
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2017-07-01

Vivado Design Interface: Enabling CAD-Tool Design for Next Vivado Design Interface: Enabling CAD-Tool Design for Next

Generation Xilinx FPGA Devices Generation Xilinx FPGA Devices

Thomas James Townsend
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Townsend, Thomas James, "Vivado Design Interface: Enabling CAD-Tool Design for Next Generation
Xilinx FPGA Devices" (2017). Theses and Dissertations. 6492.
https://scholarsarchive.byu.edu/etd/6492

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6492&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F6492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6492?utm_source=scholarsarchive.byu.edu%2Fetd%2F6492&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Vivado Design Interface: Enabling CAD-Tool Design for

Next Generation Xilinx FPGA Devices

Thomas James Townsend

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Brent E. Nelson, Chair
Michael J. Wirthlin
Jeffrey B. Goeders

Department of Electrical and Computer Engineering

Brigham Young University

Copyright c© 2017 Thomas James Townsend

All Rights Reserved

ABSTRACT

Vivado Design Interface: Enabling CAD-Tool Design for
Next Generation Xilinx FPGA Devices

Thomas James Townsend
Department of Electrical and Computer Engineering, BYU

Master of Science

The popularity of field-programmable gate arrays (FPGA) has grown in recent years due to
their potential performance advantages over sequential software, and as a prototyping platform for
application-specific integrated circuits (ASIC). Vendors such as Xilinx offer automated tool suites
that can be used to program FPGAs based on a RTL description. These tool suites are sufficient for
general users, but they usually don’t provide the opportunity to integrate custom computer-aided
design (CAD) tools into the regular design flow.

Xilinx first offered this capability in their ISE tool suite with the Xilinx Design Language
(XDL). Using XDL, a Xilinx design could be extracted from the regular CAD flow, run through
an external tool, and injected back into the flow. Research tools targeting commercial FPGAs have
most commonly been based on XDL. Vivado (Xilinx’s newest tool suite) no longer supports XDL,
preventing similar tools from being created for next-generation devices. Instead, Vivado includes
a Tcl interface that exposes Xilinx’s internal design and device data structures. Considerable chal-
lenges still remain to users attempting to leverage this Tcl interface to develop external CAD tools.

This thesis presents the Vivado Design Interface (VDI), a set of file formats and Tcl func-
tions that address the challenges of exporting and importing designs to and from Vivado. To
demonstrate its use, VDI has been integrated with RapidSmith2, an external FPGA CAD frame-
work. To the best of our knowledge this work is the first successful attempt to provide an open-
source tool-flow that can export designs from Vivado, manipulate them with external CAD tools,
and re-import an equivalent representation back into Vivado.

Keywords: Vivado, FPGA, Tcl, CAD, RapidSmith2, Xilinx, Java

ACKNOWLEDGMENTS

I would like to dedicate this thesis to my wife Michelle and daughter Aubrey. Michelle,

you constantly inspire me by how hard you work to achieve your own dreams, and give me the

extra push to do the same with mine. Aubrey, you are, without a doubt, the light of our lives. Your

laugh gave me many enjoyable moments between the late nights spent studying and completing

the research of this thesis. It is a great feeling to know that there will always be such love and

support at home from both of you, even after a difficult day.

I must also express my thanks to my parents Daniel and Gillian Townsend. Mom and Dad,

you have always been supportive of my life decisions and pursuits, and for that I will be forever

grateful. You have taught me with love and patience (even through my difficult teenage years),

and I will always cherish our wonderful memories together. I must also thank all members of my

family and extended family, who have supported me throughout this journey.

Of course, I owe tremendous gratitude to my adviser, Dr. Brent Nelson, who oversaw and

guided me as this thesis took shape. Not only did he introduce me to the Configurable Computing

Lab three years ago, but he weathered the storm during a project switch after my first year in

graduate school. His insight and guidance was very helpful in keeping my mind focused on the

most important tasks moving forward, which was integral in the completion of this research.

I would also like to thank all professors in the Electrical and Computer Engineering De-

partment whose courses turned me into a better learner and engineer. This is especially true of Dr.

Mike Wirthlin and Dr. Brad Hutchings, whose courses on digital design and embedded systems in-

spired me to work with FPGAs. I also owe special thanks to Dr. Jeff Goeders who agreed to be on

my committee at the last minute, and made several useful suggestions to improve this document.

Finally, I would like to thank all students in the Configurable Computing Lab who I took

coursework with or who helped brainstorm ideas for my research. Specifically, I would like to

thank Travis Haroldsen, Brad White, Bond Denhalter, and Mark Crossen for their help in making

this thesis possible.

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Problem Statement and Goals . 2
1.3 Contributions . 3
1.4 Thesis Organization . 4

Chapter 2 Background and Related Work . 5
2.1 Xilinx FPGA Architecture . 6

2.1.1 Tiles . 7
2.1.2 Sites . 7
2.1.3 Wires and PIPs . 9

2.2 Xilinx Netlist Structure . 10
2.3 Vivado Tool Suite . 11
2.4 Tincr . 12
2.5 Xilinx Design Language (XDL) . 13
2.6 RapidSmith . 15

2.6.1 RapidSmith2 . 16
2.7 Vivado Design Interface . 17

Chapter 3 VDI: Device Export . 19
3.1 XDLRC . 19

3.1.1 Site PAD Names . 20
3.1.2 Floating VCC/GND Sources . 21
3.1.3 Vivado Subsite Routing Tool . 23

3.2 Family Info XML . 24
3.2.1 Algorithm . 25
3.2.2 Alternate Types . 26
3.2.3 Compatible Types . 28
3.2.4 BEL Routethroughs . 30
3.2.5 Site PIP Corrections . 31
3.2.6 Pin Direction Corrections . 32

3.3 Device Info XML . 33
3.4 Cell Library XML . 34

3.4.1 Finding Device Compatible Cells . 36
3.4.2 Cell Placement Locations . 37
3.4.3 Configurable Cell Properties . 38
3.4.4 Macro Primitives . 39

3.5 Conclusion . 41

iv

Chapter 4 VDI: Design Import/Export . 43
4.1 Design Export . 44

4.1.1 Design.info . 44
4.1.2 Netlist.edf . 45
4.1.3 Constraints.xdc . 46
4.1.4 Macros.xml . 46
4.1.5 Placement.rsc . 47
4.1.6 Routing.rsc . 49

4.2 Design Import . 56
4.2.1 Placement.xdc . 57
4.2.2 Routing.xdc . 57

4.3 Vivado Tcl Interface Challenges . 58
4.3.1 Ambiguous ROUTE Strings . 59
4.3.2 Alternate Site Pins . 60
4.3.3 VCC/GND BEL Pins . 61
4.3.4 SLICE Placement Order . 62
4.3.5 Macro Placement . 63
4.3.6 LUT Routethroughs . 64
4.3.7 Routing Differential Pairs . 65

4.4 Why Two Design Checkpoint Formats? . 66
4.5 Conclusion . 67

Chapter 5 Integrating RapidSmith2 and VDI . 68
5.1 Importing RSCPs . 69

5.1.1 Approach to Parsing RSCP Files . 70
5.1.2 Netlist.edf . 71
5.1.3 Routing.rsc . 72

5.2 Exporting TCPs . 74
5.3 Contribution List . 76
5.4 Conclusion . 79

Chapter 6 VDI Testing . 80
6.1 RSCP Import Testing . 81
6.2 TCP Export Testing . 83
6.3 Case Study: Series7 Simulated Annealing Placer 85

6.3.1 Utilizing VDI Information . 86
6.3.2 Productivity Advantages . 86
6.3.3 Real Device Challenges . 87
6.3.4 Interactive Mode . 88
6.3.5 Placer Results . 89

6.4 VDI Performance . 90
6.5 Conclusion . 93

Chapter 7 Conclusion . 94

v

7.1 Sustainability . 94
7.2 Contributions . 95
7.3 Future Work . 96

References . 98

Appendix A RapidSmith2 Documentation . 100
A.1 Devices . 100

A.1.1 Device Data Structures . 100
A.1.2 Loading a Device . 104
A.1.3 Supported Device Files . 104

A.2 Designs . 105
A.2.1 RS2 Netlist Data Structures . 105
A.2.2 The Cell Library . 116

A.3 Placement . 118
A.4 Routing . 121

A.4.1 Wires and Wire Connections . 121
A.4.2 Traversing Wire Objects . 122
A.4.3 Other Types of Connections . 122
A.4.4 RouteTrees . 125
A.4.5 Three Part Routing . 128
A.4.6 Intrasite Routing . 130

A.5 Design Import/Export . 132
A.6 Installing New Device Files . 133

A.6.1 Creating New Device Files for Supported Families 133
A.6.2 Supporting New Device Families . 135
A.6.3 Series7 Family Info Hand Edits . 138
A.6.4 UltraScale Family Info Hand Edits . 140

Appendix B VSRT Documentation . 142
B.1 Introduction . 142
B.2 Installation . 145

B.2.1 Tool Facts . 145
B.2.2 Requirements . 145
B.2.3 Steps . 145

B.3 Terminology . 147
B.3.1 Vivado Devices and XDLRC files . 147
B.3.2 Primitive Definitions . 147
B.3.3 VSRT GUI . 150

B.4 User Guide . 152
B.4.1 Regular Mode . 155
B.4.2 Single-Bel Mode . 160

B.5 Features . 164
B.5.1 Wire Hiding . 164
B.5.2 Shape Border Colors . 164

vi

B.5.3 Saving . 165
B.5.4 INOUT Pins . 165
B.5.5 Undo/Redo Functionality . 166
B.5.6 Deleting Elements . 166
B.5.7 Adding VCC/GND BELs . 167
B.5.8 Manipulating Site Pins . 168
B.5.9 Configuration Options . 169
B.5.10 Moving Shapes . 170
B.5.11 Tool Bar Buttons and Shortcuts . 170

B.6 Known Issues . 172

Appendix C Simulated Annealing Placement Algorithm 175
C.1 Annealing Schedule . 175
C.2 Cost Function . 176
C.3 Data Structures . 177
C.4 Sample Output . 178

vii

LIST OF TABLES

2.1 Vivado Device Families (organized by series) . 6

6.1 VDI Benchmarks . 80
6.2 Nexys4 Test Designs . 84
6.3 Series7 Placer Results . 89
6.4 VDI Import/Export Times . 90

A.1 Cell Pin Types and Directions . 108
A.2 Artix7 Alternate Pin Mappings . 140

B.1 INOUT Pin Connections . 166

viii

LIST OF FIGURES

1.1 Simplified FPGA Design Flow . 1

2.1 External FPGA CAD Flow (the blue boxes represent interfacing software) 5
2.2 Xilinx Device Hierarchy [1] . 6
2.3 Artix7 Tiles . 7
2.4 Series7 SLICEL Site (a), and Highlighted Site Components (b) 8
2.5 An example switchbox tile. The green wire represents a source wire, and the red wires

represent all possible sink wires in the switchbox. The highlighed white sections of
the figure are PIP connections. 9

2.6 Schematic of a 3-bit counter in Vivado using LUT and FDRE cells. The yellow boxes
are cells, the green lines are nets, and and the white figures on the edge of the diagram
are ports. 10

2.7 Original RapidSmith Tool Flow Using XDL . 15
2.8 RapidSmith2 Device data structure tree. Classes and interfaces bolded in blue are

sub-site components new to RapidSmith2. 16
2.9 Components of the Vivado Design Interface (VDI) 18

3.1 VDI Device Files . 19
3.2 IOB Site in Vivado’s Device Browser . 20
3.3 UltraScale SYSMONE1 Package Pins . 21
3.4 Series7 TIEOFF . 21
3.5 UltraScale floating GND BEL (top), and the GND primitive site replacement for XDLRC

files (bottom). 22
3.6 Vivado Subsite Routing Tool GUI. 24
3.7 BITSLICE RX TX Alternate Types . 26
3.8 IPAD Alternate Types (there are none) . 27
3.9 Example Alternate Site Pin Renaming . 28
3.10 A group of cells placed on a SLICEL site (left) and a SLICEM site (right). 29
3.11 Compatibility Testing for Single-BEL Sites . 30
3.12 Site PIP Decomposition . 32
3.13 Vivado Macro Cell . 39

4.1 Vivado Design Interface (VDI) Design Flows . 43
4.2 Example Cell Placement . 48
4.3 Site PIP Usage . 50
4.4 Two examples of LUTs configured as routethroughs in Vivado. The net highlighted in

red represents VCC. 51
4.5 Flip-Flop BEL Configured as a Permanent Latch in Vivado 52
4.6 Two LUTs Configured as Static Sources in Vivado . 53
4.7 Vivado Intrasite Net (highlighted in white) . 54
4.8 Vivado Intersite Net (highlighted in white) . 55
4.9 Sample Route (A, B, C, D, and E represent device wires) 58
4.10 An example of [get site pins] returning incorrect results in Vivado 60

ix

4.11 An example of VCC routing to an unused BEL pin (A6) 61
4.12 Routing Contention Example . 62
4.13 Required placement order for Series7 SLICE sites. The figure shows a simplified

representation of a SLICEL site. 63
4.14 Visualization for how to replace a LUT routethrough with a LUT1 Xilinx cell. 64
4.15 Differential Pair Net . 65

5.1 RapidSmith2 Supported Design Flows (the red box represents VDI) 68

6.1 Vivado Console . 81
6.2 RapidSmith2 Design Input Testing Flow . 82
6.3 Test flow to verify that RapidSmith2 TCPs can be exported into Vivado without errors. 83
6.4 Test flow to verify that RapidSmith2 TCPs are still functionality equivalent to the orig-

inal Vivado design. 84
6.5 Example Carry Chain (left) and BRAM Tile (right) in Vivado. 88
6.6 Leon-3 soft processor placed by Vivado’s placer (left) and RapidSmith2’s simulated

annealing placer (right) . 89
6.7 VDI Import/Export Trends . 91

A.1 RapidSmith2 Device data structure tree. Green arrows represent inheritance, and black
arrows represent association. Classes and Interfaces bolded in blue are new to Rapid-
Smith 2. 101

A.2 RapidSmith2 design data structure tree. Black arrows represent composition, green
arrows represent inheritance, and blue boxes are physical implementation components
of the netlist. 105

A.3 Example of a Vivado net with multiple sources. The highlighted wires in white are all
part of the same net. 110

A.4 Bidirectional Net . 110
A.5 Example INTRASITE Net (left) and INTERSITE Net (right) 111
A.6 Properties of a Vivado FDCE Cell . 113
A.7 Pseudo Cell Pin Example . 116
A.8 LUT Pin Permutation Example . 119
A.9 Multi-Tile Xilinx Wire . 121
A.10 Visual Representation of a RapidSmith2 RouteTree 125
A.11 Sample RapidSmith2 RouteTree (red edges represent PIP connections) 126
A.12 Three-Part Routing . 129

B.1 XDLRC Creation Flow . 143
B.2 VSRT GUI Start View (Top) and Primitive Site View (Bottom) 151
B.3 VSRT GUI Start Screen . 154
B.4 User Mode Prompt . 155
B.5 BUFGCTRL Site in VSRT . 156
B.6 Adding a BEL to the Drawing Pane . 156
B.7 Wire Connections in VSRT . 157
B.8 BUFGCTRL Site in Vivado . 158
B.9 Completed BUFGCTRL in VSRT . 158

x

B.10 VSRT Save Prompt . 159
B.11 How to mark a site as complete in VSRT . 160
B.12 GTHE3 CHANNEL in VSRT . 161
B.13 Complete GTHE3 CHANNEL in VSRT . 162
B.14 How to mark site pins as unconnected in VSRT . 163
B.15 Wiring Hiding Options . 164
B.16 Shape Border Colors . 165
B.17 Save Progress Prompt . 165
B.18 Vivado GND BEL (shown in the red box) . 167
B.19 How to add new VCC/GND BELs to a site . 167
B.20 How to add new site pins to a site . 168
B.21 How to mark site pins as unconnected or remove them in VSRT 169
B.22 BEL Configuration Popup Window . 169
B.23 Site Pin Moving Bug . 172
B.24 Missing Site Pin Names in Vivado (shown in red) . 173
B.25 Example of multiple drivers on a site wire. Output BEL pins are highlighted with red

boxes and input BEL pins are highlighted with green boxes. 173

C.1 Example Bounding Box . 176
C.2 Site Cluster Inheritance Tree. 177
C.3 Sample Placement Output . 178

xi

CHAPTER 1. INTRODUCTION

1.1 Motivation

The popularity of field-programmable gate arrays (FPGA) has grown in recent years due

to their potential performance advantages over sequential software, and as a prototyping platform

for application specific integrated circuits (ASIC). Several companies fabricate FPGAs, including

Xilinx, Intel (Altera), Microsemi, and Lattice. Each of these vendors offer a set of design automa-

tion tools to help customers implement hardware designs on their devices. Figure 1.1 shows the

typical implementation flow for FPGA-based systems using these automated tools.

Figure 1.1: Simplified FPGA Design Flow

As the figure shows, the process begins with a hardware circuit that has been expressed using a

hardware description language (HDL). Common HDLs include VHDL, Verilog, and SystemVer-

ilog. The HDL description is passed into the FPGA vendor software, where it is synthesized into

a device-compatible netlist. The logical netlist is then mapped onto the physical components of

the FPGA, and a bitstream (.bit file) is generated that can be loaded into the FPGA’s configura-

tion memory. Once the design is loaded into the configuration memory, the FPGA is dynamically

configured to implement the corresponding circuit.

Due to the proprietary nature of vendor tools, however, it is difficult to customize the FPGA

implementation flow with user created computer-aided design (CAD) tools. For example, it is not

possible to create a plug-in for Xilinx’s ISE or Vivado tool suite that runs an experimental placer

1

or router instead of the proprietary version. This lack of control limits the type of research that can

be done with vendor software, and motivates the use of external, open-source FPGA CAD tools.

Over the past few decades, a significant amount of CAD tool research for FPGA-based systems

has been pursued outside the confines of vendor tools.

The most common approach to creating external tools has been to use the extremely suc-

cessful VPR/VTR CAD suite [2] [3]. VTR (verilog-to-routing) offers a complete open-source

FPGA CAD flow that includes algorithms for synthesis, technology mapping, packing, placement,

routing, and timing and area estimation. Users of VTR can define hypothetical FPGA architec-

tures, and run tools against those architectures to see how they perform. Alternatively, they can

modify any stage of the implementation flow (such as the packer, placer, or router) to test and

evaluate new CAD ideas and algorithms. VTR has helped lead to many significant contributions

in the area of FPGA CAD research, but has had little success in targeting commercial devices.

Targeting commercial FPGA devices has traditionally been more difficult. Most research

experiments and open-source CAD tools that aim to do this have been built upon the Xilinx Design

Language (XDL), which is capable of interfacing with Xilinx’s ISE tool suite 1. The contributions

of projects leveraging XDL have been many. Frameworks such as RapidSmith [5] and Torc [6]

provide easy-to-use APIs to modify XDL netlists in a variety of useful ways. [7] and [8] create

partial reconfiguration frameworks, capable of swapping logic segments at runtime. [9] and [10]

look at ways to decrease the implementation times of FPGA designs and increase designer produc-

tivity. [11] and [12] look to create reliable, fault-tolerant FPGA systems. And [13] tries to bridge

the gap between the VPR CAD flow with real Xilinx devices. Many significant contributions using

XDL have also been made in other areas of FPGA research such as security and debugging.

1.2 Problem Statement and Goals

Clearly, analyzing and modifying commercial FPGA designs outside of vendor tools has

proven useful. With the release of Vivado, however, Xilinx discontinued support for XDL, making

external tools and frameworks that rely on the interface incompatible with next-generation Xilinx

devices (such as UltraScale and Ultrascale+). Vivado instead provides access to its internal design

and device data structures through a Tcl application programming interface (API) exposed to the
1Tools that target other vendor parts have been created [4], but are less common.

2

user. The same information that was contained within XDL can now be extracted through Tcl API

calls, but there are many challenges associated with using Tcl for this purpose. The first goal of this

work is to navigate through the challenges of Vivado’s Tcl interface to create a general-purpose

way to export design information from Vivado, and import design information back into Vivado

(i.e. a XDL replacement). The second goal is to integrate the Vivado XDL replacement with an

existing CAD Tool Framework for testing and verification. The third goal is to create an example

CAD tool, to demonstrate the possible applications for Vivado CAD tools.

1.3 Contributions

The work described in this thesis is the first successful attempt to provide an open-source

tool-flow that can export designs from Vivado, manipulate them with external CAD tools, and

re-import valid design representations back into Vivado. The main contributions of this thesis are

listed below, and demonstrate why the work is novel:

• It provides insight into the many low-level details of a fully implemented Xilinx design,

and how to best represent those details in an external format. It also documents how to

successfully reconstruct a design in Vivado.

• It introduces the Vivado Design Interface (VDI), an extension of Tincr [14]. VDI uses Vi-

vado Tcl commands to define an organized framework for interfacing with Vivado designs

and devices. Specifically, VDI allows users to extract complete design and device infor-

mation from Vivado to be used with external tools. It also allows users to import modified

designs back into Vivado. The performance characteristics of VDI (i.e. how long it takes to

import/export designs) are presented.

• It describes the integration of VDI with RapidSmith2 [15], an external CAD tool framework.

This integration enables a variety of CAD tools to be written for Vivado designs.

• It demonstrates the correctness of VDI and RapidSmith2 through two methods of verifica-

tion: (1) Java unit tests which verify that the RapidSmith2 design representation matches the

corresponding Vivado design, and (2) On-board hardware tests which verify that designs are

still functionally correct after being passed through RapidSmith2 and back into Vivado.

3

• It presents the implementation and results of a simulated-annealing placer that has been

implemented in RapidSmith2.

• It introduces support for UltraScale devices in RapidSmith2. CAD tools targeting UltraScale

devices can now be created, which was previously impossible.

• It documents the open-source release of RapidSmith2 at GitHub to allow FPGA CAD re-

searchers across the country and world to develop Vivado CAD algorithms.

One other important contribution to note is that the work presented in this thesis has also been for-

matted into a conference paper that was accepted into Field Programmable Logic and Applications

(FPL) 2017. The title of the FPL paper is “Vivado Design Interface: An Export/Import Capability

for Vivado FPGA Designs,” and presents many of the same concepts introduced in this thesis.

1.4 Thesis Organization

The remainder of the thesis is outlined as follows. Chapter 2 provides required back-

ground for the remainder of the document. This includes an overview of FPGA architecture, Xilinx

netlists, Vivado’s Tcl interface, Tincr, and the VDI flow. Chapter 3 describes how VDI represents

Vivado device information. Chapter 4 describes how VDI represents Vivado design information.

Chapter 5 describes the necessary updates to RapidSmith2 in order to support importing and ex-

porting Vivado designs through VDI. Chapter 6 presents the results of several experiments using

VDI and RapidSmith2. Finally, chapter 7 concludes the thesis and discusses potential future work.

Unless otherwise stated, tests and experiments in this work were performed on a machine

running Windows 7 64-bit with a Core i7-860 processor, 8GB of DDR3 RAM, and 1TB 7200RPM

SATA hard disk. Also, this work was done with Vivado version 2016.2. Future versions of Vivado

may work with VDI, but they have not yet been tested.

4

CHAPTER 2. BACKGROUND AND RELATED WORK

As stated in the introduction, the primary goal of this work is to create an interface into

Vivado that can be used with external FPGA CAD tools. Specifically, the goal is to enable the

flow depicted in Figure 2.1 while determining an appropriate solution for the black box. This

chapter provides insight to previous projects that the work presented in this thesis builds upon. It

also introduces important terminology. The following sections give a high-level overview of the

relevant background information for the reader.

Figure 2.1: External FPGA CAD Flow (the blue boxes represent interfacing software)

Sections 2.1 and 2.2 introduce Xilinx FPGA terminology that is used throughout the doc-

ument. Section 2.3 discusses Vivado’s Tcl interface and why it is not suitable for the creation of

FPGA CAD tools. Section 2.4 describes Tincr, a Vivado Tcl plugin. Tincr was the first research

project to explore Vivado design and device extraction. It created a device extraction API and

demonstrated a proof-of-concept design extraction which this thesis further explores. Sections 2.5

and 2.6 describe the Xilinx CAD tool flow based on XDL, ISE, and the original RapidSmith CAD

framework. Since XDL is no longer supported by Xilinx, this work attempts to create a similar tool

flow with Vivado’s Tcl interface. It is assumed that the reader has a basic knowledge of FPGAs

and the FPGA implementation flow, as those topics are not described here.

5

2.1 Xilinx FPGA Architecture

Xilinx FPGAs can be broken down into series, families, and individual parts. At

the highest level, a series defines a unique FPGA architecture. Vivado currently supports three

different series: Series7, UltraScale, and UltraScale+. As shown in Table 2.1, each series can be

broken down into a list of families. These families all use the same series architecture, but are

optimized for cost, power, performance, size, or another metric.

Table 2.1: Vivado Device Families (organized by series)

Series7 UltraScale UltraScale+
Kintex Kintex Kintex
Virtex Virtex Virtex
Artix

Spartan
Zynq

Families can further be broken down into one or more parts (actual FPGA devices). A Xilinx

part has a variety of attributes including its number, package type, and speed-grade. Take the part

“xcku025-ffva1156-1-c” as an example. This part is within the Kintex UltraScale family, uses a

“ffva1156” package type, and has a speed grade of “1-c”. Figure 2.2 shows the device hierarchy

of a Xilinx part . The following subsections describe each internal component of a Xilinx FPGA

as shown in the figure.

Figure 2.2: Xilinx Device Hierarchy [1]

6

Figure 2.3: Artix7 Tiles

2.1.1 Tiles

A Xilinx FPGA is organized into a two-dimensional array of Tiles. Each tile is a rectan-

gular component of a device that performs a specific function such as implementing digital logic

or storing BRAM memory. Tiles are stamped across a device and wired together through the gen-

eral routing fabric. All copies of a tile type are identical or nearly identical (they may have minor

routing differences). Figure 2.3 displays three types of tiles in an Artix7 device. The VBRK tile

on the left is used for wiring signals between other tiles (these connections are not programmable).

The INT L tile on the right is a switchbox tile. These are reconfigurable routing tiles that allow a

single wire to be routed to various locations within the FPGA. The CLBLL tile in the middle is

used to implement combinational and sequential digital logic, and is the fundamental component

of Xilinx FPGAs. Other tile types include DSP, BRAM, FIFO, and IOB.

2.1.2 Sites

Tiles generally consist of one or more Site objects, which organize the hardware compo-

nents of the tile into related groups. Specifically, sites are the part of a tile which perform the tile’s

“useful” function. The remainder of the tile is used to wire signals to and from its corresponding

sites. Figure 2.4 shows an example site of type SLICEL within a Series7 CLBLL tile. As the figure

shows, a site consists of three main components which are connected through wires:

7

(a)

(b)

Figure 2.4: Series7 SLICEL Site (a), and Highlighted Site Components (b)

• Site PIPs: Also called routing muxes, these are reconfigurable routing PIPs used to specify

the internal routing of a site. In Vivado, site PIPs are usually configured automatically as

cells in a design are placed (based on cell properties and placement locations).

• BELs: Basic ELements are hardware components within a site for implementing digital

logic. For example, look-up-tables (LUT) within a SLICEL are used to implement logic

8

equations, and flip-flops (FF) are used as storage. In a synthesized netlist, design elements

are mapped to BELs during implementation.

• Site Pins: These pins are connected to wires of the parent tile and typically drive/receive

signals from the general fabric.

2.1.3 Wires and PIPs

FPGA components are connected together using metal Wires (called Nodes in Vivado). To

make the FPGA reconfigurable, wires are connected through programmable interconnect points

(PIPs). Individual PIPs can be enabled or disabled as a design is being routed, and a string of

enabled PIPs uniquely identify the used wires of a physical route. PIPs are most commonly found

in switchbox tiles, and enable a single wire to be routed to several locations on the chip. Figure 2.5

Figure 2.5: An example switchbox tile. The green wire represents a source wire, and the red wires
represent all possible sink wires in the switchbox. The highlighed white sections of the figure are
PIP connections.

9

shows an example switchbox with its corresponding PIPs. The red wires represent all downhill

nodes that the green wire can connect to through a PIP connection.

2.2 Xilinx Netlist Structure

During the synthesis stage of implementation, a digital circuit expressed using RTL (VHDL

or Verilog) is translated to a lower level Xilinx netlist. This netlist describes a digital circuit in terms

of primitive elements that can directly target hardware on a Xilinx FPGA. In terms of granularity,

a Xilinx netlist is more abstract than gates and transistors, but more detailed than RTL. A list of

valid primitives that can be used within a Xilinx netlist can be found at [16] for Series7 devices

and [17] for Ultrascale devices. The primitives of a Xilinx netlist are wired together to create a

digital circuit capable of being implemented on a FPGA. Figure 2.6 shows an example netlist for

a 3-bit counter created in Vivado.

As the figure shows, Vivado netlists are composed of three primary components: Cells,

Nets, and Ports. Cells are instances of Xilinx primitives. They are the basic building blocks of

a Xilinx netlist and implement the actual logic of a digital design. The most commonly used cells

include:

• Look Up Tables (LUTs): Implement logic equations such as O6 = (A1+A2)⊕A3.

Figure 2.6: Schematic of a 3-bit counter in Vivado using LUT and FDRE cells. The yellow boxes
are cells, the green lines are nets, and and the white figures on the edge of the diagram are ports.

10

• Flip-Flops (FDxx): Single-bit storage elements. Figure 2.6 uses a FDRE cell which specifies

a rising-edge flip-flop with a reset port, but ties the clock enable port high. Other types of

FDxx cells can be used to include a clock enable port.

• Block Ram (BRAMs): On-chip FPGA memory.

• Digital Signal Processing Units (DSPs): Perform complex arithmetic functions efficiently.

• Buffers (BUF): IO, clock, and other types of signal buffers.

Several other types of cells can be used, but the ones in the list above are the most common. Nets

connect cells together. In other words, the output of one cell is wired to the input of another

cell using a net. Ports are simply design input/output (IO). In terms of a FPGA design, ports are

mapped to specific peripheral pins of the FPGA for chip IO.

It is important to note that a Xilinx netlist is purely logical. There is no physical information

within the netlist (i.e. there is no information about where the cells have been placed, or how the

nets have been routed). When exporting a design from Vivado, the Xilinx netlist representation is

converted to an electronic design interchange format (EDIF).

2.3 Vivado Tool Suite

In recent years, Xilinx released their new vendor tool for programming FPGAs: Vivado.

Vivado supersedes ISE (the previous tool), and is the only tool suite that supports the latest Xilinx

families such as UltraScale. The most significant change with Vivado is the introduction of a Tcl

interface. Using Tcl commands, users of Vivado can write Tcl code to script design flows, set

constraints on a design, and perform low-level design modifications. There are Tcl commands for

a variety of useful functions including: finding all tiles in a device, getting all of the used PIPs in a

routed design, and grouping related cells into a macro. For example, the Tcl command [get sites

-filter (SITE TYPE==SLICEL && !IS USED)] will return a list of all unused SLICEL sites in

the current device. This list could potentially be used to add additional logic to a design post-route.

The Tcl interface is a powerful addition to the Xilinx tool suite, but suffers some major drawbacks:

• Tcl, being an interpreted language, is slow. Compiled or managed runtime systems are better

options for performance.

11

• Vivado’s Tcl interface does not manage memory well. A simple Tcl script can cause the

memory usage of Vivado to grow indefinitely.

• Tcl does not natively support higher-level programming constructs, making it more difficult

to implement complex algorithms (such as PathFinder).

These drawbacks largely motivate using the Tcl interface as an extraction tool, instead of a CAD

framework itself. Vivado Tcl scripts are the basis for much of the work found in this thesis.

2.4 Tincr

Tincr [14] is a Tcl plugin to Vivado created by Brad White. It introduces two useful pack-

ages: TincrCAD and TincrIO. These packages augment Vivado’s native Tcl interface with a set

of high-level commands that (a) simplify a variety of Vivado tasks and (b) add additional func-

tionality to the Tcl interface in the form of new Tcl commands. TincrCAD focuses on commands

for implementing CAD tools directly in Vivado, and TincrIO focuses on commands for extracting

device and design data from Vivado. The work in this thesis builds upon the initial work done with

TincrIO, which demonstrated the plausibility of manipulating Vivado designs outside of Vivado.

Two aspects of TincrIO were particularly useful. The first is [tincr::write xdlrc], a

Tcl command capable of creating a complete XDLRC device file (described in the next section)

for any Vivado device. Series7 XDLRC files were exhaustively tested against their ISE counterpart

to verify that the command generated valid and complete device files. However, UltraScale and

UltraScale+ XDLRC files generated from this command were incomplete and not well tested.

Chapter 3 describes the required modifications to [tincr::write xdlrc] to support UltraScale

devices.

The second useful aspect of TincrIO is the proposed Tincr Checkpoint (TCP) format. In

the original distribution of Tincr, a directory full of XDC constraint files was used to externally

represent a Vivado design. The authors of Tincr demonstrated that by using these checkpoints, a

FPGA design could be theoretically exported from Vivado in an open-source format, and then re-

imported back into Vivado. These checkpoints, however, were simply a proof-of-concept. Several

important aspects of a design (such as BEL routethroughs and an accurate depiction of routing) can

not be represented in the original TCP specification. Chapter 4 describes an improved checkpoint

12

format, which creates an accurate external design representation that encapsulated all parts of a

design.

2.5 Xilinx Design Language (XDL)

The Xilinx Design Language is a command line interface into Xilinx’s ISE tool suite. Using

a single command, xdl, both device and design information can be extracted from ISE for external

use. Device specific information is exported via XDLRC files, which contain a detailed listing

of all the physical components inside of a Xilinx FPGA. This includes the tiles, sites, BELs, and

routing resources (without timing information) available in the specified part. XDLRC files are

very verbose (with the largest devices being up to 100GB), and so they need to be compressed

before they can practically be used with external CAD tools. Listing 2.1 shows the general format

for a tile within a XDLRC file. As can be seen, the tile’s sites, wires, and PIP connections are all

listed. To learn more about XDLRC files (such as the meaning of each specific token), review [18].

Listing 2.1: XDLRC Tile Format

(tile 1 14 CLB_X6Y63 CLB 4

// List of sites in the tile and wires that connect to the site pins

(primitive_site SLICEL_X9Y127 SLICEL internal 27

(pinwire BX input BX_PINWIRE3)

...

)

...

// List of wires in the tile and their connections

(wire E2BEG0 5

(conn CLB_X7Y63 CLB_E2BEG0)

(conn INT_X8Y63 E2MID0)

...

)

...

// List of pips in the tile

(pip INT_X7Y63 BEST_LOGIC_OUTS0 -> BYP_INT_B5)

13

...

(tile_summary CLB_X6Y63 CLB 122 403 148)

)

Design data is exported via XDL files. XDL files are a combination of the logical portion

of a design (a netlist), as well as placement and routing information for the design. A XDL netlist

is organized into instances. Each instance represents a site on the corresponding device, with

attribute strings describing how the site is internally configured (i.e. what BELs are being used and

how they are connected). In a placed design, instances are assigned a corresponding site value.

Listing 2.2 gives an example of a XDL instance targeting a SLICEL site.

Listing 2.2: XDL Instance

inst "instanceName" "SLICEL", placed CLB_X14Y4 SLICE_X23Y8 ,

cfg " BXINV::#OFF BYINV::#OFF CEINV::#OFF CLKINV::#OFF COUTUSED::#OFF

CY0F::#OFF CY0G::#OFF CYINIT::#OFF DXMUX::#OFF DYMUX::#OFF F::#OFF

F5USED::#OFF FFX::#OFF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF FFY::#OFF

FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::#OFF FXUSED::#OFF

G:DCM_AUTOCALIBRATION_DCM_clock/DCM_clock/md/RSTOUT1:#LUT:D=A1

_BEL_PROP::G:LIT_NON_USER_LOGIC:DCM_STANDBY GYMUX::#OFF REVUSED::#OFF

SRINV::#OFF SYNC_ATTR::#OFF XBUSED::#OFF XMUXUSED::#OFF XUSED::#OFF

YBUSED::#OFF YMUXUSED::#OFF YUSED::0 "

;

Routing is represented using XDL nets. XDL nets contain a list of connected instance pins (i.e.

site pins), and a list of PIPs used to physically connect the pins together. An example net is shown

in Listing 2.3. XDL provided a means for representing fully placed and routed designs from ISE.

Listing 2.3: XDL Net

net "netName" ,

outpin "instanceNameOfSourcePin" Y ,

inpin "instanceNameOfSinkPin" RST ,

pip CLB_X14Y4 Y_PINWIRE1 -> BEST_LOGIC_OUTS5_INT ,

14

pip DCM_BOT_X15Y4 SR_B0_INT3 -> DCM_ADV_RST ,

pip INT_X14Y4 BEST_LOGIC_OUTS5 -> OMUX8 ,

pip INT_X15Y5 OMUX_EN8 -> N2BEG0 ,

pip INT_X15Y7 N2END0 -> SR_B0 ,

;

The combination of XDLRC and XDL files make it possible to perform design manipula-

tions outside the confines of vendor tools. It has been a great resource to the FPGA CAD research

community. There are, however, a few problems with XDL. The first is that, as Listing 2.2 shows,

XDL instances are largely black boxes. They don’t explicitly show the BELs and wires that are

being used inside of a site. This makes it difficult to write CAD tools that need access to this

information (such as a packer). The second, and more challenging, issue is that with Vivado Xilinx

discontinued support for XDL. CAD tools and frameworks built on XDL will not be compatible

with next-generation devices. As previously stated, the primary objective of this thesis is to create

a XDL-alternative for Vivado designs so that CAD development can continue to happen for future

Xilinx devices. The interested reader is referred to [18] for a complete guide to XDL.

2.6 RapidSmith

The original RapidSmith [5] is a FPGA CAD Tool framework for Xilinx FPGAs. Written

in Java, it offers a rich set of APIs, data structures, and useful functions to analyze and manipulate

XDL netlists. RapidSmith was developed by Chris Lavin, who initially used it to reduce FPGA

Figure 2.7: Original RapidSmith Tool Flow Using XDL

15

compilation times by creating a hard macro design flow. It has since grown to be the basis of

several research projects and applications (many of which are listed in chapter 1). RapidSmith has

been especially popular in the area of FPGA security and reliability. Figure 2.7 shows the available

design flows using RapidSmith.

Users of RapidSmith can write CAD tools that operate on a Xilinx design post-synthesis,

post-place, or post-route. The modified design can then be re-imported back into ISE to com-

plete the remainder of the implementation flow. To handle very large XDLRC files, RapidSmith

compresses them into compact device files. Once compressed, the RapidSmith device files are

MegaBytes in size as opposed to GigaBytes. RapidSmith only supports designs from Xilinx’s ISE

tool suite, and can be downloaded at http://rapidsmith.sourceforge.net.

2.6.1 RapidSmith2

The RapidSmith framework has helped researchers create several different CAD tools tar-

geting Xilinx devices. Due to the format of XDL however, these CAD tools always operate at

site boundaries. This makes it difficult to explore sub-site CAD algorithms that work explicitly

Device

Tile
(2D Array)

TileType Site
(Array)

Wire
(Array)

SitePin
(Array)

Bel
(Array) SiteType SiteTemplate TileWire SiteWire Connection

(Array)

SitePinTemplate BelTemplate BelPin
(Array)

BelPinTemplate

WireConnection PinConnection TerminalConnection

Figure 2.8: RapidSmith2 Device data structure tree. Classes and interfaces bolded in blue are
sub-site components new to RapidSmith2.

16

http://rapidsmith.sourceforge.net

with sub-site components (i.e. BELs, site PIPs, etc.) such as packers. Travis Haroldsen was inter-

ested in exploring packing algorithms for Virtex6 devices [19], and so created RapidSmith2 [15].

RapidSmith2 updated the internal data structures of RapidSmith to the BEL and cell-level, allow-

ing algorithms to have finer grained control over sub-site placement and routing. Because it was

originally targeting the Virtex6 architecture, RapidSmith2 took as input a XDL netlist, and un-

packs the netlist to its corresponding cells, nets, BELs, and wires. On design export, the sub-site

data structures are packed back into a XDL netlist representation. Figure 2.8 shows the device

data structure differences between RapidSmith and RapidSmith2. It is important to note that the

initial version of RapidSmith2 still did not support Vivado designs. One of the main contributions

of this thesis is to recreate the flow of Figure 2.7 using RapidSmith2 and Vivado. Since the Rapid-

Smith2 data structures closely match those of Vivado, the work presented in chapter 5 builds upon

the initial RapidSmith2 work.

2.7 Vivado Design Interface

Section 2.3 shows that Vivado’s Tcl interface is not suitable for complex CAD tool devel-

opment (and it was never intended for that). External tools, in languages such as C, C++, and Java,

are better options for FPGA CAD researchers looking to implement new ideas and algorithms. In

the past, these tools were built around Xilinx’s XDL (as shown with the RapidSmith CAD frame-

work). Because XDL is no longer supported in Vivado, a different interface to enable similar tools

in the future is required.

This thesis presents the Vivado Design Interface (VDI), the proposed XDL-alternative to

support Vivado design import and export. Figure 2.9 shows the individual components of VDI,

and how they interact with external CAD tools or frameworks. VDI is included with Tincr, and is

available at https://github.com/byuccl/tincr. It is a significant contribution for two reasons

in particular:

1. VDI defines a set of file formats used to externally represent Vivado devices and designs in

a general, open-source way.

2. VDI includes Vivado Tcl code to parse and generate design and device files.

17

https://github.com/byuccl/tincr

Figure 2.9: Components of the Vivado Design Interface (VDI)

VDI is meant to serve as a general-purpose interface into the Vivado design suite which can be

used with any CAD tool or framework. Devices are represented with a XDLRC file and a set of

XML files (described more in chapter 3). Designs are represented with RSCP and TCP checkpoint

files (described more in chapter 4). The remaining chapters in this thesis explore specific aspects

of VDI, and how they can be used to create Vivado CAD tools.

18

CHAPTER 3. VDI: DEVICE EXPORT

All CAD tools targeting commercial FPGAs are built upon an external representation of

the vendor’s device. A placement algorithm, for example, needs to understand all valid placement

locations for cells in a netlist. Similarly, a routing algorithm needs to understand all available

wires and connections that can be taken when routing a net. The first goal of VDI is to create

an open-source fileset capable of fully representing any Xilinx FPGA supported in Vivado. Fig-

ure 3.1 shows the proposed set of files for VDI device export, along with the newly implemented

Tincr functions to generate each. There are four required VDI files to accurately represent Vivado

FPGAs, which are explored throughout the remainder of this chapter.

1. XDLRC

2. Family Info XML

3. Device Info XML

4. Cell Library XML

Figure 3.1: VDI Device Files

3.1 XDLRC

XDLRC files are the main components of VDI device export. As described in section 2.5,

they contain a detailed listing of all the physical components inside of a Xilinx FPGA. The original

Tincr distribution included a command, [tincr::write xdlrc], capable of creating XDLRC

19

files for Series7 devices. This command, however, was only able to create partial device files

for UltraScale and later families. VDI supports creating complete UltraScale and UltraScale+

XDLRC files. The following subsections describe the required updates to Tincr to support Ultra-

Scale XDLRC files.

3.1.1 Site PAD Names

In Series7 XDLRC files, PAD sites (that connect to an external pin on the FPGA) are named

according to the corresponding package pin of the site. An example is shown in Figure 3.2 for a

site of type IOB33M. For the site shown in the figure, the actual site name is “IOB X0Y68,” but the

site name reported in the XDLRC is “V15,” the name of the package pin in the upper left corner.

Figure 3.2: IOB Site in Vivado’s Device Browser

This naming convention assumes that there is no more than one package pin per site. Ultra-

Scale devices, however, break that assumption. There are several sites that contain more than

one package pin: SYSMONE1, GTHE3 CHANNEL, GTHE3 COMMON, GTYE3 COMMON,

and GTYE3 CHANNEL. Figure 3.3 shows a SYSMONE1 site with two package pins.

20

Figure 3.3: UltraScale SYSMONE1 Package Pins

Because UltraScale and later devices have multiple package pins per site, the old naming conven-

tion for ISE XDLRC files is no longer valid. Therefore, [tincr::write xdlrc] now uses the

actual name of PAD sites (instead of the package pin name) for UltraScale devices.

3.1.2 Floating VCC/GND Sources

Xilinx’s Series7 architecture represents power (VCC) and ground (GND) signal sources

with TIEOFF sites (as shown in Figure 3.4). To route a GND or VCC net, external tools need to

simply start routing at the pin of a TIEOFF. UltraScale devices change the structure of VCC and

GND sources by including “floating” VCC and GND BELs instead of TIEOFFs. The term floating

refers to the fact that the VCC or GND source is not within a primitive site, but rather within

the tile itself. This breaks the well-defined device hierarchy described in section 2.1 where tiles

Figure 3.4: Series7 TIEOFF

21

contain one or more sites and sites contain one or more BELs. To preserve the device hierarchy in

UltraScale devices, [tincr::write xdlrc] transforms each floating BEL into a VCC or GND

primitive site as shown in Figure 3.5. VCC and GND BELs can be identified in Vivado by looking

for wires in the device whose name starts with either “VCC WIRE” or “GND WIRE” respectively.

Listing 3.1 shows the corresponding primitive definition that is added to the XDLRC file for GND

sites. A similar primitive definition is included for VCC.

Figure 3.5: UltraScale floating GND BEL (top), and the GND primitive site replacement for
XDLRC files (bottom).

Listing 3.1: GND Primitive Definition

(primitive_def GND 1 2

(pin HARD0 HARD0 output)

(element HARD0 1

(pin HARD0 input)

(conn HARD0 HARD0 <== HARD0GND G)

)

(element HARD0GND 1 # BEL

(pin G output)

22

(conn HARD0GND G ==> HARD0 HARD0)

)

)

3.1.3 Vivado Subsite Routing Tool

Vivado’s Tcl interface provides several [get *] methods which can be used to access a

variety of FPGA components. Three examples used to build XDLRC files are [get tiles],

[get sites], and [get site pips -of $site]. Vivado device extraction can be largely auto-

mated due to these commands. However, there is no such function to obtain the site wires in a

device. The Tcl command [get site wires] is part of the internal Xilinx namespace, meaning it

is not visible to regular users. This primarily affects the primitive definition section of the XDLRC

file, where the internal structure of each site type is defined (primitive definitions are discussed in

Appendix B). Without access to site wire information, the internal routing network of sites cannot

be determined automatically. The original Tincr distribution used primitive definitions from ISE

to create complete Series7 device files, but this is not possible for UltraScale and later devices.

Site wires are visible in the Vivado device browser, making it theoretically possible to create

the intrasite connections manually. The Vivado Subsite Routing Tool (VSRT), shown in Figure 3.6,

is a GUI application developed as part of this work that helps users accomplish this task. Using

VSRT a user can bring up a primitive site in both Vivado’s device browser and the VSRT GUI

and manually draw the site wires. Once the connections have been drawn, VSRT will generate

the required primitive definition file automatically, which can be integrated with the corresponding

XDLRC. It is important to note that this time-consuming process only needs to happen once for

each device family (usually once per series), and many of the sites can be done automatically with

little to no manual intervention.

The most significant contribution involving VSRT is a complete set of primitive defini-

tions for UltraScale and UltraScale+ families. These primitive definitions have been added to

Tincr, enabling complete XDLRC generation for Ultrascale and UltraScale+ devices using [

tincr::write xdlrc]. When future Vivado families are released, VSRT can be used to generate

23

Figure 3.6: Vivado Subsite Routing Tool GUI.

primitive definitions for those families as well. A very detailed user guide for VSRT is included in

Appendix B.

3.2 Family Info XML

A familyInfo.xml file contains useful information that is not present in the XDLRC files for

a given family of devices. Specifically, it includes the following additional information about each

site type in a family:

• Alternate Types

• Compatible Types

• BEL Routethroughs

• Site PIP Corrections

• Pin Direction Corrections

As the name suggests, only one familyInfo.xml is required for each of the supported Vivado families

listed in Table 2.1 (all devices within a family share the same family info). A new Tincr command

24

has been added to generate family info files: [tincr::create xml family info]. Using this

command, with a few required hand edits, a complete set of family info XML files have been

created for all Series7 and UltraScale families. The following subsections describe (a) how the

Vivado Tcl interface is used to generate a family info file (and the necessary hand edits for Series7

devices), and (b) a description of each of the items in the above list, and why they may be useful

for external CAD tools.

3.2.1 Algorithm

The pseudocode for the family info generation script in Tincr is given in algorithm 1.

Algorithm 1 Family Info Generation
1: procedure CREATE XML FAMILY INFO(f amily, f ileout)
2: unique devices← get unique devices(f amily) . Ignore device speedgrade
3: processed types←∅ . Create an empty set of site types
4: for each device ∈ unique devices do
5: open device in vivado(device)
6: unique sites← get unique sites(device)
7: for each site ∈ unique sites do
8: site type← get type(site)
9: if site type /∈ processed types then

10: print xml(site, f ileout)
11: processed types← processed types∪ site type
12: end if
13: end for
14: close device in vivado(device)
15: end for
16: end procedure

As can be seen, the first step of the algorithm is to find a set of unique devices for the spec-

ified family. A device is considered unique based on its part number and package type only

(i.e. the speed grade is ignored). For example, the two parts xcku025-ffva1156-1-c and

xcku025-ffva1156-2-c are not considered unique, and only one would be used during the gen-

eration process. The Tcl regular expression

^(x[a-z0-9]+(?:-[a-z0-9]+)?)-.+

25

is used to remove the speed-grade from a complete part name when filtering for unique devices.

Once a set of unique devices is created, each device is loaded into Vivado where a list of site types

in the device is determined. Since all parts across a family are identical, every site type in a family

is only processed one time. Using Vivado Tcl commands, an instance of each site type is analyzed

to determine the relevant information for the family info file, which is formatted into XML. It is

important to note that the site type must be manually set for alternate-only types before processing

the site.

3.2.2 Alternate Types

Each physical site in a device has an associated default type. Some sites, however, can be

configured to be one of many types (called alternate types in Vivado). Alternate type information

is required for external CAD tools because the type of a site can be changed during the placement

phase of implementation. To accurately represent a placed design in an external tool, site types

need to be changeable. An example of alternate types for an UltraScale BITSLICE RX TX site is

shown in Figure 3.7. As the figure shows, a BITSLICE RX TX site can also be configured to be

of type BITSLICE COMPONENT RX TX, BITSLICE RXTX RX, or BITSLICE RXTX TX.

Figure 3.7: BITSLICE RX TX Alternate Types

26

Figure 3.8: IPAD Alternate Types (there are none)

The alternate types of a given site can be determined in Vivado with the Tcl command

[get property ALTERNATE SITE TYPES $site]. The results returned from this command are

always correct for UltraScale and UltraScale+ devices, but they can be incorrect for Series7 de-

vices. That is, certain sites can return invalid alternate types through the Tcl interface. For example,

a site of type IPAD returns four alternate types: IOB18M, IOB18S, IOB33M, and IOB33S. None

of these types are valid alternates, as shown in Figure 3.8. It is difficult to detect invalid alternate

types because setting a site to an invalid type and then querying its components can cause Vivado

to crash. Therefore, it is the user’s responsibility to manually remove the invalid alternate types

from the family info file by looking at the correct alternate types in the Vivado GUI as shown in

Figure 3.7.

Listing 3.2 shows how alternate types are represented in a family info XML. As can be seen

in the XML, a series of “pinmap” tags are included for each alternate type. This is because when

a site type is changed to one of its alternates, some site pins can be renamed (again, this is only

true for Series7 devices). An example is shown in Figure 3.9. When an ILOGICE3 site is changed

to be of type ISERDESE2, the SR pin is renamed to RST. Unfortunately, the renaming cannot be

determined automatically because the Tcl command [get site pins -of $site] will always

return the site pins attached to the default type of a site. Due to this Vivado bug, users must

manually determine pin mappings using the Vivado GUI.

27

Listing 3.2: Example Alternate Type XML

<alternative>

<name>ISERDESE2</name>

<pinmaps>

<pin>

<name>RST</name>

<map>SR</map>

</pin>

</pinmaps>

</alternative>

Figure 3.9: Example Alternate Site Pin Renaming

3.2.3 Compatible Types

Site A is said to be compatible with site B if the logical cells placed on site A can always be

placed on site B as well. For example, as shown in Figure 3.10, SLICEL sites are compatible with

SLICEM sites. The cells placed on the SLICEL in the figure can be moved to the SLICEM and

still function identically. SLICEMs, however, are not compatible with SLICELs. This is because

SLICEM sites support LUT RAM cells, which cannot be placed on SLICEL sites. In some cases

of compatibility, the type of the compatible site must first be changed before placing cells on it.

28

Figure 3.10: A group of cells placed on a SLICEL site (left) and a SLICEM site (right).

For instance, a RAMB36 site is compatible with a RAMBFIFO36 site, but the site type of the

RAMBFIFO36 must first be changed to RAMB36 before it is truly compatible.

Information about compatible types is useful in a variety of CAD applications. One such

application is a site-level placer. To achieve the best placement results, the placer needs to un-

derstand all available locations where a set of cells can be placed. Without information about

compatible types, the placer would only know how to target one specific site type for each group

of cells, lowering the quality of results.

Compatible types are determined using Vivado’s Tcl interface in two ways. The first way is

looking at alternate types. In Series7 devices, a site type of IOB33M has two valid alternate types:

IOB33 and IPAD. This indicates that both IOB33 and IPAD sites are compatible with IOB33M

sites. A group of cells targeting an IOB33 or IPAD site can always be moved to a IOB33M site

(the type just needs to be changed first). A second method is available for sites with a single BEL.

To start, a map of site type to a list of valid cells that can be placed on the corresponding site is

created. If two sites have the same list of valid placement cells (or one site is a superset of another),

they can be marked as compatible. Figure 3.11 shows a visual representation of this. In the figure,

“Site 1” and “Site 2” are both compatible to each other because they have the same set of placement

cells. “Site 4” is compatible with “Site 3” because both cells that can be placed on “Site 4” (X and

Y) can also be placed on “Site 3.” “Site 3” is not compatible with “Site 4”, however, because the

cell Z cannot be placed on “Site 4.”

29

Figure 3.11: Compatibility Testing for Single-BEL Sites

Most compatible types in a family can be automatically determined using the two methods

described above, but not all. The compatibility of SLICEL and SLICEM sites shown in Fig-

ure 3.10, for example, cannot be determined with Tcl commands. It is the user’s responsibility to

determine what other compatible types need to be added manually to the family info file (which is

generally done by trial and error). Listing 3.3 shows example XML for compatible types. As was

the case with alternate types, some invalid compatible types will be reported for Series7 devices.

These need to be removed manually.

Listing 3.3: Compatible Type XML for SLICEL

<compatible_types>

<compatible_type>SLICEM</compatible_type>

</compatible_types>

3.2.4 BEL Routethroughs

During the routing stage of implementation, certain BELs can be configured as PIPs in a

device (i.e. they pass a signal from an input pin directly to an output pin). To fully represent the

routing structure within a Xilinx FPGA, these routethrough connections are included in the family

30

info file. Listing 3.4 shows how routethrough connections are represented. External tools can use

this information to build a more accurate device data structure. At the time of writing, BELs are

considered routethrough candidates if they are of type “LUT” or “Flip-Flop” on a SLICE site. A

more detailed discussion of routethroughs is presented in section 4.1.6.

Listing 3.4: Example Routethrough XML

<bel>

<name>D6LUT</name>

<type>LUT6</type>

<routethroughs>

<routethrough>

<input>A1</input>

<output>O6</output>

</routethrough>

<routethrough>

<input>A2</input>

<output>O6</output>

</routethrough>

<routethroughs>

</bel>

3.2.5 Site PIP Corrections

XDLRC files do not distinguish the difference between site PIPs (routing muxes) and func-

tional BELs within a site. Each of these components are simply marked as a “Bel”, even though

site PIPs are certainly not BELs. The family info file corrects this by explicitly marking site PIPs

as routing muxes or polarity selectors. A polarity selector is a site pip with one input that can be

optionally inverted. Listing 3.5 shows how these site PIP corrections are represented.

Listing 3.5: Example Site PIP Corrections

<corrections>

<modify_element>

31

<name>A5FFMUX</name>

<type>mux</type>

</modify_element>

<polarity_selector>

<name>CLKINV</name>

</polarity_selector>

</corrections>

External tools can use this information to decompose a site PIP into its individual PIPs as shown

in Figure 3.12. This decomposition generally makes creating routing algorithms easier. In Vivado,

site PIPs are determined with the Tcl command [get site pips -of $site]. Polarity selectors

are distinguished from regular site PIPs by checking if the string name of the PIP ends with either

“INV” or “OPTINV”.

Figure 3.12: Site PIP Decomposition

3.2.6 Pin Direction Corrections

In XDLRC files, all BEL pins are given a direction of either INPUT or OUTPUT. However,

there are several BEL pins in Xilinx devices that are of direction INOUT (bidirectional). The

family info file marks INOUT BEL pins so that their direction can be corrected in external tools.

The direction of a BEL pin in Vivado can be determined with the Tcl command [get property

DIRECTION $belpin]. Listing 3.6 shows how pin direction corrections are represented in XML.

32

Listing 3.6: Example Pin Direction Correction

<corrections>

<pin_direction>

<element>PAD</element>

<pin>PAD</pin>

<direction>inout</direction>

</pin_direction>

</corrections>

3.3 Device Info XML

A device info XML file contains additional information specific to a device that is not

found in the corresponding XDLRC for the device. Currently, the device info file contains only a

list of package pins for the device as shown in Listing 3.7. Each package pin definition has three

attributes:

1. The name of the package pin: Generally, package pin names are a single letter followed

by a two-digit number (i.e. M17). For those that have written UCF or XDC constraints for a

FPGA design targeting a Xilinx part, this format should be familiar.

2. The corresponding PAD BEL for the package pin: Each package pin maps to a specific

BEL in the device. Both the name of the BEL as well as its parent site is recorded in the

form “site/belname.”

3. An optional “is clock” attribute: Only a select number of package pins in a device can

access the global clock routing resources. These package pins are explicitly marked in the

device info file so external CAD tools can use this information when placing clock ports (or

other signals that need access to global routing).

Device info files can be generated with the new Tincr command [tincr::create xml device-

info]. This command is fully automated, and requires no hand edits.

33

Listing 3.7: Example Device Info XML

<device_info>

<partname>xcku025-ffva1156</partname>

<package_pins>

<package_pin>

<name>AK33</name>

<bel>IOB_X0Y155/PAD</bel>

</package_pin>

<package_pin>

<name>AJ29</name>

<bel>IOB_X0Y130/PAD</bel>

<is_clock/>

</package_pin>

...

</package_pins>

</device_info>

3.4 Cell Library XML

As described in section 2.2, Xilinx netlists are composed of cell objects which are instanced

from backing library primitives. The most common library primitives used in a Xilinx netlist

include LUT (LUT1, LUT2, etc) and FF (FDRE, FDCE, etc.) cells. Figure 2.6 shows an example

of a FDRE cell circled in red. In this case, FDRE is the backing library primitive of the cell, and

the instance of the primitive is named “ff0.” A detailed knowledge of the available library cells for

a device is required to perform any useful netlist modification in external tools. To provide this

information, VDI defines the format for a cell library XML. A cell library contains the following

information for each library cell that can target a specific device:

• Type

• Group (i.e. SLICE, DSP, IOB, BRAM, etc.)

• Name, direction, and type for each library cell pin

34

• Valid placement locations for instances of the library cell

• Default logical-to-physical pin mappings for each cell pin

• Configurable properties with default values

• Macro templates

The new Tincr command [tincr::create xml cell library] can be used to generate a new

cell library for a device. Listing 3.8 shows the basic layout of a cell library XML file. The following

subsections discuss each portion of the cell library individually, and how they are created from

Vivado.

Listing 3.8: Example Cell Library XML

<cell>

<type>BUFCE_ROW</type>

<level>LEAF</level>

// library cell properties

<libcellproperties>

<libcellproperty>

<name>CE_TYPE</name>

<default>SYNC</default>

<type>string</type>

<values>ASYNC, SYNC</values>

</libcellproperty>

...

</libcellproperties>

// library cell pins

<pins>

<pin>

<name>CE</name>

<direction>input</direction>

<type>ENABLE</type>

</pin>

35

...

</pins>

// valid bel placements

<bels>

<bel>

<id>

<site_type>BUFCE_ROW</site_type>

<name>BUFCE</name>

</id>

// cell pin to BEL-pin mappings

<pins>

<pin>

<name>CE</name>

<possible>CE</possible>

</pin>

...

</pins>

</bel>

</bels>

</cell>

3.4.1 Finding Device Compatible Cells

The Tcl command [get lib cells] is used to return a list of library primitives

that can be instantiated on a given device. Not all library primitives returned from this

command, however, are truly compatible. For example, running the Tcl command [

create cell -reference AUTOBUF tmp cell] on an Artix7 device prints the following

message: “WARNING: [Coretcl 2-1024] Master cell ’AUTOBUF’ is not supported by

the current part and has been retargeted to ’IBUF’.” The AUTOBUF cell is retar-

geted to an IBUF to be compatible with the device. Library primitives such as AUTOBUF should

not be included in the final cell library. To filter out incompatible cells, an instance of each library

36

cell returned from [get lib cells] is created. The REF NAME property on the newly created cell

is compared against the expected cell library name. If the strings match, then the library cell is

valid for the device and will be included in the cell library. Otherwise, the library cell will be

ignored.

3.4.2 Cell Placement Locations

One of the most important components of a cell library is the valid placement locations

for each available library primitive. Without this information, CAD tools that require placing cells

onto the device would be much more difficult to create. Algorithm 2 shows how cell placement

locations are extracted from Vivado’s Tcl interface. As can be seen, the method is fairly simple.

Algorithm 2 Determining valid cell placements in Vivado
1: procedure FIND CELL PLACEMENTS(device,cell)
2: unique sites← get unique sites(device)
3: placement bels←∅
4: for each site ∈ unique sites do
5: try
6: place cell on site(cell,site) . First, try placing the cell on the site
7: catch (Invalid Placement Exception)
8: continue
9: end try

10: bels← get bels of site(site) . Next, try placing the cell on each BEL of the site
11: for each bel ∈ bels do
12: try
13: place cell on bel(cell,bel)
14: catch (Invalid Placement Exception)
15: continue
16: end try
17: cell bel← get bel of cell(cell)
18: if bel = cell bel then
19: placement bels← placement bels∪bel
20: record pin mappings(cell,bel)
21: end if
22: end for
23: end for
24: return placement bels
25: end procedure

37

For a given cell object, the first step is to try and place the cell onto each unique site type in the

device using the Tcl command [place cell $cell $site]. With this command, Vivado scans

the site for a suitable placement location for the cell. If there is no suitable placement location, an

exception is thrown and the site is skipped. Otherwise, the algorithm then tries to place the cell

on each individual BEL in the site with the Tcl command [place cell $cell $bel]. Again,

an exception is thrown if the cell cannot be placed on the BEL. If both tests pass, one final check

is performed. Using the command [place cell $cell $bel], Vivado sometimes automatically

remaps the cell placement to a different BEL than the one specified (it is unclear why this happens).

To work around this functionality, the actual BEL placement is compared to the expected BEL

placement to make sure they match. If they do match, then the BEL is marked as a valid placement

location for the cell. The last step is to find all cell pin to BEL pin mappings using the Tcl command

[get bel pins -of $cell pin] after the cell has been placed. This process is repeated for each

cell available in the device.

3.4.3 Configurable Cell Properties

Most Vivado library cells have configurable properties that customize their functionality.

Listing 3.9 shows the configurable properties of a FDRE cell with the corresponding default values.

The property CONFIG.IS R INVERTED, for example, is used to specify either a high-asserted or

low-asserted reset signal for a flip-flop.

Listing 3.9: FDRE configurable properties and default values

Property Type Read-only Value

CONFIG.INIT string true

CONFIG.INIT.DEFAULT string true 1’b0

CONFIG.IS_C_INVERTED string true

CONFIG.IS_C_INVERTED.DEFAULT string true 1’b0

CONFIG.IS_D_INVERTED string true

CONFIG.IS_D_INVERTED.DEFAULT string true 1’b0

CONFIG.IS_R_INVERTED string true

CONFIG.IS_R_INVERTED.DEFAULT string true 1’b0

38

For each configurable property on a cell, the default value, possible values, max, and min are all

stored in the cell library. It is important to include these configurable properties with the cell library

XML for two reasons:

1. External netlist modification algorithms (specifically ones that add new cells to a design)

need to understand how a cell can be configured to create functionally correct netlists.

2. When Vivado creates an equivalent EDIF representation of a design using the Tcl command [

write edif], only non-default properties of cells are included in the resulting file (Vivado

already knows the default values so there is no need to print them). Therefore, to fully

reconstruct the netlist in external tools, default cell properties are included in the cell library.

The following Tcl regular expression is used to determine the configurable property names for a

library cell in Vivado:

CONFIG\.([^\.]+)\.DEFAULT$

3.4.4 Macro Primitives

The discussion so far in this section has been focused on Xilinx leaf primitives only. Xilinx

also supports macro primitives. A macro is a hierarchical cell that groups one or more leaf cells

together to perform a specific function. An example macro is shown in Figure 3.13 for an IOBUF

cell. An IOBUF macro cell contains two internal cells: one of type OBUFT and the other of type

IBUF. It also contains one internal net that connects the two internal cells together.

Figure 3.13: Vivado Macro Cell

39

In addition to the leaf primitives, a cell library XML also contains definitions for each of

the available macros in a device. The XML macro definition, however, is much less detailed than

its leaf cell counterpart. Only the internal structure of the macro is given as shown in Listing 3.10.

As the listing shows, there are three parts to a macro XML definition:

1. A list of internal cells.

2. A list of external macro pins, and the corresponding internal cell pins to which they connect.

3. A list of internal nets. These are nets within the macro that only connect to internal pins (i.e.

they do not connect to a macro pin).

Listing 3.10: Cell Library Macro XML

<macro>

<type>RAM128X1D</type>

// List of internal cells with name and type of each

<cells>

<internal>

<name>DP.HIGH</name>

<type>RAMD64E</type>

</internal>

...

</cells>

// List of macro pins with name, direction, type, and internal connections

<pins>

<pin>

<name>DPO</name>

<direction>output</direction>

<type>MACRO</type>

<internalConnections>

<pinname>F7.DP/O</pinname>

</internalConnections>

</pin>

40

...

</pins>

// List of internal nets, and the internal cell pins they connect to

<internalNets>

<internalNet>

<name>DPO0</name>

<pins>

<pinname>F7.DP/I0</pinname>

<pinname>DP.LOW/O</pinname>

</pins>

</internalNet>

...

</internalNets>

</macro>

The goal of this macro format is to help user reconstruct the internal contents of macros in external

tools. This is required because EDIF files produced from Vivado do not contain the internal struc-

ture of macro primitives (discussed in more detail in subsection 4.1.4). Information about possible

placement locations, pin mappings, and configurable properties of a macro are not included in the

current version of the cell library. They may be added in future revisions.

3.5 Conclusion

This chapter presents the required updates to Tincr to fully support Vivado device extrac-

tion through VDI. VDI defines four file formats that can represent a Vivado device:

1. XDLRC

2. Family Info XML

3. Device Info XML

4. Cell Library XML

XDLRC files are the most important device file, and verbosely detail the many components

within a Xilinx FPGA. Using VSRT, a complete set of primitive definitions has been added to

Tincr for UltraScale and UltraScale+ devices. Using these primitive definitions (and the other

41

changes described in section 3.1) valid XDLRC files can now be generated for these architectures.

This enables functioning CAD tools on these architectures for the first time.

A familyInfo.xml file augments a XDLRC file with additional useful information about

the family of a device. This information includes alternate types, compatible types, BEL route-

throughs, and site-level modifications and corrections. Using the Tincr command [tincr::cre-

ate xml family info] and applying the required hand edits described in section 3.2, a complete

set of family info files has been created for all Series7 and UltraScale families. Users can choose

to use these completed files instead of wrestling with the hand edits themselves.

A deviceInfo.xml files further augments a XDLRC with device-specific information not

found in the XDLRC. Currently this only includes the package pins for a device as described in

section 3.3. However, additional properties of a device deemed useful may be added to this file in

future VDI revisions.

A cellLibrary.xml details the Xilinx primitive cells that can target a given device. It pro-

vides extremely useful information to external CAD tools including possible BEL placements for

each cell, configurable cell properties, macro templates, and more (reference section 3.4). The

files described in this chapter work together to provide a comprehensive representation of Vivado

FPGAs. The hope is that it can be leveraged to create a variety of external CAD tools.

42

CHAPTER 4. VDI: DESIGN IMPORT/EXPORT

The second goal of VDI is to create an open-source format capable of fully representing

Vivado FPGA designs at any stage of implementation. A first attempt at this was to use Vivado’s

native design checkpoint format (DCP). Design checkpoints save and restore the progress of an im-

plemented design using the associated Tcl commands [write checkpoint] and [open check-

point]. However, the format of DCPs is serialized, making them unsuitable for general purpose

use. De-serializing files within a DCP is against Xilinx’s terms of service and would not be guar-

anteed to work with future versions of Vivado.

Instead, Vivado Tcl commands are used to define an alternate checkpoint representation for

open-source tools. VDI defines two different external design representations:

1. RapidSmith Checkpoints (RSCP): Represents designs that have just been exported from

Vivado. These checkpoints are intended to be loaded into external tools.

2. Tincr Checkpoints (TCP): Represents designs that can be loaded back into Vivado.

Each of these checkpoints are capable of representing a Vivado design post-synthesis, post-place,

and post-route, enabling the design flows shown Figure 4.1. The remainder of this chapter de-

scribes each external design representation, and the required Tcl commands for each. Section 4.1

Figure 4.1: Vivado Design Interface (VDI) Design Flows

43

introduces RSCPs and section 4.2 introduces TCPs. Section 4.3 lists the variety of Tcl challenges

associated with using the Vivado Tcl interface to represent designs externally. Section 4.4 includes

a discussion on why two different external design formats are necessary.

4.1 Design Export

VDI exports Vivado FPGA designs in the form of RapidSmith Checkpoints (RSCP). A

RSCP is a fileset containing 6 individual files:

• design.info

• netlist.edf

• macros.xml

• contraints.xdc

• placement.rsc

• routing.rsc

Each file represents a specific aspect of a Vivado FPGA design, and is described in the following

subsections. The new Tincr command [tincr::write rscp] can generate valid RSCPs for

fully-flattened Vivado designs. It is important to note that the name “RapidSmith” does not make

the checkpoints exclusive to RapidSmith. The name was arbitrarily chosen to match the external

CAD framework used to test and validate VDI. Any external tool that desires to operate on Vivado

designs can use these checkpoints.

4.1.1 Design.info

The design.info file of a RSCP is reserved for additional information about a design that

is not related to the design netlist or implementation. It currently only holds two pieces of infor-

mation: (1) the part name that the design is implemented on, and (2) the checkpoint “mode”. The

part name is technically redundant, in that is also included in the EDIF netlist (described in the

next subsection), but can be easier to parse than its EDIF equivalent. The checkpoint mode refers

to the type of checkpoint that was exported from Vivado. If the Vivado design was implemented

out-of-context, then the mode value will be out of context. Otherwise, the mode value will be

regular. Because out-of-context checkpoints do not route to peripheral FPGA pins, external tools

44

or frameworks that parse RSCPs may need to handle out-of-context designs differently. Listing 4.1

shows an example design.info file.

Listing 4.1: Sample design.info

part=xc7a100tcsg324-3

mode=out_of_context

4.1.2 Netlist.edf

The netlist.edf file within a RSCP is an EDIF netlist representing the logical portion of a

design. It details all cells, nets, and top-level ports within a design, and is generated from Vivado

using the Tcl command [write edif]. An example EDIF file is shown Listing 4.2. External tools

can use any open-source EDIF parser to translate the EDIF into their own design representation to

perform netlist modifications.

Listing 4.2: Sample EDIF

(Library work

(edifLevel 0)

(technology (numberDefinition))

(cell add (celltype GENERIC)

(view add (viewtype NETLIST)

(interface

(port a (direction INPUT))

(port b (direction INPUT))

...

)

(contents

(instance cout_OBUF (viewref netlist (cellref OBUF (lib

hdi_primitives))))

(instance cout_lUT (viewref netlist (cellref LUT3 (libref

hdi_primitives)))

(property INIT (string "8hE8"))

45

)

...

4.1.3 Constraints.xdc

The constraints.xdc file within a RSCP stores all user-defined XDC constraints on a Vivado

design. XDC constraint files are similar to UCF files for ISE designs. Constraints can be used to set

the clock frequency, constrain a top-level port to a specific package pin on the device, and set other

physical implementation details. An example RSCP constraints file can be seen in Listing 4.3, and

is essentially a list of Tcl commands.

Listing 4.3: Sample constraints.xdc

create_clock -period 5.000 -name sysClk -waveform {0.000 2.500}

set_property IOSTANDARD LVCMOS18 [get_ports clk]

set_property IOSTANDARD LVCMOS18 [get_ports ena]

set_property PACKAGE_PIN E15 [get_ports {Yin[12]}]

set_property PACKAGE_PIN H17 [get_ports {Xin[14]}]

set_property PACKAGE_PIN D18 [get_ports {Xin[7]}]

4.1.4 Macros.xml

Many fully-flattened Vivado designs contain hidden macros. Hidden macros are Vivado

macro primitives that are not returned from the Tcl command [get lib cells], but are used in a

netlist anyway. For example, the macro primitive IOBUF is found in a variety of Series7 designs,

but the Vivado Tcl command [get lib cells IOBUF] returns an empty string indicating that

the library cell cannot be found. This breaks the well defined assumption that [get lib cells]

returns a list of all Xilinx primitives that can be used in a design netlist. Hidden macros create two

problems in particular:

46

1. Because [get lib cells] is used to generate the cell library XML described in section 3.4,

the default cell library XML returned from [tincr::create xml cell library] is in-

complete and only supports the subset of designs without hidden macros.

2. Hidden macros are “primitive” cells in Vivado’s perspective. Therefore, the internal structure

of hidden macros is not expanded in the netlist.edf file described above. They are simply

black box cells to external tools

RSCPs handle hidden macros by including a macros.xml file which contains template in-

formation about each hidden macro in a Vivado design. This file has the same format as regular

cell library macros as shown in Listing 3.10. External tools can augment their default cell library

with the cells found in macros.xml to create a complete list of primitives used in a given design.

An alternative approach is to include placement information for the macro.

4.1.5 Placement.rsc

The placement.rsc file within a RSCP stores all the placement information of a Vivado

design. Specifically, the file includes four different tokens to differentiate placement data:

• LOC: Gives the site and BEL that a cell in the netlist is placed on. An example is shown on

line 3 of Listing 4.4. In this case, the cell named “cout OBUF inst i 1” is placed onto the

“A6LUT” BEL of the “SLICE X0Y51” site. The site type (SLICEL) is also given after the

site name in case the site needs to be changed to an alternate type before placing the cell (not

required for the example cell placement).

• PINMAP: Gives the logical-to-physical mapping for each cell pin attached to a given cell.

Line 4 of Listing 4.4 shows the cell pin mappings for “cout OBUF inst i 1.” As can be seen,

the “O” cell pin is mapped to the “O6” BEL pin of the A6LUT, the I0 cell pin is mapped

to the A4 BEL pin, etc. These pin mappings are required in placement.rsc because certain

cells can have different pin mappings based on how they are configured. For example, the

pin mappings for a BRAM cell with a data width of 72 bits differ from the pin mappings of

the same BRAM cell with a data width of 9 bits, even if they are placed at the same physical

location. PINMAP tokens help external tools guarantee that the pin mappings for each cell are

47

Figure 4.2: Example Cell Placement

correct. Cell pin mappings contained in the cell library (section 3.4) are for the cell’s default

configuration only. Future work includes creating a more detailed pin mapping in the cell

library so that the PINMAP token is no longer required in placement.rsc.

• PACKAGE PIN: Gives the site and BEL that a top-level port is mapped to. Line 6 of

Listing 4.4 shows an example for a port named “fsync out.” In this case, “fsync out” is

mapped to the “PAD” BEL on the “IOB X1Y30” site.

• IPROP: Gives the value of an internal cell property (to a macro). Internal cell properties are

not included within in the EDIF netlist, and so are included in placement.rsc for complete-

ness.

If a design has not yet been placed, placement.rsc will be empty. It is important to note that

for macro primitives in a design, only the placement information for internal cells to the macro

are included. Listing 4.4 demonstrates the order in which the above tokens appear in the file.

Figure 4.2 shows a visual representation of how cells are placed onto BELs in Vivado.

Listing 4.4: Sample placement.rsc

1 IPROP seq_ram_reg_0_127_0_0/DP.HIGH INIT 64’h0000000000000000

2 ...

3 LOC a_IBUF_inst R10 IOB33 INBUF_EN

4 PINMAP a_IBUF_inst O:OUT I:PAD

48

5 LOC cout_OBUF_inst_i_1 SLICE_X0Y51 SLICEL A6LUT

6 PINMAP cout_OBUF_inst_i_1 O:O6 I0:A4 I1:A5 I2:A6

7 ...

8 PACKAGE_PIN fsync_out IOB_X1Y30 PAD

9 PACKAGE_PIN data_out[7] IOB_X1Y33 PAD

10 ...

4.1.6 Routing.rsc

The routing.rsc file is the most complex file of a RSCP, and stores a complete description

of all routing resources used in a Vivado design. Specifically, it contains the following:

• The intrasite routing configuration for each site in the form of used site PIPs (routing muxes)

• A list of BELs configured as routethroughs (both LUT and flip-flops).

• A list of BELs configured as static VCC/GND sources.

• Intrasite nets.

• Routed intersite nets with their corresponding site pins and used PIPs.

• The merged physical routing information for VCC and GND nets.

An example routing.rsc is shown in Listing 4.5. If a design has not yet been routed, only the

intrasite routing information will be included in this file. If the design has not yet been placed, this

file will be empty. The rest of this section describes each component within a routing.rsc file, and

how they can be determined in Vivado.

Listing 4.5: Sample routing.rsc

1 SITE_PIPS SLICE_X9Y80 SRUSEDMUX:0 CEUSEDMUX:IN CLKINV:CLK ...

2 SITE_PIPS SLICE_X13Y80 PRECYINIT:AX SRUSEDMUX:0 COUTUSED:0 ...

3 ...

4 VCC_SOURCES SLICE_X5Y104/C6LUT/O6 SLICE_X5Y102/C6LUT/O6 ...

5 GND_SOURCES SLICE_X2Y106/D6LUT/O6 SLICE_X2Y106/C6LUT/O6 ...

49

6 LUT_RTS SLICE_X5Y101/B6LUT/A6/O6 SLICE_X40Y96/DFF/D/Q ...

7 ...

8 INTRASITE AddSub[10]

9 INTERSITE AngStep1[0] SLICE_X2Y82/AX SLICE_X2Y87/AQ SLICE_X2Y84/A1 ...

10 ROUTE AngStep1[0] INT_X28Y26/INT.LOGIC_OUTS_W1->>SDNDSW_W_0_FTS ...

11 ...

12 VCC INT_L_X2Y107/INT_L.VCC_WIRE->>IMUX_L42 ...

13 START_WIRES INT_L_X2Y107/VCC_WIRE INT_L_X2Y106/VCC_WIRE ...

14 GND INT_R_X3Y106/INT_R.GND_WIRE->>GFAN1 ...

15 START_WIRES INT_R_X3Y106/GND_WIRE INT_L_X4Y106/GND_WIRE ...

Site PIPs

The internal routing structure of nets inside Vivado sites are represented by a set of used

site PIPs. A string of site PIPs enables a connection between site components. An example is

shown in Figure 4.3 where the used site PIPs are circled in red. As can be seen, the ACY0:05 site

PIP is enabled and connects the 05 pin of the A5LUT BEL to the DI0 pin of the CARRY4 BEL. Site

PIPs can also be used to connect site pins to BEL pins. The Vivado Tcl command [get site pips

-of $site -filter IS USED] can be used to obtain a list of used site PIPs within a given site.

[tincr::write rscp] formats the site pips as shown on line 1 and 2 of Listing 4.5. External

Figure 4.3: Site PIP Usage

50

tools can use the SITE PIPS token within a routing.rsc file to reconstruct the internal routing of

each site.

LUT Routethroughs

Besides their use in implementing logic equations, LUT BELs can also be configured as

PIPs in a fully-routed FPGA design (known as a routethrough). A LUT is marked as a routethrough

when its configuration equation, CONFIG.EQN, maps the value of a single input pin directly to the

output pin. For timing, the A6 pin is the most preferable option for a routethrough since it is the

fastest, but pins A1-A5 can also be used in cases of routing congestion. Routethrough LUTs are

not explicitly represented in a design netlist since there is no cell placed on the corresponding

BEL, so they need to be included in the routing.rsc of a RSCP. Otherwise, designs could not be

fully represented in external tools. Figure 4.4 shows two example routethrough LUTs in Vivado.

Figure 4.4: Two examples of LUTs configured as routethroughs in Vivado. The net highlighted in
red represents VCC.

For the LUT on the left, the input pin A6 is mapped directly to the output pin O6. The corre-

sponding configuration equation for this BEL is CONFIG.EQN:O6=(A6). For the LUT on the right,

the input pin A1 is mapped directly to the output pin O6. However, the structure of the configuration

equation for this LUT is slightly different. As figure 4.4 shows, VCC is routed to the A6 input pin.

In this case, the configuration equation on the BEL is CONFIG.EQN:O6=(A6+~A6)*((A4)). Us-

51

ing Vivado’s TCL interface, LUT routethroughs can be identified by matching their CONFIG.EQN

property against the Tcl regular expression

(O[5,6])=(?:\(A6\+~A6\)*)?\(+(A[1-6])\)+ ? .

On design export, LUTs that are identified as routethroughs are included in the routing.rsc

file with the token LUT RTS. An example is shown on line 6 of Listing 4.5. Each routethrough

is represented in the form “site/bel/input pin/output pin.” It is important to note that not all LUT

BELs are tested for routethroughs. For an arbitrary LUT to be used as a routethrough, it needs to

satisfy three conditions. (1) Its parent site needs to be used (i.e. there is at least one cell placed

onto the site), (2) no cell is currently placed on the corresponding bel, and (3) at least one input bel

pin is not currently being used.

Permanent Latches

A permanent latch in Vivado is a Flip Flop (FF) BEL which has been configured as a latch

with its “set” signal tied to VCC. This means that the data pin of the latch always passes its value

to the output pin of the latch, and no state is retained. An example is shown in Figure 4.5. As the

figure shows, permanent latches look very similar to LUT routethroughs described in the previous

section.

Figure 4.5: Flip-Flop BEL Configured as a Permanent Latch in Vivado

Because of this similarity, routing.rsc files treat permanent latches the same as LUT route-

throughs. That is, each permanent latch is included alongside the LUT RTS token as shown on line

6 of Listing 4.5. The string “SLICE X40Y96/DFF/D/Q” gives an example of what a permanent

latch looks like in the routing.rsc file. Permanent latches in Vivado can be identified based on

52

Figure 4.6: Two LUTs Configured as Static Sources in Vivado

two qualifications: (1) there is no cell placed on the corresponding FF BEL, and (2) the property

CONFIG.LATCH OR FF of the BEL is set to LATCH.

LUT Static Sources

Similar to their use as routethroughs, LUT BELs can also be configured as GND or VCC

signal sources. Examples of both are shown in Figure 4.6. The LUT on the left of the figure

drives a VCC signal and the LUT on the right drives GND. In both cases, the logical netlist of a

design does not represent the use of these LUTs in any way. Therefore, the routing.rsc file marks

VCC and GND source LUTs with the tokens VCC SOURCES and GND SOURCES respectively. This

is shown on line 4 and 5 of Listing 4.5. External tools can use the BELs marked VCC SOURCES

and GND SOURCES to fully recreate the routing of GND and VCC nets. Static source LUTs are

identified in Vivado by matching their CONFIG.EQN property against the Tcl regular expression

(O[5,6])=(?:\(A6\+~A6\)*)?\(?[0,1]\)? ? .

LUTs that match the expression are formatted in routing.rsc with the form “site/bel/source pin.”

It is important to note that external CAD tools can also make use of this routing structure while

creating routing algorithms for Xilinx devices.

53

Figure 4.7: Vivado Intrasite Net (highlighted in white)

Intrasite Nets

There are two types of nets in Vivado: intrasite nets and intersite nets. Intrasite nets

are those that are contained completely within site boundaries. Figure 4.7 shows an example

intrasite net, which connects to only BEL pins. The routing.rsc file marks all intrasite nets with

the token INTRASITE as shown on line 8 of Listing 4.5. No additional information is given about

intrasite nets. External tools can reconstruct intrasite nets by using the source BEL pin of the net in

conjunction with the used site pips of the corresponding site. A list of intrasite nets can be obtained

in Vivado with the Tcl command [get nets -filter {ROUTE STATUS==INTRASITE}].

Intersite Nets

A majority of nets in a FPGA design are intersite nets. Intersite nets are those that use

general routing fabric to connect cells across site boundaries as shown in Figure 4.8. After a design

has been placed in Vivado, each intersite net is partially routed. That is, the intrasite portions of the

net (the wires within sites) are routed to site pins via site wires. To represent an intersite net at the

placement stage of implementation, the routing.rsc file includes an INTERSITE token, which lists

all site pins a net is connected to. Line 9 of Listing 4.5 shows an example INTERSITE specification.

Site pins are important for recreating the routing structure of nets in external tools because they

can be used to (a) build the intrasite portions of a net and (b) determine if a net is fully routed (nets

that route to all their site pins are fully routed by definition). In Vivado, the site pins attached to a

net can be determined with the Tcl command [get site pins -of $net].

54

Figure 4.8: Vivado Intersite Net (highlighted in white)

During the routing stage of implementation, all site pins of a net are connected together

through the general routing fabric of the FPGA. At this point the net is considered fully routed.

The physical structure of a fully routed net can be expressed three different ways in Vivado: (1)

the ROUTE property on the net, (2) the wires used in the net, or (3) the device PIPs used in the

net. For reasons discussed in section 4.3, device PIPs are the best option for external tools. The

routing.rsc file uses the token ROUTE for specifying the PIPs of a routed net. Line 10 of Listing 4.5

shows an example ROUTE specification. The Tcl command [get pips -of $net] can be used to

get a list of all PIPs being used in a Vivado net. Chapter 5 gives an algorithm that can be used to

reconstruct a net in external tools based on its PIPs.

VCC and GND Nets

In general, a design can have more than one VCC net in the logical netlist. Each of these

nets should have their own unique physical information once the design is routed (based on which

wires they use), but this is not the case with Vivado. Instead, Vivado reports that they each use

the same set of wires which correspond to a combination of all VCC nets. The same applies to

GND nets. There are two possible solutions to resolve this discrepancy. The first is to merge all

logical VCC (or GND) nets in the netlist into a single net, matching the merged physical routing.

55

The second is to partition the physical information so that each logical net has unique physical

properties.

For simplicity, RSCPs choose to implement the first option. Lines 12-15 of Listing 4.5

show how VCC and GND nets are represented in a routing.rsc file. The VCC and GND tokens

serve the same purpose as ROUTE, they contain the used PIPs for all VCC and GND nets. The

START WIRES token gives a list of all wires connected to VCC and GND sources. Starting at the

specified start wires, VCC and GND nets can be reconstructed in external tools. The Tcl command

[get nets -filter {TYPE==POWER}] is used to find all VCC nets in a design, and [get nets

-filter {TYPE==GROUND}] is used to find all GND nets in a design. The start wires for VCC

and GND nets are found by parsing their corresponding ROUTE property strings.

4.2 Design Import

RSCPs are only used to represent exported Vivado designs and cannot be directly imported

back into Vivado. They must first be converted to Tincr Checkpoints (TCP) in an external tool or

framework. TCPs are a fileset proposed in the original Tincr distribution, and serve as an alternate

representation of Vivado designs which can be imported into Vivado through the VDI interface.

Each TCP contains the following four files:

• netlist.edf

• constraints.xdc

• placement.xdc

• routing.xdc

As can be seen, TCPs are largely based on Vivado XDC files, which allow a subset of Tcl com-

mands to set constraints on a variety of Vivado objects. For example, cells can be placed and nets

can be routed with XDC constraints. The XDC format is desirable for two reasons in particular:

(1) a single Vivado Tcl command [read xdc] can parse and apply XDC constraint files and (2)

[read xdc] is much faster than regular Tcl scripts executing the same commands.

Each file in a TCP represents a specific aspect of a Vivado FPGA design, and is described

in the following subsections as a review for the reader. The netlist.edf and contraints.xdc file will

not be reviewed because they are identical to their RSCP counterparts presented in section 4.1. The

Tincr function used to parse TCPs, [tincr::read tcp], has been updated in a variety of ways

56

to support fully importing Vivado designs. These modifications, and the limitations of XDC, are

described more in section 4.3

4.2.1 Placement.xdc

Listing 4.6 shows an example placement.xdc file within a TCP. Lines 1-3 of the listing show

how a cell is placed in Vivado using XDC commands. As can be seen, the first command sets the

BEL property on the cell to the corresponding SITE TYPE.BEL NAME. The second command sets the

LOC property on the cell, which specifies the actual site location. The ordering of these commands

relative to one another is crucial, because if the LOC property is set before the BEL property an error

will be thrown in Vivado. For cells of group LUT, INV, or BUF the cell pin to BEL pin mappings

must be set manually by the user. This can be done by setting the LOCK PINS property on the

cell as shown on line 3, and is most often used for LUT cells. Line 4 of Listing 4.6 shows how a

top-level port is mapped to a FPGA package pin.

Listing 4.6: Sample placement.xdc

1 set_property BEL SLICEM.H6LUT [get_cells {u3/angle.Ao[16]_i_3}]

2 set_property LOC SLICE_X50Y30 [get_cells {u3/angle.Ao[16]_i_3}]

3 set_property LOCK_PINS { I0:A3 I1:A1 } [get_cells {u3/angle.Ao[16]_i_3}]

4 ...

5 set_property PACKAGE_PIN AD10 [get_ports {Rout[16]}]

6 ...

4.2.2 Routing.xdc

During placement, the intrasite routing structure of each site is automatically configured in

Vivado based on what cells are placed onto the corresponding site. Therefore, the only necessary

information in the routing.xdc file is the intersite routing specification for each net. Specifically,

the physical structure of a net is specified in Vivado by setting its ROUTE string property (also

called a directed routing string) as shown in Listing 4.7. A directed routing string represents the

tree structure of a physical route by using nested brackets (“{”) to represent branching. As an

57

A B

C

D E

Figure 4.9: Sample Route (A, B, C, D, and E represent device wires)

example, take the hypothetical route shown in Figure 4.9. One valid ROUTE string associated with

this route is { A B { D E } C }. Another possible ROUTE string is { A B { C } D E }, they

both represent the route shown in the figure. ROUTE strings can be formatted to either include the

tile of each wire (line 2 of Listing 4.7), or use only relative wire names (line 3 of Listing 4.7). The

advantage of including tile names is to remove any possible ambiguity for a route. The advantage

of using relative wire names is that they result in smaller routing.xdc files. It is considered best

practice, however, to format ROUTE strings using tile names to ensure the correctness of the route

when it is imported into Vivado.

Listing 4.7: Sample routing.xdc

1 ...

2 set_property ROUTE { CLEL_R_X36Y8/CLE_L_SITE_0_COUT ... } [get_nets {Zo}]

3 set_property ROUTE { CLE_L_SITE_0_COUT ... } [get_nets {Zo}]

4 ...

4.3 Vivado Tcl Interface Challenges

Vivado’s Tcl interface supplies the necessary functionality to generate and parse external

design representations. VDI uses the interface to define the formats for RSCPs and TCPs as de-

scribed in the previous sections. There are, however, a variety of challenges associated with using

Tcl commands to generate RSCPs and parse TCPs. Broadly, these challenges can be grouped into

four distinct categories.

58

1. Vivado design import rules: External designs need to be imported into Vivado in a very

specific way, or else import can fail.

2. Logical to physical mismatches: When a netlist is implemented on a device, most physical

components match to a corresponding logical component (i.e. a BEL maps to a cell). But,

there are some aspects of an implemented design that aren’t represented in the logical netlist.

3. Tcl objects that are incomplete, ambiguous, or return incorrect results when queried.

4. Parts of a device or design that cannot be configured with Tcl commands

The following subsections document each issue associated with generating RSCPs or parsing

TCPs, with their appropriate workaround. In some cases, it is up to external tools to provide a

solution. As previously mentioned, each of these issues is specific to Vivado 2016.2, and may be

fixed in future tool versions.

4.3.1 Ambiguous ROUTE Strings

As described in subsection 4.2.2, the ROUTE property on a net contains its physical rout-

ing structure. By default, Vivado uses relative wire names (no tile information) when building

these ROUTE strings. This is problematic for external tools because it can lead to wire ambigui-

ties. Specifically, it is possible for a given wire in a Xilinx FPGA to connect to more than one

wire of the same name. The BRAM L X6Y170/BRAM CASCOUT ADDRBWRADDRU6 wire in the Ar-

tix7 part xc7a100tcsg324-3 is an example. This wire connects to two different wires named

BRAM ADDRBWRADDRU6 through PIP connections. The first wire is located in tile BRAM L X6Y165

and the second wire is located in tile BRAM L X6Y175. Listing 4.8 shows how Vivado distinguishes

these two connections within ROUTE strings.

Listing 4.8: Ambiguous ROUTE string example

1 // Tile BRAM_L_X6Y165

2 { ... BRAM_CASCOUT_ADDRBWRADDRU6 BRAM_ADDRBWRADDRU6 ... }

3 // Tile BRAM_L_X6Y175

4 { ... BRAM_CASCOUT_ADDRBWRADDRU6 <1>BRAM_ADDRBWRADDRU6 ... }

59

As can be seen, the token “<1>” is used to differentiate the two wires. Vivado most likely has an

internal data structure that uses the token to choose the correct sink wire. External tools, however,

don’t have access to this data structure, meaning the only option is to guess which wire is actually

taken (clearly not an acceptable solution). Ambiguous ROUTE strings are the primary reason why

RSCPs use PIPs to represent routing, and two different external formats are required.

4.3.2 Alternate Site Pins

As discussed in subsection 3.2.2, the Vivado Tcl command [get site pins -of $site]

does not return the correct result for alternate sites on Series7 devices1. An example of this be-

havior is shown in Figure 4.10. The site pin names clearly change in the GUI after the site is

changed to be of type RAMB18E1, but the Tcl interface is not updated accordingly. RSCPs depend

on exporting a correct set of site pins for each net, but the reported site pins will be incorrect for

alternate sites if the above command is used.

VDI fixes this issue with an assumption about single-BEL sites in Series7 devices. As

can be seen in Figure 4.10, each BEL pin within a single-BEL site connects to an identically

named site pin. Using this assumption and a customized site pin getter, the VDI command [

tincr::write rscp] reports the correct site pins for each net connected to an alternate site. Of

1UltraScale devices always return the correct result

Figure 4.10: An example of [get site pins] returning incorrect results in Vivado

60

Figure 4.11: An example of VCC routing to an unused BEL pin (A6)

course, this is only valid if all alternate types with changing site pins have a single BEL. Through

experimentation with several different designs, this appears to be true. As more tests are run on

Series7 devices and designs, the conclusion will be further tested for validity.

4.3.3 VCC/GND BEL Pins

Most nets in a Vivado design connect to a set of cell pins, and are routed to the correspond-

ing BEL pins of those cell pins. VCC and GND nets, however, can route directly to BEL pins that

don’t have a connecting cell pin. An example is shown in Figure 4.11. As the figure shows, VCC

is routed to the A6 pin of the D6LUT, but there is no cell pin mapped to A6 (the input pins of the

cell placed at the LUT have been mapped to A1 and A4). The fact that VCC connects to the A6 pin

of this LUT is not represented in the logical netlist, and is purely an implementation detail of the

design. Lacking this information is particularly challenging when developing routing algorithms

in external tools. How will the algorithm know to route to VCC/GND BEL pins when they are not

explicitly represented in the netlist? Unfortunately, these BEL pins cannot currently be determined

with Vivado Tcl commands, and so are not included in RSCPs. It is up to external tools to un-

derstand the placement configurations that require VCC and GND to be routed to individual BEL

pins.

61

Figure 4.12: Routing Contention Example

4.3.4 SLICE Placement Order

When a cell is placed in Vivado using Tcl API calls, Vivado automatically configures the

routing resources inside of the corresponding site based on the cell’s connections. Because of this

behavior it is possible to have a valid cell placement, but to place the cells in an order that causes

an illegal routing configuration (i.e. a routing mux is optionally being used by a net, but is required

by a different net of a cell that has just been placed). This primarily affects sites of type SLICEL

and SLICEM, due to their more complex internal routing.

Figure 4.12 shows a simplified example of why routing contention can happen within

SLICE sites. In this hypothetical scenario, the netlist in the left of the figure is placed onto the

site in the right of the figure. Assume the cells of the netlist are placed in the following order: (1)

A → LUT1, (2) C → FF1, and (3) B → FF2. Cell A will first be placed onto the LUT1 BEL which

will use the mux to leave the site because its downhill cell (B) has not yet been placed. When cell

C is placed on the FF1 BEL, an error will be thrown because the net connected to C needs to be

routed outside of the site, but the routing mux is already in use and there is no other way to leave

the site. At this point placement has failed. If instead the placement order is (1) B → FF2, (2) A →

LUT1, and (3) C → FF1, no routing contention will happen because the site mux will be available

once cell C is placed.

For Series7 devices, experimentation has shown that the proper placement order for groups

of cells mapped to SLICE sites is as shown in Figure 4.13. The D6LUT needs to be placed first for

distributed memory cells. If the required placement order is not followed when recreating a design,

internal routing conflicts will occur that Vivado will be unable to resolve. It is the responsibility of

62

Figure 4.13: Required placement order for Series7 SLICE sites. The figure shows a simplified
representation of a SLICEL site.

external tools to sort the cells of a design in the proper order shown in Figure 4.13 when creating

the placement.rsc file of a TCP.

It is important to note that the SLICE architecture of UltraScale devices is significantly

different than the Series7. Specifically, SLICE sites in UltraScale have 8 LUTs (H-A), 16 FFs,

and a CARRY8 instead of a CARRY4. In initial testing, it appears that the placement order for

UltraScale designs is less strict. The only requirement is that the H6LUT (top-most LUT in the

SLICE) be placed first for distributed memory.

4.3.5 Macro Placement

As described in subsection 3.4.4 fully-flattened Vivado netlists may include macro primi-

tives. Section 4.1 describes how macros are exported from Vivado in RSCP files. Importing macro

primitives back into Vivado using TCP files, however, is a little more complicated. This is because

internal cells to a macro cannot be placed with XDC Tcl commands (setting the property of an

internal cell is an unauthorized operation in Vivado). Therefore, external tools have two options

when generating a TCP with macros:

1. Before creating the TCP, completely flatten the design netlist so that all macros are com-

pletely removed from the design.

63

2. Support relatively placed macros (RPM), and output the placement information for just the

RPM (not the internal cells) to the TCP. RPMs are macro cells that are assigned an anchor

BEL placement location, and internal cells to the macro are placed relative to the anchor.

In general, the easier of the two solutions is to flatten the design netlist completely, but either

solution is valid with VDI.

4.3.6 LUT Routethroughs

As described in subsection 4.1.6, the CONFIG.EQN property on a LUT BEL can be used

to identity it as routethrough. On design export, all LUTs in a design whose configuration equa-

tion matches that of a routethrough are marked in the generated RSCP. It would stand to reason

that when importing a design back into Vivado, routethroughs could be recreated by setting the

corresponding CONFIG.EQN of the BEL. CONFIG.EQN, however, is a read-only property, meaning

the value can be queried but not modified. Explicitly configuring a BEL’s properties using the Tcl

command [set property] will throw an error in Vivado. These properties can only be modified

internally during the placement or routing stage of implementation. Due to these limitations, it is

currently not possible to configure a BEL LUT as a routethrough in Vivado.

Therefore, it is the responsibility of external tools to replace all LUT routethroughs in a

design with a Xilinx LUT1 cell before generating a TCP. The general method for this is shown in

Figure 4.14.

Figure 4.14: Visualization for how to replace a LUT routethrough with a LUT1 Xilinx cell.

64

First, disconnect the routethrough net from all downhill sink cell pins. Next, create a new LUT1

Xilinx library cell with a unique name and set the cell’s INIT property to “2’h2” (this configures

the cell to be a passthrough LUT). Place the cell onto the BEL that was formerly being used as

a routethrough, and map the I0 input pin of the cell to the corresponding routethrough BEL pin

(A1 in the case of the example). Rewire the netlist and connect the original routethrough net to pin

I0 of the new cell. The final step is to create a new net with a unique name, and connect it to the

output pin of the new cell and the downhill logic disconnected earlier. Once this is complete, the

netlist now explicitly represents the routethrough, and valid TCPs can be generated.

4.3.7 Routing Differential Pairs

Xilinx devices support differential input signals for design input. An example differential

pairing is shown in Figure 4.15. The net highlighted in white connects the two differential signals

Figure 4.15: Differential Pair Net

65

together for Xilinx to resolve to a single value. As can be seen, the physical route of the net is

very simple, with only a single PIP connection. As a TCP is being imported, however, Vivado is

unable to correctly process the ROUTE strings for these nets. Specifically, when the ROUTE string

for a differential net is specified, the following error message is given: “ERROR: [Designutils

20-949] No driver found on net netname”.

The function [tincr::read tcp] provides a workaround by first routing all other nets in

the design. Once all other nets have been routed, the Tcl code shown in Listing 4.9 is run. The

differential nets are identified using the Tcl command on line 1, and each net is individually routed

by Vivado’s router. Since there is only one possible route between the source and the sink pin, the

differential nets will be routed correctly. The downfall to this approach is that it can take up to 1

minute to finish routing all differential nets. It is important to note that this is only an issue for

Series7 devices, and is not needed for UltraScale.

Listing 4.9: Tcl script to route differential nets in Vivado

1 set diff [get_nets -of [get_ports] -filter {ROUTE_STATUS != INTRASITE} -quiet]

2

3 if {[llength $diff] > 0 } {

4 route_design -quiet -nets $diff

5 }

4.4 Why Two Design Checkpoint Formats?

So far this chapter has described in great detail RSCPs, TCPs, and the associated Vivado

Tcl challenges with both. There is, however, one more question to consider: “Why can’t a single

design format be used for external tools and Vivado”? The purpose of this section is to give insight

into four reasons why both RSCPs and TCPs are required with VDI.

1. Some Vivado design representations cannot be used with external tools. This is best shown

with Vivado ROUTE strings, which are used to represent the physical route of a net. Due to the

ambiguities of ROUTE strings as described in subsection 4.3.1, they are not suitable for design

export (PIPs must be used instead). However, ROUTE strings are required when importing a

66

design back into Vivado (subsection 4.2.2). This indicates that a different format is needed

for exporting and importing the physical structure of a net.

2. When an external design is imported into Vivado, some physical implementation details of

the design are automatically configured. For example, site PIPs, static source LUTs, and

intrasite nets are all configured during placement import based on how the cells of a design

are placed. These design aspects do not need to be explicitly represented in a TCP. External

tools don’t have the luxury of automatic configuration, and so these details do need to be

explicitly represented in a RSCP. Otherwise, a design could only be partially represented.

3. RSCPs and TCPs are designed for different purposes. TCPs are designed to import a design

into Vivado as quickly as possible. The XDC format allows for this due to the dedicated

Tcl command [read xdc]. RSCPs are designed to be easily parsable, and use a simple

token-based scheme with whitespace separated values.

4. Vivado offers a native checkpoint format (DCP) that can be used to save and restore the

progress of an implemented design. Due to this available checkpoint format, there is no

reason to support importing RSCPs directly back into Vivado. Users that want this capability

can use DCPs, allowing RSCP checkpoints to be more customized.

4.5 Conclusion

VDI is the first open-source interface capable of completely representing Vivado designs

at the subsite level (i.e. at the level of cells and BELs). Two different external design formats

are specified by VDI. RapidSmith Checkpoints represent designs exported from Vivado, and Tincr

Checkpoints represent designs that can be loaded back into Vivado. Several Vivado Tcl issues

have been identified, and resolved to provide a complete import/export solution. Also, the required

steps for external tools to create valid TCPs have been laid out. The hope is that researchers can

use the external representation of Vivado designs presented in this chapter to implement CAD tools

in their language of choice. A CAD tool framework based on VDI is presented in the next chapter.

67

CHAPTER 5. INTEGRATING RAPIDSMITH2 AND VDI

VDI enables the creation of custom CAD tools capable of targeting Vivado devices. How-

ever, there are variety of challenges when working with devices and designs produced from Vi-

vado Tcl commands (reference section 4.3). A framework that can abstract the low-level details

and challenges of Xilinx FPGAs away from CAD tool developers is valuable. RapidSmith2 (in-

troduced in subsection 2.6.1) has been updated and integrated with VDI to provide an open-source

and intuitive way of manipulating Vivado designs. Specifically, RapidSmith2 now supports im-

porting RSCPs and exporting TCPs with the design flows shown in Figure 5.1. All possible design

flows for Vivado Series7 and UltraScale designs are supported.

Figure 5.1: RapidSmith2 Supported Design Flows (the red box represents VDI)

RapidSmith2 is publicly available for download and collaboration at https://github.

com/byuccl/RapidSmith2, and is introduced in greater detail in Appendix A. It is encouraged for

the reader to review this appendix to gain a general understanding of the available data structures

and APIs. This chapter assumes a working knowledge of RapidSmith2 and instead focuses on

68

https://github.com/byuccl/RapidSmith2
https://github.com/byuccl/RapidSmith2

VDI integration. Several new interface classes have been added to support importing RSCPs and

exporting TCPs:

• VivadoInterface.java: Top-level class to parse RSCPs and generate TCPs.

• EdifInterface.java: Class to parse and generate EDIF files

• XdcPlacementInterface.java: Class to parse and generate placement files

• XdcRoutingInterface.java: Class to parse and generate routing files

The first two sections of this chapter discuss at a high-level how these classes are used to convert

RSCPs into RapidSmith2 CellDesign objects, and how CellDesigns are converted back into

TCPs. The final section of this chapter lists the contributions to RapidSmith2 related to the work

in this thesis.

5.1 Importing RSCPs

RSCPs are imported into RapidSmith2 by the function VivadoInterface::load tcp().

Listing 5.1 shows the order in which files of a RSCP are processed using the interface classes

introduced above. The actual Java commands for each step of the process are given. As can be

seen, the first step is to augment the existing CellLibrary object with the macros included in the

macros.xml file. This allows the CellLibrary to have a complete picture of all primitives in a de-

sign when parsing the EDIF netlist in step 2. After parsing the EDIF, a RapidSmith2 CellDesign

is created. Once the design is created, the XDC constraints found in contraints.xdc are loaded into

the CellDesign in the form of XdcConstraint objects. The final steps are to apply the placement

and routing information to the CellDesign by parsing the placement.rsc and routing.rsc respec-

tively. The following subsections detail important aspects of importing RSCP files. Not all steps

shown in Listing 5.1 are discussed below.

Listing 5.1: Steps to parsing a RSCP

1 public void load_tcp (String rscp, Device device, CellLibrary libCells) {

2 // 1.) Add macro cells found in "macros.xml" to the cell library

3 libCells.loadMacroXML(Paths.get(rscp, "macros.xml"));

69

4

5 // 2.) Parse the EDIF and create the RS2 netlist

6 String edifFile = Paths.get(rscp, "netlist.edf").toString();

7 CellDesign design = EdifInterface.parseEdif(edifFile, libCells);

8

9 // 3.) Parse the XDC constraints

10 parseConstraintsXDC(design, Paths.get(rscp, "constraints.rsc").toString());

11

12 // 4.) Apply the placement information to the design

13 String placementFile = Paths.get(rscp, "placement.rsc").toString();

14 XdcPlacementInterface pI = new XdcPlacementInterface(design, device);

15 pI.parsePlacementXDC(placementFile);

16

17 // 5.) Apply the routing information to the design

18 String routingFile = Paths.get(rscp, "routing.rsc").toString();

19 XdcRoutingInterface rI = new XdcRoutingInterface(design, device,

pI.getPinMap());

20 rI.parseRoutingXDC(routingFile); }

5.1.1 Approach to Parsing RSCP Files

Most files in a RSCP are whitespace delimited to make parsing very easy. The general

approach to parsing these files in RapidSmith2 is shown in Listing 5.2. As can be seen, a RSCP

file is read line by line, parsing the line using the Java regular expression \\s+, and then processing

the individual tokens. It is important to note that the parsing function uses a Pattern object and

not the built in Java String function split(). The reason for this is that split() internally

creates and compiles a new Pattern every time it is called. Using a single Pattern instead is

a minor optimization to design import. A try-with-resources block is used to guarantee that the

file stream is closed correctly even if an exception occurs within the code. The constraints.xdc,

placement.rsc, and routing.rsc files are parsed in this manner.

70

Listing 5.2: General skeleton for parsing space-separated RSCP files

1 public void parse (File file) {

2 // compile the whitespace pattern

3 Pattern whitespacePattern = Pattern.compile("\\s+");

4

5 // try-with-resources to guarantee no resource leakage

6 try (BufferedReader br = new BufferedReader(new FileReader(file)))) {

7 String line;

8 while ((line = br.readLine()) != null) {

9 String[] toks = whitespacePattern.split(line);

10 // process tokens

11 }

12 }

5.1.2 Netlist.edf

The BYU EDIF tools [20] offer a comprehensive set of APIs that allow EDIF netlists to be

parsed into equivalent Java data structures where they can be analyzed and modified. RapidSmith2

uses this tool to parse the netlist.edf file generated from Vivado. Specifically, the netlist.edf is

first loaded into BYU EDIF data structures. The BYU EDIF representation is then translated into

a RapidSmith2 CellDesign object using the EdifInterface.java class as shown on line 7 of

Listing 5.1. For the most part this translation is straightforward, but there are a few noticeable

exceptions that are listed below.

• To match the physical representation of VCC and GND nets within a RSCP as described

in subsection 4.1.6, all VCC nets are combined into a single VCC net while translating the

EDIF to a CellDesign. The same applies for GND nets. The API calls CellDesign::get-

VccNet() and CellDesign::getGndNet() can be used to obtain a handle to each.

• EDIF files represent top-level bus ports using the naming convention “port[7:0].” Rapid-

Smith2 breaks bus ports into individual ports (i.e. “port[0]” - “port[7]”).

71

• Vivado EDIF files can contain ports with offsetting indexes (i.e. “port[3:2]”). BYU EDIF

tools do not represent the start and end index of offsetting ports, so RapidSmith2 must de-

termine them during the translation. To do this, the name of bus ports are parsed using the

Java regular expression ”{(.*)\\[.+:(.+)\\]}”. The first group of the regular expression

matches the relative port name and the second group matches the port’s starting index. Using

this information RapidSmith2 can correctly recreate the ports in a CellDesign (“port[3]”

and “port[2]” for the example above).

The EdifInterface.java class has only been tested with EDIF files produced from Vivado, and

is not guaranteed to work with other EDIF sources.

5.1.3 Routing.rsc

Due to the complex routing structure of a Xilinx FPGA, routing is the most difficult portion

of a Vivado design to recreate in external tools. RSCPs represent this complex routing via rout-

ing.rsc files. As the example routing.rsc file given in Listing 4.5 demonstrates, there are many com-

ponents to a routed FPGA design. RapidSmith2 processes these many components with the newly

created XdcRoutingInterface.java class, and converts them into equivalent RapidSmith2 data

structures. A detailed description of the routing import algorithm will not be given here. Rather,

the most important routing concepts are highlighted, followed by a description of the algorithm

used to create a routing tree based on the used PIPs of a net. Appendix section A.4 goes into

greater detail about routing in RapidSmith2.

• The used site PIPs of each site are parsed and stored in the top-level CellDesign. The

function CellDesign::getUsedSitePipsAtSite(site) can be used to retrieve the used

PIPs for a given site. During routing import, these PIPs are used when reconstructing the

intrasite portions of a net.

• BEL routethroughs in a design are stored into corresponding BelRoutethrough objects.

A BelRoutethrough contains the BEL, input pin, and output pin for the corresponding

routethrough. Researchers can use this information in their CAD Tools when modifying a

design. Similarly, all static source BELs are recorded in a List.

72

• While recreating fully-routed designs, RapidSmith2 can recognize the VCC/GND BEL

pin issue described in subsection 4.3.3. As mentioned in that section, these BEL pins are

not represented in the logical netlist. To support a more complete netlist view, the routing

importer creates a new cell pin for each discovered VCC/GND BEL pin. These cell pins,

called PseudoCellPins, are added to the global VCC/GND net, attached to the cell placed

at the corresponding BEL, and then mapped to the BEL pin. PseudoCellPins are described

in more detail in section A.2.1.

• The intersite route status of each net is computed during routing import. Possible values

include FULLY ROUTED (all site pins are routed to), PARTIALLY ROUTED (some but not all

site pins are routed to), and UNROUTED (no site pins are routed to).

• As described in subsection 4.1.6, RSCPs use PIPs to represent routing. Vivado PIP names

can be in one of three forms: “tilename/wire1->>wire2”, “tilename/wire1->wire2”

or “tilename/wire1<<->>wire2.” The routing import algorithm uses the Java regular

expression ”(.*)/.*\\.([^<]*)((?:<<)?->>?)(.*)” to isolate the tile, source wire, and

sink wire of a PIP in each of these formats.

Route Reconstruction Algorithm

As described in subsection 4.1.6, the physical structure of each net in a RSCP is represented

by a list of used device PIPs. This PIP list, however, is not immediately useful to external tools

because it does not represent branching wires. The route of a net is more accurately represented

with a tree structure where branches in the route can be explicitly represented. RapidSmith2 uses

RouteTree objects to represent the tree structure of nets. A detailed description of routing in

RapidSmith2, including the structure and API of RouteTrees, is given in section A.4. The reader

is encouraged to review and understand this material before continuing.

Algorithm 3 shows the basic pseudocode for converting a list of PIPs into a RouteTree

object in RapidSmith2. The inputs to the procedure include (1) a net to route, (2) the start wire of

the route, and (3) the set of used PIPs for the net (from the RSCP). As can be seen, the algorithm is

a queue-based, breadth-first search of the device beginning at the specified start wire. During each

iteration of the while loop starting at line 6, a wire (and its corresponding RouteTree) is removed

73

Algorithm 3 Algorithm to recontructing routing in RapidSmith2
1: procedure RECREATE ROUTING NETWORK(net,startWire,usedPipSet)
2: searchQueue←∅ . Initialize the search
3: visitedSet←∅
4: start← createRouteTree(startWire)
5: searchQueue.add(start)
6: while searchQueue is not empty do . Breadth-first search through device wires
7: currentRoute← searchQueue.dequeue()
8: currentWire← currentRoute.getWire()
9: for each connection ∈ currentWire.getDownhillWireConnections() do

10: sinkWire← connection.getSinkWire()
11: if sinkWire ∈ visitedSet then . Skip wires we have already visited
12: continue
13: end if
14: isNonPip← connection.isPip()==0
15: isUsedPip← connection.isPip() and (connection.getPip() ∈ usedPipSet)
16: if isNonPip or isUsedPip then
17: nextRoute← createRouteTree(sinkWire)
18: currentRoute.addConnection(nextRoute)
19: searchQueue.enqueue(nextRoute)
20: visited.add(sinkWire)
21: end if
22: end for
23: end while
24: net.addRouteTree(start) . After the search, attach the route to the net
25: end procedure

from the queue and each of its downhill connections are examined. If a downhill connection is

either (a) a non-PIP connection in RapidSmith2 or (b) a PIP connection AND the corresponding

PIP is a member of the used PIP set, then the sink wire of the connection is deemed to be part of the

route. A new RouteTree is created based on the sink wire, connected to the current RouteTree,

and then added to the queue to be examined later. This process is repeated until the queue is empty

and the complete route has been constructed. An identical algorithm can be used to route intrasite

nets by using the enabled site PIPs of the corresponding site.

5.2 Exporting TCPs

After a CAD algorithm is run in RapidSmith2, the modified design can be re-imported back

into Vivado by generating a TCP. The RapidSmith2 function VivadoInterface::write tcp()

74

can be used to generate a TCP from a CellDesign. Listing 5.3 shows the internal steps of

VivadoInterface::write tcp() with the corresponding Java code for each step. A detailed

description for each step of the TCP generation process is not given here because the steps are

fairly straightforward. The user is referred to the RapidSmith2 source code for more details. In-

stead, only a few key aspects of TCP export are presented below.

• As described in subsection 4.3.6, LUT routethroughs need be replaced with LUT1 library

primitives to create a valid TCP. Before exporting any information to a TCP, all BEL route-

through connections in RapidSmith2 are replaced with LUT1 cells using the method shown in

Figure 4.14. Specifically, routethroughs are determined by iterating over a net’s RouteTree

and looking for BEL routethrough connections. The resulting netlist will be structurally

different, but functionally equivalent.

• The BYU EDIF tools are also used to convert a RapidSmith2 CellDesign into a netlist.edf.

As described in subsection 4.3.5, macro cells need to be flattened before generating a TCP.

When an EDIF file is created using the BYU EDIF tools, RapidSmith2 macro cells are

ignored, and only the internal cells are included in the resulting netlist. As long as the

internal cell properties are set correctly, this modification results in a functionally equivalent

netlist.

• As described in subsection 4.3.4, cells mapped to Series7 SLICEL or SLICEM sites need

to be placed in a very specific order to prevent routing conflicts. Figure 4.13 shows the re-

quired placement order. Before generating a placement.xdc, RapidSmith2 sorts the cells of a

design using a bin sorting algorithm. Specifically, every different color shown in Figure 4.13

represents a different bin. The bins are concatenated together in the correct order, and then

the placement.xdc is generated. Sorting the cells using a bin placement algorithm is linear in

complexity and scales well with the size of a design.

• The RouteTrees of all routed nets in a design are converted to Vivado ROUTE properties. To

prevent any wire ambiguity, tile names are included for each wire in the route. Only source

wires of PIP connections are included in the final ROUTE string.

75

Listing 5.3: Steps to create a TCP in RapidSmith2

1 public void writeTCP(String tcpDirectory, CellDesign design, Device device) //

2 1.) Replace routethroughs with LUT1 cells

3 LutRoutethroughInserter inserter = new LutRoutethroughInserter(design);

4 inserter.execute();

5

6 // 2.) Write EDIF netlist

7 String edifOut = Paths.get(tcpDirectory, "netlist.edf").toString();

8 EdifInterface.writeEdif(edifOut, design);

9

10 // 3.) write constraints.xdc

11 String xdcOut = Paths.get(tcpDirectory, "constraints.xdc").toString()

12 writeConstraintsXdc(design, xdcOut);

13

14 // 4.) Write placement.xdc

15 String placementOut = Paths.get(tcpDirectory,

"placement.xdc").toString();

16 XdcPlacementInterface pI = new XdcPlacementInterface(design, device);

17 pI.writePlacementXDC(placementOut);

18

19 // 5.) Write routing.xdc

20 String routingOut = Paths.get(tcpDirectory, "routing.xdc").toString();

21 XdcRoutingInterface rI = new XdcRoutingInterface(design, device, null);

22 rI.writeRoutingXDC(routingOut, design);

23 }

5.3 Contribution List

One of the major contributions of this thesis is the integration of RapidSmith2 with VDI

and Vivado. However, there are a number of other contributions to RapidSmith2 due to the work

76

presented in this thesis. Many of the contributions are documented in Appendix A, but all contri-

butions are highlighted in this section as an organized list.

• Port Cells: Top-level port and cell objects are distinguished from one another in Vivado

netlists. RapidSmith2 removes this distinction and treats top-level ports as cells. There are

three types of port cells: IPORT, OPORT, IOPORT (one for each direction).

• Site PIPs: A list of used site PIPs for each site is now stored in the top-level CellDesign

object of a RapidSmith2 netlist.

• Macro Support: Both Xilinx primitive and user-defined macros are supported in Rapid-

Smith2 cell libraries and netlists. Custom macros can be added to a CellLibrary by using

the command CellLibrary.loadMacroXml().

• BEL Routethrough Connection: Routethrough connections included in the familyInfo.xml

(described in section 3.2) are now created and added to the Device data structure. Intrasite

routing algorithm can use these routethrough connections just like any other wire connection.

• Configurable Cell Properties: The configurable cell properties for each library cell in Vi-

vado is now parsed and loaded into RapidSmith2 from the cellLibrary.xml. When a new

Cell object is created in RapidSmith2, the cell will have the same default properties as are

shown in Vivado.

• Three-part Routing: The physical routing of RapidSmith2 nets have been updated to the

three-part representation described in subsection A.4.5. This makes it easier to distinguish

between the intrasite and intersite portions of a net.

• Extensible RouteTrees: The original RouteTree class included with RapidSmith2 had an

integer cost code for routing algorithms. RouteTrees have been updated to be extensible,

allowing a routing algorithm to use whatever customized cost function desired.

• Pseudo Cell Pins: Support for PseudoCellPins have been added to resolve the issue de-

scribed in subsection 4.3.3. In general, PseudoCellPins are cell pins that can be created at

runtime and attached to any Cell object.

77

• Package Pins: A list of PackagePin objects have been added to the Device class. Specif-

ically, a PackagePin contains mappings between BELs to device package pins and vice

versa. Package pins that access the global clock routing network of the chip are marked so

placement algorithms can place clock ports accordingly.

• XDC Contraints: XDC constraints on a Vivado design are now parsed and loaded into

XdcConstraint objects. Users can view/modify these constraints as they run CAD algo-

rithms on a design.

• Dot File Visualization: To help visualize design netlists and cell placements, a DotFile-

Printer class has been added. The DotFilePrinter can create valid DOT files for a design

netlist, a placed design, or placement information for a single site in the device. This can be

useful for debugging CAD algorithms.

• Vivado Console: The VivadoConsole is a Java class capable of starting a new instance of

Vivado, sending Tcl commands to the Vivado instance, and reading back the results through

a Java API. This class is discussed more in the next chapter.

• Device Info Parsing: Device file generation has been updated to parse the information found

in deviceInfo.xml files introduced in section 3.3.

• Family Info and Cell Library Updates: The original specification for the cellLibrary.xml

and familyInfo.xml does not include many of the things introduced in chapter 3. The Rapid-

Smith2 parsing logic for these files has been updated accordingly.

• Public Release: RapidSmith2 has been released publicly on GitHub at https://github.

com/byuccl/RapidSmith2. The GitHub repository includes Travis-CI build testing and

support for Docker containers.

• Unit Test Framework: A unit test framework based on JUnit5 has been added to Rapid-

Smith2. Most logical design data structures (Cells, CellNets, etc.) have been well tested

using these unit tests.

78

https://github.com/byuccl/RapidSmith2
https://github.com/byuccl/RapidSmith2

• UltraScale Support: UltraScale designs have been successfully imported into RapidSmith2.

They have also been successfully exported from RapidSmith2 back into Vivado with error.

This enables the creation of UltraScale CAD tools for the first time.

• Example Programs: An example Series7 simulated annealing placer has been created and

added to the RapidSmith2 repository as a reference placer. Other sample programs have also

been created including a design printer, import/export demonstration, and a basic A* router.

5.4 Conclusion

This chapter presents the integration of RapidSmith2 with VDI, providing a framework to

create Vivado FPGA CAD tools for next generation devices. Specifically, RapidSmith2 now sup-

ports parsing designs from RSCPs and translating internal designs to TCPs. Using the available

Java APIs, algorithms to analyze and modify Vivado designs can be easily written. This is espe-

cially true when compared against the Tcl CAD tool alternative. Designs targeting Series7 and

UltraScale architectures are supported with this framework, but support for UltraScale+ devices is

still underway. The testing process used to demonstrate the correctness of RapidSmith2 and VDI

is presented in the next chapter.

79

CHAPTER 6. VDI TESTING

To show the validity of VDI, several different experiments and tests were run using Rapid-

Smith2. Table 6.1 shows the benchmark designs used in these experiments. Most of the bench-

marks were obtained from the open-cores project located at https://opencores.org/, and range

in size and FPGA resource usage. It is important to have designs for both Series7 and UltraScale

architectures which use SLICEs, BRAMs, DSPs, and IOBs to test the major components of a Xil-

Table 6.1: VDI Benchmarks

Benchmark Architecture Cell Net SLICE BRAM DSP IOB
Name Name Count Count Util. Util. Util. Util.

bramdsp Series7 230 430 0.28% 1.11% 0.42% 23.33%
canny7 Series7 7445 11830 5.74% 12.96% 0% 9.52%
cordic7 Series7 2420 3362 1.91% 0% 0% 35.24%
count16 Series7 75 121 0.03% 0% 0% 16.67%
hilbert Series7 432 664 0.32% 0% 0% 12.86%

leon3 [21] Series7 12391 13461 15.16% 51.85% 1.67% 1.43%
shaTmr Series7 68376 68451 84.63% 0% 0% 32.86%
simon Series7 894 1224 0.96% 0.37% 0% 37.14%

ssd Series7 59 80 0.04% 0% 0% 17.62%
superCounter Series7 15832 15844 15.09% 0% 0% 1.43%

viterbi7 Series7 52865 55431 84.85% 0% 0% 3.33%
cannyU UltraScale 7128 11287 3.09% 4.86% 0% 6.41%
cordicU UltraScale 2350 4011 1.02% 0% 0% 23.72%

counterTmr UltraScale 11507 16522 5.78% 0% 0% 26.28%
ethmac UltraScale 5153 5675 2.91% 0.56% 0% 67.63%
flappy UltraScale 4607 7088 3.00% 0% 0% 13.14%

msp430 UltraScale 3398 5295 1.86% 0% 0.09% 78.21%
reed UltraScale 1256 1656 .30% 0% 0% 94.55%
sha UltraScale 9477 9619 4.76% 0% 0% 28.53%
vga UltraScale 1732 2419 0.67% 0.14% 0% 58.01%

viterbiU UltraScale 7194 13796 3.88% 0% 0% 10.58%

80

https://opencores.org/

inx FPGA. All benchmarks in the Series7 category target the Artix7 part xc7a100tcsg324, and

all benchmarks in the UltraScale category target the Kintex UltraScale part xcku025-ffva1156.

This chapter presents the testing process for VDI and RapidSmith2. Section 6.1 and 6.2

describe three different tests used to verify RSCPs and TCPs. Section 6.3 describes a case study in

which a Series7 simulated annealing placer is implemented in RapidSmith2. Section 6.4 discusses

the performance of VDI import and export.

6.1 RSCP Import Testing

The VivadoConsole is a Java class included in the RapidSmith2 distribution that is capable

of creating a new instance of Vivado, sending Tcl commands to the instance, and reading back the

results of the command. This flow is demonstrated in Figure 6.1. Sending Tcl commands in Java

is a very useful utility that can used for a variety of tasks including: (1) generating RSCPs directly

from Java, (2) comparing a RapidSmith2 design with the original Vivado design, and (3) loading

and analyzing Vivado checkpoints. It can even be used for bitstream generation with the Vivado

command [write bitstream].

Figure 6.1: Vivado Console

The primary downfall to using the VivadoConsole is that the longer it runs, the slower the

I/O between Java and the Vivado process becomes. For example, in one test the I/O rate between

Java and Vivado started at around 10 MegaBytes/sec. After sending only 3000 Tcl commands, the

I/O rate had diminished to 13 KiloBytes/sec. For this reason the VivadoConsole is not applicable

81

for general design manipulations or loading designs directly into RapidSmith2. However, a few

techniques can be used to avoid diminishing I/O rates. The first is to use batch commands instead

of single commands. Instead of looping over each net of a design in RapidSmith2 and sending the

Vivado command [get property ROUTE STATUS $net], it is better to request this information

for all nets at once using the Tcl command [get property ROUTE STATUS $nets]. The returned

list can be parsed in Java and then processed without significantly affecting the I/O rate. It appears

the I/O rate lowers based on the number of commands sent, and not the number of bytes returned

from the command. Inevitably though, the I/O rate will decrease until it is too slow. Once this

happens the second option is to restart the VivadoConsole, and the new Vivado instance will have

high I/O rates again.

RapidSmith2 uses the VivadoConsole to verify that a design imported through a RSCP

is still functionally equivalent to the original design in Vivado. Specifically, automated unit tests

written in JUnit5 have been added to RapidSmith2 which operate as shown in Figure 6.2. The first

step in the testing process is to load a design into both RapidSmith2 (through RSCPs) and Vivado

(through DCPs, Vivado’s native checkpoint format) in parallel. Information about the Vivado

design is extracted through Tcl commands sent through the VivadoConsole, and compared to the

RapidSmith2 representation. For example, the Tcl command [get bel -of ‘‘myCell’’] will

return the name of the BEL object that “myCell” is placed on in Vivado. This value is compared

against where RapidSmith2 thinks “myCell” is placed, and an error thrown if there is a mismatch.

All logical and physical aspects of a design are tested in a similar manner. To reduce the run time

Figure 6.2: RapidSmith2 Design Input Testing Flow

82

of these tests, the two VivadoConsole tricks described above are employed. All benchmarks in

Table 6.1 passed this design verification.

6.2 TCP Export Testing

When exporting a TCP from RapidSmith2, two things need to be tested: (1) the generated

TCP can be successfully imported back into Vivado without errors, and (2) the design is func-

tionally correct. An extensive number of designs for both Series7 and UltraScale devices were

tested against criteria (1). The testing process is shown in Figure 6.3. As the figure shows, the

test starts with a directory full of native Vivado checkpoint files (.dcp) for fully-routed designs.

A Tcl script loads each test design into Vivado and generates a corresponding RSCP into another

directory. A Java class (TcpExportTest) loads each RSCP and then immediately exports the de-

sign to a corresponding TCP. This step is important because RapidSmith2 performs several netlist

modifications before exporting a TCP (described in section 5.2). Once a directory of TCPs has

been generated, the VivadoConsole is used to load each TCP back into Vivado and perform two

automated checks:

1. All cells in the design are placed. This is checked by using the Vivado Tcl command [

get cells -filter {STATUS == UNPLACED}]. If the only returned cells are VCC and

GND, then the test passes.

2. All nets in the design are fully routed. This is checked by using the Vivado Tcl command

[get nets -filter ROUTE STATUS != {FULLY ROUTED}]. The test passes if no nets are

returned.

Figure 6.3: Test flow to verify that RapidSmith2 TCPs can be exported into Vivado without errors.

83

If a Vivado design passes both checks, the TCP is declared correct. All benchmarks listed in

Table 6.1 passed TCP verification.

Criteria (2) was tested against a set of simple FPGA designs shown in Table 6.2. These

designs are taken from the BYU course ECEn 320 - Digital System Design.

Table 6.2: Nexys4 Test Designs

Benchmarks
Switch Even Detector Seven Segment decoder
Seven Segment Timer VGA controller

VGA Pong Animations BRAM Character Generator
UART TX UART RX

SRAM Controller Frame Buffer

Figure 6.4 shows the on-board testing process. As can be seen, a design is first implemented and

run on a Digilent Nexys4 DDR evaluation board (Artix7 FPGA). Once the design works on the

evaluation board, it is exported from Vivado, imported into RapidSmith2, and directly exported

from RapidSmith2 with no modifications. The resulting TCP is then imported back into Vivado

for bitstream generation, and loaded onto the evaluation board again. It is important to note that be-

fore a bitstream can be generated from a TCP, the Vivado Tcl commands show in Listing 6.1 must

be executed (it appears that Vivado needs to set internal implementation flags before generating a

bitstream). If the circuit still works as expected on the board, the new bitstream is declared func-

tionally equivalent to the original bitstream. All designs listed in Table 6.2 ran successfully on the

Figure 6.4: Test flow to verify that RapidSmith2 TCPs are still functionality equivalent to the
original Vivado design.

84

Nexys4 after being passed through RapidSmith2, indicating that RapidSmith2 netlist modifications

result in a functionally equivalent netlist.

Listing 6.1: Workaround to generate a TCP bitstream

1 lock_design -level Routing ; // Lock the design so it won’t be modified

2 place_design ; // force set placement implementation flag

3 route_design ; // force set routing implementation flag

4 write_bitstream ; // generate bitstream

On-board hardware testing is a promising first step in verifying VDI and RapidSmith2, but

future work will create a more complete verification by using simulation models and automated

test benches.

6.3 Case Study: Series7 Simulated Annealing Placer

To demonstrate VDI, a simulated annealing site-level placer targeting Series7 devices has

been implemented in RapidSmith2 as a case study. The purpose of this case study is four-fold.

1. Provide an example CAD tool that operates on Vivado designs through VDI.

2. Show that VDI contains useful and sufficient information for external frameworks to utilize.

3. Demonstrate the productivity advantages of using VDI with an external framework.

4. Demonstrate the complexities of writing CAD tools targeting real hardware.

Due to the lack of a working packer in RapidSmith2, a design is first packed in Vivado and given

an initial placement. The placed design is exported to a RSCP, where it is translated into a Rapid-

Smith2 CellDesign. Before running the placer, the design is completely randomized across the

device to give an initial placement state. The simulated annealing algorithm shown in Appendix C

takes the initial state and tries to find an optimal placement configuration. Once a final placement

is determined, the design is re-imported into Vivado for routing and bitstream generation. Source

code for the placer is available in the RapidSmith2 distribution repository under the examples.

placerDemo package. The following subsections go into more detail about the case study goals as

listed above. Preliminary results are also presented.

85

6.3.1 Utilizing VDI Information

One important goal of VDI is to export useful information about Xilinx devices and de-

signs. The hope is that external frameworks can use the information to create more complete and

efficient CAD tools. RapidSmith2’s sample placer uses a variety of information exported through

VDI including:

• Compatible Types: When doing a site-level placement, groups of cells can generally be

placed onto more than one site type. For example, a group of cells targeting a SLICEL site

can also target a SLICEM site. It is important for a site-level placer to understand which site

types are compatible to create a complete list of candidate site placements. Compatible type

information is obtained in RapidSmith2 with the function Site::getCompatibleTypes().

• Alternate Types: Once a final placement is determined, the type of some sites may need to

be changed before marking the placement as complete. For example, a Xilinx BUFG cell can

be placed onto a BUFGCTRL site, but the site type must first be configured to its alternate BUFG.

RapidSmith2 offers the functions Site::getPossibleTypes() to find all valid alternate

types of a site, and Site::setType() to set a site to an alternate type.

• Pin Mappings: When a cell is placed, each cell pin is mapped to a corresponding BEL-

pin. RSCPs include these mappings for each cell in a design. This is particularly useful for

a placement algorithm because cells are constantly being swapped between different sites

(and BELs). On design import, the sample placer caches the cell pin to BEL-pin mappings

in a RSCP so that they can be restored before the final placed design is exported to Vivado.

Other important pieces of information that are used by the placer include the data structures, site

types, and two-dimensional layout of a device.

6.3.2 Productivity Advantages

Besides using RapidSmith2 and VDI, the only open-source alternative to creating a Vivado

placement algorithm is to use the Tcl interface and Tincr. While it would be theoretically possible

to write a simulated annealing placer with the same structure of the one shown in Appendix C, it

86

would be quite challenging. For one, Tcl does not natively support object oriented programming

constructs. As the algorithm in Appendix C shows, there are several different Java class objects

defined to represent parts of the algorithm at higher levels of abstractions. These classes would

need to be mapped to Tcl list or map objects, which are the primary two data structures supported

in Tcl. Other object oriented constructs such as inheritance and polymorphism are used in the Java

algorithm to simplify the code as well.

A second challenge to writing a placer in Vivado’s Tcl interface is handling the many Tcl

issues introduced in chapter 3 and 4. For example, IPAD sites report an incorrect list of alternate

types through the Tcl interface (subsection 3.2.2). These invalid alternate types need to be ignored

which requires specialized code and can be error prone. A Tcl placer also needs to reconstruct

parts of VDI that are not directly available with Vivado Tcl commands (such as compatible types).

RapidSmith2’s placement algorithm does not have to worry about these issues since they are han-

dled within VDI.

The performance of a Java-based placer is significantly faster than an equivalent Tcl ver-

sion. Java, a managed run-time system, eventually compiles a program to native machine code

which can be run directly on hardware. Tcl is an interpreted language. This means the commands

are never executed directly in hardware but rather by an interpreter program. Due to the abstrac-

tions and advantages listed above, it is clear that a Java-based framework for CAD algorithms is

much preferable to Tcl.

6.3.3 Real Device Challenges

When creating a placement algorithm for real Xilinx devices, there are several special cases

that need to be considered in order to generate a valid placement. These cases are listed below.

• CARRY4 cells connected through a dedicated carry chain need to be placed vertically to one

another. The same applies for DSP48E1 cells. An example valid placement is shown in

Figure 6.5. Series7 placement algorithms need to be careful to preserve this configuration

while placing a design.

• Similarly, BRAM cells connected through cascade pins also need to be placed vertically to one

another.

87

Figure 6.5: Example Carry Chain (left) and BRAM Tile (right) in Vivado.

• BRAM36 and BRAM18 cells cannot be placed in the same tile as one another. BRAM tiles require

that either (a) the single RAMBFIFO36E1 site is used or (b) the two RAMBFIFO18E1 sites

are used, not both. Figure 6.5 shows the layout of a BRAM tile. The most likely explanation is

that sites in a BRAM share the same silicon and so cannot physically be used at the same time.

These special cases demonstrate one of the primary challenges to writing CAD tools that target

commercial devices; they need to be handled and cannot be abstracted away. However, CAD tools

that are forced to face these challenges are often more complete and realistic.

6.3.4 Interactive Mode

The RapidSmith2 sample placer can also be run in interactive mode. Instead of placing

the entire design at once, interactive mode pauses the placer at a list of pre-defined annealing

temperatures. During each pause, the current progress of the placer is exported to a Vivado instance

88

using a VivadoConsole object, and displayed in the device browser. These visuals can be used

to better understand and improve the annealing schedule of the algorithm. It also makes for an

interesting demo.

6.3.5 Placer Results

The simulated annealing placer described so far in this section was implemented as a case

study for VDI and RapidSmith2. It has not been extensively tested with a variety of benchmarks to

ensure that it creates valid placement results for all possible designs. However, some preliminary

placer results are available. Table 6.3 shows the results of RapidSmith2’s placer vs. Vivado’s

Table 6.3: Series7 Placer Results

Benchmark Swaps Per Routed In RS2 Max Vivado Max
Name Second Vivado? Path Length Path Length
SSD 948,458 X 14.304ns 14.047ns

UART TX 819,466 X 7.124ns 7.183ns
FIR Filter 622,615 X 4.977ns 5.220ns

DiffEq 238,711 X 16.335 17.031
CORDIC 222,041 X 6.211ns 5.554ns
Leon-3 119,806 X 13.105ns 8.95ns

Figure 6.6: Leon-3 soft processor placed by Vivado’s placer (left) and RapidSmith2’s simulated
annealing placer (right)

89

proprietary placer for a variety of benchmarks. Figure 6.6 compares the final placement solutions

for the Leon-3 soft processor in Vivado’s device browser.

6.4 VDI Performance

Although VDI focuses on functionality, an important aspect of any Xilinx design interface

tool is performance. Table 6.4 shows the import and export times of VDI for all design benchmarks

given in Table 6.1. As the table shows, Vivado import and export times are relatively slow. A design

that uses 85% of an Artix7 part (shaTmr) takes almost 30 minutes to export from Vivado and 2.5

hours to import back into Vivado (keep in mind these numbers were obtained on a less-powerful

machine). Routing takes much longer than placement, and contributes to approximately 90% of

the total export time and 97% of the total import time across all benchmarks. The table also shows

Table 6.4: VDI Import/Export Times

Benchmark Placement Routing Export Placement Routing Import
Name Export Export Total Import Import P+R

bramdsp 0.66s 6.22s 8.33s 0.51s 4.63s 5.14s
canny7 15.66s 112.61s 130.12s 13.53s 131.165s 144.70s
cordic7 4.83s 35.24s 41.66s 4.35s 23.89s 28.24s
count16 0.15s 2.37s 3.96s 0.15s 0.69s 0.84s
hilbert 0.84s 7.17s 9.44s 0.67s 3.99s 4.66s
leon3 29.59s 280.45s 312.16s 19.63s 496.17s 515.80s

shaTmr 135.26s 1598.66s 1739.07s 324.43s 7785.35s 8110.79s
simon 2.12s 18.035s 21.63s 1.55s 11.62s 13.16s

ssd 0.15s 2.61s 4.25s 0.10s 0.82s 0.92s
superCounter 21.48s 203.20s 226.74s 17.51s 189.73s 207.24s

viterbi7 104.37s 917.16s 1024.73s 71.34s 4638.92s 4710.27s
cannyU 16.44s 140.05s 156.99s 12.65s 262.6s 275.25s
cordicU 5.65s 40.64s 47.88s 4.59s 59.52s 64.11s

counterTmr 20.87s 205.34s 228.24s 18.54s 380.44s 398.98s
ethmac 12.45s 103.66s 117.82s 8.28s 220.71 228.99s
flappy 9.54s 85.97s 97.25s 7.94s 165.11s 173.05s

msp430 9.76s 75.07s 87.26s 6.10s 170.57s 176.67s
reed 6.68s 13.93s 22.16s 1.79s 57.92s 59.71s
sha 20.04s 262.50s 284.60s 18.5047s 707.288s 725.79s
vga 5.85s 31.88s 39.64s 2.84s 59.42s 62.26s

viterbiU 20.46s 152.38s 174.82s 13.036s 275.533s 288.57s
9.27% 90.01% 2.7% 97.2%

90

Figure 6.7: VDI Import/Export Trends

91

that importing a design back into Vivado is generally longer than exporting the same design from

Vivado.

Figure 6.7 shows the performance trends of VDI based on the size of a design. Subfigures

(a) and (c) plot the placement export and import times versus the number of cells. Subfigures (b)

and (d) plot the routing export and import times versus the number of nets. Ideally, there would

be more data points in the 20,000-40,000 count range, but finding open-source benchmarks that

can fit on a device without using all the available I/O is difficult. These graphs demonstrate that

all import/export times appear to be linear except for routing import. Routing import seems to be

quadratic complexity and explains why design import is slower than design export. One hypothesis

for the quadratic behavior is that Vivado performs design rule checks for the entire design after

each physical constraint is imported. This suggests that after each wire is assigned to a net from a

XDC file, the entire routing structure is re-checked for illegal configurations. These observations

agree with the observations of Brad White made in [1]. Another possible reason may relate to the

VivadoConsole diminishing I/O bandwidth discussed in section 6.1, but this is less likely.

In many use cases the design import/export time is not critical to the final application. For

example, consider custom placement and routing algorithms that aim to increase the reliability

of a FPGA circuit. The ultimate goal of these CAD tools is to physically implement a circuit so

that it fails less often due to radiation and other effects. The amount of time it takes to import a

placed and routed design back into Vivado is much less significant than a functionally correct (and

hopefully more reliable) bitstream. A key aspect of VDI is that it makes tools such as this possible

to implement in a friendly programming environment where there is no other alternative. It is also

important to note that the time it takes to import a design without routing is significantly faster.

Although a variety of useful tools can be implemented through VDI, the observed slow im-

port performance can lead to several design challenges. One such challenge is debugging. Because

routing import times are slow, the productivity of CAD designers trying to debug their algorithm

can decrease for large designs. The design cycle time may be too long while waiting for designs to

be imported into Vivado and tested. Future work will focus on improving the performance of VDI

to make it applicable for a wider range of CAD tools. Possible options to improve the performance

are discussed in the next chapter.

92

6.5 Conclusion

Since VDI is a newly defined interface, it is important to verify that the interface is valid.

This chapter has presented several methods and experiments that have been used to demonstrate

that VDI can be used as a general purpose import/export method into Vivado. However, one major

drawback of VDI is its performance. Section 6.4 shows several examples of long import and

export times for Vivado designs. For the first iteration of VDI presented in this thesis, these times

are acceptable because the main goal was simply to create a Vivado interface. Future work will

focus on improving these design import and export times to make VDI applicable with a wider

range of applications.

93

CHAPTER 7. CONCLUSION

This thesis introduces the Vivado Design Interface (VDI): an open-source interface to ex-

tract device and design specific information from Xilinx’s Vivado tool suite. Chapter 3 describes

the file formats defined by VDI to represent Vivado FPGA devices. Chapter 4 introduces Rapid-

Smith Checkpoints (RSCP) and Tincr Checkpoints (TCP), the file formats used to export and

import Vivado designs. Chapter 5 describes how the RapidSmith2 CAD tool framework was in-

tegrated with VDI to support Vivado. Chapter 6 demonstrates the many ways in which VDI was

tested to verify it as a complete and accurate interface. This chapter concludes the thesis in three

ways. It first includes a discussion on the sustainability of VDI and RapidSmith2 moving forward.

It then presents two lists. The first is a list of contributions from this work, and why they are

important. The second is a list of future work to improve VDI and RapidSmith2.

7.1 Sustainability

One of the major questions concerning this work is how sustainable VDI and RapidSmith2

are with future releases of Xilinx device families. Specifically, how will the Tcl interface and Xil-

inx device representation change with future versions of Vivado? Unfortunately, this question is

impossible to answer without knowing how Vivado will be updated, but some insight can be given

based on the transition from Series7 to UltraScale devices. While adding support for UltraScale,

two notable changes between UltraScale and Series7 were observed: (1) UltraScale devices have

several architecture differences (which are described in section 3.1), and (2) Vivado’s Tcl interface

is easier to work with (there are fewer Tcl bugs for UltraScale). These two observations resulted

in several updates to Tincr, VDI, VSRT, and RapidSmith2, but ultimately all new device chal-

lenges were overcome to support an external CAD tool flow. It took an estimated one month to

fully support UltraScale devices and designs while making changes to the four pieces of software

previously mentioned. It is the opinion of this thesis, based on the experience with UltraScale, that

94

VDI, VSRT, and RapidSmith2 can be easily updated to support new Vivado device families for the

foreseeable future.

7.2 Contributions

The work presented in this thesis is the first successful attempt to provide an open-source

tool-flow that can export designs from Vivado, manipulate them with external CAD tools, and

re-import valid design representations back into Vivado. The main contributions of this thesis are

listed below:

• It provides insight into the many low-level details of a fully implemented Xilinx design,

and how to best represent those details in an external format. It also documents how to

successfully reconstruct a design in Vivado.

• It introduces the Vivado Design Interface (VDI), an extension of Tincr. VDI uses Vivado

Tcl commands to define an organized framework for interfacing with Vivado designs and

devices. Specifically, VDI allows users to extract complete design and device information

from Vivado to be used with external tools. It also allows users to import modified designs

back into Vivado.

• It describes the integration of VDI with RapidSmith2, an external CAD tool framework.

This integration enables a variety of CAD tools to be written for Vivado designs.

• It demonstrates the correctness of VDI and RapidSmith2 through two methods of verifica-

tion: (1) Java unit tests which verify that the RapidSmith2 design representation matches the

corresponding Vivado design, and (2) On-board hardware tests which verify that designs are

still functionally correct after being passed through RapidSmith2 and back into Vivado.

• It presents the implementation and results of a simulated-annealing placer that has been

implemented in RapidSmith2.

• It introduces support for UltraScale devices in RapidSmith2. CAD tools targeting UltraScale

devices can now be created, which was previously impossible.

95

• It documents the open-source release of RapidSmith2 at GitHub to allow FPGA CAD re-

searchers across the country and world to develop Vivado CAD algorithms.

One other important contribution to note is that the work presented in this thesis has also been for-

matted into a conference paper that was accepted into Field Programmable Logic and Applications

(FPL) 2017. The title of the FPL paper is “Vivado Design Interface: An Export/Import Capability

for Vivado FPGA Designs,” and presents many of the same concepts introduced in this thesis.

7.3 Future Work

RapidSmith2 and VDI provide a starting point for supporting CAD tools that can target

Vivado devices. There are several updates that can be made to greatly enhance both in future

revisions. A possible list of tasks is given here to suggest where the work in this thesis may lead.

• Improve Design Import Times: As discussed in section 6.4, VDI design import is very

slow due to routing. A method to speed up the routing import would be valuable. One

possible solution is to break a design into several sub-designs, each with their own individual

placement and routing. Each sub-design can be imported into Vivado using out-of-context

checkpoints, and then stitched together to create a complete design. Preliminary attempts to

achieve this have been made using Vivado PBlock objects. The initial work can be found in

the tincr checkpoint.tcl file of the Tincr distribution.

• TCP Testbench Verification: The functionality of TCPs produced from RapidSmith2 have

been tested by running a set of simple FPGA designs on a Nexys4 evaluation board. A more

complete verification would be to create a Vivado simulation model of a design exported

from RapidSmith2, and run it through an automated test bench that passed for the initial

Vivado design. This would give more confidence that TCPs are functionally correct.

• RSCP Compression: For large designs, RSCPs can grow to be very large (100MB). To

reduce the size of these checkpoints, compression can be applied. External tools can de-

compress the archive before parsing the relevant design information. A preliminary test has

shown that a simple compression can be used to reduce the size of RSCPs by 10X.

96

• General Hierarchy Support: VDI and RapidSmith2 currently support fully-flattened Vi-

vado netlists (macro primitives included). A more general support for hierarchy would be

useful for CAD tools that want to preserve hierarchy in their tools.

• UltraScale+ Support and Testing: RapidSmith2 provides support for Series7 and Ultra-

Scale designs. Support for UltraScale+ is currently being developed, but integration and

testing with RapidSmith2 is still required.

• Complete CAD flow in RapidSmith2: The simulated annealing placer discussed in this

thesis was simply a case study on VDI and RapidSmith2. A general purpose and complete

CAD flow for RapidSmith2 (including a packer, placer, and router) would be of great value

to the research community. This is especially true if the CAD flow supports UltraScale

designs.

The hope is that the work started in this thesis (and theses before) can be continued to create a

robust and useful CAD tool flow with Vivado.

97

REFERENCES

[1] B. White. (2014) Tincr: Integrating custom cad tool frameworks with the xilinx vivado
design suite. [Online]. Available: http://scholarsarchive.byu.edu/etd/4338/ ix, 6, 92

[2] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Re-
search,” in Proceedings of the 7th International Workshop on Field-Programmable Logic
and Applications, ser. FPL ’97. London, UK: Springer-Verlag, 1997, pp. 213–222. 2

[3] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang,
T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and V. Betz, “VTR 7.0: Next Generation
Architecture and CAD System for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7,
no. 2, pp. 6:1–6:30, June 2014. 2

[4] C. Wolf and M. Lasser, “Project icestorm,” http://www.clifford.at/icestorm/. 2

[5] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings,
“RapidSmith: Do-It-Yourself CAD Tools for Xilinx FPGAs,” in Proceedings of the 2011
21st International Conference on Field Programmable Logic and Applications, ser. FPL ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 349–355. [Online]. Available:
http://dx.doi.org/10.1109/FPL.2011.69 2, 15

[6] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc: Towards an
Open-source Tool Flow,” in Proceedings of the 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011,
pp. 41–44. [Online]. Available: http://doi.acm.org/10.1145/1950413.1950425 2

[7] A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, “OpenPR: An Open-Source
Partial-Reconfiguration Toolkit for Xilinx FPGAs,” in Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, 2011, pp.
228–235. 2

[8] A. Otero, E. de la Torre, and T. Riesgo, “Dreams: A tool for the design of dynamically
reconfigurable embedded and modular systems,” in Reconfigurable Computing and FPGAs
(ReConFig), 2012 International Conference on. IEEE, 2012, pp. 1–8. 2

[9] C. Lavin, B. Nelson, and B. Hutchings, “Impact of hard macro size on fpga clock rate and
place/route time,” in Field Programmable Logic and Applications (FPL), 2013 23rd Interna-
tional Conference on. IEEE, 2013, pp. 1–6. 2

[10] A. Love, W. Zha, and P. Athanas, “In pursuit of instant gratification for fpga design,” in
Field Programmable Logic and Applications (FPL), 2013 23rd International Conference on.
IEEE, 2013, pp. 1–8. 2

98

http://scholarsarchive.byu.edu/etd/4338/
http://www.clifford.at/icestorm/
http://dx.doi.org/10.1109/FPL.2011.69
http://doi.acm.org/10.1145/1950413.1950425

[11] A. Das, S. Venkataraman, and A. Kumar, “Improving autonomous soft-error tolerance of fpga
through lut configuration bit manipulation,” in Field Programmable Logic and Applications
(FPL), 2013 23rd International Conference on. IEEE, 2013, pp. 1–8. 2

[12] M. Wirthlin, J. Jensen, A. Wilson, W. Howes, S.-J. Wen, and R. Wong, “Placement of repair
circuits for in-field fpga repair,” in Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays. ACM, 2013, pp. 115–124. 2

[13] E. Hung, F. Eslami, and S. Wilton, “Escaping the Academic Sandbox: Realizing VPR Cir-
cuits on Xilinx Devices,” in Field-Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on, April 2013, pp. 45–52. 2

[14] B. White and B. Nelson, “Tincr A Custom CAD Tool Framework for Vivado,” in ReConFig-
urable Computing and FPGAs (ReConFig), 2014 International Conference on. IEEE, Dec.
2014. 3, 12

[15] T. Haroldsen, B. Nelson, and B. Hutchings, “Rapidsmith 2: A framework for bel-level cad ex-
ploration on xilinx fpgas,” in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 2015, pp. 66–69. 3, 17

[16] Xilinx. (2016) Vivado design suite 7 series fpga and zynq-7000 all programmable
soc libraries guide. [Online]. Available: http://www.xilinx.com/support/documentation/
sw manuals/xilinx2016 2/ug953-vivado-7series-libraries.pdf 10

[17] ——. (2016) Ultrascale architecture libraries guide. [Online].
Available: http://www.xilinx.com/support/documentation/sw manuals/xilinx2014 1/
ug974-vivado-ultrascale-libraries.pdf 10

[18] C. Laven. (2010) Rapidsmith technical report and documentation. [Online]. Available:
http://rapidsmith.sourceforge.net/docs.html 13, 15

[19] T. Haroldsen, B. Nelson, and B. Hutchings, “Packing a modern xilinx fpga using rapidsmith,”
in ReConFigurable Computing and FPGAs (ReConFig), 2016 International Conference on.
IEEE, 2016, pp. 1–6. 17

[20] M. Wirthlin. (2017) Byu edif tools. [Online]. Available: http://reliability.ee.byu.edu/edif/ 71

[21] C. Gaisler, “Leon3,” http://www.gaisler.com/index.php/products/processors/leon3. 80

[22] S. Hauck and A. Dehon, Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computation. Morgan Kaufmann, 2008. 175

99

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug953-vivado-7series-libraries.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug953-vivado-7series-libraries.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug974-vivado-ultrascale-libraries.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug974-vivado-ultrascale-libraries.pdf
http://rapidsmith.sourceforge.net/docs.html
http://reliability.ee.byu.edu/edif/
http://www.gaisler.com/index.php/products/processors/leon3

APPENDIX A. RAPIDSMITH2 DOCUMENTATION

This appendix includes portions of the current RapidSmith2 tech report found at: https://

github.com/byuccl/RapidSmith2/tree/master/doc. Relevant portions of the RapidSmith2

documentation are included for two reasons:

1. One of the main contributions of this thesis is the integration of RapidSmith2 with VDI.

Specific details about RapidSmith2 that are not discussed in the thesis body are introduced

here in great detail for the reader.

2. This appendix serves as a snapshot for RapidSmith2 at the time of writing. Future updates

to RapidSmith2 can be appropriately credited to the authors of the changes.

It is important to note that not all sections of the tech report are included in this appendix. Those

that are irrelevant, or contain concepts already discussed in the thesis are omitted. All package

paths in this appendix are relative to the src/main/java folder of the RapidSmith2 repository.

A.1 Devices

A.1.1 Device Data Structures

In the original RapidSmith, the device architecture stopped at the site level. A site was

considered a black box who could be configured using string attributes, but the actual internal com-

ponents were unknown. RapidSmith2 extends the device architecture to include all components

within a site as well. Figure A.1 shows the new data structure hierarchy, which can be found in

the package edu.byu.ece.rapidSmith.device. The classes and interfaces within edu.byu.ece.rapid-

Smith.device are named to reflect the terminology used by Xilinx. Many classes that exist in

Vivado’s Tcl interface have a direct map to a class in RapidSmith2 (such as a Tile). Because

of this, most RapidSmith2 data structures represent a straightforward part of a Xilinx FPGA. The

100

https://github.com/byuccl/RapidSmith2/tree/master/doc
https://github.com/byuccl/RapidSmith2/tree/master/doc

Device

Tile
(2D Array)

TileType Site
(Array)

Wire
(Array)

SitePin
(Array)

Bel
(Array) SiteType SiteTemplate TileWire SiteWire Connection

(Array)

SitePinTemplate BelTemplate BelPin
(Array)

BelPinTemplate

WireConnection PinConnection TerminalConnection

Figure A.1: RapidSmith2 Device data structure tree. Green arrows represent inheritance, and black
arrows represent association. Classes and Interfaces bolded in blue are new to RapidSmith 2.

DeviceBrowser and DeviceAnalyzer example programs illustrate how to load and browse a de-

vice with Tile and Site data structures, and Listing A.1 shows basic device usage in RapidSmith2.

The remainder of this section details important aspects of RapidSmith2 devices.

Listing A.1: Basic device function calls

1 Device device = getDevice();

2

3 // Get device components by name

4 Tile tile = device.getTile("CLBLL_R_X27Y130");

5 Site site = tile.getSite("SLICE_X44Y130");

6 Bel bel = site.getBel("D6LUT");

7

8 // Get all device components

9 device.getTiles();

10 tile.getSites();

11 site.getBels();

101

Templates

As Figure A.1 shows, there are several template classes in RapidSmith2. Template classes

are used to specify the configuration of a device structure only once, where the configuration can be

reused across identical objects. The usefulness of templates is best shown with an example. In an

Artix-7 xc7a100tcsg324 part, there are 11,100 sites of type SLICEL. Each of these SLICELs have

215 internal components (BELs, pins, and PIPs). To save memory, RapidSmith2 lazily creates site

objects based on the template only when a handle to a SLICEL site is requested. The alternative

would be to create each of the objects when a device is loaded, but this would require more memory.

Template classes should generally not be used by the regular user. When creating algorithms using

RapidSmith’s API, use the non-template version of classes instead.

WireEnumerator

Wires with the same name and function can occur several times throughout a Xilinx FPGA.

For example, the wire CLBLL L C2 exists in every tile of type CLBLL L in a Series7 device. To make

RapidSmith2 device files small, each uniquely named wire is assigned an integer enumeration and

stored in a WireEnumerator class. The WireEnumerator has methods to convert an integer to the

corresponding string wire name and vice versa.

In previous versions of RapidSmith, the WireEnumerator was used extensively while

building CAD tools. RapidSmith2 has changed this, largely abstracting the WireEnumerator away

in favor of more convenient methods that return Wire objects. For example, the name or enumer-

ation of a wire can now be obtained with the function calls in the Wire interface getWireName()

and getWireEnum() respectively. A handle to the WireEnumerator still exists in the Device

class for those who want to use it, but this is not recommended.

TileWire and SiteWire

Wires in RapidSmith2 are uniquely identified not only by their name (or enumeration), but

also by the tile or site in which they exist. RapidSmith2 introduces the TileWire and SiteWire

classes to encapsulate this information for the user. Many functions in RapidSmith now return a

102

TileWire or SiteWire object (wrapped in a generic Wire) instead of an integer wire enumeration.

Wires are connected through Connection objects as described in section A.4.

Package Pins

Vivado maps all bonded IOB sites to corresponding package pins. Top-level ports of

a design can be mapped to these package pins to communicate with external components. A

RapidSmith2 Device object represents Vivado package pins with PackagePin objects. Each

PackagePin contains (1) the name of the package pin (i.e. M17), (2) the PAD BEL of the package

pin, and (3) a boolean flag to mark clock package pins. Clock package pins are those that can

access the global clock routing structure of the FPGA for low skew signals. Listing A.2 shows

some available package pin method calls.

Listing A.2: RapidSmith2 package pin functions

1 // Get a list of all package pins

2 device.getPackagePins();

3

4 // Get a list of clock package pins

5 device.getClockPads();

6

7 // Get an individual package pin based on the BEL

8 Bel bel = device.getSite("IOB_X0Y10").getBel("PAD");

9 PackagePin pin = device.getPackagePin(bel);

10

11 // Package pin functions

12 pin.getName();

13 pin.getSite();

14 pin.getBel();

15 pin.isClockPad();

103

A.1.2 Loading a Device

Listing A.3 demonstrates how to load a supported device into RapidSmith2. The first func-

tion call will only load the device into memory if it has not yet been loaded. If it has been loaded,

then the cached Device data structure will be returned. The second function call will reload the

device from disk, creating a separate Device data structure. This is useful when implementing

multi-threaded code that targets the same part. NOTE: When a Vivado design is loaded into

RapidSmith2 via a RSCP, the corresponding device is also loaded.

Listing A.3: Loading a Device

1 Device device = RSEnvironment.defaultEnv().getDevice("xc7a100tcsg324");

2 //or

3 Device reload = RSEnvironment.defaultEnv().getDevice("xc7a100tcsg324", true);

A.1.3 Supported Device Files

RapidSmith2 includes two device files on installation: (1) an Artix7 xc7a100tcsg324, and

(2) a Kintex UltraScale xcku025-ffva1156. These device files have been well tested and are a

good starting point for new users looking to implement Vivado CAD algorithms. RapidSmith2,

however, has general support for the following families:

• Artix7

• Virtex7

• Kintex7

• Zynq

• Kintex UltraScale

• Virtex UltraScale

Section A.6 describes how to create new device files for these families and add them to Rapid-

Smith2.

104

A.2 Designs

A.2.1 RS2 Netlist Data Structures

RapidSmith2 netlists are modeled closely after Xilinx netlists. In fact, much of the termi-

nology between the two are identical or very similar. For those that are familiar with Vivado de-

signs, this should make the transition to RapidSmith2 straightforward. The data structures that con-

stitute a RapidSmith2 netlist can be found in the package byu.edu.ece.rapidSmith.design.subsite.

The package hierarchy is shown in Figure A.2.

CellDesign

CellNet
(Array)

Cell
(Array)

CellPin
(Array)RouteTree NetType LibraryCell Bel

BackedCellPin PseudoCellPin CellPinType BelPin

LibraryCellPin

Figure A.2: RapidSmith2 design data structure tree. Black arrows represent composition, green ar-
rows represent inheritance, and blue boxes are physical implementation components of the netlist.

As can be seen, a CellDesign is the top-level design object in RapidSmith2. It consists of

a collection of Cell objects, interconnected by CellNets. RapidSmith2 Cells are equivalent to

Xilinx cells and RapidSmith2 CellNets are equivalent to Xilinx nets. Each Cell has a template

LibraryCell, which represents a Xilinx library primitive (i.e. a LUT). They also have a collection

of connected CellPin objects. Placing and routing these logical design elements is described

in section A.3 and A.4 respectively. The best way to learn how to utilize the classes shown in

Figure A.2 is to generate and read through the JavaDocs, but important aspects of each class is

included in the following subsections.

105

CellDesign

As previously mentioned, the CellDesign class is the top-level netlist object in Rapid-

Smith2. An instance of a CellDesign contains the following:

• A list of cells

• A list of nets

• Global GND and VCC nets

• Cell placement information (i.e. where each cell is placed)

• The used site PIPs of each site

• A list of XDC constraints imported from Vivado. See section A.5 for more information about

XDC constraints and how they are represented in RapidSmith2.

The CellDesign class has a variety of methods to retrieve and manipulate the cells and nets of a

design, place cells onto physical BELs, configure sub-site routing, and perform several other tasks.

Cell

Cell objects are the building blocks of RapidSmith2 netlists. This section details some

important aspects of Cells.

• A Cell always contains a reference to a backing LibraryCell object. A LibraryCell is

equivalent to a Xilinx primitive cell (described in section 2.2), and serves as a template for

instantiated Cell objects. The template is used to save memory when creating several Cells

of the same type. Whenever a new Cell object is created, a corresponding LibraryCell

must be specified in the constructor. Listing A.4 demonstrates how to create new cells in

RapidSmith2 and filter cells based on their type.

Listing A.4: How to create new cells in RapidSmith

1 // You need to have a cell library to create a cell

106

2 CellLibrary libCells = new CellLibrary(RSEnvironment.defaultEnv()

3 .getPartFolderPath("xc7a100t-csg324")

4 .resolve("cell_library.xml"));

5

6 // How to create a new cell. The first argument is the name of the cell, the

7 // second argument is the library cell

8 Cell cell = new Cell("myCell", libCells.get("LUT6"));

9

10 // Get all cells in a design of a certain type

11 CellDesign design = getCellDesign();

12 Stream<Cell> cells = design.getCellsOfType(libCells.get("FDRE"));

• The method call CellDesign::getCellsOfType(String,CellLibrary) can be used to

get all cells in the current design with a specific type.

• The methods Cell::getPins(), Cell::getInputPins(), and Cell::getOutputPins()

can be used to get a handle to the pins of a Cell. If more pins are needed on a Cell,

PseudoCellPin objects can be attached (see section A.2.1).

• Cells can be placed onto Bel objects of the current Device. See section A.3 for more

information about cell placement.

• Top-level Ports in Vivado (design input/output) are represented as Port Cells in Rapid-

Smith2. Specifically, there are three types of port cells: IPORT, OPORT, and IOPORT. The

method CellDesign::getPorts() can be used to iterate through the ports in a design, and

Cell::isPort() can be used to determine if a given Cell is actually a port.

• RapidSmith2 supports both Xilinx macro and leaf cells. More information about these is

given in section 2.2 and subsection 3.4.4 respectively.

107

CellPin

CellPins in RapidSmith2 are attached to Cell objects and are equivalent to the cell pins

found in Vivado. Each CellPin has an associated CellPinType and PinDirection. Table A.1

displays the possible values for both of these properties.

Table A.1: Cell Pin Types and Directions

Property Values
CLEAR
CLOCK
ENABLE
PRESET
RESET

CellPinType REUSED
SET
SETRESET
WRITE ENABLE
DATA
PSEUDO
IN

PinDirection OUT
INOUT

The CellPinType can be used to find all RESET pins in a design, determine if a net is a clock net

(it connects to pins of type CLOCK), and help with other useful functions. Cell pins of type PSEUDO

are a special case, and described in section A.2.1. The PinDirection field is typically used to

filter a list of pins on a cell by their direction. It is especially useful for finding INOUT pins.

CellNet

CellNets are used to wire components of a logical netlist together. Specifically, a CellNet

connects an output CellPin to several input CellPins with the purpose of transferring a signal

from one Cell to another. Listing A.5 shows the basic usage of CellNet objects in RapidSmith2,

and the remainder of this section details other important aspects about CellNets.

108

Listing A.5: Basic CellNet functions

1 CellDesign design = getCellDesign();

2

3 // creating a new cell

4 CellNet net = new CellNet("myNet", NetType.Wire);

5 design.addNet(net);

6

7 Cell cell1 = design.getCell("cell1");

8 Cell cell2 = design.getCell"cell2");

9

10 // connecting nets to cell pins

11 net.connectToPin(cell1.getSourcePin());

12 net.connectToPin(cell2.getpin("a"));

• CellNets are routed using RouteTree data structures. RapidSmith2 routing is described in

more detail in section A.4.

• All CellNets have a NetType enumeration. Possible values for NetType include VCC,

GND, and WIRE. VCC is reserved for power nets, GND is reserved for ground nets, and

WIRE represents all other nets in the design.

• The suggested approach to working with static nets in RapidSmith2 is to have only one VCC

and GND net in a CellDesign. In general, this representation is much easier to work with

and the special nets can be obtained with the functions CellDesign::getVccNet() and

CellDesign::getGndNet(). When a design is imported from Vivado through a RSCP,

all VCC and GND nets are collapsed automatically. Having multiple VCC and GND nets,

however, is still supported if desired.

• Most nets have a single driver, but some can be sourced in multiple locations. Figure A.3

shows an example for a GND net. RapidSmith2 handles this oddity by allowing CellNets

to have more than one RouteTree object associated with it. In the case of Figure A.3 the net

would have two RouteTrees, one for each source TIEOFF.

109

Figure A.3: Example of a Vivado net with multiple sources. The highlighted wires in white are all
part of the same net.

• Figure A.4 shows a bidirectional net in Vivado. As can be seen, the highlighted net can be

driven by both the OBUF output, and from an external source via the PAD BEL. Rapid-

Smith2 supports bidirectional nets, and a list of possible drivers can be obtained with the

function call CellNet::getAllSources().

Figure A.4: Bidirectional Net

110

Figure A.5: Example INTRASITE Net (left) and INTERSITE Net (right)

• After a design has been placed, CellNets fall into one of two categories: intrasite vs.

intersite. Figure A.5 shows an example of both types of nets. As can be seen, intrasite nets

do not cross site boundaries while intersite nets stretch across multiple sites. To determine if

a CellNet is an intrasite net, the method CellNet::isIntrasite() can be used.

Macro Cells

As described in subsection 3.4.4 flattened Vivado netlists can include macro primitives.

RapidSmith2 now supports importing macro cells from Vivado and adding them to a CellDesign.

Listing A.6 gives a brief introduction to using macros in RapidSmith2.

Listing A.6: How to use macros in RapidSmith

1 // Get a handle to a design and cell library

2 CellDesign design = getCellDesign();

3 CellLibrary libCells = getCellLibrary();

4

5 // Create a new macro cell and add it to a design

6 Cell macro = new Cell("myMacro", libCells.get("IOBUF"));

7 design.addCell(macro);

8

9 // Connect the macro cell to a net

111

10 CellPin pin = macro.getPin("IO");

11 design.getNet("TmpNet").connectToPin(pin);

12

13 // Iterate through a list of all cells (macro and leaf cells) of a design

14 for (Cell cell : design.getCells) {

15 if (cell.isMacro()) {

16 List<Cell> internalCells = cell.getInternalCells();

17 List<CellNet> internalNets = cell.getInternalNets();

18 List<CellPin> externalPins = cell.getPins();

19 // do something with the macro info

20 }

21 else {

22 // do something with a regular leaf cell

23 }

24 }

As the code example above shows, macro cells are generally used exactly like regular leaf cells.

However, there are a few distinctions between macro cells and leaf cells.

• When a macro cell is added to a design, all internal cells and nets are automatically added

to the design as well. Users do not have to worry about adding these themselves. Similarly,

when a macro cell is removed from a design, the internal cells and nets are also removed.

• When a macro cell pin is connected to a CellNet, RapidSmith2 automatically connects

the net to the corresponding internal pins. When a macro cell pin is disconnected from a

CellNet, the internal cell pins are disconnected. Nets in RapidSmith2 only connect to leaf

cell pins (i.e. it is essentially a flattened netlist with macros cell “wrappers”).

• Internal cells and nets within a macro cannot be individually added or removed from a de-

sign. If this is attempted, an exception will be thrown. Instead, the entire macro cell must be

added or removed.

• Macros cannot be placed. Rather, the internal cells of a macro should be placed instead.

112

• When a CellDesign is exported from RapidSmith, macro cells are not exported. The design

is first flattened, and only the internal cells and nets are exported. This means the macro will

not be rebuilt in Vivado.

PropertyList

Most objects in Vivado’s Tcl interface have attached properties. These properties can be

used to describe attributes of the object (such as name, type, etc.), but they can also be used for

configuring the object. Figure A.6 shows a list of properties for a FDCE flip flop cell in Vivado.

Figure A.6: Properties of a Vivado FDCE Cell

The Tcl command [report property $object] can be used to list all properties for a given

Vivado object (cell, BEL, etc.). Cells are the most interesting objects in terms of properties because

the function of a Cell is determined by how it is configured. For example, the memory width of

a BRAM cell in Vivado is configured by setting the READ WIDTH and WRITE WIDTH properties of

the cell. Possible values include 1, 2, 4, 9, 18, 36 and 72. The operation of the BRAM is different

depending on how this property is set. Another example is a D flip flop cell (FDRE) and its

IS C INVERTED property. This property indicates if the flip flop will be rising-edge or falling-edge

triggered. The properties of cells, nets, and the top-level design are included in the output EDIF

netlist of a RSCP for non-default values only.

113

When RapidSmith2 parses the EDIF file of a RSCP, the properties within are stored in a

data structure called a PropertyList. Each CellDesign, Cell, and CellNet in RapidSmith has

an associated PropertyList object. The PropertyList for each cell in the design also has a list

of default configuration properties. Configuration properties for cells are always included in the

PropertyList even if they are not explicitly set by the user because the functionality of the cell

is dependent on how it is configured. Listing A.7 shows some basic property usage.

Listing A.7: Using PropertyLists in RapidSmith

1 // Create a new FF cell with default properties

2 CellLibrary libCells = getCellLibrary();

3 LibraryCell libCell = libCells.get("FDRE");

4 Cell cell = new Cell("myCell", libCell);

5

6 // Get a handle to the cells properties

7 PropertyList properties = cell.getProperties();

8

9 // Print the configurable properties of the cell

10 for(String propName : libCell.getConfigurableProperties()) {

11 Property prop = properties.get(propName);

12 System.out.println(propName + ":");

13 System.out.println("\tDefault -> " + prop.getStringValue());

14 System.out.println("\tPossible -> " + libCell.getPossibleValues(propName));

15 }

16

17 // Iterating over a PropertyList

18 for (Property prop : properties) {

19 System.out.println(prop.getKey() " -> " + prop.getStringValue());

20 }

21

22 // Change the FF to be falling edge triggered...this will override the default

23 property properties.update("IS_C_INVERTED", PropertyType.EDIF, "1’b1");

114

Some additional notes about properties are given below.

• In Vivado, the configurable properties on a cell can be determined by using the Tcl command

[report property [get lib cells $cell]]. All properties that start with “CONFIG”

are configurable properties that can be modified.

• Because EDIF properties only support String, Integer, and Boolean types, any properties

imported from the EDIF file will be one of these types. It seems, however, that Vivado

always exports its properties as strings 1.

• Only properties of type PropertyType.EDIF will be exported from RapidSmith2. When

using properties, make sure to mark the type of the property as EDIF. All other properties

will be ignored during design export.

Xdc Constraints

In Vivado, XDC constraint files are used to set the target clock frequency of a design,

constrain a top-level port to a specific package pin on the device, or specify other physical imple-

mentation details. A RapidSmith2 CellDesign represents these constraints with XdcConstraint

objects. Currently, XdcConstraints only contain two fields: (1) a command name (such as

set property) and (2) the command arguments (combined into a single string). It is the respon-

sibility of the user to parse these XDC constraints if they need to use them in their CAD tools. The

function CellDesign::getVivadoConstraints() returns a list of constraints currently attached

to a design and CellDesign::addVivadoConstraint() can be used to add new constraints to a

design.

Pseudo Cell Pins

To address the routing issue described in subsection 4.3.3, RapidSmith2 allows users to

create and attach PseudoCellPins to an existing cell. For example, a PseudoCellPin can be

attached to the cell shown in Figure A.7. In this case VCC is routed to the A6 BEL pin of the

1RapidSmith makes no attempt to parse the Vivado properties into their corresponding data structures. All Vivado
properties are represented using Strings, and it is currently up to the user to parse the properties if they need to

115

Figure A.7: Pseudo Cell Pin Example

D6LUT, but this is not represented in the design netlist. To explicitly represent this connection in

the netlist, a new PseudoCellPin can be created, attached to the VCC net of the design, attached

to the cell in the figure (“tmpCell”), and then mapped the A6 BEL pin. Listing A.8 demonstrates

how to attach a pseudo pin to a cell in RapidSmith2.

Listing A.8: Required function calls to attach a PseudoPin to a Cell

1 BelPin bp = getBelPin();

2 Cell cell = design.getCell("foo");

3 CellPin pseudo = cell.attachPseudoPin("VccTmpPin");

4 pseudo.mapToBelPin(bp)

A.2.2 The Cell Library

RapidSmith2 parses the cell library XML file described in section 3.4 into a CellLibrary

data structure. A CellLibrary is required to perform any type of netlist modification, or to import

a design from Vivado. Currently, each CellLibrary corresponds to a specific Xilinx part. This

116

means that for each device file in RapidSmith2, a new CellLibrary needs to be generated 2.

Listing A.9 shows two ways to load a CellLibrary in RapidSmith2.

Listing A.9: Ways to load a CellLibrary

1 // First way, load a Tincr Checkpoint

2 TincrCheckpoint tcp = VivadoInterface.loadTcp("checkpoint.tcp");

3 CellLibrary libCells1 = tcp.getLibCells();

4

5 // Second way, directly load the cell library from disk

6 CellLibrary libCells2 = new CellLibrary(RSEnvironment.defaultEnv()

7 .getPartFolderPath("xc7a100t-csg324-3")

8 .resolve("cellLibrary.xml");

Adding Custom Macros to a Cell Library

Customized, user-defined macros can be added to a RapidSmith2 CellLibrary if desired.

This can be accomplished in two easy steps.

1. Create a XML specification of the macro that follows the format laid out in Listing 3.10.

2. Import the macro into the CellLibrary using the API call shown in Listing A.10.

Listing A.10: Function calls to add a new macro to a CellLibrary

1 // Get a handle to a CellLibrary

2 CellLibrary libCells = getCellLibrary();

3

4 // Add the macros in a XML file.

5 libCells.loadMacroXML(Paths.get("myMacro.xml");

Once this is complete, you can use the custom macro in a CellDesign like a normal cell. Potential

uses for customized macros include hard-macro design flows, and supporting a single-level of

design hierarchy.
2This may change to be family-specific in the future, but usually, parts in the same family can use the same

CellLibrary.

117

A.3 Placement

In the original RapidSmith, placement occurred at the site level. A collection of cells were

grouped together into an instance, and the instance was assigned to a compatible site. The actual

placement locations for the cells within the site were unknown. Because RapidSmith2 breaks up

a site into its individual components, cells can now be placed directly onto physical BELs within

a site. This gives Xilinx FPGA CAD developers finer-grained control over the placement of a

design, and allows sub-site algorithms (such as packers) to be explored. Listing A.11 demonstrates

the basic steps to placing cells in RapidSmith2.

Listing A.11: Steps for placing a Cell in RapidSmith2

1 // Load the device and design

2 TincrCheckpoint tcp = VivadoInterface.loadTcp("myCheckpoint.tcp");

3 Device device = tcp.getDevice();

4 CellDesign design = tcp.getDesign();

5

6 // Get a handle to a Cell and Bel. The cell is of type LUT2

7 Cell cell = design.getCell("MyCell");

8 Bel bel = device.getSite("SLICE_X40Y137").getBel("D6LUT");

9

10 // Place the cell onto the bel

11 design.placeCell(cell,bel);

12

13 // Two ways to map bel pins

14 CellPin pin1 = cell.getPin("I0");

15 CellPin pin2 = cell.getPin("I1");

16 CellPin pin3 = cell.getPin("O")

17

18 // First way

19 pin1.mapToBelPin(bel.getPin("A1"));

20 pin2.mapToBelPin(bel.getPin("A2"));

21

118

22 // Second way

23 List<BelPin> possible = pin3.getPossibleBelPins(bel);

24 pin3.mapToBelPin(possible.get(0));

As the code listing shows, there are two steps to placing a RapidSmith2 Cell. The first is

to get a handle to a Bel object, and use the method CellDesign::placeCell(cell, bel) (line

11). Once a Bel has been used, no other Cell can be mapped to it. No error checking is performed

to ensure that the cell is actually compatible with the BEL. The second step is to map each pin of

the Cell object to a corresponding BEL pin. This can be done by either (a) specifying the BEL pin

name (lines 19-20), or (b) using the function CellPin::getPossibleBelPins(bel) (line 23).

Most cell pins only map to one BEL pin, but there are two noticeable exceptions to this rule.

1. LUT input pins are permutable. This means that an input cell pin attached to a LUT cell can

be mapped to any input pin of a LUT BEL. Figure A.8 shows an example of this functionality

in Vivado. In this case, CellPin::getPossibleBelPins(bel) will return all input BEL

pins of the LUT and the user can decide which ones to use.

2. Logical-to-physical pin mappings can change based on how a cell is configured. For ex-

ample, on a RAMB36E1 cell some data input pins map to different physical BEL pins when

the width of the BRAM is set to 72. This is an important concept when performing netlist

modifications in RapidSmith2. The function call CellPin::getPossibleBelPins(Bel)

Figure A.8: LUT Pin Permutation Example

119

only returns the pin mappings for the default cell configuration. If new logic is being added

to a design it is up to the user to determine the proper pin mappings. Users can determine

the pin mappings of a configured cell by using the TCL commands shown in Listing A.12.

The correct pin mappings are always used when a RSCP is imported into RapidSmith2.

Listing A.12: TCL script to print all logical-to-physical pin mappings of a cell

1 proc print_pin_mappings{cell} {

2 foreach cell_pin [get_pins -of $cell] {

3 puts "$cell_pin -> [get_bel_pins -of $cell_pin]"

4 }

5 }

Some additional notes about placement are given in the list below:

• VCC and GND cells are not placed when implementing a design in Vivado. This distinction

is applied to RapidSmith2 as well. Rather than placing VCC or GND explicitly, RouteTrees

that are sourced by switchbox TIEOFFs are used to express their placement implicitly (VC-

C/GND is “placed” on the TIEOFF).

• A list of valid placement options for a cell can be obtained with the function call Cell::get-

PossibleAnchors(). The sample program CreateDesignExample demonstrates how to

use this function.

• There are several placement rules for a given Xilinx FPGA. One such rule is that CARRY4

cells which are connected through a carry chain need to placed vertically to one another.

Another example is that a RAMB36E1 cell cannot be placed in the same tile as a RAMB18E1

cell. If either of these rules are violated, an error will be thrown in Vivado when attempting

to import a design. It is the responsibility of the user to determine all relevant placement

rules because error checking is not performed on design export.

• Macro cells in RapidSmith2 cannot be placed. The internal cells of a macro should be placed

instead.

120

A.4 Routing

During placement, all cells of a design are mapped to BELs, and all cell pins are mapped

to BEL pins. The next (and final) step of the FPGA implementation flow is to physically wire

together the used BEL pins. This is known as routing. Routing involves taking each logical net of

a design, determining the BEL pins they are connected to (based on the cell pins), and finding a

list of physical wires that electrically connect the pins together. This section details how routing

algorithms can be implemented in RapidSmith2.

A.4.1 Wires and Wire Connections

Routing in RapidSmith2 is done using Wire objects, which are described in subsection

2.1.3. Wires are uniquely identified by their corresponding tile and wire name (i.e. “tileName/wire-

Name”), and are connected through Connection objects. There are two types of wire connections:

1. PIP Connections: Connect two different wires through a Programmable Interconnect Point.

Most PIP connections are found in switchbox tiles of a FPGA part (as shown in Figure 2.5).

These types of connections are important to FPGA routing, because they dynamically con-

figure the routing network for a given design.

2. Non-PIP Connections: Connect the same physical wire across two different tiles. In gen-

eral, wires stretch across multiple tiles in a device, having a different name in each tile. This

is demonstrated in Figure A.9. The example wire shown in the figure spans 5 tiles, but has

a different name in each. To save space, only the source and sink wire segments are kept

Figure A.9: Multi-Tile Xilinx Wire

121

in RapidSmith2 data structures (i.e. INT X1Y1/E2BEG4, INT X2Y1/E2MID4, and INT X3Y1/

E2END4). The source segment is connected to each sink segment through a non-PIP wire

connection. It is also possible to have non-PIP connections within a tile, but this is rare.

A.4.2 Traversing Wire Objects

Traversing through wires in a device is straightforward. Given a handle to a Wire object

named ”mywire” or a Connection object named ”conn”, the following function calls can be used:

• mywire.getWireConnections(): Returns a collection of all Connection objects whose

source is “mywire”. This collection can be iterated over to find all places a specific wire

goes (i.e. what wires it connects to).

• conn.isPip(): Returns true if the wire connection “conn” is a PIP connection. Returns

false otherwise.

• conn.getSinkWire(): Returns the sink wire of a wire connection.

In general, these are the only three functions that are needed to search through the wires of a

FPGA device. It is important to note however that the first wire in the route must be either (a) cre-

ated using a TileWire constructor, or (b) retrieved from a function call of another object (such as

SitePin::getExternalWire()). Listing A.13 demonstrates how to iterate over Connection ob-

jects. To gain a better understanding of how to use Wires and Connections, see the HandRouter

example in the RapidSmith2 repository.

A.4.3 Other Types of Connections

Along with PIP and non-PIP wire connections, there are several other types of connections

in RapidSmith2. The source of the connection is always a Wire object, but the sink object differs.

A description of these connections is found below:

• Site Pin Connections: Connects a Wire to a SitePin. The function call Connection::.

getSitePin() can be used to return a handle to the site pin.

122

• Terminal Connections: Connects a Wire to a BelPin. The function call conn.get-

BelPin() can be used to return a handle to the BEL pin.

• Site Routethrough Connections: Connects an input site Wire to an output site Wire. A

Site in Vivado can be configured to pass the signal on an input pin directly to an output pin.

These connections are represented as routethroughs in RapidSmith2 and can be determined

with the function call Connection::isRoutethrough(). NOTE: Before using this type

of connection when building a routing data structure, make sure the corresponding site is

unused.

• BEL Routethrough Connections: Connects an input BEL Wire to an output BEL Wire.

LUTs in Vivado can also be configured as routethroughs. A BEL routethrough connection

can be used while routing the inside of a site if there is no cell placed on the corresponding

BEL.

When traversing through the device data structure, a generic Connection object is usually used.

This connection can refer to any of the connections described so far in this documentation. List-

ing A.13 demonstrates how to iterate through different Connection types in RapidSmith2.

Listing A.13: How to iterate over Connections in RapidSmith2

1 // Get a handle to a wire

2 Wire wire = sitePin.getExternalWire();

3

4 // Iterate over all WireConnections

5 for (Connection conn : wire.getWireConnections()) {

6 Wire sinkWire = conn.getSinkWire();

7

8 if (conn.isPip()) {

9 // Do something with a PIP

10 }

11 else if (conn.isRoutethrough()) {

12 // Do something with a routethrough

13 }

123

14 else {

15 // Do something with a regular wire connection

16 }

17 }

18

19 // Get the site pin connected to a wire

20 SitePin pin = wire.getConnectedPin();

21 if (pin != null)

22 // Do something with the SitePin

23 }

24

25 // Get the bel pin connected to a wire

26 BelPin pin = wire.getTerminal();

27 if (pin != null)

28 // Do something with the BelPin

29 }

30

31 // Iterate over all connections at the same time

32 Iterator<Connection> connIt = wire.getAllConnections().iterator();

33

34 while (connIt.hasNext()) {

35 Connection conn = connIt.next();

36

37 if (conn.isPinConnection()) {

38 //do something with the site pin

39 }

40 else if (conn.isTerminal()) {

41 //do something with the bel pin

42 }

43 else if (conn.isPip()) {

44 //do something with the pip wire connection

45 }

124

46 else {

47 //do something with regular wire connection.

48 }

49 }

A.4.4 RouteTrees

Wires and WireConnections are the fundamental objects used to specify and explore rout-

ing in RapidSmith2, but they need to be organized in a higher-level data structure to give meaning

to the route of a CellNet. In the original RapidSmith, creating this data structure was up to the

user. RapidSmith2 introduces the RouteTree, which can be seen in Figure A.10.

RouteTree1 (Source)

RouteTree2 RouteTree3

Source Connection Wire

Sinks

Wire Connection Source

Sinks

Source Connection Wire

Sinks

Figure A.10: Visual Representation of a RapidSmith2 RouteTree

As the figure shows, a RouteTree is a simple tree data structure. Each node in the tree represents

a physical wire in the device, and is connected to other nodes (wires). Edges in the tree represent

wire connections (i.e. how one wire connects to another). A RouteTree can also be conceptually

thought of as a graph, with a single “starting” node and several “sink” nodes. A RouteTree node

contains the following members:

125

• Wire: The physical Wire object that the RouteTree node represents. This can be either a

TileWire or SiteWire.

• Source: A link to the parent RouteTree node

• Connection: The Connection taken from the parent RouteTree node to reach the current

RouteTree node. In other words, it is the Connection object that was taken from the parent

wire to reach the current wire.

CLBLM_L_X8Y97/CLBLM_L_DQ

CLBLM_L_X8Y97/CLBLM_LOGIC_OUTS3

INT_L_X8Y97/LOGIC_OUTS_L3

INT_L_X8Y97/EL1BEG2

INT_R_X9Y97/EL1END2

INT_R_X9Y97/EE2BEG2

INT_R_X11Y97/EE2END2

INT_R_X11Y97/IMUX4 INT_R_X11Y97/FAN_ALT5

CLBLM_R_X11Y97/CLBLM_IMUX4 INT_R_X11Y97/FAN_BOUNCE5

CLBLM_R_X11Y97/CLBLM_M_A6 INT_R_X11Y97/BYP_ALT1

INT_R_X11Y97/BYP1

CLBLM_R_X11Y97/CLBLM_BYP1

CLBLM_R_X11Y97/CLBLM_M_AX

Figure A.11: Sample RapidSmith2 RouteTree (red edges represent PIP connections)

126

• Sinks: A list of child nodes. There is no limit to how many children a RouteTree can have.

• Cost (not shown): An optional cost field for routers

A complete RouteTree specifies how the source of a CellNet is physically connected

to all of its sinks. Figure A.11 shows an example of a complete RouteTree in RapidSmith2.

As can be seen, the CellNet that is being routed has once source pin, and two sink pins. The

source pin is connected to wire CLBLM L X8Y97/CLBLM L DQ, and the sink pins are connected

to the wires CLBLM R X1Y97/CLBLM M A6 and CLBLM R X11Y97/CLBLM M AX. Starting from the

source, wires are traversed downward (via wire connections) until the target wires are reached.

Listing A.14 demonstrates the basic usage of RouteTrees in RapidSmith2. The DesignAnalyzer,

AStarRouter, and HandRouter examples in the RapidSmith2 repository also demonstrate how

to traverse and build a RouteTree.

Listing A.14: Building a RouteTree

1 // Find a Wire to start the RouteTree at

2 Site site = device.getSite("SLICE_X5Y84");

3 SitePin pin = site.getSitePin("DQ");

4 Wire startWire = sink.getExternalWire();

5

6 // Create the first node in the RouteTree

7 Queue<RouteTree> rtQueue = new LinkedList<RouteTree>();

8 RouteTree start = new RouteTree(startWire);

9 rtQueue.add(start);

10

11 // Build up the RouteTree somehow

12 while (!amDone()) {

13 RouteTree current = rtQueue.poll();

14 Wire wire = route.getWire();

15

16 for (Connection conn : wire.getWireConnections()) {

17 // add qualified connections to the RouteTree

18 if (isQualified(wire)) {

127

19 RouteTree tmp = current.addConnection(conn);

20 rtQueue.add(tmp);

21 }

22 }

23 }

When a design is imported from Vivado through a RSCP, the routing information is parsed

and loaded into RouteTrees for each CellNet. On design export, the RouteTree for each

CellNet is traversed and converted into a Vivado ROUTE string. Users can use custom data struc-

tures to route a design, but they needs to be converted to an equivalent RouteTree representation

before exporting the design to Vivado.

A.4.5 Three Part Routing

In RapidSmith2, there are three sections to a routed CellNet:

1. The portion of the net that starts at the source BEL pin, and is routed to an output site pin.

This part of the route exists completely inside of site boundaries.

2. The portion of the net that starts at the output site pin of part (1), and is routed to several sink

site pins. This part of the route is called the intersite route because it connects sites together.

A typical router is responsible for routing this section of the net3.

3. The portion of the net that starts at the sink site pins from part (2), and is routed to sink BEL

pins. Since there can be several sink pins in a CellNet, this section of the net can have more

than one component. Each component exists completely inside site boundaries.

Figure A.12 shows a visual representation of the three-part routing structure. Each section of a

route has a corresponding RouteTree object. A source RouteTree represents the orange wires in

the figure (part 1), an intersite RouteTree represents the green wires in the figure (part 2), and a list

of sink RouteTrees represents the purple wires in the figure (part 3, with a different RouteTree

object for each site). It is important to note that intrasite nets only have a source RouteTree

3VCC and GND nets don’t follow this pattern. The only difference for VCC and GND is that they can have multiple
intersite nets.

128

Figure A.12: Three-Part Routing

because they are completely contained within a site. Listing A.15 demonstrates how to utilize

three-part routing in RapidSmith2. On design import, the routing sections of each CellNet are

created automatically.

Listing A.15: Demonstration of three-part routing in RapidSmith2

1 // Get a handle to a routed net in the design

2 CellNet net = design.getNet("myNet");

3

4 // Handling the source RouteTree

5 RouteTree source = net.getSourceRouteTree();

6 net.setSourceRouteTree(createSourceRoute());

7

8 // Handling the intersite RouteTree

9 RouteTree intersite = net.getIntersiteRouteTree();

10 net.addIntersiteRouteTree(createIntersiteRoute());

129

11

12 // Iterate over a list of sink RouteTrees

13 for (RouteTree rt : net.getSinkSitePinRouteTrees()) {

14 // do something with the RouteTree

15 }

16

17 // Or, get a RouteTree based on a SitePin

18 for(SitePin sitePin : net.getSitePins()) {

19 if (sitePin.isInput()) {

20 RouteTree sinkTree = net.getSinkTree(sitePin);

21 // do something with the RouteTree

22 }

23 }

24

25 // Add a new sink RouteTree that starts at a SitePin

26 net.addSinkRouteTree(sitePin, createSinkRouteTree(sp));

A.4.6 Intrasite Routing

On design import, the site PIP information extracted from Vivado is stored into Rapid-

Smith2 data structures, and used to reconstruct the three-part routing view described in the previ-

ous section. This gives the user two options when dealing with intrasite routing in RapidSmith2:

(1) use the three-part routing data structures, or (2) use the set of enabled site PIPs stored in the

CellDesign. It is user preference for which representation to use when writing a CAD tool, but

both representations need to be up-to-date before design export. Listing A.16 demonstrates how a

set of used site PIPs can be created and added to a site. This step needs to be taken only when you

have modified the intrasite routing for a site.

Listing A.16: Code to transform a set of SiteWires into Site PIPs

1 // Get a handle to a Design and a Site

2 CellDesign design = tcp.getDesign();

130

3 Device device = tcp.getDevice();

4 Site site = device.getSite("SLICE_X5Y84");

5

6 // Get a list of used site wires somehow (this is up to you)

7 Set<Wire> usedSiteWires = getUsedWires(site);

8

9 // Convert the list of wires to their integer enumeration

10 Set<Integer> usedPipWires = usedSiteWires.stream()

11 .map(w -> w.getWireEnum())

12 .collect(Collectors.toSet());

13

14 // Set the used site pips with the design class

15 design.setUsedSitePipsAtSite(site, usedPipWires);

131

A.5 Design Import/Export

After a Vivado design has been converted to a RSCP using the Tincr command [::tincr-

::write rscp] , the RSCP can be loaded into RapidSmith2 using the code shown on lines 2-5 in

Listing A.17.

Listing A.17: How to import and export TCP files to and from RS2

1 // Loading a Tincr Checkpoint

2 TincrCheckpoint tcp = VivadoInterface.loadTcp("pathToCheckpoint.tcp");

3 CellDesign design = tcp.getDesign();

4 Device device = tcp.getDevice();

5 CellLibrary libCells = tcp.getLibCells();

6

7 // Insert CAD Tool Here

8

9 // Exporting the modified design to a Tincr Checkpoint

10 VivadoInterface.writeTCP("pathToStore.tcp", design, device, libCells);

While a design is being imported into RapidSmith2, several useful additional data structures are

built up. To gain access to those data structures, you can pass an additional argument into the

VivadoInterface::loadTCP(), as shown in. Listing A.18.

Listing A.18: Importing a TCP with additional information

1 // Loading a Tincr Checkpoint with additional info

2 TincrCheckpoint tcp = VivadoInterface.loadTcp("PathToCheckpoint.tcp", true);

3 Collection<BelRoutethrough> belRts = tcp.getRoutethroughObjects();

4 Collection<Bel> staticSources = tcp.getStaticSourceBels();

5 Map<BelPin, CellPin> belPinToCellPinMap = tcp.getBelPinToCellPinMap()

Line 10 of Listing A.17 demonstrates how to export a design from RapidSmith2, which produces

a Tincr Checkpoint (TCP). To import the TCP back into Vivado, simply open Vivado in Tcl mode

and run the command [tincr::read tcp myCheckpoint.tcp]

132

A.6 Installing New Device Files

The device files included with the RapidSmith2 installation (listed in subsection A.1.3)

have been well-tested, and are great starting points for new users. However, RapidSmith2 also

supports installing new device files for parts not listed in subsection A.1.3. The required files that

need to be generated from Tincr to support a new device in RapidSmith2 is given in chapter 3,

and so will not be discussed further here. The remainder of this section documents the required

steps to transform the Tincr intermediate files into compact device files that can be loaded into

RapidSmith2.

A.6.1 Creating New Device Files for Supported Families

Section A.1.3 gives a list of currently supported families in RapidSmith2. If the device to

install is not within a supported family, see subsection A.6.2 for how to add support for a new

family in RapidSmith2. Otherwise, a new device file can be added in four easy steps:

1. Open Vivado in Tcl mode, and execute the Tincr command [::tincr::write xdlrc].

An example usage is shown in Listing A.19 for the Artix7 part xc7a100tcsg324-3. The “-

max processes” option is used to parallelize the operation so that it will execute faster. This

Tcl command can take a very long time to run (more than 24 hours for very large devices).

Running the command on a remote machine is good practice. Be aware that these XDLRC

files are massive, and 100 GB for the largest XDLRC files is not uncommon. Make sure

there is enough space on the hard drive before generating the XDLRC for a device.

Listing A.19: XDLRC Generation Example

::tincr::write_xdlrc -part xc7a100tcsg324-3 -max_processes 4 -primitive_defs

xc7a100tcsg324_full.xdlrc

2. Run the Tincr command [tincr::create xml device info] to create a deviceInfo.xml

file for the part. Copy the resulting file to the “devices/family” directory of the RapidSmith2

installation, where family is replaced with the appropriate Vivado family name (i.e. kintexu).

133

3. Run the device installer in RapidSmith2 and pass the newly created XDLRC as an argument.

An example command line usage is shown in Listing A.20. The device installer creates

compact device files that represent a Xilinx device from the XDLRC and deviceInfo.xml

generated in the previous steps. Notice the two JVM command line arguments used in

the command. The first option (“-ea”) enables assertions for the code. It is important to

include this flag so that device file errors can be caught during parsing. The second option

(“-Xmx4096m”) sets how much memory the JVM can use while running the installer. Since

XDLRC files are quite large, the memory usage of the installer grows very quickly. If the

device installer fails with an out of memory exception, you will need to increase the memory

and re-run the installer (up to 32 GB of memory may be required).

Listing A.20: RapidSmith2 device installer example usage

java -ea -Xmx4096m edu.byu.ece.rapidSmith.util.Installer --generate file

xc7a100tcsg324_full.xdlrc

4. Run the family builder in RapidSmith2 and pass the name of the newly created part as a

command line argument. An example usage is shown in Listing A.21 for an Artix7 device.

An Artix7.java file (or whatever family your device is in) will already exist, but will be

updated with new sites and tile types from the newly installed part.

Listing A.21: Family builder example usage

java edu.byu.ece.rapidSmith.util.FamilyBuilders xc7a100tcsg324

Once the device installer is done executing, the compact devices files are stored in the corre-

sponding family directory of the RapidSmith2 “devices” folder. For example, the device files

generated from the example part xc7a100tcsg324-3 are stored in the “artix7” sub-directory. List-

ing A.22 shows the two device files that are created after the device installer is run. The file ending

in “ db.dat” contains the serialized Device data structures for RapidSmith2. The file ending in

“ info.dat” contains additional serialized data (such as reverse wire connections) that can be op-

tionally loaded with the device.

134

Listing A.22: Generated RapidSmith2 device files

[ttown523@CB461-EE09968:artix7] ls

cellLibrary.xml familyInfo.xml xc7a100tcsg324 db.dat xc7a100tcsg324 info.dat

A.6.2 Supporting New Device Families

Vivado supports implementing FPGA designs on devices for the following families (also

called architectures):

• Artix7 (artix7)

• Kintex7 (kintex7)

• Virtex7 (virtex7)

• Zynq (zynq)

• Kintex Ultrascale (kintexu)

• Virtex Ultrascale (virtexu)

• Kintex Ultrascale+ (kintexuplus)

• Virtex Ultrascale+ (virtexuplus)

The name in parentheses is the Vivado Tcl name for the family. Bolded items are families that are

currently supported in RapidSmith2 and Tincr. To add RapidSmith2 support for another Vivado

family, follow the steps listed below.

1. Create the primitive definitions of the family using VSRT. The VSRT user guide is given in

Appendix B.

2. Copy the primitive definitions created in step (1) to the directory tincrPath/cache/fami-

ly/primitive defs, where “tincrPath” is the path to your Tincr installation and “family” is

the Vivado Tcl name for the family of the primitive defs just generated.

3. Create the familyInfo.xml. To do this, open Vivado in Tcl mode and run the command [

::tincr::create xml family info]. An example usage of the command is shown in

Listing A.23 for Kintex UltraScale. As the listing shows, there are three arguments to the

command:

• familyInfo.xml: The file name to store the generated family info. The file ending

“.xml” will be appended if it is not included.

135

• kintexu: The Vivado family name.

• addedBels.txt (Optional): The “addedBels.txt” file that was created during step (1).

This file contains a list of added VCC/GND BELs for each family.

Listing A.23: Family info example usage

::tincr::create_xml_family_info familyInfo.xml kintexu addedBels.txt

4. Modify the generated family info with a few hand edits. The required hand edits are bro-

ken down between Series7 and UltraScale devices in subsection A.6.3 and subsection A.6.4

respectively.

5. Follow the steps laid out in subsection A.6.1 to generate RapidSmith2 device files.

6. Run the Family Builder in RapidSmith2 (an example usage is shown in Listing A.21). The

Family Builder accepts one command line argument: a part name of a device in the family.

Using the device files for the specified part, a Java file is created that contains all tile types

and site types within the part. For example, the command in Listing A.21 will generate an

Artix7.java file which can be used to find site and tile types as shown in Listing A.24.

Every family Java class includes a classifications section with the header “/* —— CLAS-

SIFICATIONS GO HERE —— */”. Below the header, tile and site classifications can be

manually added to group similar site types together. The classifications for Artix7 are shown

in Listing A.25 for reference.

Listing A.24: How to access SiteTypes and TileTypes in RapidSmith2

SiteType siteType = Artix7.SiteTypes.SLICEL;

TileType tileType = Artix7.TileTypes.CLBLL_L;

Listing A.25: Device classifications example

/* ------ CLASSIFICATIONS GO HERE ------ */

_CLB_TILES.add(TileTypes.CLBLL_L);

_CLB_TILES.add(TileTypes.CLBLL_R);

136

_CLB_TILES.add(TileTypes.CLBLM_L);

_CLB_TILES.add(TileTypes.CLBLM_R);

_SWITCHBOX_TILES.add(TileTypes.INT_L);

_SWITCHBOX_TILES.add(TileTypes.INT_R);

_BRAM_TILES.add(TileTypes.BRAM_L);

_BRAM_TILES.add(TileTypes.BRAM_R);

_DSP_TILES.add(TileTypes.DSP_L);

_DSP_TILES.add(TileTypes.DSP_R);

_IO_TILES.add(TileTypes.LIOB33_SING);

_IO_TILES.add(TileTypes.LIOB33);

_IO_TILES.add(TileTypes.RIOB33);

_IO_TILES.add(TileTypes.RIOB33_SING);

_SLICE_SITES.add(SiteTypes.SLICEL);

_SLICE_SITES.add(SiteTypes.SLICEM);

_BRAM_SITES.add(SiteTypes.RAMB18E1);

_BRAM_SITES.add(SiteTypes.RAMB36E1);

_BRAM_SITES.add(SiteTypes.RAMBFIFO36E1);

_FIFO_SITES.add(SiteTypes.FIFO18E1);

_FIFO_SITES.add(SiteTypes.FIFO36E1);

_FIFO_SITES.add(SiteTypes.IN_FIFO);

_FIFO_SITES.add(SiteTypes.OUT_FIFO);

_FIFO_SITES.add(SiteTypes.RAMBFIFO36E1);

_DSP_SITES.add(SiteTypes.DSP48E1);

137

_IO_SITES.add(SiteTypes.IOB33);

_IO_SITES.add(SiteTypes.IOB33S);

_IO_SITES.add(SiteTypes.IOB33M);

_IO_SITES.add(SiteTypes.IPAD);

_IO_SITES.add(SiteTypes.OPAD);

Once these steps are complete, RapidSmith2 will have full support for the generated family. This

means that device files for any part within the family can be created.

A.6.3 Series7 Family Info Hand Edits

Due to complications with Vivado’s Tcl interface, several hand edits are required to com-

plete Series7 family info files. RapidSmith2 already provides support for all Series7 families, but

the required manual edits are documented here in case they need to be regenerated in the future.

1. The first hand edit is to remove invalid alternate types. The only way to determine invalid

alternate types in Vivado is to go site-by-site in the family info, select an instance of the

site type in Vivado’s device browser, and click the site type dropdown box (as shown in

Figure 3.7). If there are any site types reported in the family info XML that are not shown in

the GUI, they need to be removed from the XML. The Tcl commands shown in Listing A.26

can be used to select a specific site type in Vivado to view its alternate types.

Listing A.26: Tcl commands to select a Vivado Site object

Vivado% set site [lindex [get_sites -filter {SITE_TYPE==IPAD}] 0]

Vivado% select $site

2. The second hand edit is to add alternate type pin mappings. When a site is changed to

one of its alternate types in Vivado, the site pins can be renamed. An example is shown in

Figure 3.9 for an IDELAYE3 site that has been changed to the alternate type ISERDESE2.

Notice how the “SR” site pin has been renamed to “RST” in the figure. Unfortunately these

pin renamings cannot be automatically extracted from Vivado’s Tcl interface, and so must

138

be added manually. Listing A.27 shows how to add pin renamings to the family info XML

using the “pinmaps” tag. To determine the actual pin mappings, the first step is to open two

instances of the Vivado GUI. For each site in the family info, load the default type in one

Vivado instance, load each alternate type in the other instance, and visibly check what pins

are renamed in the alternate type (as demonstrated in Figure 3.9). Table A.2 gives a list of

all alternate types that rename pins for Artix7 devices.

Listing A.27: Sample pinmaps in a family info file

<name>ILOGICE3</name>

<alternatives>

<alternative>

<name>ILOGICE2</name>

<pinmaps>

</pinmaps>

</alternative>

<alternative>

<name>ISERDESE2</name>

<pinmaps>

<pin>

<name>RST</name>

<map>SR</map>

</pin>

</pinmaps>

</alternative>

</alternatives>

3. The third hand edit is to remove invalid mux corrections. In some cases, BELs might be

incorrectly tagged as “routing muxes” or “polarity selectors” even though they are not. This

issue has mostly been fixed, but it is still good practice to examine all mux corrections in the

family info and verify that they are correct.

139

Table A.2: Artix7 Alternate Pin Mappings

Default Type Alternate Type
FIFO18E1 RAMB18E1
ILOGICE3 ISERDESE2
IOB33M IPAD
IOB33S IPAD

OLOGICE3 OSERDESE2
RAMBFIFO36E1 FIFO36E1, RAMB36E1

4. The final hand edit is to add missing compatible types. Some compatible types can be auto-

matically generated from Vivado, but not all. This means that the missing compatible types

must be added manually. The next section describes in more detail how to add compatible

types to the Family Info.

A.6.4 UltraScale Family Info Hand Edits

UltraScale and later devices require only a single hand edit: adding missing compatible

types (most compatible types can be determined automatically). The XML listing given in List-

ing A.28, shows the two compatible types that were manually added to complete the Kintex Ultra-

Scale family info. Other device families may require additional compatible site hand edits. It is up

to the user to determine what compatible sites need to be added through experimentation.

Listing A.28: Manually added compatible sites for UltraScale devices

<site_type>

<name>SLICEL</name>

<is_slice/>

<compatible types>

<compatible type>SLICEM</compatible type>

</compatible types>

...

</site_type>

<site_type>

140

<name>HRIO</name>

<is_iob/>

<compatible types>

<compatible type>HPIOB</compatible type>

</compatible types>

...

</site_type>

141

APPENDIX B. VSRT DOCUMENTATION

This appendix contains a complete user guide for the VSRT tool introduced in subsec-

tion 3.1.3. VSRT may be updated in the future, and so this appendix serves as a snapshot of the

current state of VSRT.

B.1 Introduction

The Xilinx Design Language (XDL) is a command line interface into Xilinx’s ISE tool

suite. Using a single command xdl, both device and design information can be extracted from

ISE for external use. Device information (the physical components of the FPGA) is extracted via

XDLRC files, and design information (the logical netlist, placement, and routing) is extracted via

XDL files. Many FPGA CAD research projects have built upon the XDL interface, resulting in

several useful tools capable of targeting commercial devices. With the release of Vivado, how-

ever, Xilinx no longer supports XDL. This makes external tools and frameworks that rely on the

interface incompatible with next-generation Xilinx devices (Ultrascale, Ultrascale+, and beyond).

Instead, Vivado includes a Tcl interface that grants access to Xilinx’s internal device and design

data structures.

Tincr, a Vivado Tcl plugin, defines a set of APIs that provide the same functionality as

XDL did for ISE. Device and design information can be extracted from Vivado using the following

Tincr commands:

• write xdlrc: Creates a XDLRC file which describes the physical components of a Vivado

FPGA part.

• write rscp: Creates a RapidSmith Checkpoint (RSCP) which describes all relevant aspects

of a Vivado design.

142

https://github.com/byuccl/tincr

Due to limitations of Vivado’s Tcl API, the XDLRC files generated from write xdlrc are incomplete.

They are missing the primitive definition section. A primitive definition (also called primitive def)

defines all pins, BELs, and routing muxes inside of a site, and how the components are connected

through site wires (section B.3 has a more detailed description of the terminology used here). Using

Tincr and Vivado Tcl commands, a set of partial primitive defs can be created. These partial

primitive defs include everything except for the connections between primitive def components,

which is crucial for any external CAD tool.

The Vivado Subsite Routing Tool (VSRT) is a GUI application that helps users add these

missing connections to create complete primitive definitions for Vivado devices. The general flow

for using the tool is shown in Figure B.1.

Figure B.1: XDLRC Creation Flow

As the figure shows, Tincr first generates a set of partially complete primitive definitions (one for

each site in the device architecture). The partial primitive defs are then loaded into VSRT, where a

user processes each site one-by-one. To use the tool, a user brings up a picture of the primitive site

in both Vivado’s device browser and the VSRT GUI. They then use VSRT to manually draw the

connections visible in Vivado’s device browser. This may seem like a tedious process, but there

are two important observations to note:

1. Primitive definitions are at least identical for parts that have the same architecture. For

example, any part within the Kintex UltraScale family will use the same set of primitive

definitions. You don’t need to create new primitive defs for each part. NOTE: This is also

most likely true across series (i.e. all UltraScale parts regardless of architecture use the same

set of primitive defs)

143

2. Many primitive definition connections can be inferred automatically in Tcl even though the

site wires cannot be explicitly accessed. This is especially true for sites that are dominated by

a single BEL. This reduces the workload for VSRT users and makes the process of creating

primitive defs for new architectures manageable.

The remainder of this document describes important aspects of VSRT. Section B.2 gives installa-

tion instructions. Section B.3 describes important terminology for VSRT. Section B.4 gives a user

guide of how to use the tool. Section B.5 describes the features of the tool and how to use VSRT

most effectively. Section B.6 lists all currently known issues.

144

B.2 Installation

B.2.1 Tool Facts

• Written in Java 8

• Built on the QtJambi 4.6 GUI framework

• Supported Operating Systems:

– Linux 32-bit and 64-bit

– Windows 32-bit and 64-bit

– MacOSX

• Tested on:

– Fedora 20

– Windows 7/8/10

B.2.2 Requirements

• Vivado 2016.2

• Tincr: https://github.com/byuccl/tincr

• RapidSmith2: https://github.com/byuccl/RapidSmith2

• JDK 1.8 (earlier versions may work, but have not been tested)

• Eclipse or IntelliJ IDE (optional)

B.2.3 Steps

VSRT is a part of the RapidSmith2 repository linked above. To install and run VSRT,

simply follow the RapidSmith2 installation instructions. The main VSRT java class can be found

under the RapidSmith2 package edu.byu.ece.rapidSmith.device.vsrt.gui.VSRTool, and

can be run via the command line or an IDE (recommended). To generate the partial primitive

145

https://github.com/byuccl/tincr
https://github.com/byuccl/RapidSmith2

definitions, you will need to install Tincr (instructions are in the Tincr link above), and Vivado

2016.2. Once you have Vivado, Tincr, and RapidSmith2 setup correctly, you are ready to use

VSRT. Section B.4 gives more information about how to use the tool.

146

B.3 Terminology

This section introduces important terminology used in VSRT (or links to locations that

describes the terminology). If you are comfortable with Xilinx FPGA terminology and the contents

of XDLRC files, you can skip subsections B.3.1 and B.3.2.

B.3.1 Vivado Devices and XDLRC files

VSRT uses the same terminology as Vivado to describe FPGA devices. Therefore it is

important to understand Xilinx device terminology to fully utilize VSRT. The “Device” section

of the RapidSmith2 Tech Report (found at https://github.com/byuccl/RapidSmith2/tree/

master/doc) describes Xilinx FPGA architecture and XDLRC in greater detail. Readers are re-

ferred to that document for more information.

B.3.2 Primitive Definitions

A primitive definition is a textual description of all site pins, BELs, and routing muxes

inside of a primitive site, and how they are connected through site wires. The remainder of this

section details how the components of a primitive site are represented in a primitive def file. It is

important to note that the partial primitive defs generated from Tincr do not include any connec-

tions (“conn” keyword). The purpose of VSRT is to generates these.

Header

(primitive_def BUFHCE 3 8

Every primitive definition starts with a header line (as shown above). This line tells three

important things about the primitive def: (1) the name of the primitive site that it represents, (2) the

number of site pins on the corresponding primitive site, and (3) the number of elements defined in

the primitive def. Element is a generic term used to represent a “component” of the primitive site.

Essentially, everything within the primitive site ends up being an element in the resulting primitive

def (this will be shown in the following subsections).

147

https://github.com/byuccl/RapidSmith2/tree/master/doc
https://github.com/byuccl/RapidSmith2/tree/master/doc

Site Pins

// Site pins first show with the "pin" keyword

(pin O O output)

(pin I I input)

(pin CE CE input)

...

// They also show up later in the primitive def as "elements"

(element O 1

(pin O input)

(conn O O <== BUFHCE O)

)

(element I 1

(pin I output)

(conn I I ==> BUFHCE I)

)

(element CE 1

(pin CE output)

(conn CE CE ==> CEINV CE)

(conn CE CE ==> CEINV CE_B)

)

The pins of a site show up in two places in the primitive def file. The first is the pin section,

which appears directly after the header. Each pin is defined with a name and a direction. Site pins

are also defined as elements, where the connections of the pin are included. It is important to note

that the direction of the “element” pin is the opposite of the direction found in the pin section. The

element pin direction represents the pin’s direction viewed from the internal components of the

site, while the other direction represents the pin’s direction external to the site.

BELs

(element BUFHCE 3 # BEL

148

(pin O output)

(pin I input)

(pin CE input)

(conn BUFHCE O ==> O O)

(conn BUFHCE I <== I I)

(conn BUFHCE CE <== CEINV OUT)

)

BELs within a primitive site are represented as elements in the primitive def with the special

token “# BEL” included after the name of the BEL. The BEL pins and their connections are defined

within the element.

Site PIPs (Routing Muxes)

(element CEINV 3

(pin OUT output)

(pin CE input)

(pin CE_B input)

(cfg CE CE_B)

(conn CEINV OUT ==> BUFHCE CE)

(conn CEINV CE <== CE CE)

(conn CEINV CE_B <== CE CE)

)

Site PIPs (or routing muxes) are defined exactly the same way as BELs, but they do not

have the “# BEL” token after the name. Elements that do not have the BEL token, and do not have

a corresponding primitive def pin with the same name are distinguished as routing muxes.

Configuration Options

(element CE_TYPE 0

(cfg SYNC ASYNC)

149

)

Site-level and BEL-level configuration parameters can also be included in the primitive def

file. They are also represented as elements, but they only have a single “cfg” child, which defines

the possible values of the configurable parameter. These elements are generally not important for

VSRT, and can be safely ignored.

Routethroughs

(element _ROUTETHROUGH-I-O 2

(pin I input)

(pin O output)

)

Routethrough elements in the primitive def represent a configurable connection between

an input site pin and an output site pin. These connections can be used in external tools instead of

trying to configure the necessary routing muxes of the site to create the routethrough. For VSRT,

these elements can be ignored because they can be automatically generated from Vivado’s Tcl

interface.

B.3.3 VSRT GUI

Figure B.2 shows the terminology used to describe the VSRT GUI. This terminology will

be used through the rest of the document, so it is important to briefly review the figure before

continuing.

150

Figure B.2: VSRT GUI Start View (Top) and Primitive Site View (Bottom)

151

B.4 User Guide

Before running VSRT, you will need to generate the partial primitive definitions from Vi-

vado. To do this, open a new terminal and start Vivado in “Tcl” mode. Make sure the Vivado

executable is on your PATH.

[ttown523@CB461-EE09968:~] vivado -mode tcl

****** Vivado v2014.2 (64-bit)

**** SW Build 928826 on Thu Jun 5 17:55:10 MDT 2014

**** IP Build 924643 on Fri May 30 09:20:16 MDT 2014

** Copyright 1986-2014 Xilinx, Inc. All Rights Reserved.

Vivado%

Next, run the Tincr command [get all partial primitive defs] in the Vivado prompt. The

first argument to this command is the directory to store the partial primitive defs (if it does not

yet exist, it will be created). The second (optional) argument is the architecture to generate prim-

itive defs for. Possible architectures for Vivado 2016.2 are: artix7, kintex7, virtex7, zynq,

kintexu, virtexu, kintexuplus, and virtexuplus. If no architecture is specified, then the

primitive defs for all architectures will be generated. An example usage of this command with

sample output is shown below. Replace “primitiveDefs/” with the directory of your choice and

“kintexu” with the architecture of your choice. NOTE: This command may take a few hours to

run if you are generating partial primitive defs for all architectures.

Vivado% tincr::extract_all_partial_primitive_defs primitiveDefs/ kintexu

...

Extracting Primitive Sites from part xqku060-rfa1156-1-i (28 out of 31)...

Extracting Primitive Sites from part xqku095-rfa1156-1-i (29 out of 31)...

Extracting Primitive Sites from part xqku115-rld1517-1-i (30 out of 31)...

Extracting Primitive Sites from part xqku115-rlf1924-1-i (31 out of 31)...

Successfully created all .def files in directory primitiveDefs/

152

Vivado%

Once the command is finished running, navigate to the generated partial primitive def directory

and view the newly created files. If you generated the primitive defs for all architectures, it will

look something like the directory structure shown below. There is a folder for each architecture

that holds all partial primitive defs for that architecture.

[ttown523@CB461-EE09968:primitiveDefs] ls

artix7 kintex7 kintexu kintexuplus log.txt virtex7 virtexu virtexuplus zynq

Also included in the directory is a log.txt file. An example log file is shown below.

Extracting Primitive Sites from part xcku025-ffva1156-1-c (1 out of 31)...

kintexu-SLICEL -> SLICE X0Y179...

kintexu-SLICEM -> SLICE_X1Y179...

kintexu-RAMB181 -> RAMB18_X0Y71...

...

ALTERNATE: kintexu-FIFO18 0 -> RAMB18 X1Y70...

ALTERNATE: kintexu-RAMB180 -> RAMB18_X2Y70...

This file is important to VSRT users because it gives a mapping between a site type, and a specific

instance of that site type. This makes it easy to bring up a site in the Vivado device browser when

drawing the corresponding connections in VSRT. The log.txt file also shows what site types are

alternate-only sites (they include the keyword ALTERNATE). For these sites, an additional step

must be taken in Vivado to show the correct connections. The Tcl commands in Listing B.1 can be

used to visualize an instance of any site in Vivado’s device browser.

Listing B.1: Tcl commands for viewing a site in Vivado’s device browser

// open the part and start the device browser (only needs to happen once)

Vivado% link_design -part xcku025-ffva1156-1-c

Vivado% start_gui

153

// gain a handle to the site, and zoom to its view

Vivado% set site [get_sites RAMB18_X1Y70]

Vivado% select $site (you may have to press F9 to zoom to the site)

// set the site type (FOR ALTERNATE-ONLY SITES!)

Vivado% set_property MANUAL_ROUTING FIFO18_0 $site

Now that the partial primitive defs directory has been created, you are ready to use VSRT.

To run VSRT, simply execute the Java class edu.byu.ece.rapidSmith.device.vsrt.gui.

VSRTool found in the RapidSmith2 repository. VSRT accepts a single command line argument:

the partial primitive def directory generated above. You can choose to run the tool on the com-

mand line, or in an IDE (which is recommended). Figure B.3 shows the VSRT GUI on startup if

everything was setup correctly. VSRT can be run in two different modes: regular mode and single

BEL mode. The remainder of this section gives a walkthrough of how to use both modes.

Figure B.3: VSRT GUI Start Screen

154

B.4.1 Regular Mode

Regular mode is the default mode for VSRT, and is intended for two use cases:

1. Sites where connections cannot be automatically inferred in Tcl (see subsection B.4.2 for

these sites).

2. Small sites that can be wired up very quickly (even if some connections can be automatically

generated.)

In this mode, the user is required to create all of the connections of the primitive site by manually

drawing wires between components. This is best shown through an example. In the VSRT GUI

start screen, select the “kintexu” architecture in the dropdown box and find the BUFGCTRL site

in the table. Double click the site, and you should see the prompt shown in Figure B.4:

Figure B.4: User Mode Prompt

Since we want to run the tool in regular mode, select “No” and the BUFGCTRL site will load in

VSRT as shown in Figure B.5.

As the screenshot shows, all BELs, site pins, and site pips (routing muxes) of the site are

displayed in the “Elements” tab on the left. The red font color indicates that at least one pin

attached to the element is unconnected. The drawing pane (gridded area) is initialized to include

all site pins attached to the site, and a rectangle representing the site’s boundaries. In this case,

there is 8 input site pins and 1 output site pin. To add elements to the drawing pane, simply double

click the item in the Elements tab. The item will appear in the top-left corner of the drawing pane,

where you can then drag it to the location of your choice (shown in Figure B.6). To create the

internal site connections, just add elements to the drawing pane, and

155

Figure B.5: BUFGCTRL Site in VSRT

Figure B.6: Adding a BEL to the Drawing Pane

156

connect elements by drawing wires between their pins. To add a new wire, either press “w” (rec-

ommended), or click the draw wire button [] on the tool bar. This will replace the cursor with

crosshairs and put the tool in wire drawing mode.

As shown in Figure B.7, several things happen when two pins are connected with a wire.

First, the tree view of the pin is updated to show the connection using the same format as it will

appear in the primitive def file. Second, the pin in the element tab changes color from red to green

(which signifies a connection has been made to the pin). A BEL or site PIP element will turn green

once all of its pins have been connected. Third, the outline color of the shapes in the drawing pane

will change. A green outline represents a fully connected element, orange represents an element

that is partially connected, and red represents an element that is completely unconnected. This

color coding makes it easier to determine what remaining connections need to be generated.

Figure B.7: Wire Connections in VSRT

Now that you know the basics of creating connections in VSRT, let’s go back to the

BUFGCTRL example. You will first need to open an instance of a BUFGCTRL site in Vivado’s

device browser using the Tcl commands shown in Listing B.1 (replace RAMB18 X1Y70 with the

157

appropriate value found in the log.txt file for BUFGCTRL sites). After running the commands, the

Vivado device browser should now display a BUFGCTRL site as shown in Figure B.8.

Figure B.8: BUFGCTRL Site in Vivado

Figure B.9: Completed BUFGCTRL in VSRT

The site in the device browser is interactive, so you can click-on or hover-over elements to view

their names. The next step is to recreate the connections you see in Figure B.8 in the VSRT

158

GUI. As described above, you can do this by adding elements to the drawing pane, rearranging

the elements, and drawing wires between element pins. Once you have generated all connections

in VSRT for the BUFGCTRL site, it should look similar to Figure B.9. Notice that all items in

the “Elements” tab are green, meaning that every pin has at least one connection. This is a good

indicator that we are done wiring up the BUFGCTRL site.

To generate the completed primitive def file, click File→Save, and the prompt shown in

Figure B.10 will appear.

Figure B.10: VSRT Save Prompt

The prompt will display all available architectures to the tool (in this example, there is only two).

Since the BUFGCTRL site for kintexu and virtexu architectures are identical, we can save the

completed primitive def to both of those architectures. Click “Save” and navigate back to the

partial primitive defs directory that was created from Tincr. You will see a new folder has been

created called “CompletePrimitiveDefinitions” as shown below.

[ttown523@CB461-EE09968:primitiveDefs] ls

artix7 CompletePrimitiveDefinitions kintex7 kintexu kintexuplus

log.txt virtex7 virtexu virtexuplus zynq

All completed primitive definitions will appear in this folder (separated by architecture specific

sub-folders). After saving the primitive def, you will be returned to the VSRT start screen. The final

step in completing the primitive site is to right click on the BUFGCTRL site you just completed,

and tag it as complete (shown in Figure B.11.

159

Figure B.11: How to mark a site as complete in VSRT

B.4.2 Single-Bel Mode

For primitive sites with a single BEL (or one large BEL that takes up most of the site),

many of the connections can be automatically inferred in Tcl. However, not all connections can

be generated and some may be generated incorrectly. VSRT offers a “Single-Bel Mode” for these

sites so that instead of creating every single connection by hand (which could be thousands of

connections for large sites), only the connections that Tincr could not infer need to be generated.

This is a significant time-saver for large primitive sites.

The biggest difference between single-BEL mode and regular mode, is that BEL pins can

be individually added to the drawing pane instead of an entire BEL (BELs can still be added

if desired). Users can add the BEL pins that are unconnected, and generate connections for

those pins only. To show an example of single-BEL mode, we will generate connections for a

GTHE3 CHANNEL site. Double-click the GTHE3 CHANNEL site in the “Select Site” tab, and

click “Yes” in the popup prompt that appears (Figure B.4). Figure B.12 shows the initial view of

the GTHE3 CHANNEL site in VSRT.

There are a few important things to note about sites that have been loaded in single-BEL

mode:

1. Site pins are not, by default, added to the drawing pane. Instead, only a generic site boundary

is shown. Site pins can be added to the drawing pane by double clicking the site pin in the

“Elements” tab. BEL pins can also be added to the drawing pane by double-clicking the

corresponding BEL pin.

2. Several site and BEL pins show as green in the “Elements” tab. This indicates that these

pins have connections that were automatically generated in Tcl, and usually don’t have to be

modified in VSRT.

160

Figure B.12: GTHE3 CHANNEL in VSRT

3. There is more than one BEL in this site, which is normal. The “GTHE3 CHANNEL” BEL

is the one where most connections have been automatically generated. The other BELs

can be added to the scene like they would in regular mode, where their connections can be

generated.

4. If a BEL or pin is added to the drawing pane, any existing connections will be removed.

This is because the tool will assume that the automatically created connections for those

elements were incorrect.

To generate the remaining connections, simply add the unconnected pins to the drawing pane and

wire them together (based on the equivalent Vivado GTHE3 CHANNEL image which is not shown

in this document). Listing B.2 shows Tcl commands that can isolate a BEL Pin in Vivado.

Listing B.2: Tcl commands to select a BEL pin in Vivado’s device browser

// First click on the Bel you want in the device browser!

161

Vivado% set bel [get_selected]

Vivado% select_objects [get_bel_pins $bel/GTHRXN]

Once you have connected all unconnected bel-pins, the drawing pane should look similar to

Figure B.13. Of the original 959 bel-pins for the GTHE3 CHANNEL site, only 35 of them (3.65%)

need to be connected using VSRT. This demonstrates the productivity advantages of using single-

BEL mode. It is strongly encouraged for VSRT users to run the tool in single-BEL mode for large

sites where applicable.

Figure B.13: Complete GTHE3 CHANNEL in VSRT

We are not quite done with the GTHE3 CHANNEL site however. As you scroll through

the site pins in the “Elements” tab, you will see several pins that are still unconnected. This may

seem like a problem, but it is not. If you view the offending pins in Vivado’s device browser, you

will see that they do not connect to any elements inside of the site. Therefore, the final step to

complete the GTHE3 CHANNEL site in VSRT is to mark the remaining site pins as unconnected.

162

To do this, right click the unconnected site pins and select “Mark As Unconnected” (Figure B.14).

The pin colors will change to gray indicating that they no longer need to be connected. After all

unconnected pins are marked as unconnected, the complete primitive definition can be generated

using the steps introduced in subsection B.4.1.

Figure B.14: How to mark site pins as unconnected in VSRT

163

B.5 Features

B.5.1 Wire Hiding

The current version of VSRT does not support drawing wires along the grid system. Wires

always appear as straight lines between two connected pins. For complex primitive sites (such as

SLICEL or DSP48E2), this can quickly clutter up the drawing pane and make it difficult to see

what pins are connected to where. To alleviate this, VSRT gives the users the option to hide wires.

The toolbar has two buttons for wire hiding:

Hide all wires in the current drawing pane

Show all wires in the current drawing pane

You can also hide and show wires for individual BELs and Site PIPs. To do this, right-click on the

element in the drawing pane and select “Hide/Show Wires”.

Figure B.15: Wiring Hiding Options

The suggested flow for VSRT users is to draw the connections for one BEL at time, while hiding

all other wires. Even if an element’s wires are hidden, the border color around the shape in the

drawing pane indicates how many pins of the element have been connected (see next section).

B.5.2 Shape Border Colors

Each element in the drawing pane has a border color based on how many of its pins are

connected. Figure B.16 shows the possible colors. Green means all pins have been connected,

164

orange means some (but not all) pins have been connected, and red means no pins have been

connected. This color coding makes it easier to identify which elements in the drawing pane have

unconnected pins when wire hiding is enabled.

Figure B.16: Shape Border Colors

B.5.3 Saving

VSRT supports saving and restoring the progress of a primitive site. To save your progress,

click File→Close Site. The prompt shown in Figure B.17 will appear. Click “Yes” and your site

progress will be saved to a XML file. To restore the site progress and continue working, simply

open the site again. A site is automatically saved when a complete primitive definition is created.

NOTE: If you save a site open in single-BEL mode, the connections will be saved but the drawing

pane will not.

Figure B.17: Save Progress Prompt

B.5.4 INOUT Pins

BEL pins in Xilinx FPGAs have three possible directions: INPUT, OUTPUT, and INOUT.

INPUT pins are signal sinks, OUTPUT pins are signal sources, and INOUT pins are bidirectional,

165

meaning the pin can act as either a source or sink. Because of this behavior INOUT pins can

connect to pins of any direction. Table B.1 shows the connections that should be created when an

INOUT pin is connected to another pin.

Table B.1: INOUT Pin Connections

Pin 1 Type Pin 2 Type Connection(s) Generated
INOUT INPUT Pin1→ Pin2
INOUT OUTPUT Pin1← Pin2
INOUT INOUT Pin1← Pin2

Pin1→ Pin2

VSRT automatically generates the correct connections for INOUT pins according to the table.

Also, VSRT displays the color of INOUT pins as gray instead of black so they can be easily

identified in the drawing pane.

B.5.5 Undo/Redo Functionality

Most actions in VSRT can be undone. So, if you make a mistake don’t worry! Click

“Undo” and continue working. Two buttons in the tool bar allow actions to be undone or redone

(shortcut keys are shown in parenthesis):

Undo the last action (Ctrl+Z)

Redo the last action (Ctrl+Y)

The “Undo” button on the tool bar also has a dropdown menu to undo multiple actions at once.

B.5.6 Deleting Elements

You can remove items from the drawing pane by entering “delete mode.” To toggle delete

mode, click the toolbar button shown below or click the hotkey shortcut “d.”

Enter delete mode (d)

166

The cursor will now have a small red “x” in the bottom right-hand corner to signify that you can

remove elements. To remove a set of elements, click on the drawing pane and draw a bounding

box around the elements you want to delete. All elements within the bounding box will be deleted

(including wires).

B.5.7 Adding VCC/GND BELs

In some device architectures, the Tcl API into Vivado cannot access VCC or GND BELs

(i.e. the Tcl function get bels will omit VCC and GND). An example GND BEL that exhibits this

behavior is shown in Figure B.18. Because of this, some partial primitive defs generated from

Vivado are missing required BEL elements to generate all connections. VSRT allows users to add

these missing VCC and GND BELs to a site by clicking the add icon next to the “Bels” header.

Figure B.19 demonstrates the complete process.

Figure B.18: Vivado GND BEL (shown in the red box)

Figure B.19: How to add new VCC/GND BELs to a site

167

B.5.8 Manipulating Site Pins

As you are using VSRT to create complete primitive definitions, you may notice three

issues with site pins:

1. Site Pins that appear in Vivado, but not VSRT

2. Site Pins that appear in VSRT, but not Vivado.

3. Unconnected Site Pins

VSRT provides solutions to handle each of these issues. For site pins that appear in Vivado but not

VSRT (1), they can be added by clicking the add icon next to the “Site Pins” header. Figure B.20

demonstrates the complete flow. As the figure shows, after you click the add icon a popup window

appears. Enter the pin name, number of pins to create, and the pin direction in the window and

click “Add.” The pins will then be created and added to the scene in the top-left corner of the

drawing pane. The “Count” field is useful for creating many site pins with the same name. For

example, if the pin name entered was “Test” and the count value entered was “5”, the pins Test0,

Test1, Test2, Test3, and Test4 will be created. NOTE: To create a single site pin with no number

on the end of the name, simply set the count field to 1.

Figure B.20: How to add new site pins to a site

For site pins that appear in VSRT but not Vivado (2), you can simply remove them. To do this,

right-click the site pins you want to remove in the “Site Pins” section of the “Elements” tab and

select “Delete Selected Pins.” For site pins that are unconnected (3), you can mark them as uncon-

nected by using the same steps but selecting “Mark As Unconnected” instead. Figure B.21 shows

168

what these options look like in the GUI. Do NOT delete unconnected site pins. They still have

external connections in the tile, so need to be included in the final primitive def file.

Figure B.21: How to mark site pins as unconnected or remove them in VSRT

B.5.9 Configuration Options

If you generated the partial primitive defs from Vivado with the option “includeConfigs”

enabled, then the primitive defs will include configurable properties for each BEL. To view a BELs

configurable properties in VSRT, right-click the BEL in the drawing pane and select “Bel Config

Options.” Alternatively, you can select the BEL in the drawing pane and click [] on the tool

bar. Figure B.22 shows the popup window that is displayed when you view a BEL’s configuration

options for a SLICEL A5FF. As the figure shows, the window allows you to delete configurations

Figure B.22: BEL Configuration Popup Window

169

[], add new configurations [], and promote configurations to the site-level []. Adding

and deleting configurations is fairly straightforward, but what does it mean to promote configu-

rations to the site-level? The “FFSR” property shown in Figure B.22 is a good example of why

promoting properties is required. FFSR determines if the reset on the corresponding Flip-Flop

should be high or low-asserted. However, every Flip-Flop in a SLICEL must have the same

FFSR property. This means that FFSR is really a property on the site, and not on the individual

BEL. VSRT allows you to “promote” these types of properties to the site-level. Specifically, the

promoted property will be removed from all BELs and added to the site’s configuration properties

instead. A site’s configuration properties can be viewed by pressing [] on the tool bar.

B.5.10 Moving Shapes

All shapes in the drawing pane can be moved to another location (even site pins) by drag-

ging and dropping them. Multiple shapes can be moved at a time by selecting multiple items at

once. Also, the site boundary rectangle can be resized if the initial site estimate was too large or

small.

B.5.11 Tool Bar Buttons and Shortcuts

This section contains a description of the options on the VSRT tool bar, and keyboard

shortcuts if they exist.

Hide the navigator pane

Show the navigator pane

Write the completed primitive definition (Ctrl + S)

Undo the last action (Ctrl + Z)

Redo the last action (Ctrl + Y)

Toggle wire drawing mode (w)

Toggle delete mode (d)

170

Rotate selected elements clockwise (Ctrl + R)

Rotate selected elements counterclockwise (Ctrl + Shift + R)

Drag View (Ctrl + D)

Zoom in (Ctrl + mouse forward scroll)

Zoom out (Ctrl + mouse backward scroll)

Zoom to selection

Zoom Best Fit: Set the zoom level on the drawing pane to show the entire primitive site.

Show site configuration properties

Show BEL configuration properties for selected BEL.

Show all wires on the drawing pane

Hide all wires on the drawing pane

171

B.6 Known Issues

This section contains a list of known issues with both Vivado 2016.2 and VSRT when trying

to generate complete primitive definitions. If you find any other bugs with VSRT, please create a

new issue at https://github.com/byuccl/RapidSmith2 to report it.

• When moving multiple site pins at once, occasionally not all site pins will snap to the grid

(see Figure B.23). To fix this, simply select all site pins that are not on the grid, and drag-

and-drop them in place. This should snap the pins to the grid and update their locations.

Figure B.23: Site Pin Moving Bug

• Sometimes the VSRT drawing pane gets stuck in zooming mode so that the mouse scroll

wheel will zoom in and out when “Ctrl” is not pressed. To fix this press “Ctrl”, zoom in

and out slightly (by scrolling the mouse wheel), and release “Ctrl.” The scroll wheel should

work normally after.

• Do not select a group of items while scrolling the drawing pane. The items may end up

in the top-left corner of the drawing pane (or some other random location) where they can

be hard to find. Instead of scrolling while selecting items, zoom out enough so you can see

all the items you want to move, and then select all items at once.

• When you resize the left side of a primitive site on the drawing pane, all input site pins will

move as well. Similarly, when you resize the right side of a primitive site, all output site

pins will move. This can be useful if you haven’t moved any site pins yet, but otherwise it

can disturb the current state of the drawing pane. Best practice is to resize the site ONCE

before you start working on a primitive site, and then do not resize it again.

172

https://github.com/byuccl/RapidSmith2

• There are some site pins in Vivado whose names do not show up in the device browser (see

Figure B.24). To determine the names of these pins, click on the Tile Wire connected to

the pin (highlighted as white in the figure) and run the Tcl command [get site pins -of

[get selected]]:

Figure B.24: Missing Site Pin Names in Vivado (shown in red)

• In the Vivado device browser, there appears to be some site wires that can have multiple

drivers but are not connected to any bidirectional BEL pins. Figure B.25 shows an example

for an UltraScale BITSLICE COMPONENT RX TX site. In VSRT, the two output pins

highlighted with red boxes should not be connected. They should only be connected to the

sink BEL pins highlighted with green boxes. As a general rule, do not connect two output

Figure B.25: Example of multiple drivers on a site wire. Output BEL pins are highlighted with red
boxes and input BEL pins are highlighted with green boxes.

173

pins together in VSRT even if that is how they appear in the Vivado device browser. Only

connect output pins to input pins (or inout pins) and vice versa.

174

APPENDIX C. SIMULATED ANNEALING PLACEMENT ALGORITHM

To test the capabilities of VDI, a site-level placer targeting Artix7 devices was implemented

using RapidSmith2 data structures. The basic simulated annealing algorithm used to implement the

placer is described in chapter 14 of [22]. Specifically, the algorithm operates on groups of cells that

have been clustered together into sites. Site clusters are swapped until a minimum cost placement

is found on the device. This appendix describes the placement algorithm in detail including (a) the

annealing schedule of the algorithm, (b) the cost function used to determine an optimal placement,

and (c) the custom data structures used for placement.

C.1 Annealing Schedule

There are four important aspects to consider when designing the annealing schedule of

a custom simulated annealing algorithm. Each of these, and the corresponding solution in the

RapidSmith2 placer, is discussed below.

1. What should the initial temperature be? The initial temperature in the algorithm is set

to ten times the average cost of a move. 10,000 temporary moves are used to calculate this

average cost, and are then rejected to preserve the initial state of the placer. [22] suggests that

a good initial temperature is twenty times the average cost, but that seemed to create initial

temperatures that were far too high to be usable.

2. How should the temperature be updated over time? The algorithm uses a very simple

temperature updating scheme, and decreases the current temperature by a factor of .99 after

each iteration of the annealing loop. An optimization that could be made to the placer is

updating the temperature scheme to be a function of the acceptance rate instead.

3. How many moves per temperature should be evaluated? The number of moves per tem-

perature is a function of the move acceptance rate at the previous temperature. While the

175

acceptance rate is above 65%, only 10,000 moves are evaluated. This is because at these

temperatures, the algorithm is likely just randomizing the initial placement and not much

useful work is being done. When the acceptance rate is between 65% and 5%, anywhere

between 30,000 and 50,000 moves are evaluated. This is the critical region of the annealing

schedule and where most decreases in cost are achieved. When the acceptance rate drops

below 5%, only 20,000 moves per second are evaluated. At these temperatures incremental

improvements are being made, but not many.

4. When should the algorithm stop? The algorithm stops when less than .1% of moves are

being accepted. This number was arbitrarily chosen based on experimentation.

C.2 Cost Function

The cost of a given placement configuration is determined by summing the cost of each

individual net in the design. For each net, the cost is set to the half-perimeter of the bounding box

of the net multiplied by the fanout factor (λ) of the net. The corresponding equation is

C(n) = λ ∗ [(top−bottom)+(right− le f t)].

Figure C.1: Example Bounding Box

176

Top is the largest Y coordinate of any site connected to the net and bottom is the smallest. Right

and left are the same except for using the X coordinate. An example of a net’s bounding box is

shown in Figure C.1. Once the half-perimeter of the bounding box is determined it is multiplied

by the number of sink sites that the net is connected to. This gives more weight to large nets in the

design to create a better final placement. When a given site cluster is moved to another location,

only the nets connected to the site update their cost.

C.3 Data Structures

Two data structures are created for placing designs: SiteClusters and VirtualNets.

SiteClusters group cells that must be moved together during the annealing process. Generally,

this corresponds to cells within the same site, but there are a few noticeable exceptions. Carry cells

connected through the carry chain, for example, must be placed vertically to one another to use

the dedicated carry routing. The same applies to DSP carry chains and BRAM cascade paths. To

account for these situations, the class SiteCluster is a top-level class with the inheritance tree

shown in Figure C.2.

Site
Cluster

Carry Chain
Cluster

Bram
Cluster

Dsp
Cluster

Figure C.2: Site Cluster Inheritance Tree.

The sub-classes implement custom move and swap functions in order to move all cells within the

cluster accordingly. The placement algorithm chooses to not swap with carry-chain connected

sites. The cost of swapping with a carry-chain is too expensive, and could cause a chain-reaction

of site swaps which could degrade the performance of the placer.

177

A VirtualNet is a net object that connects site clusters together. Instead of connecting to

cell pins like they would in a regular netlist, these nets connect to sites on a device. Each net in a

design to be placed is assigned a virtual net, that can be used to compute its current cost based on

the cost function given in the previous section. SiteClusters and VirtualNets make it easy to

modify and update the placer as new special cases are found.

C.4 Sample Output

To help debugging, the placer prints several useful statistics while running the annealing

algorithm. Figure C.3 shows the sample output that is printed after each temperature change, and

once the algorithm has completed.

Figure C.3: Sample Placement Output

178

	Vivado Design Interface: Enabling CAD-Tool Design for Next Generation Xilinx FPGA Devices
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Goals
	1.3 Contributions
	1.4 Thesis Organization

	Chapter 2 Background and Related Work
	2.1 Xilinx FPGA Architecture
	2.1.1 Tiles
	2.1.2 Sites
	2.1.3 Wires and PIPs

	2.2 Xilinx Netlist Structure
	2.3 Vivado Tool Suite
	2.4 Tincr
	2.5 Xilinx Design Language (XDL)
	2.6 RapidSmith
	2.6.1 RapidSmith2

	2.7 Vivado Design Interface

	Chapter 3 VDI: Device Export
	3.1 XDLRC
	3.1.1 Site PAD Names
	3.1.2 Floating VCC/GND Sources
	3.1.3 Vivado Subsite Routing Tool

	3.2 Family Info XML
	3.2.1 Algorithm
	3.2.2 Alternate Types
	3.2.3 Compatible Types
	3.2.4 BEL Routethroughs
	3.2.5 Site PIP Corrections
	3.2.6 Pin Direction Corrections

	3.3 Device Info XML
	3.4 Cell Library XML
	3.4.1 Finding Device Compatible Cells
	3.4.2 Cell Placement Locations
	3.4.3 Configurable Cell Properties
	3.4.4 Macro Primitives

	3.5 Conclusion

	Chapter 4 VDI: Design Import/Export
	4.1 Design Export
	4.1.1 Design.info
	4.1.2 Netlist.edf
	4.1.3 Constraints.xdc
	4.1.4 Macros.xml
	4.1.5 Placement.rsc
	4.1.6 Routing.rsc

	4.2 Design Import
	4.2.1 Placement.xdc
	4.2.2 Routing.xdc

	4.3 Vivado Tcl Interface Challenges
	4.3.1 Ambiguous ROUTE Strings
	4.3.2 Alternate Site Pins
	4.3.3 VCC/GND BEL Pins
	4.3.4 SLICE Placement Order
	4.3.5 Macro Placement
	4.3.6 LUT Routethroughs
	4.3.7 Routing Differential Pairs

	4.4 Why Two Design Checkpoint Formats?
	4.5 Conclusion

	Chapter 5 Integrating RapidSmith2 and VDI
	5.1 Importing RSCPs
	5.1.1 Approach to Parsing RSCP Files
	5.1.2 Netlist.edf
	5.1.3 Routing.rsc

	5.2 Exporting TCPs
	5.3 Contribution List
	5.4 Conclusion

	Chapter 6 VDI Testing
	6.1 RSCP Import Testing
	6.2 TCP Export Testing
	6.3 Case Study: Series7 Simulated Annealing Placer
	6.3.1 Utilizing VDI Information
	6.3.2 Productivity Advantages
	6.3.3 Real Device Challenges
	6.3.4 Interactive Mode
	6.3.5 Placer Results

	6.4 VDI Performance
	6.5 Conclusion

	Chapter 7 Conclusion
	7.1 Sustainability
	7.2 Contributions
	7.3 Future Work

	References
	Appendix A RapidSmith2 Documentation
	A.1 Devices
	A.1.1 Device Data Structures
	A.1.2 Loading a Device
	A.1.3 Supported Device Files

	A.2 Designs
	A.2.1 RS2 Netlist Data Structures
	A.2.2 The Cell Library

	A.3 Placement
	A.4 Routing
	A.4.1 Wires and Wire Connections
	A.4.2 Traversing Wire Objects
	A.4.3 Other Types of Connections
	A.4.4 RouteTrees
	A.4.5 Three Part Routing
	A.4.6 Intrasite Routing

	A.5 Design Import/Export
	A.6 Installing New Device Files
	A.6.1 Creating New Device Files for Supported Families
	A.6.2 Supporting New Device Families
	A.6.3 Series7 Family Info Hand Edits
	A.6.4 UltraScale Family Info Hand Edits

	Appendix B VSRT Documentation
	B.1 Introduction
	B.2 Installation
	B.2.1 Tool Facts
	B.2.2 Requirements
	B.2.3 Steps

	B.3 Terminology
	B.3.1 Vivado Devices and XDLRC files
	B.3.2 Primitive Definitions
	B.3.3 VSRT GUI

	B.4 User Guide
	B.4.1 Regular Mode
	B.4.2 Single-Bel Mode

	B.5 Features
	B.5.1 Wire Hiding
	B.5.2 Shape Border Colors
	B.5.3 Saving
	B.5.4 INOUT Pins
	B.5.5 Undo/Redo Functionality
	B.5.6 Deleting Elements
	B.5.7 Adding VCC/GND BELs
	B.5.8 Manipulating Site Pins
	B.5.9 Configuration Options
	B.5.10 Moving Shapes
	B.5.11 Tool Bar Buttons and Shortcuts

	B.6 Known Issues

	Appendix C Simulated Annealing Placement Algorithm
	C.1 Annealing Schedule
	C.2 Cost Function
	C.3 Data Structures
	C.4 Sample Output

