Deployable Convex Generalized Cylindrical Surfaces Using Torsional Joints

Todd G. Nelson
University of Southern Indiana

Jared T. Burton
Brigham Young University - Provo

Curtis G. Nelson
Brigham Young University Idaho

Luis M. Baldelomar Pinto
University of Southern Indiana

Zhicheng Deng
University of Aeronautics & Astronautics Beijing

See next page for additional authors

Original Publication Citation

BYU ScholarsArchive Citation

https://scholarsarchive.byu.edu/facpub/6585

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
Deployable Convex Generalized Cylindrical Surfaces Using Torsional Joints

Todd G Nelson
Department of Engineering
University of Southern Indiana
Evansville, Indiana 47712
Email: tgnelson@usi.edu

Jared T. Bruton
Compliant Mechanisms Research Group
Department of Mechanical Engineering
Brigham Young University
Provo, Utah 84604

Curtis G Nelson
Department of Mathematics
Brigham Young University - Idaho
Rexburg, Idaho 83460

The ability to deploy a planar surface to a desired convex profile with a simple actuation can enhance foldable or morphing airfoils, deployable antennae and reflectors, and other applications where a specific profile geometry is desired from a planar sheet. A model using a system of rigid links joined by torsional springs of tailorable stiffness is employed to create an approximate curved surface when two opposing tip loads are applied. A system of equations describing the shape of the surface during deployment is developed. The physical implementation of the model uses compliant torsion bars as the torsion springs. A multidimensional optimization algorithm is presented to place joints to minimize the error from the rigid-link approximation and account for additional manufacturing and stress considerations in the torsion bars. A proof is presented to show that equal torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in minimizing the area between the model's rigid link approximation and smooth curve. The model is demonstrated through the physical construction of a deployable airfoil surface and a metallic deployable parabolic reflector.

1 Introduction

The objective of this research is to present a model which can be used to create a deployable surface with a simple actuation that closely approximates a generalized cylindrical surface, such as the one shown in Fig. 1, using torsional joints which can be manufactured as 2D geometries with thickness. The ability to transition from a flat sheet to a predetermined shape can lead to advances in applications such as stowable reflectors incorporated in space mechanisms, tunable optical devices, morphing aerodynamic or hydrodynamic structures, and conforming components like circuit boards to curved shapes. This research includes and expands on work presented at the Mechanisms and Robotics Conference at ASME IDETC 2020 [1].

A generalized cylindrical surface is one of the three classes of curved developable surfaces. A developable surface can be formed from a planar
surface through bending without any stretching or tearing [2]. A generalized cylinder is formed by translating a straight line, called the generator line, along a path in a plane perpendicular to the generator line. The path is called the directrix of the generalized cylinder. For example, a circular directrix would give rise to the common right circular cylinder. The method presented in this research enables the design of deployable, approximate generalized cylindrical surfaces where the directrix is a convex curve that does not self-intersect. Furthermore, the determination of the joint placement is investigated through optimization techniques to minimize error in the approximation of the surface and to include constraints on various parameters to ensure the functionality and manufacturability of the surface.

Part of the modeling presented in this research includes the characterization of the stiffness of a deployable surface. While this research focuses on using compliant torsional joints to introduce flexibility along straight lines in the surface (simulating the introduction of pin joints with a stiff ness), there is a substantial body of work on modeling stiffness of structures and manipulators in more general configurations and with joints exhibiting more degrees of freedom. For example, work in characterizing the stiffness of manipulators and soft robotic arms has been approached through matrix structural analysis (MSA) [3, 4], finite element analysis [5, 6], and the virtual joint method (VJM) [7–9].

Surfaces which can be controlled or predictably changed offer advantages in situations where a change in occupied space or a dynamic response to an environment is desired [10]. Varying geometry of morphing elements can produce smooth curved surfaces [11], while other techniques achieve morphing through approximating curved surfaces with discrete morphing elements [12]. Morphing can also be used to provide locomotion as was accomplished with printing liquid crystal elastomer bilayers [13] or transition between stable states as was done with a compliant six-bar dwell mechanism [14].

Origami and origami-inspired mechanisms provide examples of surfaces where a change from one state, perhaps a tightly compacted state, to another state, a deployed state, is desired. Examples of these include bio-inspired wing structures [15], a diameter-changing origami wheel [16], and an origami-based heart stent [17]. Self-folding qualities can induce morphing with actuation methods such as thermally activated shape memory alloys [18]. Kirigami has also been leveraged to create morphing structures in response to temperature and light changes [19, 20]. Origami and kirigami methods can enable simple manufacturing methods with complex morphing motions.

Morphing surfaces have also been used to enhance performance through creating desirable geometries and pro files. Morphing wings and flight surfaces have been investigated to create structures which can be dynamically modified to achieve geometries which perform well under varying environments or conditions [21–25]. Deployable reflectors use the principle of morphing or changing surfaces to create the desired collection shape while still having the ability to stow compactly [26–30]. Optimization is commonly employed to assist in the determination of geometry for these types of morphing geometries [31, 32].

This work specifically looks at generalized cylindrical surfaces, which are one of the four possible developable surfaces resulting from curved folds or creases in a surface [2]. The results of this work could possibly be incorporated into mechanisms and structures derived from curved-fold origami patterns to facilitate specific panel shapes or further increase the propensity of a panel to take a certain shape during deployment [33]. In comparison to the methods presented in the previous paragraph, the method presented here has characteristics of having an analytical model to create a geometry to approximate a deployed profile (as opposed to relying on finite element simulations or other numerical methods) and being simple to actuate through a single contractile element. Additionally, when torsion joints are used to form the flexible portions of the surface, the entire deployable surface can be made with planar-limited manufacturing techniques. The presentation of an optimization method to determine the placement of joint locations to minimize the error from approximating a continuous curved surface as a series of rigid links could be applied to several of the existing methods for creating morphing surfaces.

2 Method
2.1 Spring and Rigid-link Model for Generalized Cylindrical Deployable Surfaces

A model for creating generalized cylindrical deployable surfaces uses a system of rigid links joined by torsional springs that is actuated from a flat state by opposing tip loads to form a desired directrix in a
deployed state. The desired directrix is used to calculate the required stiffness of the torsional springs between each rigid link.

Let $L_1, L_2, ... , L_{N+1}$ be the lengths of $N + 1$ rigid links in the system and N is the number of joints between the links. Let $k_1, k_2, ... , k_N$ denote the equivalent stiffness of the torsion springs between the rigid links as shown in Fig. 2(a). The rigid-link system can be placed in the desired curved shape, represented by the function $y_{\text{desired}}(x)$, where all of the end points of the rigid links lie upon the curve. The deployed link angles $\theta_0, \theta_1, ..., \theta_N$, the deployed heights $y_1, y_2, ..., y_N$, and the distance between the tip loads r as shown in Fig. 2(b), can be determined from geometry. This information can be found by using vectors that represent each of the links to calculate the angle between these vectors to obtain the deployed link angles, and using $y_{\text{desired}}(x)$ to find the deployed heights for each x corresponding to a joint location.

With the system of rigid links in the desired curved shape the moment at the i-th joint, M_i, for joints $i = 1$ to N can be expressed as

$$M_i = k_i \theta_i (1)$$

The free body diagram drawn for the i-th joint in Fig. 3 with opposing tip loads, F, shows that the moment, M_i, can also be expressed as

$$M_i = F y_i (2)$$

By equating Eq. 1 and 2 we can find an expression for the stiffness of each torsion spring in terms of known geometry as

$$k_i = F y_i \theta_i (3)$$

The Lamina Emergent Torsion (LET) is a compliant joint that allows for a twisting motion [34–36]. A full LET joint consists of four torsion bars, a set of two parallel torsion bars.
or thickness of the torsion bars can be changed to specify a certain stiffness.

Chen et al. developed expressions for the stiffness of a rectangular torsion bar, the basic torsional element of the LET joint, that are symmetric (t and w are interchangeable) [40]. This is helpful for design situations where the geometry is not known a priori. The stiffness expression of a single rectangular bar is repeated here for reference [40]:

\[k = GJ \]

where \(G \) is the shear modulus of the material, \(L \) is the length of the torsion bar, and in terms of the width \(w \) and thickness of the torsion bar \(t \)

\[2t^3w^3t^2 + 7tw^2 + 2.609tw + w^2 \]

\[1.17l^2 \]

\[2.191tw + 1.17lw^2 \]

In the model. An example of the geometry of a LET joint chain with two torsion bars on each ruling line is detailed in Fig. 4. The torsion bars of the LET joints are well suited to the model for deployable surfaces as the joints can be planar manufactured as part of a sheet, have a relatively stable axis of rotation, and have geometry which can be modified to change the stiffness of the joint in a predictable way using a spring models [34, 39]. For example, the length, width, term in the expression for \(J \) the stiffness of the torsion bar from Eqs. 4 and 5. Moreover, the expression from Eq. 4 is multiplied by a factor \(m \) which corresponds to the number of parallel torsion bars along the ruling line of the torsional spring

Rearranging to move all terms to a single side results for joint \(i \),

\[\theta_i = \frac{mGJ}{d_1d_2} \]

\[0 = Fy_i \]

There is some flexibility in determining which geometric parameter(s) are allowed to vary to satisfy this equation. For example, all terms could be defined except for \(w \) and the equation can be solved numerically to find the width of the torsion bar.

For more complex joint types or considering degrees of freedom other than just twisting about a single axis, more in depth stiffness modeling techniques could be used to obtain a relationship between the geometry, loading, and the stiffness [41].

3 Copyright c by ASME

Fig. 4. A chain of LET joints with important dimensions shown with the corresponding model schematic shown below. This chain has five rigid links and four torsion springs.

\[\sum_{i=1}^{n} 0 = \sum_{i=1}^{n} Fy_i \]

\[L \]

\[\text{Areal Profile Error Lineal Profile Error} \]

Fig. 5. The design variables, \(\delta_i \), are the distances between torsional springs (three shown here). The objective to be minimized, the areal profile error between the desired and actual surface, is shown shaded

2.2 Joint Placement Optimization

Multidimensional optimization can be used to determine joint locations for a specified number of torsion joints, \(N \), which will minimize the error in approximating the desired profile with a series of rigid links and allow for the introduction of additional constraints in the design problem.

The distances between joint locations, \(\delta_i \), are the design variables where \(i = 1 \) to \(N \). To simplify the optimization, problem constraints are added such that
the design variables must be positive, represented as:

\[\delta_i > 0. \quad (7) \]

These constraints ensure that the ordering of the torsion bars does not change throughout the optimization process. The design variables, \(\delta_i \), can be related to \(d_i \), the distances of the torsion springs from one end of the deployed surface where \(i = 1 \) to \(N \) as shown in Fig. 5.

The objective function for the optimization problem can be defined as a minimization of the areal profile error, the area between the desired directrix \(y_{\text{desired}}(x) \) and the actual deployed shape’s directrix \(y_{\text{poly}}(x) \) where the subscript \(\text{poly} \) stands for polyline or polygonal chain. The objective function to be minimized is thus written as

\[F(\delta) = \text{Areal Profile Error} \]

in red. The lineal profile error which can be limited with a constraint is also shown.

representing the rigid links. During implementation numerical integration was used to evaluate the areal profile error. It is best to pair this objective function with a constraint on the maximum deviation of the system from the desired curve, the lineal profile error. The lineal profile error can be expressed as

\[\text{Lineal Profile Error} \]

\[= \frac{1}{L} \int_{x_0}^{x} \left(y_{\text{desired}}(x) - y_{\text{poly}}(x) \right) dx \quad (8) \]

where \(y_{\text{poly}}(x) \) is determined from the vector of design variables, \(\delta_i \), to create a piecewise function of straight lines representing the rigid links. During implementation numerical integration was used to evaluate the areal profile error. It is best to pair this objective function with a constraint on the maximum deviation of the system from the desired curve, the lineal profile error. The lineal profile error can be expressed as

\[\text{Lineal Profile Error} \]

\[= \frac{1}{L} \int_{x_0}^{x} \left(y_{\text{desired}}(x) - y_{\text{poly}}(x) \right) dx \quad (8) \]

In the implementation to evaluate this constraint, the lineal profile error was found by locating the largest lineal pro file error for each segment determined to maximize the objective function of the distance between

\[\tau_i = 2.4M_i(w+t)w^2t^2 \quad (15) \]

\[1.271v^2 + 0.2829v + 0.0498 \]

\[v^2 + 0.27v + 0.0496 \]

\[\sum_{i=1}^{N} \delta_i \leq x_{\text{max}} \quad (11) \]

where \(v = \log_{10} \frac{t}{w} \). Similar to Eq. 5, a more accurate, higher order term resulting from curve fits is available for the second grouped term (see [42] for details) and this more accurate term was used...
If desired, additional constraints can also be introduced such as the maximum angular rotation of a torsional spring and the minimum or maximum lengths of the rigid links. Once a mechanism, such as a torsion bar, is decided upon to serve as the torsion spring, further constraints can be imposed to limit stress or size of the mechanism.

To illustrate these additional constraints consider a rigid link system which uses \(N \) torsion springs, which corresponds to the number of design variables. Let's assume a geometry similar to the one shown in Fig. 4, where the number of torsion bars on each ruling line is two \((m = 2)\) and the only geometric parameter we are allowing to change is the torsion bar widths \(w_i \).

Several constraints can be added to ensure functionality and the ability to be manufactured for the torsional joint system. Constraints can be added to require each torsion bar width, \(w_i \), to be greater than or equal to a minimum feasible width, \(w_{\text{min,allow}} \), represented as

\[
w_{\text{min,allow}} \leq w_i \text{ for } i = 1...N \quad (12)
\]

Constraints can be added to ensure the widths of the torsion bars of the torsion joints, \(w_i \), fit into the dimensions for the link lengths, \(L_i \), while accounting for the kerf from constructing the torsion joints. These constraints can be expressed as

\[
\begin{align*}
\frac{w_{i-1}}{w} &= a + \frac{\text{ker}f}{2} - L_i \leq 0 \\
\frac{w_i}{w} &= b + \frac{\text{ker}f}{2} - L_i \leq 0 \text{ for } i = 2...N \\
2w_i &\leq L_{N+1} \leq 2w_i\quad (13)
\end{align*}
\]

The highest stress in any torsional bar with a displacement angle, \(\theta_i \), is a shear stress occurring in the middle of the widest side of the torsion bar when stress concentrations are ignored. The highest shear stresses in each torsional bar, \(\tau_i \), can be constrained to be less than an allowable shear stress value, \(\tau_{\text{allow}} \),

\[
\tau_i \leq \tau_{\text{allow}} \quad (14)
\]

To calculate the highest shear stresses in each torsional bar a symmetric formula has been developed and can be used where \(t \) and \(w \) are once again interchangeable [42] as

Proposition 1. Let \(f(x) \) be a function whose graph is a parabola on the interval \([\alpha, \beta]\). Let \(P \) be the polyline consisting of \(n \) line segments with endpoints, \((x_0 = \alpha, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), ..., (x_{n-1}, f(x_{n-1})), (x_n = \beta, f(x_n))\). If \(P \) minimizes the area profile error between itself and the parabola, then \(x_{i+1} - x_i = \beta - \alpha \)

\[
\text{for } i = 0, 1, ..., n - 1; \text{ i.e. spaced along the x-axis.}
\]

the points are equally spaced along the x-axis.

\[ax^2 + bx + c \text{ for some real numbers } a, b \text{ and } c. \]

We give a proof by induction on \(n \).

If \(n = 2 \) then \(P \) consists of the points \((0, f(0)), (x_1, f(x_1)), \) and \((\beta, f(\beta))\). Let \(T_1 \) denote the trapezoid formed from the points \((0, 0), (0, f(0)), (x_1, f(x_1)), \) and \((x_1, 0)\). Let \(T_2 \) denote the trapezoid formed from the points \((x_1, 0), (x_1, f(x_1)), (\beta, f(\beta)) \) and \((\beta, 0)\). Let \(A(T_1) \) and \(A(T_2) \) denote the areas of the two trapezoids respectively. The sum of these two areas can be expressed as a function of \(x_1 \) as follows

\[
A(T_1) + A(T_2) = \frac{1}{2}(f(0) + f(x_1))x_1 + \frac{1}{2}(f(x_1) + f(\beta))(\beta - x_1)
\]

5 Copyright c by ASME
\[A(x) = ax^2 + bx + c \]

To maximize or minimize this function we take a derivative with respect to \(x \), which results in

\[\frac{dA}{dx} = 2ax + b. \]

Set \((0, x_1, x_2, \ldots, x_k) \) and \((x_{k-1}, x_k, \beta) \) are equally spaced, the numbers in the list \((x_0, x_1, x_2, \ldots, x_k, \beta) \) are equally spaced. Therefore \(x_{i+1} - x_i = \alpha \).

imizing \(A(T_1) + A(T_2) \) is equivalent to minimizing the area profile error between \(P \) and the parabola. If \(a \) is positive and \(x_2 \) is placed halfway between \(a \) and \(b \), this completes the base case.

Suppose the result holds when \(n = 1, 2, 3, \ldots, k \) for some integer \(k \). Let \(P \) be a polyline consisting of \(k + 1 \) line segments that minimizes the area profile error. Consider the first \(k \) line segments. The \(x \) coordinates of the endpoints are \(0, x_1, x_2, \ldots, x_k \). Note that the line segments, call it \(P_k \), must minimize the area profile error between \(F \) and a polyline with a smaller area profile error than \(P \), a contradiction. Thus by the inductive hypothesis, \(0, x_1, x_2, \ldots, x_k \) are equally spaced along the \(x \)-axis.

This completes the inductive step and thus the result holds for all positive integers \(n \).

2.3 Shape Throughout Deployment

The shape the surface takes throughout deployment as a function of the deployment force can be determined once joint placements have been selected and the stiffness of each joint calculated that is required for the desired profile and deployment force. That is, we assume \(k_i \) and \(L \) are known for each joint from \(i = 1 \) to \(N \), and we want to solve for the force-displacement behavior where \(F \) is the actuation force with corresponding angles \(\theta_i \) where \(i = 0 \) to \(N \) to fully define the position of the surface. A system of equations governing the shape's force-displacement behavior is set up in the following way. A constraint is established by summing the vectors representing the links from Fig. 2(b) about a loop where the horizontal components are positive, where \(r \) is the distance between the actuation forces and the vertical components.

Using the free-body diagram from Fig. 3, \(N \) additional equations can be written, where the moment-balance rela tionship for the first joint \(k_1 \) is

\[F(L_1 \sin \theta_0) = k_1 \theta_1 \]

and for the remaining joints for \(q = 2 \) to \(N \) as

\[q-1 \sum_{i=1}^{q-1} \frac{\theta_0 - \theta_i}{L_{i+1} \sin \theta_j} = k_q \theta_q. \]
This system of equations is amenable to solving numerically with a single unknown and using substitutions. Let θ_0 be a single unknown and use Eq. 18 to calculate θ_1. The process can then be continued to sequentially calculate each θ_q for $q = 2$ to N by using Eq. 19. These values can then be used in Eq. 17 as the single equation to satisfy.

In-depth characterization of all equilibrium states is left to
Table 1. Optimization parameters for a deployable airfoil surface

<table>
<thead>
<tr>
<th>Parameter Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Torsion Springs (N)</td>
<td>12</td>
</tr>
<tr>
<td>Tip Load Force (F)</td>
<td>0.5 lb (2.22 N)</td>
</tr>
<tr>
<td>Shear Modulus (G)</td>
<td>64.4 ksi (444 MPa)</td>
</tr>
<tr>
<td>Thickness of panel (t)</td>
<td>0.063 in (1.60 mm)</td>
</tr>
<tr>
<td>L_t 1.3 in (3.3 cm)</td>
<td></td>
</tr>
<tr>
<td>w_{min,allow} 0.06 in (1.5 mm)</td>
<td>ker f 1/16 in (1.59 mm)</td>
</tr>
<tr>
<td>t_{allow} 1,590 psi (11.0 MPa)</td>
<td>Allowable Lineal Profile</td>
</tr>
<tr>
<td>Error 0.04 in (1.0 mm)</td>
<td></td>
</tr>
</tbody>
</table>

The resulting joint positions after the optimization are shown by the thick black line in Fig. 6(a). The stiffnesses required for the desired profile and actuation force were calculated and the corresponding LET joint geometry determined. With the stiffness values for the joints, the shape throughout deployment was calculated as described in Section 2.3 and plotted in Fig. 6(a). The force-deployment shape results were used to plot the maximum height of the deployed shape against the deployment force as shown in Fig. 6(b). This plot shows how small amounts of shape change occur as the actuation force increases until a critical buckling force where large amounts of deformation occur rapidly. This nonlinear shift in stiffness has been investigated for kinematic chains containing joints with passive stiffness [8].

The resulting LET joint pattern was cut from a polypropylene sheet using an abrasive waterjet. The pattern is shown in the flat and deployed states in Fig. 7. The optimization results and experimental measurements taken on the prototype are summarized in Table 2. Basic photogrammetry was carried out using MATLAB to measure approximate lineal profile error in the deployed shape. The largest error occurred in the leading edge where some parasitic or unwanted motion occurred due to compression of the LET joints by the tip loads. A thin PET adhesive film 2.5 mils (0.064 mm) thick was then applied to the top layer of the pattern to decrease the parasitic motion while minimally affecting the torsion performance, similar to a technique investigated by Chen et al. [44]. This appeared to reduce some of the parasitic motion, yet increased the lineal profile error. The pattern with the PET covering is shown in Fig.
some options exist to minimize this impact. Specifically, a sandwich structure where the thin film is applied between two sheets of the same thickness can maintain the neutral axis of bending and torsional axes locations. Another option is to adhere the film to only the areas of the pattern that are not in torsion to help maintain the torsional behavior of the joints, as is further discussed in [44].

The force to deploy the pattern to the profile was measured using a small digital scale. Accurate, repeatable measurements were limited with the current measurement set up and more rigorous instrumentation is recommended for future work. There is some discrepancy between the designed tip load force and the measured force. This could be due to a number of factors including errors in the shear modulus value used, manufactured kerf width, and perhaps most importantly bending observed from compressive forces in the structure that accompanied the torsional deflection.

![Image](image_url)

Fig. 7. Deployable top surface of a Clark Y airfoil made from polypropylene using an abrasive water jet, where (a) is the flat surface, (b) is the deployed surface, and (c) is the deployed surface with a PET membrane to reduce parasitic motion.

3.2 Deployable Parabolic Reflector

The model was also used to design a deployable parabolic reflector made of Aluminum 7075-T6. The target deployed shape has a focal point four inches from the vertex. The flat, undeployed dimensions are 18.36 in by 10.2 in (46.6 cm by 25.9 cm). The parameters used to set up the optimization are shown in Table 3. The optimized joint locations are shown on the thick black line in Fig. 8(a). As was done with the airfoil from the previous section, the calculated stiffnesses of the joints were used with the procedure in Section 2.3 to trace the shape through deployment and beyond the desired deployment shape as shown by the red profiles in Fig. 8(a). The tip load force was plotted against the maximum deployed surface height in Fig. 8(b) with points shown corresponding to the profiles plotted in part (a) of the figure. The presence of a critical load that results in buckling-like behavior is present in the plot.

The optimized parabolic reflector was manufactured from the aluminum using an abrasive water jet and is shown in the flat and deployed states in Fig. 9. The same testing set up as for the airfoil surface was used to experimentally determine a force at the desired deployed profile and photogrammetry was used to investigate the error in the profile. The resulting values of the final geometry and from experimental testing are described in Table 4. The deployed profile and desired profile matched quite well with a small observed lineal profile error. The required tip load force to achieve the desired profile also matched with small error. Considerably less bending was seen in this prototype than for the airfoil surface and no covering was used.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min value</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployed Spacing</td>
<td>5 in (127 mm)</td>
<td>10 in (254 mm)</td>
</tr>
<tr>
<td>Link Lengths</td>
<td>0.298 in (7.57 mm)</td>
<td>0.354 in (8.99 mm)</td>
</tr>
<tr>
<td>widths</td>
<td>0.084 in (2.13 mm)</td>
<td>0.128 in (3.25 mm)</td>
</tr>
</tbody>
</table>

4 Discussion

Certain tradeoffs from employing torsion bars to create deployable surfaces can be illuminated by rearranging Eq. 6 as

$$w = \frac{4L}{3t} \left[\frac{t}{t+L} \right]^{1/2}$$
Table 3. Optimization parameters for a deployable parabolic surface made of aluminum.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Torsion Springs (N)</td>
<td>22</td>
</tr>
<tr>
<td>Tip Load Force (F)</td>
<td>1.75 lb (7.78 N)</td>
</tr>
<tr>
<td>Shear Modulus</td>
<td>3,910 ksi (26.96 GPa)</td>
</tr>
<tr>
<td>thickness of panel (t)</td>
<td>0.040 in (1.0 mm)</td>
</tr>
<tr>
<td>L_i, 0.9 in (2.29 cm)</td>
<td></td>
</tr>
<tr>
<td>m, 6</td>
<td></td>
</tr>
<tr>
<td>$w_{min,allow}$, 0.1 in (2.54 mm)</td>
<td></td>
</tr>
<tr>
<td>$ker f$, 1/16 in (1.59 mm)</td>
<td></td>
</tr>
<tr>
<td>T_{allow}, 38,800 psi (268 MPa)</td>
<td></td>
</tr>
<tr>
<td>Allowable Lineal Profile Error</td>
<td>0.060 in (1.52 mm)</td>
</tr>
</tbody>
</table>

Table 4. Optimization and experimental results for a deployable parabolic surface from aluminum.

| Parameters Min value Max Value |
|--------------------------------|----------------|
| Deployed Spacing δ_i | 0.696 in (17.7 mm) 0.696 in (17.7 mm) |
| Link Lengths, L_i | 0.696 in (17.7 mm) 0.963 in (24.5 mm) |
| widths w, 0.158 in (4.0 mm) | 0.460 in (11.7 mm) |
| w/t ratios | 3.94 11.49 |
| Lineal Profile Error | 0.008 in (0.20 mm) |
| Areal Profile Error | 0.081 in² (0.52 cm²) |
| T_{max}, 15.1 kpsi (104 MPa) | Shear stress factor of safety 2.57 |
| Undeployed (Flat) length | 18.361 in (46.6 cm) |
| Experimentally Measured Values| Lineal Profile Error (Photogrammetry) ≈ 0.018 in (0.46 mm) |
Fig. 8. (a) The optimized joint locations on the desired parabolic profile shown by the points on the thick black line while the thin red lines show the shape for actuation tip loads up to and even beyond deployment to the desired profile. The blue line represents the flat, undeployed surface. (b) The maximum height of the deployed shape vs. the actuation force with points corresponding to the profiles shown in part (a).

Fig. 9. Deployable parabolic reflector made of aluminum, where (a) is the flat state, (b) is the deployed state with light reflecting off the surface.

From left to right these terms are determined by the desired actuation force, the material used, the desired profile where \(f(t,w) \) is a function of \(t \) and \(w \) that depends on which form of \(J \) in Eq. 15 is selected (the higher order more accurate expression or expression presented in the equation). From this form we can see that there are several options to achieve the required deflections. The first is to reduce the required deflections themselves. This can be accomplished by increasing the number of torsion joints \(N \) which in turn lowers the \(\theta_i \) magnitudes. The maximum number of joints \(N \) that can be introduced reaches a limit imposed by the manufacturing constraints that the widths of the torsion bars must fit within the link lengths. A second option to achieve required deflections is to choose a material with a high ratio of maximum shear stress to shear modulus. Several materials and these ratios are shown in Table 5 to provide a comparison of how amenable a material is to large deflection of torsion bars. The third option to obtain the required deflections is to increase the torsion bar lengths, \(L_t \). This can be limited by space constraints and also the introduction of unacceptable parasitic motions other than torsion when the torsion bar lengths are extended. Finally, \(t \) and \(w \) can be selected such that \(f(t,w) \) results in as large as values as possible. Chen et al. recommend a ratio of \(t/w \) to be \(\leq 0.35 \), \(= 1 \), or \(\geq 2.86 \) to accomplish this [42].

Equation 20 implies that the number of torsion bars along a ruling line \(m \) can be changed to affect the magnitude of the tip load, yet \(m \) has no effect upon the stress, as \(m \) is not present and doesn’t affect any of the terms in Eq. 21.

Minimizing the areal profile error in the model pushed all of the error between the desired and deployed directrix to the area of greatest curvature of the desired directrix. This Table 5. A small sample of possible materials for torsion bars. Materials with high ratios of shear yield stress, \(t_{\text{yield}} \), to shear modulus, \(G \), are good candidates for maximizing deflection in deflection-limited
tension bar geometries (property values from supplier data sheets and [45], with approximations as required for shear modulus by \(G = E/(2(1+v)) \) and shear yield strength \(T_{yield} \approx 0.577\sigma_{yield} \) where \(\sigma_{yield} \) is the tensile yield strength). While PMMA has an excellent ratio, it is a brittle material and susceptible to stress concentrations.

Material \(1000 \times T_{yield}/G \)

- PMMA (Acrylic) 24.5°
- Polypropylene 24
- Titanium (Ti-6Al-4V) 11.7
- Steel (4340) 11
- Aluminum (7075-T6) 9.9

was corrected by placing a constraint on the linear profile error. The effect of minimizing the linear profile error with a constraint on the area profile error was also investigated with similar results, though the optimizer required more iterations to converge. Further investigation of definitions of profile error and suitable objective functions to minimize the error for the model present possible directions for future work.

As seen in the results from the physical prototypes, it appeared that bending accompanied the torsional deflection. Work can be done to incorporate bending effects into the analytical modeling for more accurate design estimates.

Both prototypes were deployed by moving two smooth barriers towards one another to create a compressive force. Tension elements, such as cables or strings, could be used to pull the two edges of the panel together to create an ultra lightweight actuation method, though the effects of the point loads caused from the elements should be considered.

The model constructed using chains of torsion joints results in a deployable surface that can function as the final surface or as a structure underneath a flexible skin. Further studies need to be conducted to see how well the deployed surface would behave if used in an application with multiple loading conditions, such as with a distributed pressure load from an aerodynamic loading. Because aerodynamic loads fluctuate, it poses a challenge to design a single structure for multiple load cases where both the deployed structure's stability and aerodynamic stability are considered. One possible path forward to address a more complex loading scenario would be to use a support structure underneath the deployed surface where hard stops align during deployment to resist compression loads on the surface of the structure.

5 Conclusion

A model has been presented as a way to create generalized cylindrical deployable surfaces with convex directrices conducive to being implemented with torsional compliant joints. The shape during the deployment process is also described. The model is demonstrated using the torsion bars of LET joints as torsion springs. A multidimensional optimization model was used to efficiently locate a given number of compliant joints along the directrix to minimize the error between the desired and actual directrix. Constraints were also enforced to ensure performance and a manufacturable geometry. The model was demonstrated through the physical creation of several prototypes in various materials. While the methodology shows potential for advancing the design of precise deployable surfaces, further investigation of the effects bending accompanying the torsion and the effects of various loading conditions upon the deployed surfaces should be conducted. Actuation methods could also be incorporated into the material itself to create a compact package that can morph when a stimulus is applied.

Acknowledgements

This material is based on work supported by the National Science Foundation under NSF Grant 1663345 and NSF GRFP Grant 1247046. The authors acknowledge the University of Southern Indiana (USI) Foundation for supporting this research through a Science, Engineering, and Education Research Grant Award (SEERGA) and Justin Amos for his assistance with prototype fabrication. The authors would also like to acknowledge John Sinkovic for his insight into proving the optimal spacing for parabolic profiles where additional constraints were not binding.

References

11 Copyright c by ASME.
Journal of Mechanisms and Robotics, 9(2).

