: Even-indexed bit phase states

θ2k I2k−2I2k−1

3
2
π 00

π 01

0 10
π
2

11

Table 3.2: Odd-indexed bit phase states

θ2k+1 I2kI2k−1

3
2
π 00

π 01

0 10
π
2

11

α2k =
(−1)2k+1a2k−1(a2k − a2k−2)

2
=

−a2k−1(a2k − a2k−2)

2
. (3.39)

α2k+1 =
(−1)2k+1+1a2k(a2k+1 − a2k−1)

2
=
a2k(a2k+1 − a2k−1)

2
. (3.40)

As an illustrative example, consider state (8) with the binary bit sequence {0, 1, 1, 1} in

the trellis diagram. In order to compute the ternary symbols (α̃′s), we first convert the binary bit

sequence {0, 1, 1, 1} into the binary input symbols {−1,+1,+1,+1} based on (3.5). Following

this, we calculate the various ternary symbols and phase states using (3.39) and (3.40), with Tables
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3.1 and 3.2:

α̃2k =
−(1)(−1− (1))

2
= 1, for I2k+2 = 0, even-transition; (3.41)

α̃2k =
−(1)(1− (1))

2
= 0, for I2k+2 = 1, even-transition; (3.42)

α̃2k−1 =
(1)(1− (1))

2
= 0, odd-transition; (3.43)

α̃2k−2 =
−(1)(1− (−1))

2
= −1, even-transition. (3.44)

The phase states θ′s are given by

θ2k−1 =
π

2
, since the phase state for I2k, requires I2k−2I2k−1; (3.45)

θ2k−2 =
π

2
, since the phase state for I2k−1, requires I2k−2I2k−3; (3.46)

θ2k−3 =π, since the phase state for I2k−1, requires I2k−4I2k−3. (3.47)

With the calculated phase states and ternary symbols and incorporating (3.15) into (3.32), recur-

sively computing the Viterbi algorithm becomes trivial.

3.6 MMSE Equalizer

The arrangement shown in Figure 3.9 is used to represent MMSE equalization. The complex-

valued baseband equivalent representation [2] is used for all signals. Starting with the block dia-

gram of Figure 3.9 (a), the SOQPSK-TG signal sc(t) is transmitted through a channel with impulse

response hc(t), the output of which, accompanied by thermal noise, forms the received signal

r(t). After the application of an anti-aliasing (AA) low-pass filter with impulse response ha(t),

Tb-spaced samples of r(t) are produced by an analog-to-digital (A/D) converter. Assuming the

anti-aliasing filter does not distort the received signal, the samples of the received signal may be

expressed as

r(n) = s(n) ∗ h(n) + w(n) =

L2∑
k=−L1

h(k)s(n− k) + w(n), (3.48)

where
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Figure 3.9: Block diagram of a system that applies MMSE equalizer to samples of received

SOQPSK-TG signal: (a) system showing continuous-time signals, anti-aliasing filter, and A/D

converter; (b) equivalent discrete-time system.

r(n) = rc(nTb), s(n) = sc(nTb), (3.49)

h(n) = hc(t) ∗ ha(t)
∣∣∣
t=nTb

, (3.50)

and where w(n) is the nth sample in a sequence of zero-mean complex-valued Gaussian random

variables with auto-correlation function

Rw(k) =
1

2
E
{
w(n)w∗(n− k)

}
= σ2

wδ(k). (3.51)

Note that (3.48) assumes the discrete-time channel has support on −L1 ≤ n ≤ L2. As a first step,

we apply samples r(n) to a filter matched to the discrete-time channel to produce y(n):

y(n) =r(n) ∗ h∗(−n)

= s(n) ∗ h(n) ∗ h∗(−n)︸ ︷︷ ︸
heq(n)

+w(n) ∗ h∗(−n)︸ ︷︷ ︸
v(n)

=

Leq∑
k=−Leq

heq(k)s(n− k) + v(n), (3.52)
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where Leq = L1 + L2, and v(n) is a complex-valued Gaussian random sequence with zero mean

and auto-correlation function

Rv(k) =
1

2
E
{
v(n)v∗(n− k)

}
= σ2

wheq(k). (3.53)

The samples y(n) form the input to an MMSE equalizer. The MMSE equalizer is a finite impulse

response (FIR) filter with coefficients c(n) for −Lc ≤ n ≤ Lc designed to minimize the mean-

squared error between the equalizer filter output ŝ(n) and the sequence s(n). The entire system

may be represented by an equivalent discrete-time system shown in Figure 3.9 (b).

The vector of filter coefficients that minimizes the mean-squared error

E = E
{
| s(n)− ŝ(n) |2

}
(3.54)

is given by

c =
[
GRs,1G

† +Rv

]−1
Rs,2g, (3.55)

where c is the (2Lc + 1)× 1 vector of filter coefficients. The parameters G, Rs,1, Rv and Rs,2 are

defined in [11].

3.7 Summary

Testing our analysis in Matlab, we first calculated the state variables for all even and odd

transitions associated with each even and odd stage. Following this we generated the sequences y0,i

and y1,i as shown in Figure 3.8. The various correlation terms were also generated and stored in

appropriate vectors. A function which receives as input arguments the various state variables and

correlations, including y0,i and y1,i was then used to compute the branch and partial path metrics for

the derived Viterbi algorithm. We also ran simulations using an MMSE equalizer with the example

channel in order to see which equalizer performs best. Figure 3.10 illustrates our findings.

As shown in Figure 3.10, the derived ML equalizer is only 1.3 dB inferior to SOQPSK-

TG performance in AWGN. We also see that the ML equalizer clearly outperforms the MMSE

equalizer. It is critical to recognize from Figure 3.10 that as the length of the MMSE equalizer

increases beyond spanning 15 bit intervals, one observes “diminishing returns”. Consequently, it
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Figure 3.10: Bit error rate performance from simulations.

is almost certain that the MMSE equalizer is not capable of matching the performance of the ML

equalizer. This finding is very significant since engineers and other scientists in the telemetry space

can readily apply this ML equalizer to their designs. The benefits of accurate SOQPSK-TG signal

detection using this ML equalizer comes at a cost of intense and expensive computation which

might be regarded by some as disadvantageous. However, in light of computer processor power

rapidly increasing yearly, the 16-state ML equalizer presented in this thesis could potentially be

ubiquitous in the telemetry community in the foreseeable future.
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CHAPTER 4. CONCLUSIONS

Based on the statistical assumptions made for WSSUS channels, multiple impulse response

data was captured using 1824 MHz and 5124 MHz transmit frequencies for various locations at

EAFB. Generating scattering functions for the impulse response data and obtaining the corre-

sponding Doppler power spectrum and multipath intensity profile, we were able to characterize

the mobile radio channel at EAFB and obtained some insight into the propagation of signal delay

and other variations in the channels considered. Simulation results showed that test range channels

usually exhibit a strong line-of-sight signal component and a strong multipath component. With

this understanding, a simple channel was created to test a reduced-state ML equalizer for a PAM

approximation of SOQPSK-TG. Our results show that this ML equalizer’s performance is superior

to filter-based equalizers for SOQPSK-TG such as MMSE equalizers.

4.1 Contributions

The formulation used in the channel characterizations depends heavily on prior work done

by [6] and from chapters from [2] and [4]. Concepts from [6] focused on scattering functions for

a suburban radio environment. It was thus helpful to characterize channels at other locations such

as test ranges in order to obtain models that are well-suited for such areas. Additionally, drawing

heavily from concepts described in [2] and [4], we see that we can obtain some insight into signal

delay propagation for a given channel and also, to a reasonable degree, understand how the radio

channel changes overtime.

Further, the work done by [9] was very instrumental in designing an ML detector for

SOQPSK-TG using a simple channel motivated by the statistical characterization described. The

utility found in [9] lies in designing a reduced state trellis detector using an approximation of a

spectrally efficient waveform such as SOQPSK-TG. The implications from the analysis derived
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from this research ensures the design of detectors that are relatively simple and computationally

less intensive.

4.2 Further Work

Additional work is possible for characterizing multipath propagation using frequencies

other than L and S-bands. Regarding the design of the ML equalizer for the PAM approxima-

tion, it would be helpful to examine and test more channel models other than the simple case

looked at in this thesis. It would be interesting to assess the performance degradation for longer

channels where the correlations are truncated to Lx = 2.
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APPENDIX A. BRANCH METRIC DERIVATION

As was discussed in Chapter 3, we present a rigorous development of the mathematical

framework upon which the ML equalizer depends. We first look at an in-depth derivation of the

branch metric following which the equivalent discrete-time model for the PAM approximation of

SOPSK-TG is analyzed. Lastly, we probe into the operational structure of the ML equalizer to

gain a better understanding of its functionality.

A.1 Derivation

The starting point is Equation (3.20), repeated here as Equation (A.1) for convenience:

Λ(I) = 2Re

{
nb−1∑
i=0

b∗0,iy0,i +
nb−1∑
i=0

b∗1,iy1,i

}
−

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′x00,i−i′ −
nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′

−
nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′ −
nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib1,i′x11,i−i′ , (A.1)

where

x00,i = x00(iTb) =

∫ ∞

−∞
h0(t+ iTb)h

∗
0(t)dt (A.2)

x01,i = x01(iTb) =

∫ ∞

−∞
h0(t+ iTb)h

∗
1(t)dt (A.3)

x10,i = x10(iTb) =

∫ ∞

−∞
h1(t+ iTb)h

∗
0(t)dt (A.4)

x11,i = x11(iTb) =

∫ ∞

−∞
h1(t+ iTb)h

∗
1(t)dt. (A.5)

Note that x00(τ) = x∗00(−τ), x11(τ) = x∗11(−τ), and

x10(τ) =

∫ ∞

−∞
h1(t+ τ)h∗0(t)dt (A.6)
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=

[∫ ∞

−∞
h∗1(t+ τ)h0(t)dt

]∗
=

[∫ ∞

−∞
h0(u− τ)h∗1(u)du

]∗
= x∗01(−τ). (A.7)

We now simplify (A.1). Starting with the second term on the right-hand side of (A.1), we partition

the inner sum into the values i′ for which the subscript on x00 is positive, zero, and negative:

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′x00,i−i′ =

nb−1∑
i=0

[
i−1∑
i′=0

b∗0,ib0,i′x00,i−i′ + b∗0,ib0,ix00,0 +
nb−1∑
i′=i+1

b∗0,ib0,i′x00,i−i′

]
(A.8)

=

nb−1∑
i=1

i−1∑
i′=0

b∗0,ib0,i′x00,i−i′ +

nb−1∑
i=0

b∗0,ib0,ix00,0 +
nb−2∑
i=0

nb−1∑
i′=i+1

b∗0,ib0,i′x00,i−i′ .

(A.9)

Note that the lower limit of the outer sum of the first term in (A.9) has been changed to 1 and the

upper limit of the outer sum of the third term in (A.9) has been changed to nb − 2 so as not to

double-count the i = i′ terms. The third term in (A.9) is of the form

nb−2∑
i=0

nb−1∑
i′=i+1

F (i, i′). (A.10)

The order of summation is exchanged with the aid of Figure A.1. Switching the order of summation

on the the third term of (A.9) produces

nb−2∑
i=0

nb−1∑
i′=i+1

b∗0,ib0,i′x00,i−i′ =

nb−1∑
i′=1

i′−1∑
i=0

b∗0,ib0,i′x00,i−i′ (A.11)

=

nb−1∑
i′=1

i′−1∑
i=0

b∗0,ib0,i′x
∗
00,i′−i (A.12)

=

[
nb−1∑
i′=1

i′−1∑
i=0

b0,ib
∗
0,i′x00,i′−i

]∗
, (A.13)
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which is the complex-conjugate of the first term in (A.9). Consequently, the second term on the

right-hand side of (A.1) may be expressed as

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′x00,i−i′ = 2Re

{
nb−1∑
i=1

i−1∑
i′=0

b∗0,ib0,i′x00,i−i′

}
+

nb−1∑
i=0

b∗0,ib0,ix00,0. (A.14)

The final step to produce the most useful form is to use the substitution m = i− i′ in the first term

on the right-hand side of (A.14) The substitution produces

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′x00,i−i′ = 2Re

{
nb−1∑
i=1

i∑
m=1

b∗0,ib0,i−mx00,m

}
+

nb−1∑
i=0

b∗0,ib0,ix00,0. (A.15)

The usual case is for x00,m = 0 for m > L00 for some integer L00 	 nb. In this case, the upper

limit on inner summation of the first term on the right-hand side of (A.15) is min{i, L00}. If

b0,k = 0 for k < 0, then the more notationally simple

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib0,i′x00,i−i′ = 2Re

{
nb−1∑
i=1

L00∑
m=1

b∗0,ib0,i−mx00,m

}
+

nb−1∑
i=0

b∗0,ib0,ix00,0 (A.16)

may be used.

The fifth term on the right-hand side of (A.1) is simplified in the identical manner: the inner

summation is partitioned as before, the order of summation is exchanged on the term corresponding

to negative subscripts of x11 (cf. Figure A.1), and the conjugate symmetry of x11 is applied to

produce

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib1,i′x11,i−i′ = 2Re

{
nb−1∑
i=1

i−1∑
i′=0

b∗1,ib1,i′x11,i−i′

}
+

nb−1∑
i=0

b∗1,ib1,ix11,0. (A.17)

Using the substitution m = i− i′ in the first term on the right-hand side of (A.17) produces

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib1,i′x11,i−i′ = 2Re

{
nb−1∑
i=1

i∑
m=1

b∗1,ib1,i−mx11,m

}
+

nb−1∑
i=0

b∗1,ib1,ix11,0. (A.18)

As before, it is usually the case that x11,m = 0 for m > L11 for some integer L11 	 nb. Conse-

quently, the upper limit on the inner summation on the first term on the right-hand side of (A.18)
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0
0

0
0

11

nb−2∑
i=0

nb−1∑
i′=i+1

F (i, i′)
nb−1∑
i′=1

i′−1∑
i=0

F (i, i′)

i

i′

nb − 1nb − 2

i′ = ii′ = i+ 1

nb − 1nb − 2

i′ = ii′ = i+ 1

nb − 1nb − 1

i′

i

Figure A.1: A graphical representation of double summation (A.10): (left) the inner summation is

with respect to i′ and the outer summation is with respect to i to sum along columns of the shaded

region; (right) the inner summation is with respect to i and the outer summation is with respect to

i′ to sum along the rows of the shaded region.

is min{i, L11}. If b1,k = 0 for k < 0, then the more notationally simple

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib1,i′x11,i−i′ = 2Re

{
nb−1∑
i=1

L11∑
m=−1

b∗1,ib1,i−mx11,m

}
+

nb−1∑
i=0

b∗1,ib1,ix11,0 (A.19)

may be used.

The third and fourth terms on the right-hand side of (A.1) simplify in combination. Starting

with the third term on the right-hand side of (A.1), we follow the same steps as before. Partitioning

the inner summation for values of i′ that produce positive, zero, and negative subcripts on x01 gives

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′ =

nb−1∑
i=0

[
i−1∑
i′=0

b∗0,ib1,i′x01,i−i′ + b∗0,ib1,ix01,0 +
nb−1∑
i′=i+1

b∗0,ib1,i′x01,i−i′

]
(A.20)

=

nb−1∑
i=1

i−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

b∗0,ib1,ix01,0 +
nb−2∑
i=0

i−1∑
i′=0

b∗0,ib1,i′x01,i−i′ .

(A.21)

The third term of (A.21) is of the form (A.10). Exchanging the order of summation pro-

duces (cf. Figure A.1)
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nb−2∑
i=0

i−1∑
i′=0

b∗0,ib1,i′x01,i−i′ =

nb−1∑
i′=1

i′−1∑
i=0

b∗0,ib1,i′x01,i−i′ (A.22)

=

nb−1∑
i′=1

i′−1∑
i=0

b∗0,ib1,i′x
∗
10,i′−i (A.23)

=

[
nb−1∑
i′=1

i′−1∑
i=0

b0,ib
∗
1,i′x10,i′−i

]∗
, (A.24)

where the second step used the relationship (A.7). Substituting (A.24) into (A.21) produces

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′

=

nb−1∑
i=1

i−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

b∗0,ib1,ix01,0 +

[
nb−1∑
i′=1

i′−1∑
i=0

b0,ib
∗
1,i′x10,i′−i

]∗
. (A.25)

The fourth term on the right-hand side of (A.1) is simplified using the same steps. Parti-

tioning the inner summation for values of i′ that produce positive, zero, and negative subscripts on

x10 gives

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′ =

nb−1∑
i=0

[
i−1∑
i′=0

b∗1,ib0,i′x10,i−i′ + b∗1,ib0,ix10,0 +
nb−1∑
i′=i+1

b∗1,ib0,i′x10,i−i′

]
(A.26)

=

nb−1∑
i=1

i−1∑
i′=0

b∗1,ib0,i′x10,i−i′ +

nb−1∑
i=0

b∗1,ib0,ix10,0 +
nb−2∑
i=0

i−1∑
i′=0

b∗1,ib0,i′x10,i−i′ .

(A.27)

The second term on the right-hand side of (A.27) may be expressed as

nb−1∑
i=0

b∗1,ib0,ix10,0 =
nb−1∑
i=0

b∗1,ib0,ix
∗
01,0 =

[
nb−1∑
i=0

b1,ib
∗
0,ix01,0

]∗
. (A.28)

The third term on the right-hand side of (A.27) is of the form (A.10). Exchanging the order of

summation produces (cf. Figure A.1)
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nb−2∑
i=0

i−1∑
i′=0

b∗1,ib0,i′x10,i−i′ =

nb−1∑
i′=1

i′−1∑
i=0

b∗1,ib0,i′x10,i−i′ (A.29)

=

nb−1∑
i′=1

i′−1∑
i=0

b∗1,ib0,i′x
∗
01,i′−i (A.30)

=

[
nb−1∑
i′=1

i′−1∑
i=0

b1,ib
∗
0,i′x01,i′−i

]∗
, (A.31)

where the second step used the relationship (A.7). Substituting (A.31) in (A.27) produces

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′

=

nb−1∑
i=1

i−1∑
i′=0

b∗1,ib0,i′x10,i−i′ +

[
nb−1∑
i=0

b1,ib
∗
0,ix01,0

]∗
+

[
nb−1∑
i′=1

i′−1∑
i=0

b1,ib
∗
0,i′x01,i′−i

]∗
. (A.32)

Combining (A.25) and (A.32) gives

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′

= 2Re

{
nb−1∑
i=1

i−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

b∗0,ib1,ix01,0 +
nb−1∑
i=1

i−1∑
i′=0

b∗1,ib0,i′x10,i−i′

}
. (A.33)

Two more steps are required to put (A.33) in the most useful form. First, using the substi-

tution m = i− i′ in the first and third terms on the right-hand side of (A.33) produces

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′

= 2Re

{
nb−1∑
i=1

i∑
m=1

b∗0,ib1,i−mx01,m +

nb−1∑
i=0

b∗0,ib1,ix01,0 +
nb−1∑
i=1

i∑
m=1

b∗1,ib0,i−mx10,m

}
. (A.34)

It is usually the case that x01,m = 0 for m > L01 for some integer L01 	 nb. Consequently,

the upper limit on the inner summation of the first term on the right-hand side of (A.34) may be

replaced by L01 if b1,k = 0 for k < 0. Similarly, x10,m = 0 for m > L10 for some integer L10 	 nb

and the upper limit on the inner summation of the third term on the right-hand side of (A.34) may
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be replaced by L10 if b0,k = 0 for k < 0. Making these two changes gives

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′

= 2Re

{
nb−1∑
i=1

L01∑
m=1

b∗0,ib1,i−mx01,m +

nb−1∑
i=0

b∗0,ib1,ix01,0 +
nb−1∑
i=1

L10∑
m=1

b∗1,ib0,i−mx10,m

}
. (A.35)

Next, we use the identity

2Re

{
nb−1∑
i=0

b∗0,ib1,ix01,0

}
= Re

{
nb−1∑
i=0

b∗0,ib1,ix01,0

}
+ Re

{[
nb−1∑
i=0

b∗0,ib1,ix01,0

]∗}
(A.36)

= Re

{
nb−1∑
i=0

b∗0,ib1,ix01,0

}
+ Re

{
nb−1∑
i=0

b∗1,ib0,ix10,0

}
. (A.37)

Substituting (A.37) and (A.35) into (A.33) gives

nb−1∑
i=0

nb−1∑
i′=0

b∗0,ib1,i′x01,i−i′ +

nb−1∑
i=0

nb−1∑
i′=0

b∗1,ib0,i′x10,i−i′

= Re

{
2

nb−1∑
i=1

L01∑
m=1

b∗0,ib1,i−mx01,m +

nb−1∑
i=0

b∗0,ib1,ix01,0

}

+ Re

{
2

nb−1∑
i=1

L10∑
m=1

b∗1,ib0,i−mx10,m +

nb−1∑
i=0

b∗1,ib0,ix10,0

}
. (A.38)

Substituting (A.16), (A.19), and (A.38) into (A.1) gives

Λ(I) = Re

{
2

nb−1∑
i=0

b∗0,iy0,i − 2

nb−1∑
i=1

L00∑
m=−1

b∗0,ib0,i−mx00,m −
nb−1∑
i=0

b∗0,ib0,ix00,0

−2

nb−1∑
i=1

L01∑
m=1

b∗0,ib1,i−mx01,m −
nb−1∑
i=0

b∗0,ib1,ix01,0

}

+ Re

{
2

nb−1∑
i=0

b∗1,iy1,i − 2

nb−1∑
i=1

L11∑
m=1

b∗1,ib1,i−mx11,m −
nb−1∑
i=0

b∗1,ib1,ix11,0

−2

nb−1∑
i=1

L10∑
i′=1

b∗1,ib0,i−mx10,m −
nb−1∑
i=0

b∗1,ib0,ix10,0

}
. (A.39)
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For notational reasons, it is convenient to define

Lx = max
{
L00, L01, L10, L11

}
(A.40)

and write

Λ(I) = Re

{
2

nb−1∑
i=0

b∗0,iy0,i − 2

nb−1∑
i=1

Lx∑
m=1

b∗0,ib0,i−mx00,m −
nb−1∑
i=0

b∗0,ib0,ix00,0

−2

nb−1∑
i=1

Lx∑
m=1

b∗0,ib1,i−mx01,m −
nb−1∑
i=0

b∗0,ib1,ix01,0

}

+ Re

{
2

nb−1∑
i=0

b∗1,iy1,i − 2

nb−1∑
i=1

Lx∑
m=1

b∗1,ib1,i−mx11,m −
nb−1∑
i=0

b∗1,ib1,ix11,0

−2

nb−1∑
i=1

Lx∑
i′=1

b∗1,ib0,i−mx10,m −
nb−1∑
i=0

b∗1,ib0,ix10,0

}
. (A.41)

Factoring out the outer summation gives

Λ(I) = Re

{
nb−1∑
i=0

b∗0,i

(
2y0,i − 2

Lx∑
m=−Lx

b0,i−mx00,m − b0,ix00,0 − 2
Lx∑

m=−Lx

b1,i−mx01,m − b1,ix01,0

)}

+ Re

{
nb−1∑
i=0

b∗1,i

(
y1,i − 2

Lx∑
m=−Lx

b1,i−mx11,m − b1,ix11,0 − 2
Lx∑

i′=−Lx

b0,i−mx10,m − b0,ix10,0

)}
.

(A.42)

Note that lower limit of the summation with respect to i begins with i = 0 in (A.42) even though

four of the summations with respect to i in (A.41) begin with i = 1. This change works as long as

b0,m = b1,m = 0 for m < 0.

In preparation for use with the Viterbi Algorithm, (A.42) needs to be written in a recursive

form. Let

In =

⎡
⎢⎢⎢⎣
I0
...

In

⎤
⎥⎥⎥⎦ (A.43)

for some n ≤ nb. Then
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Λ(In) = Re

{
n∑

i=0

b∗0,i

(
2y0,i − 2

Lx∑
m=1

b0,i−mx00,m − b0,ix00,0 − 2
Lx∑
m=1

b1,i−mx01,m − b1,ix01,0

)}

+ Re

{
n∑

i=0

b∗1,i

(
y1,i − 2

Lx∑
m=1

b1,i′x11,i−i′ − b1,ix11,0 − 2
Lx∑
i′=1

b0,i−mx10,m − b0,ix10,0

)}

= Λ(In−1)

+ Re

{
b∗0,n

(
2y0,n − 2

Lx∑
m=1

b0,n−mx00,m − b0,nx00,0 − 2
Lx∑
m=1

b1,n−mx01,m − b1,nx01,0

)}

+ Re

{
b∗1,n

(
2y1,n − 2

Lx∑
m=1

b1,n−mx11,m − b1,nx11,0 − 2
Lx∑
i′=1

b0,n−mx10,m − b0,nx10,0

)}
. (A.44)

The partial path metric at time step n − 1 corresponding to the sequence In−1 is Λ(In−1) and the

partial path metric at time step n corresponding to the sequence In is Λ(In). The branch metric

corresponding to b0,n and b1,n connected to the observations y0,n and y1,n is given by the second and

third terms on the right-hand side of (A.44). After the pseudo-symbol substitutions from Equation

(3.15), it is seen that the number of trellis states is

Ns = 2Lx+2. (A.45)

A.2 Equivalent Discrete-Time Model for the PAM Approximation

The log-likelihood function (A.42) operates on matched filter outputs y0,i and y1,i to find

the maximum likelihood sequence as explained above. The outputs y0,i and y1,i form a discrete-

time sequence for 0 ≤ i < nb corresponding to the input symbol sequence I. This suggests an

equivalent discrete-time system relating I to the sequence of outputs y0,i and y1,i. The properties

of this discrete-time system are derived from the expressions for y0,i and y1,i.

The i-th matched filter output y0,i is

y0,i =

∫
r�(t)h

∗
0(t− iTb)dt (A.46)

=

∫ [nb−1∑
k=0

{
b0,kh0(t− kTb) + b1,kh1(t− kTb)

}
+ z(t)

]
h∗0(t− iTb)dt (A.47)
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=

nb−1∑
k=0

b0,k

∫
h0(t− kTb)h

∗
0(t− iTb)dt︸ ︷︷ ︸

x00,i−k

+

nb−1∑
k=0

b1,k

∫
h1(t− kTb)h

∗
0(t− iTb)dt︸ ︷︷ ︸

x01,i−k

+

∫
z(t)h∗0(t− iTb)dt︸ ︷︷ ︸

ν0,i

(A.48)

=

nb−1∑
k=0

b0,kx00,i−k +

nb−1∑
k=0

b1,kx01,i−k + ν0,i, (A.49)

where the sequence ν0,i is a complex-valued normal random sequence with zero mean and autoco-

variance

E
[
ν0,kν

∗
0,�

]
= E

[∫
z(t)h∗0(t− kTb)dt

∫
z∗(t′)h0(t′ − 	Tb)dt

′
]

(A.50)

=

∫ ∫
E [z(t)z∗(t′)]h∗0(t− kTb)h0(t

′ − 	Tb)dt dt
′ (A.51)

=

∫ ∫
2N0δ(t− t′)h∗0(t− kTb)h0(t

′ − 	Tb)dt dt
′ (A.52)

= 2N0

∫
h∗0(t

′ − kTb)h0(t
′ − 	Tb)dt

′ (A.53)

= 2N0x00,k−�. (A.54)

Similarly, the i-th matched filter output y1,i is

y1,i =

∫
r�(t)h

∗
1(t− iTb)dt (A.55)

=

∫ [nb−1∑
k=0

{
b0,kh0(t− kTb) + b1,kh1(t− kTb)

}
+ z(t)

]
h∗1(t− iTb)dt (A.56)

=

nb−1∑
k=0

b0,k

∫
h0(t− kTb)h

∗
1(t− iTb)dt︸ ︷︷ ︸

x10,i−k

+

nb−1∑
k=0

b1,k

∫
h1(t− kTb)h

∗
1(t− iTb)dt︸ ︷︷ ︸

x11,i−k

+

∫
z(t)h∗1(t− iTb)dt︸ ︷︷ ︸

ν1,i

(A.57)

=

nb−1∑
k=0

b0,kx10,i−k +

nb−1∑
k=0

b1,kx11,i−k + ν1,i, (A.58)
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where the sequence ν1,i is a complex-valued normal random sequence with zero mean and autoco-

variance

E
[
ν1,kν

∗
1,�

]
= E

[∫
z(t)h∗1(t− kTb)dt

∫
z∗(t′)h1(t′ − 	Tb)dt

′
]

(A.59)

=

∫ ∫
E [z(t)z∗(t′)]h∗1(t− kTb)h1(t

′ − 	Tb)dt dt
′ (A.60)

=

∫ ∫
2N0δ(t− t′)h∗1(t− kTb)h1(t

′ − 	Tb)dt dt
′ (A.61)

= 2N0

∫
h∗1(t

′ − kTb)h1(t
′ − 	Tb)dt

′ (A.62)

= 2N0x11,k−�. (A.63)

The expressions (A.49) and (A.58) define the equivalent discrete-time system illustrated in Fig-

ure A.2. In the figure, the z-transforms are

X00(z) = x00,−Lxz
Lx + · · · x00,0 + · · · x00,Lxz

−Lx (A.64)

X01(z) = x01,−Lxz
Lx + · · · x01,0 + · · · x01,Lxz

−Lx (A.65)

X10(z) = x10,−Lxz
Lx + · · · x10,0 + · · · x10,Lxz

−Lx (A.66)

X11(z) = x11,−Lxz
Lx + · · · x11,0 + · · · x11,Lxz

−Lx , (A.67)

where Lx is defined in (A.40).

The relationships (A.49) and (A.58) may also be expressed in matrix-vector format. To do

so, we define the following nb × 1 vectors

I =

⎡
⎢⎢⎢⎣

I0
...

Inb−1

⎤
⎥⎥⎥⎦b0 =

⎡
⎢⎢⎢⎣

b0,0
...

b0,nb−1

⎤
⎥⎥⎥⎦b1 =

⎡
⎢⎢⎢⎣

b1,0
...

b1,nb−1

⎤
⎥⎥⎥⎦ (A.68)

y0 =

⎡
⎢⎢⎢⎣

y0,0
...

y0,nb−1

⎤
⎥⎥⎥⎦y1 =

⎡
⎢⎢⎢⎣

y1,0
...

y1,nb−1

⎤
⎥⎥⎥⎦ν0 =

⎡
⎢⎢⎢⎣

ν0,0
...

ν0,nb−1

⎤
⎥⎥⎥⎦ν1 =

⎡
⎢⎢⎢⎣

ν1,0
...

ν1,nb−1

⎤
⎥⎥⎥⎦ , (A.69)
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pseudo-
symbol
map

pseudo-
symbol
map

X00(z)

X01(z)

X11(z)

X10(z)

In

y0,n

y1,n

ν1,n

ν0,n
b0,n

b1,n

Figure A.2: A block diagram of the equivalent discrete-time system defined by Equations (A.49)

and (A.58) for the PAM approximation.

and the following nb × nb convolution matrices

X00 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x00,0 x00,−1 · · · x00,−Lx

x00,1 x00,0 x00,−1 · · · x00,−Lx

. . .

. . .

. . .

x00,Lx · · · x00,1 x00,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.70)

X01 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.x01,0 x01,−1 · · · x01,−Lx

x01,1 x01,0 x01,−1 · · · x01,−Lx

. . .

. . .

. . .

x01,Lx · · · x01,1 x01,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.71)
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X10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x10,0 x10,−1 · · · x10,−Lx

x10,1 x10,0 x10,−1 · · · x10,−Lx

. . .

. . .

. . .

x10,Lx · · · x10,1 x10,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.72)

X11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11,0 x11,−1 · · · x11,−Lx

x11,1 x11,0 x11,−1 · · · x11,−Lx

. . .

. . .

. . .

x11,Lx · · · x11,1 x11,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.73)

Equipped with these definitions, the expressions (A.49) and (A.58) may be expressed as

y0 = X00b0 +X01b1 + ν0 (A.74)

y1 = X10b0 +X11b1 + ν1. (A.75)

Using (A.54) and (A.63), we see that

ν0 ∼ N(0, 2N0X00) ν1 ∼ N(0, 2N0X11). (A.76)

Consequently,

y0 | I ∼ N (X00b0 +X01b1, 2N0X00) (A.77)

y1 | I ∼ N (X10b0 +X11b1, 2N0X11) . (A.78)

It should be noted that the vectors y0 and y1 are not statistically independent. This is for two

reasons: first both y0 and y1 are a function of the common data sequence I. Second, the noise

sequences ν0,i and ν1,i are not uncorrelated. That this is true follows from the fact that the co-

variance is not zero:
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E
[
ν0,kν

∗
1,�

]
= E

[∫
z(t)h∗0(t− kTb)dt

∫
z∗(t′)h1(t′ − 	Tb)dt

′
]

(A.79)

=

∫ ∫
E [z(t)z∗(t′)]h∗0(t− kTb)h1(t

′ − 	Tb)dt dt
′ (A.80)

=

∫ ∫
2N0δ(t− t′)h∗0(t− kTb)h1(t

′ − 	Tb)dt dt
′ (A.81)

= 2N0

∫
h∗0(t

′ − kTb)h1(t
′ − 	Tb)dt

′ (A.82)

= 2N0x01,k−�. (A.83)

A.3 Analysis of the Equivalent Discrete-Time Model: Insight Into the Structure of the Max-
imum Likelihood Equalizer

The maximum likelihood equalizer derives from the joint distribution of y0 and y1. To

derive the joint distribution, we first note that the sequences ν0,i and ν1,i are jointly normal complex-

valued random sequences with zero mean and cross-covariance given by (A.83). Consequently, the

vectors ν0 and ν1 are distributed as

⎡
⎣ν0

ν1

⎤
⎦ ∼ N

⎛
⎝
⎡
⎣0
0

⎤
⎦ , 2N0

⎡
⎣X00 X01

X10 X11

⎤
⎦
⎞
⎠ . (A.84)

Conditionally, y0 and y1 are jointly distributed as

⎡
⎣y0

y1

⎤
⎦ | I ∼ N

⎛
⎝
⎡
⎣X00 X01

X10 X11

⎤
⎦
⎡
⎣b0

b1

⎤
⎦ , 2N0

⎡
⎣X00 X01

X10 X11

⎤
⎦
⎞
⎠ . (A.85)

To compute the log-likelihood function, we use the notation

y =

⎡
⎣y0

y1

⎤
⎦b =

⎡
⎣b0

b1

⎤
⎦X =

⎡
⎣X00 X01

X10 X11

⎤
⎦ (A.86)

so that the conditional density of y may be expressed as

p(y | I) = 1

(2πN0)2nb |X| exp
{
− (y −Xb)† (2N0X)−1 (y −Xb)

}
. (A.87)
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From this, the log-likelihood function is seen to be

Λ(I) = − ln
{
(2πN0)

2nb |X|
}
− 1

2N0

(y −Xb)† X−1 (y −Xb) . (A.88)

Discarding terms that have no functional dependence on I, the we may use, as the log-likelihood

function

Λ(I) = y†X−1Xb+ b†X†X−1y − b†X†X−1Xb (A.89)

= y†b+ b†y − b†Xb (A.90)

= 2Re
{
b†y
}
− b†Xb, (A.91)

where the second step relies on the fact that X is Hermitian (X† = X). Using the substitutions

(A.86), the log-likelihood function may be expressed as

Λ(I) = 2Re
{
b†
0y0 + b†

1y1

}
− b†

0X00b0 − b†
0X01b1 − b†

1X10b0 − b†
1X11b1. (A.92)

Now, to create the recursion necessary to formulate the Viterbi Algorithm, the inner prod-

ucts of (A.92) need to written as double-summations where the upper limit of the upper limit of

the index for the inner summation does not exceed the index of the outer summation. To see how

this works, consider the following N × 1 vectors and the N ×N matrix

u =

⎡
⎢⎢⎢⎣
u0
...

uN−1

⎤
⎥⎥⎥⎦ v =

⎡
⎢⎢⎢⎣
v0
...

vN−1

⎤
⎥⎥⎥⎦ M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m0,0 m0,1 · · · m0,N−1

m1,0 m1,1 · · · m1,N−1

...

mN−1,0 mN−1,1 · · · mN−1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (A.93)

The inner product u†Mv may be expressed as

u†Mv =
N−1∑
k=0

N−1∑
�=0

u∗kmk,�v�. (A.94)

Expressions of this form cannot be used in the Viterbi Algorithm because a recursion cannot be

constructed. But if the upper limit of the inner summation could be restricted to a value no greater
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than k, then a recursion could be constructed. To see how this might manifest itself with ma-

trix/vector notation, consider writing M as the sum of a lower triangular portion of M, the diagonal

elements of M, and the upper triangular portion of M:

M = ML +MD +MU , (A.95)

where

ML =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

m1,0 0 · · · 0
...

. . .
...

mN−1,0 · · · mN−1,N−2 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (A.96)

MD =

⎡
⎢⎢⎢⎢⎢⎢⎣

m0,0 0 · · · 0

0 m1,1 · · · 0
...

. . .

0 · · · 0 mN−1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎦ (A.97)

MU =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 m0,1 · · · m0,L−1

0 0 · · · m1,L−1

...
...

. . .

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (A.98)

Now we may write
u†Mv = u†MLv + u†MDv + u†MUv (A.99)

or, in terms of the double summations,

u†Mv =
L−1∑
k=0

k−1∑
�=0

u∗kmk,�v�︸ ︷︷ ︸
u†MLv

+
L−1∑
k=0

u∗kmk,kvk︸ ︷︷ ︸
u†MDv

+
L−1∑
k=0

L−1∑
�=k+1

u∗kmk,�v�︸ ︷︷ ︸
u†MUv

. (A.100)

The first two terms on the right-hand side of (A.100) work with the Viterbi algorithm. Unfortu-

nately, the last term on the right-hand side of (A.100) does not work with the Viterbi algorithm.

Thus, in general, expressing the square matrix involved in a quadratic equation of the form (A.94)
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in terms of its lower triangular, diagonal, and upper triangular submatrices does not produce an

expression compatible with the Viterbi Algorithm. But in the case under consideration, the sym-

metries of the auto- and cross-correlation matrices are such that a Viterbi-Algorithm-compatible

form is possible.

The goal then is to express each of the quadratic forms in (A.92) in terms of lower triangular

and diagonal matrices. The starting point is the second term on the right-hand side of (A.92).

Expressing X00 as X00,L +X00,D +X00,U gives

b†
0X00b0 = b†

0X00,Lb0 + b†
0X00,Db0 + b†

0X00,Ub0 (A.101)

= b†
0X00,Lb0 + b†

0X00,Db0 + b†
0X

†
00,Lb0 (A.102)

= b†
0X00,Lb0 + b†

0X00,Db0 +
(
b†
0X00,Lb0

)†
(A.103)

= 2Re
[
b†
0X00,Lb0

]
+ b†

0X00,Db0, (A.104)

where the second step follows from the conjugate symmetry x00(−m) = x∗00(m). Similarly, the

fifth term on the right-hand side of (A.92) may be expressed as

b†
1X11b1 = 2Re

[
b†
1X11,Lb1

]
+ b†

1X11,Db1, (A.105)

which follows from the conjugate symmetry x11(−m) = x∗11(m).

For the third and fourth terms of (A.92), the symmetries are different [cf. (A.7)], so these

two terms need to be considered together:

b†
0X01b1 + b†

1X10b0

= b†
0 (X01,L +X01,D +X01,U)b1 + b†

1 (X10,L +X10,D +X10,U)b0 (A.106)

= b†
0

(
X01,L +X01,D +X†

10,L

)
b1+b†

1

(
X10,L +X10,D +X†

01,L

)
b0 (A.107)

= b†
0X01,Lb1 + b†

1X
†
01,Lb0︸ ︷︷ ︸

2Re[b†
0X01,Lb1]

+ b†
0X

†
10,Lb1 + b†

1X10,Lb0︸ ︷︷ ︸
2Re[b†

1X10,Lb0]

+ b†
0X01,Db1 + b†

1X10,Db0︸ ︷︷ ︸
2Re[b†

0X01,Db1]

.

(A.108)
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Because the third term on the right-hand side of (A.108) may be written as

2Re
[
b†
0X01,Db1

]
= Re

[
b†
0X01,Db1

]
+ Re

[
b†
1X10,Db0

]
, (A.109)

b†
0X01b1 + b†

1X10b0 may be expressed in the slightly more useful form

b†
0X01b1 + b†

1X10b0 =

2Re
[
b†
0X01,Lb1

]
+ Re

[
b†
0X01,Db1

]
+ 2Re

[
b†
1X10,Lb0

]
+ Re

[
b†
1X10,Db0

]
. (A.110)

Substituting (A.104), (A.105), and (A.110) into (A.92) gives

Λ(I) = 2Re
{
b†
0y0

}
− 2Re

[
b†
0X00,Lb0

]
−b†

0X00,Db0− 2Re
[
b†
0X01,Lb1

]
−Re

[
b†
0X01,Db1

]
+ 2Re

{
b†
1y1

}
− 2Re

[
b†
1X11,Lb1

]
− b†

1X11,Db1 − 2Re
[
b†
1X10,Lb0

]
− Re

[
b†
1X10,Db0

]
.

= Re
[
2b†

0y0 − 2b†
0X00,Lb0 − b†

0X00,Db0 − 2b†
0X01,Lb1 − b†

0X01,Db1

]
+ Re

[
2b†

1y1 − 2b†
1X11,Lb1 − b†

1X11,Db1 − 2b†
1X10,Lb0 − b†

1X10,Db0

]
= Re

[
b†
0

(
2y0 − 2X00,Lb0 −X00,Db0 − 2X01,Lb1 −X01,Db1

)]
+ Re

[
b†
1 (2y1 − 2 X11,Lb1 −X11,Db1 − 2X10,Lb0 −X10,Db0)

]
. (A.111)

Writing out the vector/matrix products as sums gives

Λ(I) = Re

[
nb−1∑
i=0

b∗0,i

(
2y0,i − 2

i−1∑
i′=0

x00,i−i′b0,i′ − x00,0b0,i − 2
i−1∑
i′=0

x01,ib1,i′ − x01,0b1,i

)]

+ Re

[
nb−1∑
i=0

b∗1,i

(
2y1,i − 2

i−1∑
i′=0

x11,i−i′b1,i′ − x11,0b1,i − 2
i−1∑
i′=0

x10,i−i′b0,i′ − x10,0b0,i

)]
. (A.112)

Using the substitution m = i− i′ gives

Λ(I) = Re

[
nb−1∑
i=0

b∗0,i

(
2y0,i − 2

i∑
m=1

x00,mb0,i−m − x00,0b0,i − 2
i∑

m=1

x01,mb1,i−m − x01,0b1,i

)]

+ Re

[
nb−1∑
i=0

b∗1,i

(
2y1,i − 2

i∑
m=1

x11,mb1,i−m − x11,0b1,i − 2
i−1∑
m=1

x10,mb0,i−m − x10,0b0,i

)]
.

(A.113)
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Finally, using (A.40) and the discussion surrounding (A.40) regarding the support for the auto- and

cross-correlations, we obtain

Λ(I) = Re

[
nb−1∑
i=0

b∗0,i

(
2y0,i − 2

Lx∑
m=1

x00,mb0,i−m − x00,0b0,i − 2
Lx∑
m=1

x01,mb1,i−m − x01,0b1,i

)]

+ Re

[
nb−1∑
i=0

b∗1,i

(
2y1,i − 2

Lx∑
m=1

x11,mb1,i−m − x11,0b1,i − 2
i−1∑
m=1

x10,mb0,i−m − x10,0b0,Lx

)]
.

(A.114)

The log-likelihood function (A.114) is identical to the log-likelihood function (A.42). The point

here is that the terms involving x00,·, x01,·, x10,·, and x11,· are needed to account for the noise

correlation in the branch-metric computations.
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