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ABSTRACT

Academic Packing for Commercial FPGA Architectures

Travis D. Haroldsen
Department of Electrical and Computer Engineering, BYU

Doctor of Philosophy

With a few exceptions, academic packing algorithms for FPGAs are typically applied solely 
to theoretical architectures. This has allowed the algorithms to focus on the basic components of 
packing while abstracting away many of the details dictated by real hardware. As commercially 
available FPGAs have advanced, however, the academic algorithms and architectures have di-
verged significantly from their commercial counterparts.

In this dissertation, the RapidSmith 2 framework is presented. This framework accurately 
reflects the architecture of Xilinx FPGAs and provides support for integrating custom tools into the 
commercial CAD tools. Using this framework, the RSVPack packing algorithm is implemented. 
The RSVPack algorithm can accept a design synthesized using the commercial Xilinx CAD tools, 
pack designs which make use of the many features of commercial FPGA architectures and return 
the packed designs to the Xilinx CAD tools to be placed and routed in their software. This enables 
researchers to isolate the packing portion of the algorithm from the commercial flow and evalu-
ate different packing techniques while allowing the high-quality commercial tools to perform the 
remainder of the flow. Integrating the RSVPack algorithm the commercial flow shows RSVPack 
produces packing which lead to circuits with minimum clock periods within 10%, on average, of 
circuits generated using the pure Xilinx flow.

Included in this work is a novel table lookup-based algorithm which RSVPack utilizes to 
quickly determine the routability of a cluster. This algorithm performs 5 times faster on average 
than the current academic alternatives. Finally, using RSVPack, this dissertation explores various 
techniques for improving the quality of packing for Xilinx circuits. Together, this demonstrates the 
potential for academic research into FPGA CAD tools for commercial architectures.

Keywords: FPGA, packing, Xilinx, algorithms
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CHAPTER 1. INTRODUCTION

Publicly available research into FPGA CAD algorithms and frameworks is important in

opening up exploration of novel concepts relating to the FPGA CAD flow to the academic research

community. The availability of this information and these tools enables new techniques to both the

general CAD flow as well as special applications, such as FPGA reliability and security that may

not be addressed by the FPGA vendor tools. Because the commercial vendors do not release their

algorithms and internal tools to the public, it is necessary for people interested in researching

new algorithms and flows to develop their own tools. For the remainder of this dissertation, the

public information on CAD tools available in the public research literature will be referred to as

“academic”.

Academic research into CAD algorithms for commercial FPGA architectures has been hin-

dered by a lack of CAD infrastructure for these devices. As commercial architectures have added

advanced features and capabilities to the configurable logic blocks (CLBs), academic frameworks

and algorithms have settled for working with FPGA architectures, like those used in [1], that re-

semble less and less the architectures available from the commercial vendors.

The traditional architecture used in academic research is comprised of a collection of CLBs

made up of multiple LUT/flip-flop (FF) pairs, called logic elements or LEs, like the one shown

in Figure 1.1a. In contrast, the LEs found in recent commercial architectures, like the one in

Figure 1.1b, contain many special-purpose components connected with sophisticated routing and

often interact with other LEs in the same CLB. Additionally, each of the LEs in the CLBs in these

architecture have slight variations leading to an irregular structure in how they interconnect.

Packing algorithms for FPGAs are especially affected by the added complexity of the

CLBs. Packing is a step in the traditional FPGA CAD flow (Figure 1.2) and which is respon-

sible for assembling the LUTs, FFs, and other basic components into relatively-placed structures,

called clusters, that map onto the CLBs. Packing is, therefore, responsible for handling the highly-

1



constrained routing environment and other constraints associated with the CLBs, thus simplifying

the task of the subsequent global placer. Packing also acts as a localized placement step in the

flow and uses algorithms suited to grouping closely related logic to reduce the number of nets that

spread to different CLBs.

The added complexity found in the commercial CLBs but which is not present in the aca-

demic CLBs adds many requirements to the packing algorithms. Additional requirements include

verifying that a valid routing path exists between elements in the CLBs and ensuring various de-

sign rule constraints, such as requirements that certain LUTs in the CLB be used, of the CLBs

are satisfied. The traditional academic architectures typically do not require these routing checks

as valid routes always exists. Additionally, the academic architectures typically do not have any

design rule constraints that must be met.

LUT FF
D

D

Q

Q

F7MUX

LUT6

LUT5

LUT5

Carry Chain

FF6

FF5

CIN

COUT

AX

AMUX

AQ

A

O6

O5

= Configuration Mux

Figure 1.1: A Traditional Academic LE (1.1a) vs a Virtex 6 LE (1.1b)

The discrepancy between commercial architectures and the architectures used in academic

research is partly due to the lack of publicly available frameworks capable of representing the more

complex commercial architectures. To work with commercial architectures, packers depend on a

faithful representation of the CLB architecture and on input from good front-end synthesis and

technology-mapping tools that can target the features of the CLBs.

Additionally, a framework that accurately represents a commercial architecture opens up

the possibility of integrating the packer into a commercial flow. Integrating academic algorithms

into the vendor’s tools chain allows the particular step being explored to be evaluated in conjunction

with the vendor tools. As the commercial vendor tools are generally of high-quality, using the

vendor tools helps isolate the exact impact a new technique to a specific part of the CAD flow

has on the final circuit. In contrast, when using a purely academic flow, different inefficiencies

in the tools may compound, possibly hiding the effect of a new technique to a certain part of the

2



Figure 1.2: The Traditional CAD Flow

flow. Integration of academic tools with the commercial flows also provides access to the different

analysis tools provided by the vendors.

Through use of the Xilinx XDL language and tools [2], the RapidSmith framework [3] has

created a pathway for integrating custom CAD tools with the commercial Xilinx CAD flow. With

RapidSmith, designs can be exported from the Xilinx ISE tool chain, modified, and re-imported

back into the ISE tool chain. This has enabled large amounts of research that is targeted at Xilinx

FPGAs that previously could not be performed [4–16]. This pathway, however, is limited to mod-

ifying fully packed designs. While modifying the packing of designs is possible in RapidSmith,

the work of manipulating the text attributes is tedious and difficult to automate. This, along with

the lack of a traversable routing graph of the internal structure of the sites makes creating custom

packers using RapidSmith infeasible.

As part of this work, I present RapidSmith 2 [17], which provides improvements to the

original RapidSmith framework that enable the creation of custom packers for Xilinx FPGAs.

3



Packing algorithms created using the RapidSmith 2 framework can be integrated into the Xilinx

tool flow, enabling the user to evaluate the packing portion of the flow in conjunction with the ISE

CAD flow. Furthermore, once integrated into the ISE tool chain, the timing and power impacts of

the algorithms can be evaluated using the vendor software and the circuits produced with the tool

can be programmed onto physical hardware.

Using RapidSmith 2, I have developed the RSVPack packing algorithm capable of creating

legal packings of designs for Xilinx FPGAs. This algorithm is integrated into the Xilinx ISE CAD

flow; it accepts a Xilinx technology-mapped netlist as input and returns a packed netlist for Xilinx

to place and route. The resulting circuit is then evaluated using the Xilinx timing analysis tool. This

dissertation will describe the RSVPack algorithm and present solutions to the various challenges

related to packing a commercial architecture. Using RSVPack, this dissertation then explores the

impact packing has on circuits targeted at Xilinx FPGAs and evaluates different techniques for

improving the quality of packed circuits coming from the packer.

1.1 Contributions of this Work

This work presents the following contributions:

• It provides the RapidSmith 2 framework, an extension to RapidSmith, that enables the cre-

ation and modification of the packing of designs targeted at Xilinx FPGAs. This framework

is publicly released online as open source.

• It presents the RSVPack packing algorithm that is capable of packing a design targeted at

a Xilinx FPGA. The algorithm in this work is adapted for the Xilinx Virtex 6 and 7 FPGA

architectures and differs from previous algorithms in that it:

– identifies and performs a set of checks to ensure all unique requirements of the Virtex

6 architecture, in addition to general requirements for packing, are satisified,

– uses a new method to quickly determine if a legal routing exists for a cluster which

runs 5 times faster than the speculative packing approach described in [18].

• It describes approaches to discovering design rule requirements of the architecture and cre-

ating rules to ensure those requirements are addressed by the packer.
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• It presents two flows for integrating the RSVPack algorithm into the Xilinx CAD flow. One

flow uses a Xilinx placer while the other uses an academic simulated annealing placer and

provides more visibility into and control of the placement to the user.

• It compares circuits packed using both RSVPack and Xilinx’s packing using wire length,

clock rate and tool run time as metrics.

• It evaluates different techniques for improving packing for designs targeted at Xilinx devices

including:

– comparing the impact of packing at different levels of the device hierarchy and

– comparing the impact of looking at cells both one and two hops away from the cluster.

1.2 Dissertation Organization

This dissertation is divided into six chapters:

• Chapter 2 provides background necessary for understanding the remainder of the disserta-

tion. Included is a review of the traditional FPGA and Xilinx ISE CAD flows, the XDL tool

set, and RapidSmith. This chapter also reviews prior work in academic FPGA frameworks,

CAD flows and packing algorithms.

• Chapter 3 describes the extensions to RapidSmith published in RapidSmith 2 and how they

enable creating and modifying the packing of Xilinx-synthesized designs.

• Chapter 4 presents the RSVPack packing algorithm and describes the challenges involved

with packing a commercial FPGA and the solutions to those challenges. It then presents

RSX and RSV flows for integrating the RSVPack algorithm into the Xilinx ISE CAD flow.

Finally, it presents the performance of the algorithm when using the two flows.

• Chapter 5 details experiments that have been performed using RSVPack to analyze the best

approaches for packing for Virtex 6 FPGAs.

• Chapter 6 summarizes the results and contributions of this dissertation and gives sugges-

tions for future work in this area.
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CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Xilinx FPGA Architecture

Xilinx structures their FPGAs into three levels of hierarchy. The elements at each level,

from top to bottom, are called tiles, primitive sites or simply sites, and Basic Elements of Logic or

BELs (Figure 2.1).

BEL

BEL

BEL

Site

Tile

Figure 2.1: Hierarchy of a Xilinx Tile

2.1.1 Tiles

Xilinx architectures are organized as a two-dimensional grid of tiles with columns alter-

nating between logic performing tiles and one or more associated interconnect tiles, also called

switch boxes (Figure 2.2). The logic performing tiles contain a collection of different functional

components. Examples of tiles include the CLBs, DSPs (hard multipliers), and BRAMs (on-chip

memories).

In general, each column consists of a single type of tile replicated from the bottom to the top

of the chip. With the exception of a few dedicated carry chain wires which connect adjacent tiles
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(not shown), all routing between the logic performing tiles in the device is accomplished through

the switch boxes.

Figure 2.2: Device Arranged as a Grid of Tiles

Switch boxes contain the wires that make up the general routing fabric of the FPGA. Each

switch box is made up of wires that a) connect the switch box to its associated logic performing

tile, b) connect the switch box to other nearby switch boxes, and c) connect to other wires within

the switch box (Figure 2.1.1). Connections between wires within the switch box can be controlled

by enabling or disabling a programmable interconnect point (PIP). The PIPs provide most of the

routing flexibility of the FPGA.

Unlike other FPGA architectures [19,20], Xilinx FPGAs do not contain an explicit routing

crossbar inside the logic performing tiles. Instead, outputs from the logic performing tiles must

all exit to the switch box, even if their nets immediately return to the same tile they came from.

This implies that the resources for routing elements in the same CLB (local routing resources) are

shared with the global routing resources.

Most connections coming from the logic performing tiles connect to wires that leave the

switch box. However, the switch box does provide a limited number of routing paths that connect

the outputs of the logic performing tiles directly back to their inputs without requiring the net to

leave and return to the switch box. In the case of slices, which will be discussed ahead, many of

these connections connect the two different slices in the CLBs. A packer that makes use of these

connections can create circuits that use fewer wires and run faster.
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Figure 2.3: Connectivity Inside a Switch Box

2.1.2 Sites

Each of the logic performing tiles is comprised of one or more sites. The sites in turn are

composed of a number of BELs connected by muxes. All of the functional circuitry is contained

within the sites with the containing tile only connecting wires from the switch boxes to the sites.

The functionality of a site is determined by its type, with the type determining the pins, BELs,

routing and possible configurations of the site. For example, sites of type SLICEL and SLICEM

contain LUTs, FFs and other associated logic, while sites of type IOB contain the input/output

circuitry for the FPGA. In some cases, a site can be represented as one of multiple possible site

types. For example, some slices in the device can be of type SLICEM, which allows the LUTs to

be configured as LUTRAMs, or as SLICEL, which does not allow LUTs to operate as LUTRAMs.

In the Virtex 6 architecture which is used in this work, many of the sites, such as the DSPs

and BRAMs, consist of a single BEL with a set of configuration properties. The configuration

properties of these BELs are determined by the synthesis and technology-mapping tools and pack-

ing these resources into a site is trivial. The most common sites, the slices, however, have their

contents exposed and the selection and arrangement of the LUTs, FFs and other resources in slice

can be determined by the packer.
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Figure 2.4: A Xilinx Virtex 6 CLB and Adjacent Switch Box

Slices

Slices are sites in Xilinx FPGAs which contain the LUT/FF pairs. In recent Xilinx FPGAs,

slices also contain other structures, such as carry chain circuitry and other circuitry, all connected

together by an intricate routing environment. In Virtex 6, each CLB tile contains two independent

slices. All routing between the two slices must pass through the adjacent switch box. Each slice in

turn contains four similar, but not identical, units of closely coupled resources referred to as logic

elements (LEs). The Virtex 6 slice and CLB structure and the LE are shown in Figures 2.4 and 2.5,

respectively.

The features in each LE include:

• A 6-input LUT (6-LUT) which can be treated as two 5-input LUTs (5-LUTs) sharing the

lower five pins.

• LUTRAM capabilities for the LUTs in SLICEM type slices. When a LUT is configured as

a LUTRAM, the LUT can operate as either a 32 deep by 1 bit wide RAM or as a 16-bit

shift register (SRL). The LUTs in the SLICEMs are also connected with additional routing

facilitating the combining of multiple LUTRAMs into larger or more complex RAM or shift

register types.
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Figure 2.5: A Xilinx Virtex 6 Logic Element

• An F7 or F8 mux, depending on the LE in the slice, that can combine either two or four

6-LUTs in the slice together to perform a 7 or 8-input logic equation. Each slice contains

two F7 muxes which feed into one F8 mux. These muxes couple two adjacent LEs.

• A carry logic component which is shared between all LEs in the slice. This component

provides additional circuitry which can be used in conjunction with the LUTs to implement

chains of adder circuitry. The carry component supports a carry-in signal and a carry-out

signal to chain multiple slices into larger adders. The carry logic could be broken into 4 in-

stances of a 2-to-1 mux and a 2-input XOR gate – one instance for each LE – but we treat it

as a single unit to match the representation made available from Xilinx.

• Two FFs, one – the FF5 – with a D input configured to come from the O5 LUT output or the

AX site input pin and the other – the FF6 – shared between the different components in the

LE. The FF6 supports additional functionality including acting as a latch or a 2-input AND

gate.

• A dedicated output (A) for the O6 LUT output and an output (AMUX) shared between the

different components in the slice. The AMUX output is frequently a point of contention

when trying to fill the slice during packing.
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To achieve the best possible circuits, it is important for a packer support using each of these

features.

2.2 FPGA CAD Flow

2.2.1 Traditional CAD Flow

The FPGA CAD flow converts a user design expressed at the register transfer level (RTL),

usually described in a hardware description language, into a placed and routed bitstream for a

specific FPGA. A produced circuit is valid if all of the components can be placed and routed using

the resources available in the FPGA and if it satisfies all of the user provided constraints. User

constraints typically include power and clock rate requirements.

To simplify the task, CAD flows are typically broken up into multiple steps. The steps in

the traditional flow are synthesis, technology mapping, packing, placement and routing (left side

of Figure 2.6 and Table 2.1). The combination of these steps is referred to as the implementation

process and the resulting circuit as the implemented design.

Table 2.1: CAD Flow Stage Inputs and Outputs

Step Input Output
Synthesis RTL netlist netlist of gates
Tech Mapping netlist of gates netlist of cells
Packing netlist of cells netlist of clusters
Placement netlist of clusters placed circuit
Routing placed circuit routed circuit
BitGen routed circuit bitstream

Synthesis is the first step in the CAD flow and involves translating a design expressed in

RTL into a gate level netlist. Technology Mapping translates the gate level netlist from synthesis

into a netlist of LUTs, FFs, and other specialized components present on the FPGA. In this work,

the nodes of the netlist produced by the technology mapper are called cells. Each cell performs a

different logical or memory function and can be placed onto a single BEL in the device.
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Figure 2.6: Correspondence Between the Traditional and Xilinx ISE CAD Flows

Packing groups the cells into structures called clusters. Clusters represent an unplaced,

logical instance of a physical structure in the FPGA into which cells are packed. The cells are

packed into relative locations within the cluster determined by the associated physical structure for

the cluster. Possible physical structures that can be represented by a cluster include, but are not

necessarily limited to, the different sites and tiles in a device. With the exception of the experiment

in Section 5.3, clusters in this work are based on the sites in the device.

Packing serves as an early localized placement phase in the flow and uses algorithms crafted

for assembling clusters of related logic [18]. Packing serves three purposes: first, it identifies and

groups related logic into a single logical group to reduce the amount of routing between different

tiles; second, it separates the rich intersite routing from the constrained routing environment inside

the slices; and last, it ensures the many architectural requirements of the slices are satisfied for the
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circuit. The second and third purposes simplify the job of the subsequent global placer allowing it

to perform its role more efficiently .

Placement finds physical locations on the FPGA for each of the clusters created during

packing. Simulated annealing is a popular algorithm used for placement, though analytical place-

ment algorithms have been proposed that scale better with the increasing sizes of FPGAs [21, 22].

Routing finds valid, non-conflicting paths in the device’s programmable routing network connect-

ing net sources to their sinks. Bitgen completes the flow by converting a placed-and-routed circuit

into a bitstream that can be programmed into an FPGA’s memory to configure the device to perform

the desired function.

This research focuses primarily on maximizing the clock frequency of the circuits. This

is for two reasons: first, many designs focus on throughput and the ability of the tools to achieve

a faster clock rate allows the designer to increase the operating frequency of the design. Second,

the ability to find a better circuit improves the chances that a provided set of constraints can be

satisfied. Achieving the desired operating frequency is one of the hardest challenges in circuit

design and the better the solution the tools can find, the faster a designer can complete his or her

circuit.

2.2.2 Xilinx ISE CAD Flow

Prior to its release of Vivado, Xilinx used its ISE software suite for its CAD flow. This flow

generally follows the traditional FPGA CAD flow but occasionally merges multiple steps into a

single process. The algorithms used in each process are treated as trade secrets and are not public

knowledge. The ISE CAD flow and its general relationship to the traditional CAD flow is shown

in Figure 2.6. The ISE flow diverges from the traditional flow in that ISE groups synthesis and

technology mapping into a single xst executable and also groups packing and placement into a

single map executable. par routes the placed designs.

Prior to Virtex 5, ISE contained distinct packing and placement phases with packing being

performed in map and placement done in par. While placement for newer devices has been moved

into map, the old placer in par can still be used to re-place circuits targeted at the newer devices

though the tool reports that the feature is deprecated. The work presented in this dissertation takes

advantage of the placer in par to avoid using a custom placer in most cases.
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2.2.3 Academic CAD Frameworks

Commercial CAD tools are almost always proprietary with their techniques and frame-

works not being available to the academic community. To support open research into FPGA CAD,

a few public frameworks have been developed and released that model FPGAs with varying degrees

of capabilities. These frameworks provide architectural descriptions necessary for developing au-

tomated CAD algorithms.

Versatile Place and Route

Versatile Place and Route (VPR) [1] is one such framework which supports both FPGA

architecture and CAD research. VPR provides users the ability to describe FPGA architectures

with various amounts of available routing and sizes of CLBs and a suite of CAD tools to implement

designs onto these architectures. This suite of CAD tools includes packing, placement, and routing

algorithms but contains no automated front-end synthesis. With the framework, researchers can

evaluate the effects of changes to the architectures such as varying the number of routing tracks

leaving a tile or the number of LEs in the CLBs and can explore new CAD algorithms.

VPR is, however, limited to only representing logic blocks consisting basic LUT/FF pairs.

This has prevented VPR from representing commercial architectures; limiting it to exploring only

basic FPGA architectures. Missing from the basic architectures supported by VPR are carry chains,

specialized components and the routing connecting these features. The lack of these features meant

that packing algorithms targeting VPR architecture only needed to identify which LUT/FF pairs

should be packed together without needing to support other components are determining if such

blocks even could legally be packed together. Nevertheless, the availability of VPR, along with its

accompanying CAD suite, has led to it serving as the backbone to academic FPGA CAD research

for several years [23–26].

Verilog-to-Routing

In recent years, the Verilog-to-Routing (VTR) framework [27], an update to VPR, has been

released to address the increasing disconnect between the FPGA model in VPR and commercial
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FPGAs. The update adds support for modeling many of the complex hardware features found in

current FPGAs and a CAD flow to support these features. This release includes:

• the ability to represent advanced features including “fracturable” LUTs (LUTs that can be

treated as a single larger input LUT or as multiple smaller input LUTs), carry chains, and

arbitrary routing in the logic blocks,

• integration with the ODIN-II [28] and ABC [29] synthesis and technology-mapping tools,

and

• back-end implementation tools which support for the complex features found in the logic

blocks.

This update substantially improves the ability of VTR to support recent architectures. How-

ever, VTR still does not support full integration with any commercial CAD flows. Further, VTR

cannot fully model Xilinx architectures without extensive modifications.

Virtex 6 in VTR

Hung et al., in [30] and [31] describe work towards representing a Virtex 6 device in VTR

and integrating the VTR CAD flow with Xilinx ISE. As part of this work, Hung created a VTR

architectural description of a subset of the Virtex 6 FPGA, implemented designs on this architecture

using the VTR CAD flow and imported the designs into the ISE tool chain.

This work had the following limitations. First, the VTR portion of the flow could not accept

a Xilinx synthesized netlist. The input had to come from VTR’s own front-end synthesis. Hung

found that VTR produced a the lower quality synthesis than Xilinx and this lower quality synthesis

result accounted for a significant deterioration in the average critical path delay [31]. Second, the

modeled slice lacked important features including:

• the F7/F8 muxes (see Figure 2.5),

• the LUTRAM and SRL capabilities of the SLICEMs, and

• the slice clock enable and set/reset signals.
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While these device features likely could be described in VTR’s architectural model, they

are not supported by VTR’s synthesis and therefore would be unavailable to the rest of the flow

even if they were implemented. Features that VTR’s synthesis tool cannot target include the LU-

TRAM capabilities of the LUTs and the F7/F8 muxes. Making use of these features is important

in reducing the area and delay required to implement a design. For example, a 7-input function can

be implemented with two LUTs and an F7 mux but requires three LUTs if the F7 mux is not used

– a 50% increase in area. In addition, the lack of these features masks many additional challenges

inherent in packing commercial CLB structures such as verifying that incompatible features are

not used within the same slice.

The Xilinx synthesis output contain cells that directly map to these features. As such, to

fully integrate a custom packer into the ISE flow, the packer must be able to properly accept and

handle these features.

2.2.4 Academic Packing Algorithms

Over the years, researchers have proposed many different packing algorithms for FPGAs.

Most of these packing algorithms use either a seed-based or a partitioning-based heuristic. In

the seed-based approach, clusters are constructed by seeding a new cluster with an unpacked cell

and then greedily filling the cluster until it is complete. These algorithms are useful as they have

relatively simple implementations and are easy to modify and explore new optimization criteria.

The VPack and T-VPack packing algorithms [32] from the VPR CAD suite are seed-based

algorithms. These algorithms work by first packing the LUTs and FFs into basic LUT/FF LE pairs

and assembling the clusters from these LE pairs. Many published packing algorithms build on

these algorithms by altering the metrics used for identifying good seeds and LEs to add to the

cluster [33–36].

In partitioning-based packing algorithms, the design is repeatedly split into smaller par-

titions until the partitions can fit into the sites. In contrast to seed-based packing, partitioning

algorithms provide a global approach to packing and can often yield circuits with less wire length

than seed-based algorithms [37] [38]. While partitioning algorithms work well when packing sim-

ple LEs into clusters, these algorithms struggle to handle the constraints present in commercial

devices.

16



Packing for More Complex FPGAs

Most publicly available research into packing algorithms has been based on logic blocks

comprised of the basic LEs found in VPR. Recent commercial FPGAs, however, use logic blocks

which include structures such as carry chains, multiple FFs per LE, dual-output “fracturable” LUTs

and high-input multiplexers connecting LEs. [39] explores how the use of these complex features

can improve general circuit quality.

The AAPack algorithm [40] is an update to T-VPack included in the release of VTR to

handle the more complex logic blocks supported by the VTR architectural model. AAPack, like

T-VPack, uses a seed-based packing heuristic. However, instead of initially building the simple

LE structures used in VPR, AAPack is designed to assemble its clusters from a set of cells. One of

VTR’s primary focuses is on being compatible with the large number of complex cluster structures

describable by VTR’s architectural description capabilities.

The AAPack algorithm works by seeding a cluster with a single cell and then greedily

filling the cluster with related cells. When a cell is absorbed into the cluster, the algorithm must

confirm that the elements inside the cluster can be legally routed. Verifying that valid routes

exist for all nets in the cluster can be a slow process so AAPack uses a set of techniques such

as speculative packing and pin counting to avoid performing a full routing feasibility check after

packing each cell whenever possible. These optimizations are described in [18].

As part of my research, I have found that difficulties emerge when applying AAPack to Xil-

inx architectures. First, AAPack does not contain any mechanism for checking for device specific

requirements. For example, with Virtex 6, FFs can be either rising edge or falling edge sensitive,

but all FFs in a slice must be configured the same. AAPack contains no built-in means of enforcing

this rule.

Second, while speculative packing and pin counting is an improvement over conventional

techniques for determining if a cluster can be legally routed, the complexity of the routing inside

the slices lead to pin counting mispredicting routability at a high rate limiting its usefulness. This

is further discussed in Section 4.3.

Last, to support some structures in the slices, the packer must enter into an illegal state be-

fore resolving to a legal state. AAPack supports “prepacking” that will enable predefined patterns

to be defined to ensure multiple cells are packed together, but this requires the user to identify all
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such cases and moves some of the decision making outside of the main packing algorithm. The

packer described in this work instead uses a conditional mode described in Section 4.2.3 to support

these structures without needing to predefine each of them.

In contrast to the pure seed-based approach of AAPack, [41] merges partitioning-based

packing and seed-based packing to pack VTR-described FPGAs. The proposed algorithm initially

partitions the design into smaller units and then uses AAPack to pack the partitions into clusters.

This allows a seed-based packer to handle the constraints on the slices while using a partitioning

algorithm to split the cells into clusters. This approach also allows for increased parallelism that is

difficult to achieve with a seed-based algorithm.

Combining Packing and Placement

Most academic CAD flows separate packing and placing into independent steps. Some

research has looked at either guiding the packing with placement information or at modifying the

packing during placement. In [42], a simulated-annealing placer is augmented with an additional

move type that swaps LEs. This allows the placer to move LEs that hinder the placer from finding

better results. The authors extend this work in [43] to include duplication of logic during placement

leading to modest improvements in maximum clock frequency. Lastly, [44] improves T-VPack by

guiding the packer with predicted placement information obtained from a quick, low-quality placer.

2.3 Xilinx Design Language and RapidSmith

Ideally, academic CAD tools should be integratable into commercial flows. This would

enable the tools to make use of the different tools available in the commercial toolchains and allow

for generation of bitstreams of designs created using the academic tools.

However, compatibility with commercial CAD tools and architectures has been hampered

by the closed nature of commercial tools. Xilinx ISE, though, exposes much of the information

stored in its proprietary device and circuit description files through the Xilinx Design Language

(XDL) tools. Through XDL tools, users can obtain information about the architecture of a Xilinx

FPGA in a text-based XDLRC format and convert both partially and fully-implemented designs

stored in the proprietary native circuit description (NCD) format to a human readable XDL format
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and back. Combined, these tools have enabled researchers to integrate custom CAD tools into the

Xilinx flow and produce bitstreams of circuits employing their custom modifications [6, 9].

2.3.1 XDLRC File Format

The XDL tools expose the components of a Xilinx FPGA and its layout in the XDLRC

format. This format is human-readable and lists every tile, site and wire in a device along with

their positions in an x-y grid. Additionally, it describes the BELs, muxes and other configurations

in the sites in a primitive defs section. The XDLRC format, however, does not provide any delay

information for the wires or components in the device. A portion of an XDLRC file is shown in

Figure 2.7.

Figure 2.7: Sample of an XDLRC Device Description

2.3.2 XDL

The XDL tools expose the design netlist of a technology-mapped user design in the XDL

format. The XDL format is a human-readable representation of the Xilinx NCD circuit description

format and presents designs as a set of instances interconnected by nets. Designs in XDL format

may optionally contain placement and routing information [2].

The instances in XDL are logical representations of structures that correspond to sites on

the FPGA. The configurations of LUTs and flip-flops in the design are stored as text attributes in the

configuration of the instances. Figure 2.8b presents a simple XDL netlist of the 4-bit adder shown
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Figure 2.8: A 4-Bit Adder Netlist (a) and its XDL Representation (b)

in Figure 2.8a which contains two instances (slices) connected by a carry chain. The attributes F

and G in the XDL are attributes which describe LUTs in the slices and their configurations and the

attributes CYINIT and FXMUX describe the routing in the slices.

2.3.3 XDL/ISE Interoperability

While XDL is useful for exploring and manipulating Xilinx implemented circuits, the true

power of XDL is in its interoperability with Xilinx ISE. The XDL tools provide the ability to

convert designs back-and-forth between Xilinx’s proprietary NCD format and public XDL format.

As shown in Figure 2.9, this conversion can occur either between placement and routing or after

routing. If desired, a user could also create their own netlist from scratch to give to Xilinx.

Since Virtex 5, ISE no longer separates packing and placement into different processes.

However, Xilinx still provides access to a placer in par which can be used to re-place a design

which can be enabled by removing the P3 PLACED design attribute from the XDL. This adds an

additional entry point back into the ISE flow between packing and placement.

The ability to extract designs from different phases of ISE’s CAD flow, to make modifi-

cations and then to reimport them into ISE opens the way for many novel tools targeted at com-

mercial architectures. These tools include alternative CAD flows, circuit analysis software and

post-placement/routing circuit modification techniques. The ability to reimport the design at sev-

eral possible stages of the CAD flow allows researchers to operate on a design at their desired stage

and allow Xilinx to handle all other phases of the flow.
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Figure 2.9: Steps in the ISE Tool Chain Where Designs can be Converted to XDL

2.3.4 RapidSmith 1

RapidSmith 1 [3], or RS1 for short, is a Java-based open source framework for viewing

and modifying XDL-based netlists and XDLRC device descriptions. Like Torc [45], the RS1

framework enables exploration of new algorithms for and approaches to the CAD flow for Xilinx

FPGAs. Such exploration includes, among other things, novel algorithms for floorplanners, plac-

ers, and routers, and enables research in areas such as FPGA security [15], reliability [12, 13] and

productivity [7, 9, 46].

To permit CAD exploration, the RS1 framework provides both a logical netlist to represent

designs and a physical description of the FPGA’s resources. The physical device description is

obtained from processing the XDLRC device description files and is presented in the Devices API.

This API exposes the tiles and sites in the device and their physical locations. Wires and their

connections are stored in a graph structure that enables traversing the routing resources of the

FPGA. RS1 does not include support for exploring the sub-site structures.

The logical netlist found in the Design package of RS1 enables easy manipulation of de-

signs. RS1 can both import its designs from and export its designs to XDL in both placed and

placed-and-routed forms. Like XDL, the netlist structure in RS1 is based on a collection of in-

stances connected by nets. RS1 provides methods for easily creating and modifying these netlists,
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placing the instances and routing the nets. These methods make it simple to write sophisticated

tools for analyzing, creating, and modifying designs for Xilinx FPGAs.

Designs in RS1 are based on Xilinx architectures and, because of XDL, can be returned to

the Xilinx ISE tool flow. By being interoperable with the ISE CAD suite, RS1 allows researchers to

focus on the problems of interest and leave other aspects of the flow to the Xilinx tools. By working

with designs for real devices, RS1 provides researchers with the flexibility of a research tool while

preserving the rigor, detail and accuracy required by a modern FPGA and allows researchers the

ability to see their work be realized as bitstreams for physical FPGAs.

Despite its usefulness, RS1 does have a significant limitation; namely, that due to its close

relationship with XDL, it only provides visibility down to the site level. While the instances do

contain the information stored as text attributes, manipulating these attributes in any significant

way can be tedious. Further, the lack of physical information about the device at this level hinders

any exploration of tools and algorithms attempting automated manipulations of the BEL-level

netlist. This limitation makes using RS1 impractical for creating and modifying the packing of a

design.

22



CHAPTER 3. RAPIDSMITH 2

While the XDL language, with the support of RapidSmith 1, provides the ability to view,

create and modify the packing of a design through manipulating the attributes of an instance, this

process is error prone and tedious. By themselves, the text attributes in the instances provide

little context to the type of resource they represent and to the connectivity between the elements.

As such, to directly modify these attributes requires the user to have a deep understanding of

the meaning of each of the attributes and the structure of the sites. The lack of a traversable

netlist structure describing the connections between these elements also complicates automating

modifying the packing of the instances.

To support the creation of a packing algorithm for Xilinx FPGAs, I have updated RS1

to expose the internal circuitry of the sites and decomposed the instances into a netlist of the

individual components. This update, called RapidSmith 2 [17], or RS2 for short, provides the

ability to explore the BELs in the sites and the connections between them, a netlist of the individual

components in the instance (cells), and a process of converting between this netlist format and

XDL. RS2 extends the device structure from RS1 to include the BELs in the sites and the routing

connecting them (Figure 3.1). The instance-based netlist from RS1 has been replaced with a new

cell-based netlist. Through all of the changes made to RapidSmith, compatibility with XDL is

preserved allowing designs to be imported from and exported to Xilinx ISE.

The most recent version of RS2 adds support for Vivado integration. This will enable

RapidSmith to continue supporting the latest Xilinx architectures. The source code for the latest

release of RS2 is distributed online at

https://github.com/byuccl/RapidSmith2 under the GPLv3 license. Due to Vivado only recently

being supported in RS2 and the frequent changes to RS2 as support for Vivado was added, the
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Figure 3.1: The Extended Device Representation in RapidSmith 2

work described in this dissertation uses an older version of RS2. This means that the work in this

dissertation focuses only on ISE, XDL, and an ISE compatible architecture.1

3.1 Subsite Device Representation

RS2 adds new classes to device representation in RS1 to expose the subsite device struc-

tures (the shaded portion in Figure 3.2). The additional classes represent the BELs, wires, and

connections that exist within the sites in the Xilinx device hierarchy. These new structures allow

users to programmatically explore the components and connections within the sites without the

need for an in depth understanding of the structure of the site.

The subsite structure is represented as a collection of BELs for each site connected by a

traversable routing graph. This graph provides the connections between the wires, BELs and site

pins inside the site and can be traversed using standard graph algorithms. The routing graph is built

using the same data structure used to represent the intersite routing in RS1 [47].

In the routing graph, routing muxes in the sites are treated as a set of PIPs each connecting

to the same output wire. The pins on the BELs each attach to a wire on the routing graph. Wires

that reach the edge of the site connect to site pins which act as the boundary between the subsite

and tile level hierarchies. This makes it easy to transition between one hierarchy and the other

while providing a distinct break between the two routing graphs.

1The differences between the version of RS2 used in this work and the released version are minor and should not
affect any of the results in this dissertation. Differences between the versions are listed in Appendix B. This algorithms
described in this work are currently being ported to the latest version of RS2 and will be updated to support Vivado
and the new FPGA architectures supported by Vivado.
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Figure 3.2: The Site Level Hierarchy (shaded) of Xilinx FPGAs

As many BELs and connections within the site will not be used in a normal design, RS2

conserves memory usage by creating a single representation, stored in a site template, for each

site type in the device. This template contains all of the information about the BELs and routing

for its particular site type. Upon requesting a BEL or wire in a site, RS2 will dynamically create

the desired object for the site. This limits the subsite resources that exist in memory to only the

resources that are used by the design and makes it easier to represent sites that may be represented

as different types (refer to Section 2.1.2). When the type of a site is changed, the site simply

updates its backing template to the template for the new site type.

3.1.1 Building Site Templates

The site templates are built primarily from the information contained in the primitive defs

section of an XDLRC device description. The primitive defs section of the XDLRC file de-

scribes the various components, muxes and configurations for each type of site in a device. RS1

built a parse tree of this section but performed no further processing of the elements in this sec-

tion. To my knowledge, no other publicly available tools provide an extensive break down of the

components in this section and their meanings.

The primitive defs section contains a primitive def for each site type in the device.

All sites that are configured as that type use the structure and properties described in the corre-

sponding definition. Inside each primitive def is a description of the different components,
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Figure 3.3: An XDLRC Primitive def (left) with its RapidSmith 2 Representation (right)

pins, and configurations for that site type. Each element describes a unique property or component

of the site along with the pins on the component and the connections between the elements, but the

exact meaning of each element in the description is not always immediately clear.

RS2 processes each primitive def to build the site templates for the device. Each el-

ement in a primitive def is translated into a different structure in the corresponding template.

Figure 3.3 shows an example of a primitive def converted into a site template. The elements

in the primitive def look similar to one another and XDLRC provides little help in determining

what kind of structure each element describes. However, with a little analysis, the elements can be

categorized as one of the four types that RS2 translates in a specific way – types for each element

in Figure 3.3a are on the left. The element types and the manner in which they are processed are:

• Site pin elements (elements SPI and SPO in Figure 3.3) which correspond to pins on the

edge of a site. RS2 creates a site pin object for each site pin element. The site pin objects

connect to both a wire outside of the site, defined in the description of the site in the XDLRC,

and a wire inside the site.

• Site configuration elements (element SYNC ATTR in Figure 3.3) which describe config-

urable attributes of the BELs or of the site as a whole. While these configuration attributes
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are used in the design representation, they provide no useful context for the site templates

and are ignored in the site representations.

• BEL elements (BEL EL in Figure 3.3) which describe BELs in the site. RS2 creates a BEL

object for each BEL element in a primitive def and connects each pin on the BEL to a

unique wire in the routing graph. BELs in RS2 are black boxes and, if needed, it is up to the

user to understand the functionality of each BEL.

• Routing mux elements (MUX EL in Figure 3.3) which describe statically-configurable

muxes in a site. No distinct mux objects are created to represent the muxes. Instead, mux

elements are translated into connections within the routing graph for the site. As with BELs,

RS2 connects each pin on the mux to a unique wire. It then creates a PIP connection from

each input wire to the output wire in the routing graph.

The site pin, BEL, and routing mux elements in XDLRC each contain a set of conn ele-

ments which describe how the different elements are connected within the site. RS2 uses these

conn elements to create the connections between the wires in the routing graph for the template.

While most of the information needed to build the site templates is obtained from the

primitive defs section of the XDLRC device description, some additional information is re-

quired to fill in missing details and correct some seemingly erroneous descriptions in the XDLRC.

This information must be assembled by the user for each supported device family and is stored in

a family info.xml document. This additional information provided in this file includes:

• the different site types that each site can be represented as,

• a set of corrections to elements that are mislabeled as BELs in the XDLRC but function as

configuration muxes, and

• an identification of a class of muxes, polarity muxes, that optionally invert a signal entering

the site. These muxes, such as the mux shown in Figure 3.4, are problematic as the inverters

on the input pins of the muxes are not explicitly represented, making the two inputs look

identical. Furthermore, the configurations for these muxes in the design netlist are stored as

a property on the cells that are driven by these muxes. To handle these polarity muxes, RS2
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removes the mux elements in the XDLRC and replaces them with configuration elements

(which are ignored during the site template creation process).

CLKINV

Figure 3.4: A Polarity Mux Schematic (left) and its XDLRC Representation (right)

When building the site templates, RS2 reads in the additional information stored in the

family info.xml file and applies it to the templates being built. Additional information on the

device representation and the family info.xml file can be found in the RS2 documentation [48].

3.2 Design Netlist

RS2 uses a new netlist structure to represent user designs at the BEL-level (RS1 used a

site-level netlist). The RS2 class names and relationships for its logical netlist representation are

presented in Figure 3.5. Cells, logical components that can be placed onto BELs, serve as the basis

of this netlist (CellDesign). Each cell in the netlist is backed by a library cell (LibraryCell) which

defines the type, configuration, and valid placement locations for the cell.

All library cells used in a design are contained in a cell library. RS2 supports user-defined

cell libraries which allows it to accept inputs from different possible input sources (e.g. an ISE,

Vivado, or academic synthesis tool’s synthesized netlist output). Each cell library is specific to a

single FPGA family and is described in an XML file. This XML file contains an entry for each

library cell in the cell library, with each entry defining the pins on the corresponding cell, the BELs

the corresponding cells can be placed onto, and the mapping between the pins on the cell to the

pins on the BELs.

The pins on the cells (CellPins) are connected by nets (CellNets). In contrast to the multi-

leveled device representation (tiles, site, BELs), the design netlist in RS2 is a purely flat structure.
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Figure 3.5: Relationship Between RapidSmith 2 Netlist API Classes

The cells and nets in RS2 provide fields to specify their physical placements and routes,

respectively. Each cell can be associated with a BEL the cell is placed on. Each net can be

associated with a tree structure defining the physical routing for the net.

3.2.1 Route Trees

To simplify exploring and modifying the routing of circuits, RS2 provides a new data struc-

ture for representing routing of nets. In RS1, the routing of nets was defined by providing a set

of enabled PIPs used in the route. While sufficient to represent the route of a net, this representa-

tion was inappropriate for following a route from the source to a sink or vice versa. To improve

the ability to traverse the physical routing of the nets in a design, RS2 adds a route tree structure

for representing routing. Route trees are basic tree structures with nodes representing the wires

used in the routes and edges representing the connections between wires. The route trees simplify

traversing and building routing in RS2 designs by allowing the routes to be traversed using any
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Figure 3.6: Subsite and Intersite Sections of a Route Tree

standard tree traversal algorithm and allowing branches to easily be added or pruned from the tree

to modify the route.

To enable packed-but-unplaced designs, multiple route trees can be associated with a given

net. This means that multiple independent route trees will exist for different portions of the site-

level routing. For example, sections A, B and C of the routing in Figure 3.6 will be individual route

trees assigned to the net. If desired, a router can later fill in the intersite routing. This is done by

creating a new route tree representing the intersite routing and connecting it to each of the subsite

route trees.

3.3 XDL Compatibility
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Figure 3.7: Converting Between an XDL Instance and RS2’s Cell-Based Netlist
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RS2 preserves the same compatibility with XDL that existed in RS1. Converting between

XDL and RS2’s cell-based netlist is accomplished through the XDL-Packer and XDL-Unpacker

tools. The XDL-Unpacker breaks apart the attributes in instances from XDL’s netlists into individ-

ual cells while the XDL-Packer builds instances from RS2’s cell-based netlists.

In XDL-unpacking, the attributes in the XDL instances are translated into the cells, proper-

ties, and routing that make up an RS2 netlist. For example, in Figure 3.7, the F LUT, G LUT, and

FF attributes in the XDL description (left) are translated into three cells (lut 1, lut 2, and flipflop 1

respectively) in the netlist (right) and the FF MUX attribute is translated into a PIP connecting the

F LUT output to the FF input through the FF MUX mux in the slice. When complete, the returned

netlist will be a functionally equivalent cell-based representation of the original XDL-based netlist.

XDL-Packing, in turn, converts the cell-based netlist from RS2 into an instance-based XDL

netlist. The cells and their properties and the intrasite routing connections are translated into cor-

responding attributes in the XDL instances.

Together, XDL-unpacking and XDL-packing are important for the flows presented later in

this dissertation. With ISE, the circuits produced by map will be packed and placed. To perform

a custom packing on these circuits, the circuit will be XDL-unpacked and packing and placement

generated by map will be discarded. Once discarded, the circuit will essentially be identical to the

netlist generated by xst. Figure 3.8 shows how XDL-unpacking and XDL-packing can be used to

implement a custom packer in RS2 and integrate it into the Xilinx ISE flow.

Alternatively to accepting a placed XDL netlist from ISE, RS2 could be configured to ac-

cept an EDIF netlist provided by the synthesis output. In the case of packing, this would allow a

custom packer to directly accept the synthesis results from ISE instead of unplacing and unpacking

a placed design coming from map. However, the netlist properties of the cell provided by the syn-

thesized EDIF netlist do not match the properties required by XDL. While it would be possible to

map the EDIF properties to their corresponding XDL attributes, such a task is beyond the resources

available to this project.

With the Vivado support available in the public release of RS2, the cell properties provided

by EDIF are preserved through the entire tool chain. As such, when packing with newer devices

supported by Vivado, the packer can accept the Xilinx synthesis results as input.
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3.3.1 Integrating Custom Packers into ISE with RapidSmith 2

3.3.2 Non-Xilinx Architectures in RapidSmith 2

RS1 and RS2 are designed to target Xilinx architectures. As such, the structures used in

RS2 are patterned off of those found in Xilinx architectures – specifically the structures found in

the XDLRC descriptions. However, RS2 contains no hard-coded FPGA components or features

and should be flexible enough to represent a variety of FPGA architectures. However, these archi-

tectures would likely need to be finessed to match the three level hierarchy (tiles, site, BELs) used

by Xilinx. At this time, I do not know of any attempts to represent non-Xilinx architectures in ei-

ther RS1 or RS2 and cannot definitively say whether competing architectures could be represented

in RS2.
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CHAPTER 4. RSVPACK: A PACKER FOR XILINX FPGAS

In traditional FPGA CAD flows, a packing step is employed to group individual compo-

nents of a technology-mapped design into relatively-placed structures called clusters. This step

acts as a localized placement phase, bundling closely related logic together to shorten routing

paths between elements and to reduce the total amount of global routing required for the circuit.

Along with abstracting away the constrained routing environment and other complexities of the

CLB internals, packing helps to simplify the subsequent global placement.

To address the challenges of packing a commercial architecture, this dissertation presents

the RSVPack packing algorithm. The RSVPack algorithm is specifically targeted toward Xilinx

FPGAs. By focusing on a particular architecture, the algorithm can be tailored to address the spe-

cific challenges and requirements associated with the targeted architecture. To address the specific

requirements of each Xilinx family, the algorithm allows for a set of checks to be defined that will

enforce the different requirements for the clusters. The work described in this disseration specif-

ically focuses on the Virtex 6 architecture. Due to similarities between successive generations,

the algorithm should be portable to more recent Xilinx families by updating the set of checks to

address the requirements of the new architecture.

A primary objective of RSVPack is to be intregratable into the Xilinx ISE CAD flow. As

such, RSVPack must:

1. accept a synthesized and technology-mapped netlist from ISE,

2. accurately represent the architecture of a Xilinx device, and

3. create a set of packed clusters that ISE can import.

This chapter will describe the RSVPack packing algorithm [49] and will demonstrate its

abilities by integrating the algorithm into the Xilinx ISE toolchain. A set of benchmarks will be
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implemented using this flow and the results will be analyzed using timing information obtained

from ISE.

4.1 RSVPack Overview

The packing algorithm takes as input an unplaced, technology-mapped netlist. In this par-

ticular work, the input comes from a Xilinx XDL netlist which has been unplaced and unpacked

by RS2 (refer to Section 3.3.1). RSVPack is designed to support all of the components used in this

netlist including the LUTRAMs, shift-registers and the F7 and F8 muxes.

The netlist that comes from Xilinx already identifies which resources should be mapped to

special purpose hardware, for example, whether a RAM should be implemented using hard block

RAMs or as LUTRAMs. The sole role of this packing algorithm is to group these components into

clusters.

The RSVPack algorithm uses a seed-based, greedy heuristic similar to the AAPack algo-

rithm [18]. This heuristic leads to a straightforward implementation and allows for simple testing

to ensure the generated clusters are legal. However, as is often the case with greedy heuristics,

decisions are only locally optimal possibly leading to non-optimal global packing or can even lead

to situtations where the remainder of the circuit cannot be legally packed. Care, therefore, must

be taken when choosing cells to add to a cluster to avoid using resources that will be required by

future clusters.

RSVPack does not have any timing-driven capabilities. This is due to a lack of wire and

component delay values for Xilinx devices; Xilinx keeps these values proprietary. While timing

information for the devices could be estimated and used to improve RSVPack, performing this task

is left as future work.

4.1.1 Pack Units

The clusters produced by the packer are made to be placed on regular, reoccurring compo-

nents of an FPGA henceforth referred to as pack units. RSVPack is designed to work with different

sets of pack units based on the different levels of hierarchy of the FPGA. The two most obvious

levels of hierarchy for pack units are the tile and site levels. This is because both levels contain
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all of the BELs and inflexible interconnect necessary for creating a legal packing. Through experi-

mentation described later in Section 5.3, RSVPack has been found to perform better with site-level

(slice) pack units than with tile-level (CLB) pack units.

The pack units used by RSVPack are generated from RS2’s device representation and in-

clude information on the BELs and routing in the pack units. Templates describing each pack unit

are generated prior to running RSVPack and describe:

1. the BELs in the pack unit,

2. the routing connecting the BELs in the pack unit,

3. the BELs in the pack unit that can act as power or ground sources,

4. the wires that enter and leave the pack unit, and

5. the carry chains connections coming into or going from the pack unit.

To simplify validating the routability of clusters, the switch boxes in front of the pack

units are treated as full crossbars connecting each output of a pack unit to every input of the pack

unit. No cases have been observed where this assumption has led to illegal clusters. The routing

configuration inside the switch boxes is determined by the final routing stage of the CAD flow.

4.2 RSVPack Algorithm

4.2.1 Seeding Clusters

The RSVPack algorithm (shown in Algorithm 1) works by repeatedly seeding a new cluster

with an unpacked cell and filling the cluster with other unpacked cells until no more cells can be

packed into the cluster. The algorithm completes after all cells have been packed into a cluster.

4.2.2 Seeding a Cluster

RSVPack begins each cluster by choosing a seed from the remaining unpacked cells. RSV-

Pack chooses the remaining cell with the most external pins as the seed. In the case of a tie,

RSVPack chooses randomly chooses one of the tied cells. This seed could potentially seed valid
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Algorithm 1 RSVPack Algorithm
1: function PACK DESIGN(netlist, device)
2: clusters← a collection of clusters
3: while unpacked cells remain do
4: seed← select seed cell(netlist)
5: for each pack unit in device.pack units
6: cluster← MAKE CLUSTER(pack unit)
7: success← PACK CLUSTER(cluster,seed)
8: if success then
9: cluster.cost← COMPUTE CLUSTER COST(cluster)

10: best cluster← lower cost of best cluster and cluster
11: end if
12: end for
13: add best cluster to clusters
14: end while
15: return clusters
16: end function
17:
18: function PACK CLUSTER(cluster, seed)
19: if PACK CELL(cluster,seed) is INVALID then
20: return INVALID
21: while more candidates cells to add to cluster do
22: nextCell← best nearby cell
23: if PACK CELL(cluster,nextCell) is INVALID then
24: disqualify nextCell
25: end while
26: return VALID
27: end function
28:
29: function PACK CELL(cluster, cell)
30: while untried BELs for the cell remain do
31: BEL← best remaining BEL for cell
32: place cell at BEL
33: validate cell/BEL pair
34: if cluster is valid then
35: return VALID
36: else
37: unplace cell
38: invalidate BEL as a location for cell
39: end if
40: end while
41: return INVALID → no legal placement for cell in cluster
42: end function
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clusters based on multiple pack units – for example, a LUT cell could be the seed for clusters

based on a SLICEL or a SLICEM pack unit. Rather than predicting which pack unit will yield the

best cluster given the seed, RSVPack creates clusters for all possible pack units for that seed and

chooses the highest quality cluster from the resulting valid clusters.

The quality of the completed clusters for a given seed is measured by a cost function which

looks at how well the resources in the cluster are utilized and how many unique nets enter the

cluster. In the case of slices, this will cause the SLICEL type cluster to be preferred over the

SLICEM type cluster when the contents of the clusters are identical. The SLICEL cluster type is

preferable to the SLICEM cluster type in these cases because clusters of type SLICEL type can be

placed onto both SLICEL and SLICEM type sites. SLICEM type clusters can only be placed on

SLICEM type sites.

While this approach can lead to longer pack times, the increase is not prohibitive as each

seed is compatible with at most two possible pack units.

Filling the Clusters

For each pack unit to be explored, the algorithm proceeds to fill the cluster by selecting an

unpacked cell, choosing a BEL in the cluster, packing the cell at the chosen BEL and repeating

this process until the cluster is considered complete (method pack cell in Algorithm 1). A cluster

is considered complete when either it is full or no more connected cells are available to pack into

the cluster.

RSVPack uses the attraction function from non-timing driven AAPack to determine which

cell to add to the cluster – namely, it prioritizes cells that share many nets with the current cluster.

More information about this attraction criteria can be found in [40]. In contrast to AAPack, the

selection criteria limits its search to cells that are connected to a cell already in the cluster.

Once a cell is selected, the packer chooses a location to place the cell. The BEL selection

seeks to minimize the number of global routing resources required to route the cluster. This in-

cludes prioritizing BELs which fully absorb nets inside a site. The BEL selection also prioritizes

the LUT6 and FF6 BELs in the LEs over the LUT5 and FF5 BELs as the LUT6/FF6 BELs have

faster paths leaving the slices. Through experimentation, it has been found that beyond pairing
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LUTs and FFs and utilizing the fracturable LUTs in the slices, the particular LE a cell is placed in

does not have a significant impact on circuit quality.

After each cell is packed into the cluster, the algorithm ensures that the cluster is legal in

its current state or can be modified to be so. The Virtex 6 slices contain many requirements which

must be met for the cluster to be legal. Cluster legality is checked through a series of tests. Some

of these tests are for rules general to all architectures (such as a routability check) while others are

specific to an architecture. Cluster validation tests for the Virtex 6 architecture are described in

Section 4.2.3.

If the cell/BEL combination being evaluated is determined to result in an illegal cluster by

any of the checks, the cell is unpacked from its location and another BEL is chosen for the cell.

This process continues until either a valid BEL is identified for the cell or all possible locations

are exhausted, at which point a new cell is selected to try to add to the cluster. The previous cell is

invalidated for the current cluster and will not be evaluated for the cluster again.

4.2.3 Cluster Legality Validation

Control Sets Consistency

Some properties of the clusters, such as whether the FF reset logic is high or low-asserted,

are configurable at the site level instead of being independently configurable for each BEL. These

properties, called control sets, require that all cells in the site share the same configurations. This

check ensures that the packer does not allow cells requiring conflicting properties to be placed in

the same site.

Routing Feasibility

Routing feasibility checks ensure that the cluster is packed in a manner that can be routed.

This includes checking that all routing can be made including 1) connections between cells in

the cluster, 2) connections coming to or from cells in different clusters connected through the

general routing and 3) connections between cells forming carry chain connections. To perform
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Figure 4.1: Possible Invalid Packings for Clusters With Multiple Carry Chains

this check in a timely manner, RSVPack uses a table lookup-based validation algorithm described

in Section 4.3.

Carry Chain Preservation

Carry chains provide a fast, dedicated connection between arithmetic units. As the arith-

metic chains can be long – a 32-bit adder requires a chain of 8 CLBs – and can often be the critical

path in a design, utilizing these paths is critical for creating high-quality circuits. Xilinx uses carry

chains in their DSPs, BRAMs and CLB tiles. In the case of the CLB, both slices contain their own

distinct carry chain connected to their corresponding slice in an adjacent CLB (see Figure 4.1a).
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Carry chains break the notion of independent clusters. Typically, the clusters can be built

independent of one another. While optimizing the circuit quality may lead to one cluster impacting

the building of another, the clusters could largely be packed independently of one another. In the

case of carry chains, however, the building of clusters involved in the chain are dependent on one

another as the carry chain leaving one cluster must be able to correctly enter the adjacent cluster.

When packing, care must be taken to ensure the elements in the chain are packed such that the

chain is compatible between clusters. As part of this, the packing must be configured to use the

correct wires leaving the sites.

The work being described in this dissertation works with site level pack units. However, if a

tile level pack unit is chosen to pack onto, handling carry chains becomes even more complicated.

As the tiles contain multiple carry chains, the cells involved in the chain must be packed so that the

chain is preserved when going between different clusters. If not packed correctly (see Figure 4.1b),

the circuit could suffer significantly reduced quality or not even be realizable. While the routing

feasibility can detect such illegal configurations, the checker only performs a local validation and

situations such as in Figures 4.1c-4.1d can arise that the routing feasibility checker is unable to

prevent.

As a result, RSVPack uses different strategies to ensure carry chains are properly handled.

First, RSVPack will not pack any cell involved in a partially-packed carry chain unless it is adjacent

to a previously packed cell. This defers packing carry chain cells until their required positioning

can be determined from their previously-packed neighbors and prevents an intermediate unpacked

cell in the carry chain from hiding that two other cells in the chain have been packed in incom-

patible locations such as in 4.1c. Second, when two cells from different carry chains are packed

into the same CLB as in the lower half of 4.1d, RSVPack merges the adjacent carry chain cells to

ensure that they are packed together later.

LUTRAM Validation

The Virtex 6 architecture is designed to allow for multiple LUTRAM cells to be ganged

together to create deeper memories. To support this, each of the LUT BELs in the SLICEM slices

handle the upper two bits of the write address pins differently. This limits the allowable locations

for the different cells in deeper LUTRAMs.
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The input netlist RSVPack uses is a flattened structure – the hierarchical LUTRAM cells

were previously broken into individual pieces during XDL-unpacking. When the input design

is unpacked, the XDL-unpacker tags each cell in a LUTRAM with properties indicating which

LUTRAM the cell is a part of and the additional placement requirements of the cell.

This check ensures that LUTRAMs are appropriately assembled. In addition to making

sure each LUTRAM cell is packed onto a valid LUT BEL, this check also ensures that all cells in

a single LUTRAM are packed into the same slice. This is necessary as the write address inputs for

all cells in the slice are shared with the read address inputs on the D-LUT. Last, this test checks that

the D6LUT is occupied when any of the cells in the slice are used as LUTRAMs – a requirement

of the architecture.

Fracturable LUT Usage

The LUTs in the Virtex 6 can either be used as a single 6-input LUT or as two 5-input

LUTs. XDL, and hence RSVPack, represents the LUTs as two BELs, a 6LUT BEL and a 5LUT

BEL. The 5LUT can only be used as a 5-input LUT while the 6LUT can be used as either a 5-input

or a 6-input LUT. When the 5LUT BEL is used, though, the 6LUT can only be configured as a

5-input LUT.

This rule guarantees that the 6LUT BEL is not used as a 6-input LUT when the LUT5 BEL

is used. Additionally, it makes sure that the LUT5 and LUT6 BELs are both configured either as

standard LUTs or as LUTRAMs. Figure 4.2 shows examples of legal and illegal usages of the

fracturable capabilities of the LUTs.

Lookahead Validation

When looking at a single cluster, it is possible that RSVPack will add a cell to a cluster that

is needed for another cluster but is not caught by the other checks. Figure 4.3 shows an example of

this situation. If, in the example, the DI0 pin is driven by a different source than the CYINIT pin,

then the source of the DI0 pin (cell A for future reference) must be packed onto the A5LUT in the

same cluster as the carry chain cell.
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(c) Pairing a 6LUT and a 5LUT is
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A5LUT
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5LUT
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(d) Pairing a LUT and a LUTRAM is
illegal.

Figure 4.2: Examples of Legal and Illegal Fracturable LUT Usage

In most cases, the routing feasibility check will detect when the routing requires that a cell

be packed with another cell and will force the cells to be merged together. However, in the above

case, the routing feasibility checker does not know that the CYINIT pin will require the AX site

input pin. Instead, the routing feasibility check sees the AX pin coming from the general routing

fabric as a possible route to the DI0 pin. It thus allows cell A to be packed into another cluster as

long as cell A can drive the general routing fabric.

In the example where cell A is packed into a different cluster than the carry chain, the

routing feasibility check will initially assume that the cluster that cell A is packed into is allowable.

This illegal packing will not be found until the accompanying carry chain is packed and no legal
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Figure 4.3: Example of an A5LUT that must be Conditionally Packed with a Carry Chain

route is found for both nets driving the CYINIT and DI0 pins. At this point, though, no legal

clustering will be possible without undoing the packing in a previously created cluster.

Carry 
Chain

AFF
To AQ

To AMUX

DO

CO

Figure 4.4: Carry chain element using both DO and CO pins must be packed with a FF

I have identified two cases of this occurrence in the Virtex 6 architecture. The first instance

is discussed in the above example. The second instance occurs when both the sum and carry pins

of a carry chain leave the cluster and the flip-flops cells driven by both of these pins are already

packed in another cluster (see Figure 4.4). To handle these cases, a custom check is employed that

identifies these two patterns in the design and forces the appropriate cells to be packed together.
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Figure 4.5: Example of Entering and Resolving Conditional Mode

4.2.4 Conditional Mode

While filling clusters, it is possible for the cluster to enter a state where it is no longer legal

in its given configuration; however, it may become legal later in the process as a result of absorbing

additional cells. Rather than immediately invalidating this configuration, the algorithm enters into

a conditional mode.

For example, upon adding a carry chain element that uses both the O and CO outputs (Fig-

ure 4.5a), there will be insufficient outputs to route the cluster. This causes RSVPack to enter

conditional mode. Upon adding the flip-flop that is driven by the O output to the cluster (Fig-

ure 4.5b), the cluster is again routable and RSVPack returns to its normal mode.

While in conditional mode, the algorithm continues to add cells to the cluster under the

assumption that the cluster will eventually return to a legal configuration. If RSVPack is unable

to return the cluster to a legal state by absorbing more cells, it will roll back the cluster to a

previous checkpoint, invalidate the cell/BEL pair that caused it to enter conditional mode, and

resume normal operation. As returning to a legal state may require adding more than one cell to

the cluster, the checkpoint and roll back mechanisms operate in a recursive manner.

The recursive nature of the conditional mode mechanism can potentially lead to exponential

run times. To limit the time spent in conditional mode, RSVPack guides the cell selection process

to cells that will quickly bring the cluster to a legal or illegal state. This guidance is provided by

the different validation tests described in section 4.2.3.

The amount of time RSVPack spends in conditional mode varies widely based on design,

ranging from less than 1% in several benchmarks to over 60% in one tested benchmark. Condi-
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Figure 4.6: Example of Packing LUT/FF Pairs Together

tional mode resolves to a legal circuit between 1% and 28% of the time, depending on the circuit.

Conditional mode is required to guarantee that all designs can be successfully packed.

4.2.5 Manual Pairing of LUTs and FFs

RSVPack uses an additional optimization to improve final circuit quality. The base algo-

rithm described in Section 4.2 does a poor job pairing associated LUTs and FFs into the same LE.

This is because the cell selector does not account for where in the cluster a cell can be packed when

it is making its decision. This can lead to cases such as the following example occurring.

When LUT B in Figure 4.6a, is packed into a slice, both FFs A and C share a single net

with the cluster and will have the same attraction to the cluster. If FF A is chosen (Figure 4.6b), the

output of the FF must leave the slice to drive the input of LUT B. This leads two three nets which

must route through the switch box. In contrast, if FF C is chosen (Figure 4.6c), the net connecting

the output of LUT B and the input of FF C is fully encapsulated in the slice and only two nets must

route through the switch box.

Without help, RSVPack does not prioritize FF C over FF A in this example. In this opti-

mization, when a LUT or FF is absorbed into the cluster, the other cell in the LUT/FF pair will

also be absorbed into the cluster at the complementary BEL if the location is unused. This helps
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with grouping LUT/FF pairs. In the case that the complementary location is already occupied, the

LUT/FF pair will be broken apart. This means that it is still possible that some LUT/FF pairs will

still be packed into different LEs.

4.3 Table-Lookup Routing Feasibility Improvement

4.3.1 Routing Feasibility: VTR’s AAPack versus RSVPack

The Virtex 6 slice contains a highly-specialized, constrained, routing structure. The routabil-

ity of the cluster must be confirmed each time a cell is added to the cluster. A simple method to

verify that a cluster is routable is to simply attempt to route the cluster. If a valid route is found,

the cluster is routable; otherwise, the cluster in its current state is not routable. However, running

a full router in the inner loop of the algorithm leads to very slow run times. For example, a reen-

trant version of the popular PathFinder routing algorithm [50] took on average 136ms to build each

cluster – this would lead to very long run times.

AAPack’s Approach for Feasibility Checking

To avoid the long routing checks, AAPack uses a combination of speculative packing and

pin counting to avoid running PathFinder each time a cell is added to a cluster [18]. In AAPack’s

approach, a cluster is first packed using a fast but optimistic pin counting algorithm to determine

cluster routing feasibility. The pin counting algorithm works by comparing the number of nets

entering and leaving a cluster and against the number of available input and output pins on the

cluster, respectively. This check can be quickly performed but does not guarantee that a valid route

exists.

Once a cluster is built, AAPack uses the PathFinder algorithm to determine if the cluster

is truly routable or if the pin counting algorithm returned a false positive result. If the cluster is

unroutable, the cluster is rebuilt using PathFinder to check routing feasibility after each cell is

added.

When pin counting produces correct results, the time to build each cluster using this scheme

is significantly reduced. However, as pin counting returns more false positive results, the speedup
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quickly reduces with the algorithm effectively building each cluster twice in the worst case. With

the Virtex 6 architecture, pin counting, on average, returns a false positive rate of 25%. Most of

these false positives revolve around the A and AMUX outputs (refer to Figure 2.5). Pin counting

sees both outputs available for use, but the A output is dedicated to the O6 output leaving it inac-

cessible to the other elements. This limits the improvements gained by using pin counting on the

Virtex 6 architecture.

RSVPack’s Approach for Feasibility Checking

When analyzing routing times associated with PathFinder, it was found that most of the

time is spent determining that a cluster is unroutable. This long run time comes from the nature

of using PathFinder to determine routability. PathFinder never actually determines that a cluster

is not routable. Instead, that determination is made when Pathfinder is unable to find a valid route

after several attempts. As such, while PathFinder is usually quick to find a legal route for a routable

cluster, it is slow to determine that a cluster is unroutable. Additionally, attempting to add a cell

to a cluster results in an unroutable cluster over 80% of the time, compounding this issue with

PathFinder.

In response to this information, a fast algorithm for determining routing was developed.

This algorithm utilizes a pre-computed routing feasiblity table to determine routability. This ap-

proach quickly compares the current cluster’s configuration against all valid routing configurations

of the pack unit. To do this, the routing feasibility table is pre-populated with the information about

the available routing for each enumeration of configurations as dictated by the various routing mux

configurations. As cells are added to a cluster, the resulting cluster is compared against all of the

table’s entries to see if the cluster’s connectivity is compatible with any of those entries. If one or

more compatible entries exist, the cluster is routable. If none exist, the cluster is not routable.

Each table entry contains, for each BEL pin in the pack unit, an indication of what pins that

pin drives or what pin is driving it. These sources and sinks can be either external source/sink pins

or other BEL pins in the pack unit.

Figure 4.7a shows an example pack unit consisting of 2 BELs, two external inputs, two

external outputs, and a single routing mux. Since there is a single 2:1 routing mux in the pack unit,

the resulting table contains two entries as shown in Table 4.1. The top entry of the table describes

47



A
C

W

Z

0

1B
DX

Y

BEL 1
BEL 2

(a) A simple pack unit with a single mux.

A
C

B
DX

Y

BEL 1
BEL 2

(b) An example circuit packed into the pack unit in (a).

Figure 4.7: Example for Determining Routing Feasibility

Table 4.1: Routing Connectivity Lookup Table for Figure 4.7a

Mux CFG Pin Source/Sinks

0

A Driven by X
C Driven by W
B Drives Z
D Drives Y

1

A Driven by X
C Driven by B
B Drives C and Z
D Drives Y

the pack unit connectivity when the routing mux is configured with a ’0’ on its select. In this case,

the following driver/driven mappings are: D→Y, B→Z, C←W and A←X.

Figure 4.7b shows an example of a packed cluster that is being tested to see if it is routable.

In this case, a cell from the design has been placed onto BEL1, another cell has been placed onto

BEL2, and the design’s netlist implies that BEL1’s pin B should be connected to BEL2’s pin C.

Examining the top row of Table 4.1 shows that, in this configuration, C←W and B→Z. This

contradicts the routing shown in Figure 4.7b and therefore this table entry is marked as invalid. In

the second row of the table we see that W is unconnected, B→C and B→Z. This is compatible

with the routing required by the packed cluster of Figure 4.7b and therefore this row is considered

valid.

A cluster is considered routable if there is at least one entry that is valid in the table. To

perform the overall check, the algorithm iterates over all the entries in the table until a valid entry is

found. If no valid entry is found, the cluster is unroutable. Advantageously, previously invalidated

table entries do not later become valid as new cells are added to the cluster. Thus, the algorithm
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increasingly runs faster as new cells are added to the cluster since the number of table entries that

need to be checked shrinks over time as entries are marked invalid.

Reducing Table Size with Pin Groups

The total number of entries in the table for a pack unit is the number of possible permu-

tations of routing mux configurations in the pack unit. For a Virtex 6 slice, a naive version of the

table may contain over a billion entries. To make the size of the table manageable, the pack unit is

broken into groups of independent routing resources called pin groups. These pin groups are sets

of connected pins, wires and muxes that form a set that is independent from all other pin groups in

the pack unit. Any change to the usage of a pin in a group may affect the routability of other pins

in the same group, but will not change the routability of any other pin groups.

The pin groups are created by merging together all of the pins and routing muxes that share

wires in a cluster. In Figure 4.7a, pins B and C, input W and output Z are connected by wires

through the mux and therefore form a pin group. Pins A and D have their own independent sets of

wires and therefore each forms its own individual pin group.

Each pin group is represented by its own routing feasibility table. By breaking the pack

unit into pin groups, the total number of entries in the tables decreases to a manageable size. For a

Virtex 6 SLICEM, the most complex pack unit in the architecture, there are 36 pin groups with a

combined 854 table entries. Across the entire device, there are 2135 pin groups with a combined

4580 rows. Most of the tables contain very few entries with the largest table containing 432 entries.

To determine routing feasibility, the previously described algorithm is applied to each pin

group in the pack unit in turn. If any affected pin group is found to contain no valid table entries,

the entire cluster is considered unroutable. As pin groups are independent of one another, only pin

groups that are affected by the addition of the cell need to be checked, further reducing the amount

of work required each iteration.

4.3.2 Run Time Improvement

Table 4.2 presents the run times incurred when performing a single routing feasibility check

with 1) the table-based feasibility checker and 2) PathFinder. The provided numbers are an average
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Table 4.2: Average Runtimes for Each Outcome of Routing Feasibility Checking (in
microseconds)

Routable Conditional Unroutable Overall
PathFinder 230 1008 4117 1577

Table Based 63 160 38 61
Speedup (x) 3.7 6.3 109.1 25.7

across a set of benchmarks. The PathFinder-based checker declares the cluster unroutable if it is

unable to find a valid circuit after 6 iterations. For all possible outcomes, the table-based checker is

faster but it is substantially faster when the cluster is unroutable – the most common case. Overall,

the table-based checker runs 25 times faster than the PathFinder-based checker.
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Figure 4.8: Projected Run Times Using Pin Counting

To compare the table-based approach against the speculative packing and pin counting

approach used by AAPack, the expected run times of building a cluster using pin counting and

speculative packing can be projected using a simple equation. Assuming pin counting runs in zero

time, when pin counting returns the correct result, the time to build a cluster is Ts = B where B

is the time to build a cluster without any routing feasibility checking. When pin counting yields

an incorrect result, the time to build a cluster is Tf = B+(B+F) where F is the cumulative time
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spent in a routing feasibility checker on the cluster. In this case, the cluster is built twice, the first

time with pin counting (when it failed) and the second time with a full routing feasibility checker.

The average time to build a cluster with speculative packing given a false positive rate on

pin counting of R is T = (1−R)×Ts +R×Tf . Combining the equations, an average time to build

a cluster using speculative packing is

T = B+R(B+F). (4.1)

Figure 4.8 shows the projected growth in time to construct a slice cluster, as computed by

Equation 4.1, as the false positive rate from pin counting increases. Values for B and F are taken

from average run times of RSVPack over a set of benchmarks. The scheme that combines pin

counting and PathFinder incurs more run time than using only the table-based approach as soon

as the false positive rate hits 2%. With the observed false positive rate of 25%, the table-based

approach is 5 times faster.

If AAPack’s speculative approach were to be used with the table-based checker in place of

PathFinder, this approach would perform slightly faster than the table-based approach alone up to

a 33% false positive rate. However, the improvement in this case would be only marginally faster;

using the table-based checker alone is sufficient without speculative packing.

4.4 Identifying Packing Rules for Xilinx Architectures

The sites, the slices in particular, in Xilinx devices have several requirements that must

be adhered to to produce legal circuits. Unfortunately, many of these requirements are not well

documented and must be found through trial and error. In addition, as previously discussed, the

greedy nature of RSVPack can lead to cells that must be packed with another cell to be packed

prematurely. This leads to the dependent cell not being able to be legally packed into a cluster

causing an error. Both of these situations must be addressed by device specific rules for the packer.

In the process of creating and testing RSVPack, I have discovered many of these archi-

tectural requirements. The discovery process typically consisted of trying to pass a benchmark

through the entire back-end flow, from packing through routing. In the process of implementing

a benchmark, I would encounter a new issue, track down the cause of the issue, and implement a
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new rule to detect and prevent an illegal cluster from being created. Once a design was success-

fully implemented, I would proceed to a new design that used new features that would expose new

requirements to address. As different designs use different features, it is necessary to test the rules

on several designs to exercise the many components and features of the architecture.

When discovering requirements and creating checks for a new architecture, illegal clusters

can be found in two ways. First, the packer may fail to complete due to encountering an unpackable

configuration. These cases always occur because a cell that another cell was dependent on was

previously packed into another cell. This type of issue can be one of the most difficult to decipher

as identifying the source of the error usually requires simulating the construction of the failed

cluster. Once the source of the error is identified, the issue is rectified by creating a new check that

binds the dependent resources together. This is achieved by making the packing of each resource

conditional on the other resource. The conditional mode in RSVPack will then ensure that the

dependent cells are packed together.

The second area that can expose issues with the packed design is the conversion of the

packed XDL design to the NCD format. When resources on the FPGA are used in an illegal

manner, the conversion tool will fail with an error message indicating the XDL instance the issue

appeared in and a message describing what failed. These messages are not always clear, but will

at minimum direct the user to the location of the error. The errors reported in this conversion

stem from a rule of the architecture not being satisified and is the best way that I have found to

discover the undocumented architectural rules and are addressed by creating a check that enforces

the requirement when building the clusters.

Each architecture will have its own set of unique requirements. However, with Xilinx

architectures, many of the architectural requirements apply to multiple families of FPGAs. A list

of requirements that I have found for Virtex 6 are listed in Appendix D.

4.5 Integrating RSVPack into the Xilinx ISE CAD Flow

As mentioned, one of the primary goals of the RSVPack algorithm is to make it possible

to measure the impact of academic algorithms on commercial Xilinx devices. Figure 4.9 shows

four different flows that can be used to implement circuits onto Xilinx FPGAs. The first two flows
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Figure 4.9: Implementation Flows used in this Work

(Standard and PAR-Place flows) use ISE tools to fully implement a design. The last two flows

(RSX and RSV flows) uses RS2 to integrate RSVPack into the ISE flow.

4.5.1 Pure ISE Flows

The standard Xilinx flow begins by synthesizing a design using xst and then packing and

placing the synthesized netlist with map. The placed design is then routed by par, completing the

implementation process. This is the flow typical ISE users use to implement their designs.

While Xilinx no longer officially supports placement in par, removing a design attribute

in the XDL representation of a design will cause par to re-place the design. This work takes

advantage of this placer to allow Xilinx to place the RSVPack-ed designs. As the placer is propri-

etary, the exact algorithm it uses is not known; however, it is known that it performs a site-level

placement of a packed design. It does not appear to use the same placement engine found in map.

The PAR-place flow (second row) is a modification from the standard flow that uses the

placer in par to re-place the design without modifying the packing. This is not a typical flow but it

is included to provide a direct comparison between a circuit packed by Xilinx, in map, and packed

by RSVPack.
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4.5.2 RSX Flow

The RSX flow is a custom flow utilizing the RSVPack packing algorithm. In this flow, the

packing is the only step performed outside of ISE – placement is handled by the placer in par.

This allows RSVPack to perform the packing of the design while letting Xilinx perform all other

parts of the flow.

In the RSX flow, the netlist to be packed is imported into RS2 via the placed design coming

from map. RS2 immediately unplaces and upacks the design. The unpacked netlist is then packed

with RSVPack. par can only accept a placed design even when if it is going to re-place the design

itself. To support this, the RSX flow applies a quick random placement to the packed design. The

random placement also serves as an initial seed to the placer in par with par returning a different

final placement for each initial random placement.

Upon finishing re-placing the design, par will immediately route the design. The Xilinx

router has the capability to relocate a small number of slices while routing the circuit. However,

this movement appears limited to moving entire slices and, after much experimentation, the router

has not been observed to make any modifications to the packing of the slices in any of the RSVPack

packed designs.

4.5.3 RSV Flow

The RSV flow works similar to the RSX flow but instead of using par to place the design,

the RSV flow uses an internally developed simulated annealing placer (RSVPlace) to place the

design. In this flow, par is only used to route the design. RSVPlace does not have access to delay

information for the device and uses a half-perimeter wire length cost function in place of delay

estimation. As such, circuits implemented with the RSV flow will be significantly lower quality

than those implemented with the RSX flow.

Though resulting in lower quality circuits than the RSX flow, the RSV flow is important in

enabling future research. First, this flow provides more visibility and control over the placement

than is available with the placer in par. This enables experimentation that cannot be done using

the RSX flow such as exploring the effects of using either smaller or larger pack units in packing

and placing designs. Second, RSVPlace plays a role in providing a full suite of CAD tools for
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Xilinx devices in RS2. It is especially important in updating RSVPack for newer Xilinx devices

supported only by the new Vivado tool suite as Vivado provides no means of placing a user-packed

design.

4.6 RSVPack Performance

4.6.1 Benchmark Set

To evaluate RSVPack, each of the flows is used to implement a set of FPGA benchmark

designs acquired from a collection of sources including the VTR 7 [51] and Titan23 [52] bench-

mark suites, Xilinx Coregen [53], and OpenCores.org [54]. These benchmarks are medium sized

benchmarks created for implementation on FPGAs. Some benchmarks were modified from their

original forms to make them compatible with Xilinx FPGAs. The benchmarks are presented in

Table 4.3. Each of the benchmarks is synthesized with xst and targeted to use up to 50% of the

available LUTs on the device.

Each design is implemented 20 times with each run using a different seed for the placer. A

timing constraint to par is decreased for each run until the minimum clock period achievable for

each benchmark is reached. Reported numbers are from the run with the lowest minimum clock

period for each benchmark and flow.

Table 4.3: Benchmarks Used to Analyze RSVPack

Name Application Source Part 5LUTs1 % of
Device

viterbi Math OpenCores lx75t 11171 12.0
microblaze Processor Xilinx lx75t 16439 17.7

divider 4 Floating Point Dividers Xilinx lx75t 20568 22.1
bgm Finance VTR lx75t 26566 28.5

lu8peeng Math VTR lx75t 33834 36.3
mcml Medical Physics VTR lx130t 63373 25.4

cholesky mc Matrix Decomposition Titan lx195t 75425 30.2
dart On Chip Network Simulator Titan lx195t 92345 37.0

1 6LUTs are counted as 2 5LUTs.
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4.6.2 RSVPack Results

Slice Utilization

Table 4.4 shows the number of slices used by RSVPack compared to Xilinx. On average,

RSVPack uses 19% more slices than Xilinx to pack a design. Some of this comes from a much

poorer ability to join multiple LUT5s into a single fracturable LUT pair in an LE (see % Merged

LUT5s in Table 4.4). Much of it, though, comes from low LE utilization of many of the slices. As

shown in Figure 4.10, on average, compared to Xilinx, RSVPack-packed designs contain almost

double the number of slices utilizing only a single LE.

Table 4.4: Number of Used Slices and Percent of LUT5s Merged

Benchmark
Used Slices % Merged LUT5s

Xilinx RSVPack Ratio Xilinx RSVPack Ratio
viterbi 2293 3129 1.36 38.5 36.1 0.94

microblaze 4482 6332 1.41 53.3 27.6 0.52
divider 4273 6501 1.52 73.5 60.0 0.82

bgm 5763 4630 0.80 42.5 32.5 0.76
lu8peeng 6943 8748 1.26 65.9 25.9 0.39

mcml 14097 17207 1.22 50.0 37.4 0.75
cholesky mc 18319 20559 1.12 67.2 55.0 0.82

dart 21209 17617 0.83 41.7 34.1 0.82

Much of this increase in slice usage comes from lower LE utilization in the later stages

of RSVPack. Figure 4.10 shows the distribution of slice density averaged across all benchmarks.

RSVPack tends to create slice clusters utilizing only a single LE much more frequently than Xilinx.

In five of the eight benchmarks, more than 20% of the slices packed by RSVPack contain only a

single LE. In contrast, when packed by Xilinx, none of the benchmarks ever have more than 17%

of slices containing a single LE. This significant number of low-utilized slices spreads out the

designs leading to more routing. This issue is further explored in Section 5.2.

Even with the manual optimization to improve LUT/FF pairing discussed in Section 4.2.5,

as seen in Table 4.5, RSVPack still splits many LUT/FF pairs. One of the added costs of separating

the LUT from its FF pair it that this separation means that the net connecting the two must leave
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Figure 4.10: Densities of Slices Packed with Xilinx and RSVPack (average of benchmarks)

Table 4.5: Clustering of LUT/FF Pairs and Nets Exposed From Slices

Benchmark
% Paired LUT/FF Pairs Exposed Nets

Xilinx RSVPack Ratio Xilinx RSVPack Ratio
viterbi 53.2 47.3 0.89 11466 11757 1.03

microblaze 91.4 65.5 0.72 17517 19066 1.09
divider 100.0 94.4 0.94 27621 28769 1.04

bgm 96.6 63.6 0.66 20999 21939 1.04
lu8peeng 71.8 70.1 0.98 28838 28872 1.00

mcml 99.2 68.5 0.69 78581 83176 1.06
cholesky mc 99.7 72.6 0.73 114090 126959 1.11

dart 99.1 43.8 0.44 82404 98810 1.20

the slice and enter the switch box. This occurs even if the FF is packed into another LE in the same

slice. This has the effect of increasing the routing delay on the net containing the LUT/FF pair and

adding extra congestion in the switch box. This separation is reflected in the number of exposed

nets from the slices shown in Table 4.5.

Circuit Quality

The minimum clock period and total wire length (measured in tiles traveled) are reported in

Table 4.6 and 4.7, respectively. These values are obtained from the fully placed and routed circuits

with the minimum clock period coming from the Xilinx generated timing report. The reported
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results come from the run with the best minimum clock period for each flow. These two metrics

provide a view of how the packing affects the final circuit quality.

Table 4.6: Minimum Periods of Benchmarks Implemented with Different Flows (in ns)

Standard PAR Place RSX RSV
viterbi 5.77 6.22 6.68 9.19

microblaze 6.58 7.00 7.13 9.19
divider 3.20 3.18 3.67 5.18

bgm 7.56 7.73 8.28 10.58
lu8peeng 43.99 47.30 50.59 57.33

mcml 26.17 27.23 28.28 38.08
cholesky mc 9.42 9.45 9.49 13.23

dart 9.84 11.26 11.64 20.76

Table 4.7: Total Wire Length of Benchmarks Implemented with Different Flows (in Thousands of
Tiles Travelled)

Standard PAR Place RSX RSV
viterbi 186 179 191 164

microblaze 281 312 351 351
divider 223 268 287 374

bgm 279 331 291 268
lu8peeng 474 547 538 537

mcml 1020 1499 1402 1575
cholesky mc 1345 1959 1564 2124

dart 1962 2297 2195 2466

The RSX flow performs well compared to Xilinx. The RSX flow averages a 5% higher

minimum clock period and is usually within ± 10% of total wire length of the PAR Place flow.

The RSV flow averages a 53% higher minimum clock period and uses 28% more wire length than

the PAR Place flow demonstrating that Xilinx does a much better job than the academic placer.

Observing this difference further illustrates the advantage of analyzing individual tools integrated

into the commercial flows.
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Run Time

Run times for the flows are presented in Table 4.8. The presented run times exclude the

time spent in synthesis which is identical for all flows. The times for the RSX flow ignore map and

xdl conversion times required for obtaining an XDL design description and instead treat RSVPack

as a direct substitute for the equivalent Xilinx tool. The PAR Place flow counts the time to place

the circuit twice – placement is performed in both map and par. Though not fair to compare flows

against the PAR Place flow for this reason, the results are provided both for completeness and for

a relative measure of the time spent in par to both place and route a circuit.

RSVPack runs in a reasonable time frame with many of the designs taking only a few

minutes to complete and the largest completing in about 20 minutes. The overall time required by

the RSX flow is within 1.5 times that of the standard Xilinx flow. The lower quality results of the

RSV flow are especially noticeable as par spends significantly longer routing designs in this flow

than when employing the standard Xilinx flow.

4.6.3 Summary

This work demonstrates that the RSVPack algorithm is capable of creating valid packing

for Xilinx flows. Additionally, the results show that while academic packing algorithms still lag

behind their commercial counterparts, the algorithms can be competitive.
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Table 4.8: Implementation Runtimes for each Flow in Seconds (Median of 20 Runs)

Benchmark Flow map RSVPack RSVPlace par Total
viterbi Standard 155 195 349
viterbi PAR Place 155 419 574
viterbi RSX 83 444 527
viterbi RSV 80 50 477 607
microblaze Standard 275 201 476
microblaze PAR Place 275 361 636
microblaze RSX 128 457 585
microblaze RSV 132 129 278 538
divider Standard 749 263 1012
divider PAR Place 749 347 1096
divider RSX 124 332 455
divider RSV 120 132 246 498
bgm Standard 366 123 488
bgm PAR Place 366 305 671
bgm RSX 106 233 339
bgm RSV 104 134 175 412
lu8peeng Standard 339 315 654
lu8peeng PAR Place 339 871 1210
lu8peeng RSX 194 967 1161
lu8peeng RSV 188 290 485 963
mcml Standard 984 1269 2253
mcml PAR Place 984 1567 2552
mcml RSX 316 1120 1436
mcml RSV 302 752 7101 8154
cholesky mc Standard 986 1146 2133
cholesky mc PAR Place 986 2352 3338
cholesky mc RSX 532 3068 3599
cholesky mc RSV 503 1107 3134 4744
dart Standard 923 1147 2070
dart PAR Place 923 2070 2993
dart RSX 1238 2029 3267
dart RSV 1245 1166 13851 16261

60



CHAPTER 5. EXPERIMENTING WITH PACKING XILINX FPGAS USING RSV-
PACK

RSVPack enables experimentation with packing using Xilinx FPGAs. As mentioned, this

experimentation can be performed with just the packer while allowing Xilinx to handle all other

parts of this flow. This chapter will look at different experiments evaluating the effect of packing

on Xilinx FPGAs and ways that the packing can be improved. These experiments include:

1. exploring the impact that packing has on final circuit quality,

2. attempts to improve the utilization of the slice clusters, and

3. evaluating the tradeoffs of site level packing against tile level packing

5.1 Experiment 1: Impact of Packing on Circuit Quality

RSVPack performs reasonably well at creating valid packings for Xilinx FPGAs. These

packings lead to circuits that run about 10% slower than their Xilinx-generated counterparts show-

ing that RSVPack can be improved upon. Using RSVPack, we can further explore how packing

quality can influence the final quality of a circuit. This experiment explores how circuit quality

decreases as the quality of packing decreases.

5.1.1 Experiment Setup

To explore the impact of packing on the final circuit quality, this experiment augments the

cell selector in RSVPack to produce lower quality packings. The degradation in packing quality is

achieved by occasionally selecting a random cell to add to a cluster. Specifically, in this experiment,

the RSVPack cell selector is modified so that every Nth cell returned by the cell selector is replaced

with a random cell from the design – in all other cases, it acts as the normal cell selector. The

returned cell is analyzed the same as all other cells and will not be added to the cluster if no legal
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location exists for the cell in the cluster. With this selector, the quality of the packing can be

degraded by increasing the frequency that a random cell is returned by the selector.

For this experiment, each of the previously discussed benchmarks were re-run with the

RSX flow with RSVPack using the augmented cell selector with frequencies of a random cell being

chosen of .25%, .5%, 1%, 2% and 3%. At frequencies greater than 3%, many of the benchmarks

struggle to route.

5.1.2 Results

The most dramatic observable effect is the impact on whether the packed and placed circuits

can even be routed. The likelihood that a circuit can be routed decreases as the rate of random cells

selected increases. Both the cholesky mc and mcml benchmarks cease to be routable when the

selector reaches a rate of 3% randomness. The dart benchmark is unroutable for any frequency

greater than 1%.
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Figure 5.1: Average Increase in Minimum Period Against Packing Quality

Figures 5.1 and 5.2 show the increase in minimum period and total wire length, respec-

tively, as the frequency of selecting a random cell increases. The graphs show the averages across

all benchmarks – unroutable circuits are not included. The minimum period increases about 25%

while the total wire length approaches a 70% increase. Altogether, this demonstrates that the qual-
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Figure 5.2: Average Increase in Wire Length Against Packing Quality

ity of the packing on a circuit has a noticeable influence on the final circuit for Xilinx FPGAs. It

also shows that the minimum period and number of required routing resources will slowly degrade

in concert with packing quality to the point that the circuit can no longer be successfully routed.

5.2 Experiment 2: Cluster Underutilization

To limit the number of cells RSVPack searches and to avoid adding unrelated logic to the

clusters that can reduce circuit quality (see Section 5.1), the cell selector for RSVPack only looks

at cells that share one or more nets with a cell already in the cluster. Such cells are considered to be

one hop from the cluster. Considering cells only a single hop from the cluster reduces the run time

of the packer – it only looks at adding a subset of the cells in the design – and allows the algorithm

to scale with increasing design size.

As a side effect of not considering unrelated logic, and stemming from the locally-greedy

nature of RSVPack, many clusters, especially those which are packed late in the process, are

underutilized. Figure 5.3 shows how the clusters are increasingly less utilized as the RSVPack

progresses. Early in the packing process, most of the clusters are being packed with at least 8 cells.

About midway through the process, however, the density of the cells quickly drops off finishing

with most slice clusters containing only between one to three cells at the end.
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Figure 5.3: Progression of Packing Density of Clusters over Packing Process

The lower utilization over time stems from pockets of cells forming which are fully sur-

rounded by packed cells. Figure 5.4 shows an example of one of these pockets. In the figure, cell B

connects to cells A, C and D, each of which are already packed into clusters in this example. When

cell B is selected to seed a cluster, all of the neighboring cells (A, C and D) are already packed

leaving cell B to occupy the cluster alone.

A C

D

B

Cluster Cluster

F

E

Figure 5.4: Example of a Pocket Forming Around a Cell (B) During Packing

The large number of cells which are underutilized increases the required number of slices

and CLBs. More slices means the circuit is more spread out leading to longer routes and higher

minimum periods. In the worst case, underutilization of the slices and CLBs can lead to larger

designs.

64



5.2.1 Two-Hop Deep Cell Selector

Returning to Figure 5.4, while cell B has no adjacent unpacked cells left to be clustered

with, the unpacked cell E presents a nearby candidate to be clustered with. Though cells B and E

do not share any nets, by sharing a neighbor – in this case cell C – the cells should likely end up

near one another in the final circuit and thus clustering them together is likely to be beneficial to

the circuit and will help reduce the number of logic resources used in the device.

Cells such as B and E, which both connect to a shared cell but not each other, are con-

sidered two hops apart. To reduce the number of lightly utilized clusters, the cell selector used by

RSVPack can be modified to consider these cells during packing. This two-hop cell selector allows

RSVPack to search beyond the immediately adjacent connected cells for candidates to absorb into

the clusters.

The two-hop cell selector used in this experiment operates in two modes. While unpacked

adjacent cells remain for RSVPack to consider, the two-hop cell selector operates identically to

the single hop cell selector and only considers adjacent cells. After all adjacent cells have been

evaluated, the cell selector enters into its second mode, two-hop mode. In two-hop mode, the

selector searches for and suggests cells which are two hops from the current cluster. Unlike the

default one-hop cell selector, the two-hop cell selector stops after three LEs in the cluster are

utilized. This helps prevent fully filling the clusters with only tangentially-related logic.

The two-hop cell selector limits the number of cells that are evaluated when in two-hop

mode. The number of cells that are reachable in a certain number of hops is approximately expo-

nential to the fan out of the circuit. This means that if a design has an average fan out of 20, the

number of cells two hops away will likely be in the hundreds. This exponential growth can lead

to much longer run times for only marginal gains. To limit the increase in run time, the two-hop

cell selector stops considering additional cells after 50 consecutive cells could not be added to the

cluster. Due to diminishing returns of packing cells that are more hops away, the two-hop cell

selector will not search three or more hops away from the cluster.
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5.2.2 Experiment Setup

Each of the benchmarks from Section 4.6.1 are implemented using both the standard one-

hop and two-hop cell selectors. As before, numbers are taken from the best performing implemen-

tations, as measured by minimum clock period, after twenty runs of the CAD tool.

5.2.3 Results and Conclusion

Table 5.1: Influence of 2-Hop Deep Cell Selector on Benchmarks

Benchmark

Used Slices Total Wire Length Min Period (ns)

One Hop Two Hop
%

One Hop Two Hop
%

One Hop Two Hop
%

Decrease Decrease Decrease

viterbi 3129 2386 23.7 191 179 6.5 6.68 6.65 0.5
microblaze 6332 4929 22.2 351 324 7.6 7.13 7.65 -7.2

divider 6501 6182 4.9 287 271 5.7 3.67 3.52 4.1
bgm 4630 4453 3.8 291 302 -3.7 8.28 8.01 3.2

lu8peeng 8748 6822 22.0 538 612 -13.7 50.59 49.28 2.6
mcml 17207 16048 6.7 1402 1324 5.6 28.28 27.95 1.2

cholesky mc 20559 18239 11.3 1564 1576 -0.7 9.49 9.57 -0.8
dart 17617 16596 5.8 2195 2339 -6.5 11.64 12.24 -5.2

As seen in Table 5.1, using the two-hop cell selector leads to decreases in the number of

used slices with some benchmarks using up to 25% fewer. This decrease comes from having fewer

slices that contain only a single LE (Figure 5.5). The number of LUTs with a single LE used drops

up to 60%. The two-hop cell selector produces circuits with, on average, minimum periods and

total wire lengths that are equivalent to the one hop cell selector.

Compared to the one-hop cell selector, the two-hop cell selector does a better job of main-

taining consistency in the LE usage throughout the packing process (see Figure 5.6). Nevertheless,

the two-hop cell selector does decrease in cluster density at the end.

Overall, the two-hop cell selector significantly reduces the number of slices required to

pack a design while not causing consistent increases in wire usage and minimum period. The

decrease in the number of required slices allows for designs to potentially fit on smaller devices. In

the future this technique could be combined with approaches for managing the maximum density

of a cluster, such as those used in [36], to better control how densely the slices are packed.
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Figure 5.6: Progression of Packing Density of Clusters over Packing Process with Two-Hop Cell
Selector

5.3 Experiment 3: Tile Versus Site Level Packing

Pack units are typically based on a naturally occurring level of hierarchy in the device.

Xilinx has two such levels of hierarchy: tiles and sites. RSVPack is designed to work with either
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of these levels of hierarchy. Up to this point, RSVPack has targeted site-level pack units. This

experiment will explore the tradeoffs between packing onto site-level and tile-level pack units.

5.3.1 Background

The CLBs (tiles) in Virtex 6 each contain two slices (sites). The slices in each CLB are

independent of one another except that they share a switch box. Because slices in a CLB share a

switch box, a net connecting to both slices in the CLB uses only marginally more routing resources

in the switch box than if the net connected to only one of the slices. Additionally, the switch boxes

contain paths connecting the outputs of the slices to some of the pins on the other slice. These

direct paths require no additional routing resources, such as bounce pins, and are often faster than

other paths connecting the pins. Making use of these paths can reduce the amount of routing

congestion in the switch box and lead to less routing delay. This would seem to encourage taking

both slices into account when packing a design.

Another factor in packing is the granularity of the created clusters. Site-level clusters are

finer granularity than tile-level clusters. The finer granularity provides more flexibility for the

placer while increasing the number of clusters the placer must place by 2x.

RSVPack, by its nature, works with less contextual information than the global placer. The

placer knows of the physical locations of each cluster in the circuit and can use this information to

estimate routing delay and congestion for the circuit. Packing is performed before this information

is available. In general, it is best to postpone decisions until later information is known, but this

presents a tradeoff between algorithm complexity, run time and final circuit quality. Packing into

sites instead of tiles postpones more of the decisions while increasing the workload for the placer.

The factors discussed above provide reasons why site-level and tile-level packing might

each be be preferable. This experiment is designed to empirically determine which hierarchical

level is best for packing with RSVPack.
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5.3.2 Experiment Setup

Figure 5.7 shows the flows that are used to compare site-level and tile-level pack units. The

names of the flows are appended with “-Site” and “-Tile” to distinguish which pack unit is used by

which flow. The benchmarks from Section 4.6.1 are implemented with each of these flows.

Due to significant differences between RSVPlace and the placer in par, the RSV-based

flows are analyzed independently of the RSX-based flows. Though, as has been shown, the RSV

flow performs significantly worse than the RSX flow, the RSVPlace placement algorithm in the

RSV flow can be configured to place the tile-level pack unit based clusters. In contrast, the placer

in PAR used by the RSX flow is a site-level placer and will break the CLB clusters into individual

slices during placement.

Figure 5.7: Flows for Comparing Tile-Level and Site-Level Based Packing
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5.3.3 Results and Analysis

RSV-Tile versus RSV-Site

Table 5.2: Used Slices for RSV-Site and RSV-Tile Implemented Benchmarks

Benchmark
Used Slices

RSV-Site RSV-Tile Site
Tile

viterbi 3129 2858 1.09
microblaze 6332 5771 1.10

divider 6501 6997 0.93
bgm 4630 4494 1.03

lu8peeng 8748 8665 1.01
mcml1 17207 17388 0.99

cholesky mc 20559 20434 1.01
dart 17617 17699 1.00

1 Due to lack of CLB resources, the mcml
benchmark is targeted for the xc6vlx195t
part when using the RSV-Tile flow.

Table 5.3: HPWL, Used Wire Length, and Minimum Periods of RSV-Site and RSV-Tile
Implemented Benchmarks

Benchmark

Half-Perimeter Wire Length Total Wire Length
Min Period (ns)(Thousands) (Thousands)

RSV-Site RSV-Tile Site
Tile RSV-Site RSV-Tile Site

Tile RSV-Site RSV-Tile Site
Tile

viterbi 132 164 0.80 164 186 0.88 9.19 9.69 0.95
microblaze 290 315 0.92 351 365 0.96 9.19 12.52 0.73

divider 400 1195 0.33 374 942 0.40 5.18 8.62 0.60
bgm 248 357 0.70 268 336 0.80 10.58 12.53 0.84

lu8peeng 470 674 0.70 537 681 0.79 57.33 88.23 0.65
mcml 1514 3917 0.39 1575 — — 38.08 — —

cholesky mc 2048 3218 0.63 2124 3020 0.70 13.23 18.08 0.73
dart 2242 3089 0.73 2466 — — 20.76 — —

The resource utilization by RSVPack for both tile-level and site-level placement is shown

in Table 5.2. RSV-Site and RSV-Tile use about the same number of slices. However, tile-level
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packing often leads to more CLBs being used. The same low utilization discussed in Section 5.2

appears in the tile-level packing but with whole tiles being underutilized. In the case of the mcml

benchmark, tile-level packing required a larger part to fit all of the tiles. The difference in the CLB

usage between tile and site level packing is heavily dependent on how densely the site-level placer

places the slices, however.

RSV-Site significantly outperforms RSV-Tile in the final circuit quality (Table 5.3). With

RSVPack-Tile, three of the benchmarks, cholesky mc, mcml and dart, could not be routed due to

routing congestion; wire length and minimum period are not presented for these benchmarks. In

contrast, all of the benchmarks were successfully implemented with RSV-Site. In the successfully

implemented benchmarks, RSV-Site produces circuits with minimum periods which are up to 66%

faster and use 23% less wire length on average.

The Half-Perimeter Wire Length (HPWL) cost function used by RSVPlace shows RSV-Site

producing placements with an average reduction of 35% over RSV-Tile produced placements. The

divider and mcml circuits especially stand out with reductions of nearly 70%. These benchmarks

differ from the others in that they make heavy use of the carry chains. This will be discussed later

in this section.

In run time (Table 5.4) RSV-Tile runs up to 33% faster than RSV-Site (26 minutes vs 40

minutes for dart). These times are not large and likely do not justify the significant decrease in

quality.

RSX-Tile versus RSX-Site

Both RSX-Tile and RSX-Site use Xilinx PAR to place and route the packed designs. PAR

always places at the site-level and will break the tile-level clusters produced by RSVPack-Tile into

site-level clusters during placement. Despite this, examining the RSX flows helps to show the

effect that coupling the two sites in a tile together has on the potential quality of a circuit.

In contrast to the RSV flows, all benchmarks were successfully placed and routed with

both the RSX-Site and RSX-Tile flows. Results from the experiment are presented in Table 5.5.

Changes in total wire length vary depending on the benchmark, but across all of the benchmarks,

RSV-Site implemented benchmarks see an average decrease of 5% compared to RSV-Tile imple-
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Table 5.4: Run Times for RSV-Tile and RSV-Site in Seconds

Benchmark Flow Pack Place Total

viterbi
RSV-Site 80 50 130
RSV-Tile 130 26 156

microblaze
RSV-Site 130 131 261
RSV-Tile 184 73 257

divider
RSV-Site 120 132 252
RSV-Tile 172 70 242

bgm
RSV-Site 104 134 238
RSV-Tile 137 57 195

lu8peeng
RSV-Site 190 322 512
RSV-Tile 307 155 462

mcml
RSV-Site 302 752 1053
RSV-Tile 436 336 771

cholesky mc
RSV-Site 503 1107 1610
RSV-Tile 0

dart
RSV-Site 1245 1166 2411
RSV-Tile 1123 483 1605

Table 5.5: Used Wire Length and Minimum Periods of RSX-Site and RSX-Tile Implemented
Benchmarks

Benchmark

Total Wire Length
Min Period (ns)(Thousands)

RSV-Site RSV-Tile Site
Tile RSV-Site RSV-Tile Site

Tile

viterbi 191 177 1.08 6.68 6.55 1.02
microblaze 351 384 0.92 7.13 7.43 0.96

divider 287 328 0.87 3.67 3.59 1.02
bgm 291 305 0.95 8.28 8.46 0.98

lu8peeng 538 619 0.87 50.59 51.91 0.97
mcml 1402 1352 1.04 28.28 28.06 1.01

cholesky mc 1564 1750 0.89 9.49 9.50 1.00
dart 2195 2211 0.99 11.64 12.09 0.96
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mented benchmarks. The differences in minimum period between the flows are negligible and

average out to less than 1%.

Effect on Carry Chains

As mentioned, the divider and mcml benchmarks performed significantly worse with the

RSV-Tile flow than the RSV-Site flow compared to the other benchmarks. The dramatic difference,

however, is not reflected in their corresponding RSX flows. These two benchmarks, unlike the

other benchmarks, are largely made up of arithmetic circuitry with over 25% of the LUTs in the

circuits being involved in carry chain logic.

Carry chains are interesting structures in FPGA architectures. First, carry chains lead to

very inflexible packing – the carry chain BEL forces at least 4 LUTs to be packed together at

defined locations. Second, whereas most clusters can be placed independently of one another,

clusters which are part of the same carry chain must be placed relative to one another. Thus, when

a circuit contains a 32 bit adder, the 8 slices involved in the adder are all positioned relative to one

another, effectively an 8 slice cluster.

Packing CLBs compounds the greater influence carry chains exert on the circuit. In the

Virtex 6 architecture, each CLB contains two slices, and thus two carry chains. When packing tiles,

if both carry chains in the CLB are used, all cells involved in either carry chain must be placed

relative to one another. Further, the two carry chains packed into a cluster may have significant

portions of each carry chain which, like the two carry chains seen in Figure 5.8, do not overlap.

The combining of the carry chains explains the dramatic increase in wire length seen in the

divider and mcml benchmarks between the RSV-Site and RSV-Tile flows. When the paired carry

chains from the tile-level clusters are broken up by the placer in par, the large discrepancy seen in

these designs disappears and the circuits from both flows use similar amounts of routing resources.

5.3.4 Experiment Conclusions

This experiment shows that placing site-level clusters is superior to placing tile-level clus-

ters. With access to the physical location of each cluster, the additional flexibility the site-level

placer has over the tile-level placer yields much improved circuits. Additionally, the possibility
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Figure 5.8: Non-Overlapping Carry Chains Paired Together in a CLB

of multiple carry chains being packed together with a tile-level packer can significantly degrade

results. The added run time for site-level placement is also small. For these reasons, site-level

packing is preferable to tile-level packing.

5.4 Summary

This chapter has shown different experiments that are enabled by RSVPack and Rapid-

Smith 2. By decreasing the quality of the packing, the first experiment showed that poor packing

can lead to unroutable circuits and can impact clock periods by at least 25%. The second ex-

periment presented a way to reduce the number of slices used by a design while maintaining the

quality of the final circuits. The last experiment showed that packing and placing sites leads to

better quality circuits than packing and placing tiles on the Virtex 6 architecture.
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CHAPTER 6. CONCLUSION

6.1 Summary of Research

The following is a summary of the research presented in this dissertation and its major

contributions:

Chapters 1 and 2 provided motivation and background for this research. The need for an

academic packer that can fit into a commercial tool frame was addressed. A survey of the different

approaches to packing algorithms and the CAD frameworks which enable these algorithms was

conducted. The survey also discussed previous work toward integrating one of these frameworks

into the Xilinx tool flow and the limitations of that work.

Chapter 3 described the updates made to RapidSmith included in RapidSmith 2. The up-

dates included interpreting and representing the subsite data structure provided in XDL and cre-

ating a netlist of cells to represent designs represented at the BEL level. As part of this represen-

tation, a method for integrating RapidSmith 2 into the Xilinx ISE CAD flow was also presented.

This integration enables integrating custom packers into the Xilinx ISE flow.

Chapter 4 presented the RSVPack algorithm. This algorithm is unique in its ability to

accept a Xilinx-synthesized netlist, perform packing on the netlist and return the packed results to

be placed and routed by Xilinx. The changes to existing algorithms and checks required to support

the Virtex 6 architecture were discussed. The packer and flow were demonstrated on a set of

medium-sized benchmarks and produced circuits with minimum clock periods that are within 5%

of Xilinx packed circuits. Finally, a novel table-based algorithm that determines cluster routability

that runs 5 times faster than previous approaches was presented.

Chapter 5 detailed different experiments that have been performed using RSVPack and its

related flows. These experiments demonstrated the impact that packing has on the quality of the

final circuits, established that packing and placing sites leads to better results than packing and
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placing tiles and showing that looking at cells two hops away from the current cluster can decrease

slice usage while not decreasing general circuit quality.

6.2 Future Work

This work lays the foundation for exploring novel approaches for packing algorithms tar-

geting Xilinx FPGAs. The latest release of RapidSmith 2 adds support for integrating custom tools

into the Xilinx Vivado CAD suite. RSVPack is being updated to work with the latest version of

RapidSmith 2. As part of this update, RSVPack will target the new architectures supported only

by Vivado and will be integrated into the Vivado CAD flow. When complete, these updates to

RSVPack will be released as part of the RapidSmith 2 project.

The following topics are areas where the RSVPack algorithm can be improved:

• Add timing-driven features to the algorithm to keep long chains of combinational logic lo-

cated close together. As Xilinx does not make its wire delay model public, timing-driven

features will likely involve developing a method to approximate wire delay.

• Make slice utilization more uniform through the entire packing process. Though the two-

hop cell selector discussed helps make the densities of slices more consistent throughout the

duration of packing, at the end, the LE utilization of the slices does still decrease. In addition

to making this more uniform, it is important to identify how densely slices should be packed

in a circuit.

• Explore techniques for modifying the packing during placement. Packing is performed early

in the implementation process and is prone to making decisions that lead to poor circuit

quality. By allowing the placer to rearrange some of the packing, the placer can separate

components in clusters and place each component where it fits best on the circuit. Modifying

the packing during placement will require the placer to perform the same checks that were

performed by RSVPack.

Finally, with RSVPack and RSVPlace, the RapidSmith project now has two of the three

components of a complete back-end FPGA implementation. Completing a router would provide a

full back-end CAD flow allowing researchers to explore new algorithms and approaches for each
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of the different components of the FPGA CAD flow and witness the implementations programmed

onto physical hardware.
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APPENDIX A. PUBLICATIONS AND DOCUMENTATION

Work discussed in this dissertation is also published in [17], [49], and [55]. During my

doctoral work, I have also published the following paper [7].

This work builds on the RapidSmith 1 project described in [3]. Work towards interfacing

RapidSmith 2 with Vivado is presented in [56] and [57]. The documentation for RapidSmith 2 is

available online at [48].
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APPENDIX B. RAPIDSMITH 2 CHANGELIST

The version of RapidSmith 2 used in this work differs from the publicly released version

in the following ways:

• The public release of RapidSmith 2 separates the intersite route tree from the intrasite route

trees.

• The public release of RapidSmith 2 adds support for hierarchical cells. This primarily

changes how distributed RAMs (LUTRAMs) are represented in RapidSmith 2.

• In the public release of RapidSmith 2, all nets sourced by ground or power connect to the

same net. In this work, a new net is created for each ground or power source.

• The public release of RapidSmith 2 adds support for the LUTs to act as route throughs – ie.

unused LUTs can be treated as wires. In this work, to use a LUT as a pass through, a LUT

cell programmed to pass one input through unchanged must be created in the netlist.

• The public release of RapidSmith 2 allows cells to use pseudo pins to connect nets to un-

mapped BEL pins. For example, an 5-input LUT cell placed on a 6LUT BEL must connect

the A6 pin on the BEL to VCC. As the 5-input LUT cell only has 5 inputs, a pseudo pin is

added to the cell which maps to the A6 pin on the BEL. In this work, after packing, the type

of the cells were changed to allow the required connections.

None of these changes should influence the results provided in this work.
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APPENDIX C. XDL-UNPACKING AND XDL-PACKING ALGORITHMS

XDL-unpacking and XDL-packing are tools to translate an XDL-based design into a cell-

based design used by RapidSmith 2 and back, respectively. To simplify the conversion process,

the algorithms work from the RapidSmith 1 instance-based netlists instead of processing the XDL

directly. The full flow to convert a Xilinx NCD netlist to RapidSmith 2’s cell-based netlists is

shown in Figure C.1.

Figure C.1: Converting between XDL and RapidSmith 2 with the Design-Unpacker

C.1 Design Unpacking

XDL-unpacking, is the process of interpreting the attributes in the instances in an XDL de-

sign and translating them into a netlist of cells. This process involves identifying which attributes

in the instance should be translated into cells, determining the type for each of these cells, associ-

ating each configuration attribute in the instance with the right properties on the appropriate cells,

and translating the mux attributes into the route tree structure. The XDL-Unpacking algorithm is

shown in Algorithm 2.

To guide the translations of XDL attributes to BELs and properties, the XDL-unpacker

references an unpack.xml file which specifies how every BEL in the device should be XDL-

unpacked. The unpack.xml file, shown in Figure C.2, describes how each attribute relating to a

BEL in the XDL should be unpacked. For trivial BELs, the corresponding entry in the unpack.xml
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Figure C.2: A BEL entry in the unpack.xml

file specifies the type for the cell that is created, a mapping of the pins on the BEL to the pins on

the cell, and the XDL property attributes that relate to the configuration of the cell (e.g. attribute

CFFSR in the XDL is translated to the SR property for the FF cell located at the CFF BEL).

In most cases, the description in the unpack.xml is sufficient for translating the XDL BEL

attributes to cells. However, in some cases, the type of the cell is a property of both the BEL

the cell is located on and how the cell is used. For example, the A6LUT attribute in a SLICEM

instance may translate to a cell of type LUT6, LUT5, SRL, or LUTRAM based on how many pins

are connected to the cell and the associated configuration attributes for the cell. In these cases,

a more complex analysis is required to determine the type of the cell. To allow for this analysis,

unpack.xml points to a software hook that the XDL-unpacker can call to determine the types and

properties for the corresponding cells.
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In the above cases where a BEL attribute could be translated into more than one possible

cell type, the XDL-unpacker chooses the cell type that provides the cell with the most placement

flexibility. For example, in the previous A6LUT example, if the BEL uses only five of the six

available input pins, the LUT5 cell type will be preferred over the LUT6 type. This allows the

created cell to be placed on both 5LUT and 6LUT BELs in the device; a LUT6 cell could only

be placed on a 6LUT BEL. Similarly, the LUT5 and LUT6 cell types are preferred over the SRL

and LUTRAM types. In all cases, however, the selected cell type is guaranteed to have all of the

functionality required to describe the resource.

As each BEL attribute in the XDL needs to be translated into a cell from the cell library, the

XDL-unpacking process is closely tied to a cell library. To simplify the process, the XDL-unpacker

utilizes a cell library that closely resembles the BELs in XDL. This allows for most BELs in the

device to have a direct mapping to a single cell type from the library, leading to a straight-forward

translation.

To translate the subsite routing, the XDL-unpacker performs a tree traversal algorithm start-

ing at the outputs of each used BEL in a site to build the corresponding route tree. When traversing

the routing path, upon reaching a PIP in the graph, the algorithm will determine if the PIP is en-

abled by matching the PIP to its associated attribute in the XDL and checking the value of the

attribute to see if the PIP is enabled. If the PIP is enabled in the XDL, the traversal continues.

Otherwise, the traversal stops at the disabled PIP.

Once complete, the algorithm returns a functionally equivalent cell-based representation of

the original XDL design. This representation includes all cells in the design, route trees represent-

ing the subsite routing, and, in the case of a fully routed XDL design, the route trees representing

the intersite routing.

C.2 XDL-Packing

XDL-packing converts the cell-based netlist in RS2 into an RS1 instance-based netlist

which can be converted to XDL. When complete, the XDL-Packer will return a functionally equiv-

alent XDL design of the input cell-based netlist. Though, XDL-packing does not need as much

outside information as XDL-unpacking does, it still uses an pack.xml to provide the mapping
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Algorithm 2 Design-Unpacker Algorithm
1: function CONVERT(design)
2: cellDesign← a new cell-based design
3: for each net in design.nets
4: cellNet← a new CellNet
5: if net is routed then
6: routeTree← buildRouteTree(net)
7: add routeTree to cellNet
8: end if
9: add cellNet to cellDesign

10: end for
11: for each instance in design.instances
12: for each attribute in instance.attributes
13: if attribute represents a BEL in the design then
14: cell← a new Cell
15: cell.type← type as determined by unpack.xml

16: cell.properties←getProperties(attribute, instance, unpack.xml)
17: end if
18: end for
19: for each sourcePin in used inputs to the site
20: wire← sourcePin.wire
21: net← the external net connected to sourcePin
22: routeTree← buildRouteTreeFrom(wire,net)
23: add routeTree to net
24: end for
25: for each sourcePin in source pins on used BELs
26: wire← sourcePin.wire
27: net← a new CellNet
28: routeTree← buildRouteTreeFrom(wire,net)
29: add routeTree to net
30: end for
31: end for
32: return cellDesign
33: end function

89



34: function BUILDROUTETREEFROM(wire, net)
35: for each sinkWire driven by wire
36: if connection from wire to sinkWire is a PIP then
37: if PIP is enabled in the instance then
38: buildRouteTreeFromwire,net
39: else
40: buildRouteTreeFromwire,net
41: end if
42: if wire connects to a used BEL pin then
43: add the associated cell pin as a sink to net
44: if wire connects to a used site pin then
45: merge net with the external net connected to the site pin
46: end for
47: end function

from the names of the properties on the cells to their corresponding XDL attribute names. The

arrangement of the pack.xml file is shown in Figure C.3.

The XDL-packing algorithm is presented in Algorithm 3. Because XDL requires all com-

ponents to reside within an instance, XDL-packing only works with placed netlists. It would be

possible to translate a packed-but-not-placed input netlist, but RS2 does not have any native support

for such netlists at this time.

Figure C.3: A BEL entry in the pack.xml

90



Algorithm 3 Design-Packer Algorithm
1: function CONVERT(cellDesign)
2: design← a new instance-based design
3: for each site in cellDesign.usedSites
4: instance← a new instance
5: add instance to design
6: set type of instance based on the BELs used in the site
7: for each cell in cellDesign.cells placed in site
8: bel← cell.bel
9: attribute← a new attribute

10: attribute.name← bel.name
11: attribute.value← cell.attributes[cell.name]
12: add attribute to instance
13:
14: for each property in properties of cell
15: attribute← a new attribute
16: attribute.name← name based on property.name and cell.bel
17: attribute.value← property.value
18: add attribute to instance
19: end for
20: end for
21: end for
22: for each cellNet in cellDesign.nets
23: traverse each route tree in cellNet
24: if connection is a subsite PIP then
25: instance← the instance at the site of the PIP
26: attribute← a new attribute
27: attribute.name← name of the mux matching PIP
28: attribute.value← property.value
29: add attribute to instance
30: else if the net enters or leaves the site then
31: net← the net in the design or a new net
32: add the instance pin to the net
33: else if connection is a tile-level PIP then
34: create and add the PIP to net
35: end if
36: end traversal
37: end for
38: return design
39: end function
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APPENDIX D. CHECKS REQUIRED FOR PACKING FOR A VIRTEX 6 DEVICE

Below is a list of checks that must be performed when packing a design for a Virtex 6

FPGA to produce a legal circuit. The checks that prevent cells from being packed prematurely

consist of:

• When the CYINIT pin on a carry chain element is driven by a non-power input, the cell

sourcing the DI0 pin on the carry chain element must be packed with the carry chain element.

• When both the O and CO pins on a carry chain element are used, at least one of the FFs

driven by the O and CO pins on a carry chain element must be packed together with the

carry chain element.

• All cells in a multi-cell LUTRAM must be packed together. Failing to do so may lead to

violations of other architectural requirements.

The checks that cover the discovered design rules for the archiecture consist of:

• When both the 5LUT and 6LUT components of a LUT are used, cells placed on both com-

ponents must be the same type of cell (e.g. LUTs, SRL16, SPRAM32, DPRAM32).

• When both the 5LUT and 6LUT components of a LUT are used, either both components

must be 5-input LUT types or the equation of the cell placed on the 5LUT must be identical

to the equation of the cell placed on the 6LUT when the highest index pin (A6) is low.

• The cells that are part of a multi-cell LUTRAM must be placed at BELs that perform the

appropriate write address checking for the cell.

• When a LUT in a slice is used as a LUTRAM, the D6LUT must be occupied.

92


	Brigham Young University
	BYU ScholarsArchive
	2017-07-01

	Academic Packing for Commercial FPGA Architectures
	Travis D. Haroldsen
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1   Introduction
	1.1 Contributions of this Work
	1.2 Dissertation Organization

	Chapter 2   Background and Related Work
	2.1 Xilinx FPGA Architecture
	2.1.1 Tiles
	2.1.2 Sites

	2.2 FPGA CAD Flow
	2.2.1 Traditional CAD Flow
	2.2.2 Xilinx ISE CAD Flow
	2.2.3 Academic CAD Frameworks
	2.2.4 Academic Packing Algorithms

	2.3 Xilinx Design Language and RapidSmith
	2.3.1 XDLRC File Format
	2.3.2 XDL
	2.3.3 XDL/ISE Interoperability
	2.3.4 RapidSmith 1


	Chapter 3   RapidSmith 2
	3.1 Subsite Device Representation
	3.1.1 Building Site Templates

	3.2 Design Netlist
	3.2.1 Route Trees

	3.3 XDL Compatibility
	3.3.1 Integrating Custom Packers into ISE with RapidSmith 2
	3.3.2 Non-Xilinx Architectures in RapidSmith 2


	Chapter 4   RSVPack: A Packer for Xilinx FPGAs
	4.1 RSVPack Overview
	4.1.1 Pack Units

	4.2 RSVPack Algorithm
	4.2.1 Seeding Clusters
	4.2.2 Seeding a Cluster
	4.2.3 Cluster Legality Validation
	4.2.4 Conditional Mode
	4.2.5 Manual Pairing of LUTs and FFs

	4.3 Table-Lookup Routing Feasibility Improvement
	4.3.1 Routing Feasibility: VTR's AAPack versus RSVPack
	4.3.2 Run Time Improvement

	4.4 Identifying Packing Rules for Xilinx Architectures
	4.5 Integrating RSVPack into the Xilinx ISE CAD Flow
	4.5.1 Pure ISE Flows
	4.5.2 RSX Flow
	4.5.3 RSV Flow

	4.6 RSVPack Performance
	4.6.1 Benchmark Set
	4.6.2 RSVPack Results
	4.6.3 Summary


	Chapter 5   Experimenting with Packing Xilinx FPGAs Using RSVPack
	5.1 Experiment 1: Impact of Packing on Circuit Quality
	5.1.1 Experiment Setup
	5.1.2 Results

	5.2 Experiment 2: Cluster Underutilization
	5.2.1 Two-Hop Deep Cell Selector
	5.2.2 Experiment Setup
	5.2.3 Results and Conclusion

	5.3 Experiment 3: Tile Versus Site Level Packing
	5.3.1 Background
	5.3.2 Experiment Setup
	5.3.3 Results and Analysis
	5.3.4 Experiment Conclusions

	5.4 Summary

	Chapter 6   Conclusion
	6.1 Summary of Research
	6.2 Future Work

	References
	Appendix A   Publications and Documentation
	Appendix B   RapidSmith 2 Changelist
	Appendix C   XDL-Unpacking and XDL-Packing Algorithms
	C.1 Design Unpacking
	C.2 XDL-Packing

	Appendix D   Checks Required for Packing for a Virtex 6 Device

