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 ABSTRACT 
 

Sedimentology and Taphonomy of the Abydosaurus mcintoshi Quarry, 
 (Naturita Formation, Early Cretaceous, Latest Albian),  

Dinosaur National Monument, Utah 
 

Aaron Daniel Holmes 
Department of Geological Sciences, BYU 

Master of Science 
 

The holotypic locality of the brachiosaurid titanosauriform sauropod, Abydosaurus 
mcintoshi, is quarry DNM-16, located in Dinosaur National Monument.  The bones are preserved 
near the base of a heterolithic, trough cross stratified to planar bedded sandstone channel 
complex. The trough cross to planar bedded sandstones mark times of variable flow with times 
of high flow velocity based on bones whose upper surfaces were eroded before final burial.  The 
abundance of mud with the dominant medium to fine sand, and poorly confined sandstone 
channels indicate the bones were transported and buried in medial to distal intermittent flows of 
a distributive fluvial system. 

 
The quarry is at the base of the Naturita Formation, the base of which is latest Albian in 

age.  The sauropods lived and died in the middle Cretaceous as the Cretaceous seaway advanced 
southward.  The unconformity below the Naturita Formation and on top of the underlying the 
Ruby Ranch Member represents the LK-2 sequence boundary. 

 
The quarry produced ~260 bones, all of which represent Abydosaurus, except for several 

small theropod teeth, denoting a single catastrophic event acting on a group of sauropods. About 
one-third of the bones occur in close association or articulation, including three skulls (one 
articulated with the first five cervical vertebrae), five limbs, and strings of caudal vertebrae. 
There is no evidence of preburial weathering or breakage, and trample scratch marks are rare. 
More than 20% of the bones exhibit irregular, mm-scale pits occur on the shafts and the articular 
ends of limb bones are commonly hollowed out. The irregular pits are termite foraging traces, 
and hollows indicate extensive mining by these insects.  At least seven individuals of 
Abydosaurus are present, representing at least two ontogenetic stages (juveniles and subadults). 

 
Together, these observations indicate the following: (1) the catastrophic death of a 

sauropod herd; (2) partial carcass maceration; (3) minor transportation, including articulated 
units (skulls, vertebrae, limbs); (4) rapid burial in migrating, ephemeral, branches of a 
distributary fluvial system; (5) channel migration resulting in in-situ scouring of the upper 
surface of some bones; (6) burial of scoured bones.  Termite infestation occurred both prior to, 
and after, fluvial entrainment and burial. 

 
 
 
 

Keywords: Abydosaurus, Naturita Formation, taphonomy, sedimentology, distributive fluvial 
system, Dinosaur National Monument, DNM-16  
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1 INTRODUCTION 

In North America, Cretaceous sauropod dinosaurs are relatively uncommon, and worldwide, 

sauropod skulls are rare due to their delicate construction (Chure et al., 2010; Zaher et al., 2011).   

Abydosaurus mcintoshi, described by Chure et al. (2010) was the first complete sauropod skull 

(DINO 16488) described from the western hemisphere.  It was recovered from Dinosaur 

National Monument Quarry 16 (hereafter DNM-16) along with three other skulls (DINO 17848, 

17849, 39727), ranging from complete skulls to an isolated braincase, as well as a number of 

articulated limbs, vertebrae, and other post-cranial bones.  It is important to understand the 

depositional environment and the taphonomic processes that led to preservation of these.   

With the discovery of Abydosaurus, differing interpretations of the boundaries of the 

members of the Cedar Mountain have been proposed. The upper bounds of the Cedar Mountain 

Formation are not well understood in Dinosaur National Monument, leading to ambiguity as to 

the boundaries between the different members of the Cedar Mountain Formation and the 

overlying Naturita Formation.  Proposed stratigraphic positions of DNM-16 range from the Ruby 

Ranch Member (Masters et al., 2004; Maxson, 2011), the Mussentuchit Member (Chure et al., 

2010), and an unnamed “transitional facies” (Kirkland et al., 2016).  Our study clarifies the 

stratigraphic position of the quarry at the base of the Naturita Formation (formerly the 

Mussentuchit Member of the Cedar Mountain Formation). 

The nature of the depositional environment has also been a point of conflict.  The quarry 

sandstone has been described as an anabranching channel intersection or deep scour (water hole) 

of an anastomosing fluvial system based on isolated channel morphology and rapid 

sedimentation rates from modern analogues in Cooper Creek, Australia and flume experiments 

(Masters et al., 2004; Maxson, 2011).  However, given recent studies on distributive fluvial 
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systems (Fisher et al., 2007; Nichols and Fisher, 2007; Hartley et al., 2010; Weissmann et al., 

2010; Nichols, 2012; Weissmann et al., 2013; Owen et al., 2015) and the information provided in 

our study, we propose the depositional environment more accurately aligns as a distributive 

fluvial system. 

This study provides a background of the quarry and analyzes the sedimentology and 

taphonomy of the quarry with discussions and interpretations after each section, followed by the 

overall discussion and conclusion.  With this, we seek to better constrain the depositional 

environment and stratigraphic position of the quarry and to understand the taphonomy of DNM-

16. 

1.1 Study Area   

The primary emphasis of the study is the ~10 m2 type locality of Abydosaurus mcintoshi, 

officially designated DNM-16 in National Park Service records.  Quarry DNM-16 is about 260 

m north of the Dinosaur Quarry Visitor Center and 400 m west of the Carnegie Quarry exhibit, 

within Dinosaur National Monument, Utah (Fig. 1).   The quarry is located on the southwestern 

flank of the Split Mountain Anticline, a Laramide feature, where the beds dip some 62 degrees to 

the south (Silliphant et al., 2002).  To put the quarry into stratigraphic context and to understand 

coeval depositional modes, the study area extends c. 150 m normal to strike and laterally about 

1300 m along strike, with the quarry about 400 m east of the western boundary of the study area 

(Fig. 1B). 

1.2 Age and Tectonic Setting 

The Cedar Mountain and Naturita formations are fluvial-lacustrine deposits (e.g., Stokes, 

1944; Young, 1960; Currie, 1998; Lorenz et al., 2006; Sprinkel et al., 2012; Carpenter, 2014).  

Two U-Pb radiometric ages have been recovered from detrital zircons from the Naturita 
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Formation, in or close to, the study area.  Mudstones incised by the quarry sandstones yield a 

maximum depositional age of 104.46±0.95 (Chure et al., 2010) while a unit higher in the section 

gives a maximum depositional age of 101.4±0.4 Ma (Kirkland et al., 2011).  Therefore, the local 

Naturita Formation can be no older than the late Albian—just below the Early and Late 

Cretaceous boundary using ages in Walker et al. (2012).  In the late Albian, western Utah was 

subject to crustal loading from the Cordilleran thrust belt (DeCelles, 2004).  One consequence of 

this loading was the creation of a backbulge.  The Cedar Mountain Formation terrestrial 

sequence stratigraphy was pioneered by Currie (1997).  We recognize the two sequences LK-1 

and LK-2 from this area.  However, we adopt the sequence boundaries of Greenhalgh and Britt 

(2007) and Sorensen (2011).  The Morrison Formation and basal sequence (LK-1) of the Cedar 

Mountain (Buckhorn Conglomerate, Yellow Cat, and Poison Strip members, sensu Greenhalgh 

and Britt, 2007) are hypothesized to have been deposited east of the backbulge in central Utah 

(Currie, 1998).  The other stratigraphic sequence (LK-2) of the Cedar Mountain Formation (the 

Ruby Ranch Member overlain by the Naturita Formation, sensu Sorenson, 2011) was later 

deposited as the foredeep basin overfilled and onlapped the forebulge in Currie’s (1998) model.  

1.3 Local Stratigraphy and Lithology 

The Cedar Mountain Formation unconformably overlies the Morrison Formation (Currie, 

1997, 1998; Greenhalgh, 2006; Hokanson, 2011; Sprinkel et al., 2012) with the hiatus spanning 

some 25 Ma (Eberth et al., 2005) (Fig. 2).  The Cedar Mountain Formation, in turn, is overlain 

by the Naturita Formation, which consists primarily of overbank mudstones and sandy fluvial 

channels.  The uppermost fluvial sandstones of the Naturita Formation are capped by the Mowry 

Shale (Walton, 1944).  The focus of this study is Quarry DNM-16.  The quarry is at the base of 
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an array of small, thin, poorly confined fluvial sandstone channels low in the Naturita Formation 

just above the Cedar Mountain Formation (Fig. 2). 

 Morrison Formation 

The Brushy Basin Member is the uppermost unit of the Morrison Formation and is 

dominated by silty mudstones, many of which are pedogenically overprinted.  The upper few 

meters of the Morrison Formation are typically marked by a thick, well-developed paleosol with 

root traces, slickensided peds, mottles, and iron stains (Stokes, 1944; Greenhalgh, 2006) 

interspersed with occasional sandstone-filled paleochannels.  This member is interpreted to have 

been deposited in a low-sinuosity fluvial system that was altered by pedogenic and groundwater 

processes (Currie, 1998).  The Morrison/Cedar Mountain Formation unconformity is described 

as a paleovalley resulting from the Cedar Mountain Formation fluvial systems eroding the top of 

the Morrison Formation (Currie, 1997, 1998; Greenhalgh, 2006; Hokanson, 2011; Sprinkel et al., 

2012). 

 Cedar Mountain Formation in Dinosaur National Monument 

The Cedar Mountain Formation was established to describe strata dominated by 

conglomerates, sandstones, and mudstones in the San Rafael uplift of Utah that are bounded 

below by the Morrison Formation and above by the Dakota Sandstone/Formation/Group and/or 

mudstones of the Cretaceous Interior Seaway (Stokes, 1952).  Young (1960, 1965) renamed the 

sandstones and carbonaceous mudstones of the Dakota Sandstone/Group on the Colorado 

Plateau the Naturita Formation, because the relationship to the Dakota Sandstone type locality in 

Nebraska could not be confirmed.  Kirkland, et al. (1997) redefined the Cedar Mountain 

Formation and divided it into an idealized layer-cake formation with the Buckhorn Conglomerate 
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and/or Yellow Cat Member at the base, overlain by the Ruby Ranch Member which in turn was 

overlain by the Mussentuchit Member in western extents of the formation. 

 Greenhalgh (2006) and Greenhalgh and Britt (2007) determined that the Yellow Cat 

Member, Poison Strip Sandstone, and Buckhorn Conglomerate are contemporaneous and 

represent different facies (floodplain, stream channel, and paleovalley fill, respectively) of the 

single terrestrial sequence (LK-1) at the base of the Cedar Mountain Formation.   

 The Ruby Ranch Member is characterized by non-smectitic clays that are often mauve 

with abundant caliche horizons that weather out as nodules (Kirkland et al., 1997).  It contrasts 

with the Mussentuchit Member, which is characterized by smectitic mudstones and fewer caliche 

horizons.  As defined by Kirkland et al. (1997) the Mussentuchit Member consists of the 

carbonaceous mudstones of the traditional Dakota Sandstone/Group—Young’s (1960) Naturita 

Formation terminology was seldom used (Carpenter, 2014).  The Mussentuchit Member, as 

defined, left the sandstones of the Dakota Sandstone as a separate formation consisting of 

sandstone beds and channels at varying positions within or on top of the Mussentuchit Member 

of the Cedar Mountain Formation.  Sorensen (2011) determined that the Dakota Sandstone on 

the Colorado Plateau is fluvial in origin, with laterally extensive sandstones representing 

meander belts of rivers and the Mussentuchit Member of the Cedar Mountain Formation 

representing floodplain deposits of those rivers.  In this paper, we use the term Naturita 

Formation, following Young (1960, 1965) and corroborated by Carpenter (2014), in including 

mudstones and related lithologies, as did Sorenson (2011), who considered the Mussentuchit 

Member of the Cedar Mountain Formation of the Kirkland et al. (1997) and “Dakota Sandstone” 

to be overbank and channel deposits, respectively, of the same terrestrial sequence (LK-2).  To 

clarify, we use the term Naturita Formation for strata bounded below by the Ruby Ranch 
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Member of the Cedar Mountain Formation and above by reworked marine mudstones and sands 

of the Mowry Shale.  Therefore, our model consists of the Morrison Formation, the Yellow Cat, 

and Ruby Ranch members of the Cedar Mountain Formation, followed by the Naturita 

Formation (Fig. 2). 

2 METHODS 

2.1 Sedimentology Methodology 

We employed an outcrop-scale analysis of the DNM-16 Quarry and surrounding 

genetically-related beds in order to identify bedforms, grain size, composition, and morphology.  

Bedform paleocurrent and channel depth-to-width ratios were measured in order to constrain the 

type of environment in which the dinosaurs were deposited.  The sand bodies themselves are 

poorly defined, the bounds of which are gradational into the surrounding mudstones or are 

poorly exposed.  For this reason, we exclude the gradational and covered sections, and only 

include the recognizable sandstones as the primary channel bodies. Satellite and aerial imagery 

was used to analyze channel morphology and stratigraphic position. Additionally, three 

stratigraphic sections were measured from the upper reaches of the Morrison Formation up to the 

base of the Mowry Shale.   

2.2 Taphonomy Methodology 

Bones were excavated and prepared using traditional methods.  This study utilized 

traditional methods as described by Britt et al. (2008; 2009) including a micro and macro 

examination of the bones using a light source raking across a bone’s surface to accentuate marks, 

scratches, and other bone surface modifications.  A database with bone information was linked to 

the quarry map utilizing MAPublisher for Adobe Illustrator to study bone orientation and 

association, the minimum number of individuals (MNI), taxon and element distributions, and 
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patterns of articulation and association.  Methods will be described in more detail for each aspect 

in their respective sections.  

3 STRATIGRAPHIC POSITION 

Several stratigraphic positions have been determined for DNM-16 in previous work.  We 

tested these conclusions by comparing the lithologies within, and immediately below, the quarry 

to definitions of the Ruby Ranch Member of the Cedar Mountain Formation and the mudstone 

facies of the Naturita Formation, and the unconformity between these stratigraphic units.  

Masters et al. (2004) and Maxson (2011) asserted the quarry is located within the Ruby Ranch 

Member of the Cedar Mountain Formation.  It is unclear how they determined the position 

except for citing Kirkland et al. without citing the year.  Presumably, they were referring to 

Kirkland et al. (1997), in which the Ruby Ranch Member is defined.  Chure et al. (2010) 

concluded DNM-16 was near the base of the Mussentuchit Member of the Cedar Mountain 

Formation, which, in the terminology we adopt for this paper, would be the base of the Naturita 

Formation.  Sprinkel et al. (2012) determined the quarry is in the Ruby Ranch Member of the 

Cedar Mountain Formation based on age (chronostratigraphy).  In the most recent paper dealing 

with the stratigraphic position of DNM-16, Kirkland et al. (2016) placed it on the boundary of 

the “Ruby Ranch Member” facies (quotes are theirs) and the overlying “transitional” facies, 

where the “transitional” facies is similar to the Mussentuchit Member.  Although the terminology 

differs, Kirkland et al. (2016) agrees with the stratigraphic position and lithology given in Chure 

et al. (2010). 

 Our analysis corroborates the position given in Chure et al. (2010) and followed by 

Kirkland et al. (2016), namely that the DNM-16 Quarry channels are at, or just above, the base 

of the Naturita Formation.  Locally, the base of the Naturita Formation consists of white or light 
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grey smectitic mudstones or sandstones, none of which are overprinted with caliches.  The top of 

the underlying Ruby Ranch Member of the Cedar Mountain Formation is marked by green, non-

smectitic mudstone (Fig. 3).  Below this diagnostic green mudstone, the channels are calcareous 

or overprinted with caliches, calcretes, and chert nodules that are diagnostic of the Ruby Ranch 

Member.   

 The varying proposed stratigraphic positions for DNM-16 may have arisen from the fact 

that the Naturita Formation channels are fluvial in nature and pinch and swell, and are so 

variable in the Dinosaur National Monument area.  For this reason, we base our study on 

lithologic characteristics and conclude that DNM-16 is located at or near the base of the Naturita 

Formation based on the first occurrence of the presence of smectitic clays, a definitive character 

of that formation. 

4 SEDIMENTOLOGY 

To gain insights into the depositional environment of DNM-16, its sandstones and their 

intervening mudstones were systematically studied by (1) determining the gross morphology of 

sandstone bodies/channels and (2) by dividing the sandstones and mudstones into lithofacies and 

noting their interrelationships.  

4.1 Channel morphology 

 Naturita Formation Channels 

The Naturita Formation possesses an abundance of laterally accreted channels, indicating 

a low accommodation system (Currie, 1997) (Fig. 4A).  These larger channels are similar to the 

bulk of the Naturita Formation (“Dakota Sandstone”) channels, being meander belts/tracts 

(Sorenson, 2011).  Meandering channels also have a low aspect ratio as described by Fisher et al. 

(2007), with well-defined bounds.   
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 DNM-16 Channels 

The extent of the quarry-related channel complex is relatively small, covering 230 m 

from east to west with an overall thickness of approximately 15 m.  Within this channel complex, 

the individual sandstone lenses are thin (0.25–2 m thick) with widths that vary from a few to tens 

of meters.  Their width-to-thickness aspect ratios range between 8:1 and 28:1, with an average 

ratio of 18:1.  These sandstones are much smaller than the typically wide and thick channels 

(formerly termed the Dakota Sandstone) of most of the Naturita Formation. 

The overall pattern within the quarry-related channel complex is isolated, thin sandstone 

lenses separated by sandy mudstones and mudstones, with an erosive to gradational basal contact 

to the mudstones.  With the mudstones dominating the system, the overall cross-sectional 

morphology lacks channel amalgamation or lateral accretion within the channel complex (Fig. 

4B).  On the east side of the channel complex, the sandstones sweep up-section.   

 In the Ebro Basin, Nichols and Fisher (2007) recognized that many floodplain facies 

contained thin sand sheets deposited by unconfined flows.  The poorly confined DNM-16 

channels are similar to the Ebro Basin floodplain sheet sands.  Fisher et al. (2007) classified 

channel types with their associated aspect ratio.  In that classification, the DNM-16 channels’ 

aspect ratios align as minor channels and sand sheets, demonstrating the DNM-16 channels are 

poorly confined (Fig. 5). The isolation of these poorly confined, fine-grained sandstone channels 

within mudstones, as opposed to amalgamated or laterally accreted sandy channels, indicate the 

bones were deposited in the distal reaches of a relatively high accommodation system in relation 

to the larger fluvial channels that are typically found higher in the Naturita Formation.   
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4.2 Lithofacies Descriptions  

As described in 4.1, the DNM-16 channel complex is characterized by poorly defined, thin, 

curved, lensoidal sandstones bounded by silty mudstones.  To better understand these sand and 

mudstone dominated packages, we subdivided each into lithofacies based on grain size, bedding, 

and sedimentary structures (Table 1). 

 Sandstone Lithofacies (S) 

The sandstone lithofacies group is divided into eight lithofacies, all of which contain 

<25% silt, clay, and mud.  All are poorly sorted and immature (Fig. 6).  Excluding the bones and 

clay rip-up clasts, grain sizes range from very coarse to very fine.  The dominant grain size is 

between medium and fine sand.  Sand grains are angular to sub-angular quartz with a substantial 

amount of lithic grains.  The sandstone lithofacies are further divided by bedding and 

sedimentary structures. 

Massive Sandstone (Sm)  

Lithofacies Sm is clean with medium and very fine sand, with a few beds of coarse to 

medium sand (Fig. 6C). It is massive and homogenous with occasional relict lamina/sedimentary 

structures.  The massive structure is attributed to bioturbation of a sandstone that originally had 

sedimentary structures. 

Planar-Laminated Sandstone (Sp)  

The planar sandstones are composed of fine to very fine sand (Fig. 6A-C; Fig. 7C-D).  

They are planar-laminated and common in the quarry and related beds.  Planar laminations are 

indicative of low velocity flow conditions or extremely high velocity flow conditions, however, 

due to high mud contents, we believe the former to be the dominant flow condition (Southard 

and Boguchwal, 1990). 

Ripple-Laminated Sandstone (Sr)  
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This lithofacies primarily contains medium to fine grained sand (Fig. 6D; Fig. 7B).  It 

also contains ripple laminations and resembles flaser bedding with dipping, laminated foresets. 

In three dimensions, the dipping foresets have linear and non-linear current ripples.  In some 

lenses, where the mud content is slightly higher, the resemblance to flaser bedding is more 

pronounced.  Alternating sand and mud laminations are typically attributed to bimodal flow 

conditions with tidal influence.  However, flaser bedding is also a sign of ephemerality and is 

commonly associated with desiccation mud cracks in ephemeral streams (Bhattacharya 1997; 

Martin, 2000). 

Climbing Ripple-Laminated Sandstone (Scr)  

This common lithofacies contains medium to very fine grained sand (Fig. 6E). It is 

dominated by climbing ripples rather than planar or tabular bedding like the ripple-laminated 

sandstone (Sr) lithofacies.  Flaser-like bedding is common.  The abundance of this lithofacies 

points to a fast rate of sedimentation with a high sediment to fluid ratio or a rapid decrease in 

flow velocity (Ashley et al., 1982).  Flaser-like bedding is recognized as a sign of ephemerality 

and is commonly associated with desiccation mud cracks in ephemeral streams (Bhattacharya 

1997; Martin, 2000), which is the case here as there are no marine deposits connected to the 

DNM-16 channels. 

Trough Cross Stratified Sandstone (St)  

Lithofacies St is very coarse to fine grained (Fig. 6B; Fig. 7C).  Only a few occurrences 

of this lithofacies are present around the DNM-16 channels.  It is characterized by lenses and 

beds with large, low-angle cross-sets between 25- and 50-cm-thick.  A 3D view of the cross-sets 

reveals trough shaped contacts in the dip direction of the cross-sets.  Trough cross bedding is 
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indicative of rapid flow velocity, likely indicating the initial reactivation of the system (Southard 

and Boguchwal, 1990). 

Undulatory Bedded Sandstone (Su)  

Although very coarse to very fine sands are present in this facies, medium to fine 

fractions dominate (Fig. 6A and 6F).  Mud content is highly variable, changing laterally within a 

single body and from sand body to sand body. The thin sandstones exhibit swaley-like bedding 

and are similar to oblique trough cross bedding and scour and fill structures.  The undulatory 

bedding or scour and fill structures may denote rapid sedimentation, but they also denote 

variations in flow velocity and turbulence within the flow itself.  This lithofacies may also be 

closely related to the trough cross stratified sandstone (St) lithofacies.  The flow conditions 

belong to the upper flow regime and display rapid deposition with chaotic flows scouring and 

redepositing (Coleman and Gagliano, 1960; Southard and Boguchwal, 1990).   

Rip-up Clast Filled Sandstone (Scl)  

This lithofacies ranges from medium to very fine grains and contains grey, oblate clay 

clasts with diameters up to 30 mm (Fig. 6G).  The clasts are most abundant beneath and adjacent 

to bones in the quarry.  The clay rip-up clasts are similar to the grey clay mudstones indicating 

scouring from the underlying mudstone. 

Convoluted Bedded Sandstone (Scb)  

This sandstone is comprised of medium to very fine sand (Fig. 6H).  The lamina in this 

lithofacies pinch and swell and in places resemble dish and pillar structures where laminations 

are disrupted via soft sediment deformation rather than primary deposition.  The convoluted 

bedding is attributed to trapped fluids, which indicates the rate of sedimentation was more rapid 
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than the rate of dewatering, causing the bedding to look massive and to create wavy, pinching 

and swelling lamina (Lowe and LoPiccolo, 1974) 

 Heterolithic Lithofacies (H) 

This lithofacies group is diagnosed by a clay content >25%, creating a heterolithic mix of 

interbedded sandstone and mudstone (Fig. 7).  The quartz grains range from very coarse to very 

fine sand, with fine to very fine sands being the most abundant.  The sands grains are poorly 

sorted and immature.  These lithofacies are poorly cemented, friable, flakey, and fissile, with no 

visible evidence of bioturbation.  They occur beneath and between the sheets and lenses of the 

sandstone lithofacies.  They can also occur above and adjacent to the mudstone lithofacies.  The 

exact nature of the heterolithic and mudstone lithofacies is not fully understood because they are 

easily eroded and often alluvium covered.  For those reasons, bedforms in this facies group are 

difficult to identify.  The heterolithic facies group are define primarily on bedforms.  

Interbedded, Planar-Laminated Sandstones and Mudstones (Hp)  

The planar-laminated sandstone of this facies is very immature and has a high mud 

content (Fig. 6B and 6D; Fig. 7A and 7C-D).  Individual units range from 2 mm to 20 mm thick.  

The interbedded mudstone laminations are generally between 2 mm and 10 mm thick. This 

lithofacies is common in the quarry and in some cases weathers with a globular popcorn texture 

due to smectitic clay (Fig. 7A).  The planar laminations represent times of low flow velocity 

(Southard and Boguchwal, 1990).   

Interbedded, Ripple-Laminated Sandstones and Mudstones (Hr)  

The ripple-laminated sandstone is immature and has a high mud content with sand grains 

between coarse to very fine grained, with dominantly fine grained sand and relatively few 

isolated coarse grains (Fig. 6D; Fig. 7B).  The sandstone thicknesses range from 2 mm to 20 mm 



   
 

14 
 

thick.  The interbedded mudstone laminations are generally between 2 mm and 10 mm thick.  

They are distinguished by the shallow dipping foresets on a millimeter scale and produce a 

lenticular-like to wavy-like texture with the interbedded mudstone.  The ripple laminations are 

indicative of high velocity flows relative to the other heterolithic facies (Southard and 

Boguchwal, 1990). 

Interbedded, Trough Cross Bedded Sandstones and Mudstones (Ht)  

There are only a couple instances of this lithofacies (Fig. 7C).  The sandstone is very 

immature, has a high mud content, and though it is dominanted by fine to very fine sand, it 

ranges from very coarse to very fine sand.  The thicknesses range from 2 mm to 20 mm thick.  

The interbedded mudstone laminations are generally between 2 mm and 5 mm thick.  The 

dipping foresets terminate against the troughs of neighboring bedforms and the troughs have a 

sharp basal contact.  The cross bedding is created in upper flow regime conditions (Southard and 

Boguchwal, 1990). 

 Mudstone Lithofacies (M) 

We recognize two mudstone facies.  They are composed primarily of mud, silt, clay, or a 

mixture with the grain size smaller than very fine sand.  Mudstones are the dominant lithofacies 

in the DNM-16 area.  Little sand is present.  Smectitic clay is common in this lithofacies, 

evidence by the popcorn-like texture of exposures.  The mudrocks are generally grey toned 

colors, with a tint of green in some cases.  This lithofacies is subdivided based on physical 

characteristics.  

Planar-Laminated Mudstone (Mp)  

Lithofacies Mp has weak planar laminations, with low fissibility and a greenish, grey hue 

(Fig. 7E).  The facies contains peds and gypsic snowballs (Buck and Van Hoesen, 2002; Buck et 
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al., 2010), and is apt to be highly smectitic.  Buck and Van Hoesen (2002) and Buck et al. (2010) 

interpret the snowballs to represent an evaporative paleosol-forming environment and the peds 

indicate a soil horizon (Retallack, 2001).  The grey indicates a poorly drained environment 

(Weissmann et al., 2013; Hartley et al., 2013); however, there are no definitive lacustrine or 

playa deposits, so the surrounding flood plain area may have been somewhat paludal.  This 

lithofacies is either the very distal portion of the flow or the overbank deposits. 

Homogenous Mudstone (Mn)  

In this lithofacies, the mudstones are grey and tend to break into nodules without definite 

cleavage planes (Fig. 7F).  It has little to no variation in color or composition throughout and has 

more of a green tint than the planar laminated mudstones (Mp).  These mudstones have less 

smectite noted by the lack of surficial popcorn textures.  This lithofacies may be the result of 

heavy bioturbation to the point where the burrows are unrecognizable.  This lithofacies 

represents overbank deposits. 

5 TAPHONOMY 

The taphonomic study mainly focuses on the micro and macro observations, with macro 

scale dealing with the map analysis and the overall fossil assemblage and the micro scale dealing 

with the actual skeletal abrasions and surface markings.  

5.1 Assemblage Characteristics 

  The DNM-16 Quarry map was compiled over several field seasons spanning over a 

decade, with c. 260 collected elements.  The map is generally complete except that some of the 

first bones collected were not mapped.  The map provides only a 2D plan view—the vertical 

positions of bones were not noted during collection.  The paper field maps were digitized, with 
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each bone created as a distinct object.  Each object was linked to a database in the GIS program, 

MAPublisher by Aveza Systems, to facilitate analysis. 

 Taxonomy 

Only two species are known to occur in the DNM-16 Quarry, the brachiosaurid sauropod 

Abydosaurus mcintoshi and a small theropod, represented by a few small teeth.  Decades ago, 

Robert Bakker collected parts (tibia, astragalus, dorsal vertebra, pedal phalanges and fragmentary 

femur) of a small coelurosaurid theropod from the channel complex that includes DNM-16. The 

exact site was not recorded but it is possible it came from what became DNM-16.  The specimen 

is cataloged into the Museum of Comparative Zoology at Harvard as MCZ 2404.  The MCZ 

theropod is not included in our study due to ambiguous site information, but is noted here as the 

specimen may have come from DNM-16.  In sum, the quarry is overwhelmingly dominated by a 

single taxon, Abydosaurus mcintoshi, making it a monospecific, macrofossil assemblage 

following the definitions of Behrensmeyer (2007). 

 In a time-averaged death assemblage, we expect to find several different species, 

however this quarry is dominated by a single taxon, Abydosaurus, represented by multiple 

individuals, discussed in Section 5.1.3.  This Abydosaurus assemblage provides strong evidence 

for a single catastrophic event as opposed to a time-averaged assemblage.  If this is the case, it 

also indicates that Abydosaurus mcintoshi was likely gregarious, a habit that is unusual, but 

previously noted for some sauropods (see Myers and Fiorillo, 2009).  

 Element Distribution 

Recovered bones are enumerated in Table 2 and their distribution is shown in Fig. 8.  

Collecting was biased against small bone fragments, which were usually not collected. 
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 To test the assemblage for evidence of hydraulic sorting we divided the bones into 

modified Voorhies groups (Voorhies, 1969; Behrensmeyer, 1975).  We modified the groups 

following Britt et al. (2009) because studies of sorting performed on modern bones (e.g., 

Voorhies, 1969; Behrensmeyer, 1975) may not accurately represent hydraulic impact on the 

large bones of sauropods.  Articulated units were included in our shape classes based on the 

shape of the articulated unit, not the individual bones.  The hydraulic fluid is also likely denser 

than 1.0 g/cc due to the increased sediment load, leading to rapid burial, which is discussed later.  

Densities are not included in these studies due to unknown pre-fossilized bone densities.  Instead, 

we use a size classification based upon the maximum dimension of the recovered elements.  The 

groups are labeled as: 

Small: <= 199 mm 

Medium: 200-499 mm 

Large: >=500 mm 

 The size distribution shows a higher frequency of small elements.  However, when 

combining the elements that are > 50 cm in maximum dimension, they have a frequency of 55, 

which shows there are numerous large elements.  Articulated unit dimensions were summed and 

counted as one larger unit.  The shape distribution shows an abundance of rod-shaped elements 

and relatively few block and complex elements.  This may be caused by double counting rib 

fragments coupled with inclusion of flat and block elements into articulated units.  The strings of 

vertebra alone would greatly increase the percentage of block elements if they were included as 

separate vertebra.  The same is true for the skull elements and the complex shaped elements, 

which would better reflect the shape groups of an assemblage with no sorting bias.  Overall, the 
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element distribution may have a slight sorting bias, but not enough to indicate substantial 

winnowing, sorting, or lag deposits described by Voorhies (1969) and Behrensmeyer (1975).   

 MNI 

The minimum number of individuals (MNI) was determined using the femora, which are 

the most common element that could be identified as to sidedness.  The left femora give an MNI 

of seven Abydosaurus mcintoshi individuals.  The two theropod teeth provide a MNI of one for 

the theropod.  Thus, at least eight individuals are represented in the quarry.   

 Ontogenetic Representation 

There are two ontogenetic stages represented in the quarry for Abydosaurus.  Like the 

MNI, we used the left femora to delineate the size range of the individuals (Fig. 9), with one that 

is slightly larger than the others (DINO 44912), and one that is significantly smaller than the 

others (DINO 44913).  The smallest femur likely represents a juvenile, while the others belong to 

subadults, which is confirmed by growth ring analysis conducted on core plugs removed from 

the bones by Michael D'Emic (Michael D’Emic, Personal Communication, 2017).  There are 

also two large vertebrae, 71.5 cm long (DINO 44914) that may pertain to an individual larger 

than represented by DINO 44912, the largest femur.  These may represent a large subadult or a 

possible third adult stage, the largest individual in the quarry. 

 In a time-averaged assemblage, we expect to find a bimodal distribution in ontogenetic 

representation as the normal mortality of individuals is high for both juveniles and for older 

adults (Behrensmeyer, 2007).  The majority of the Abydosaurus individuals at DNM-16 are 

subadults, suggesting a single catastrophic event killed off at least seven individuals, six of 

which were subadults—the strongest portion of the population, with the lowest probability of 

dying of non-catastrophic causes (Behrensmeyer, 2007).  
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 Orientation 

Bone orientation was measured using MAPublisher (Avenza, 2016), a module addition to 

Adobe Illustrator, by measuring the angle between 0° and 180° for orientation, and using 360° 

for vectors.  Rose diagrams were plotted and analyzed using PAST (Hammer et al., 2001), 

plotting two-way directionality of the bones (n=90) and vectors with the larger or proximal end 

of the bone as the origin (Fig. 10).  We measured orientations on disarticulated bones with a 

minimum of a 3:1 length-to-width ratio, following the recommendation of Voorhies (1969).  

Articulated units treated in the same manner.  PAST uses Rao's U spacing test, which tests the 

hypothesis of uniformity around 360°, designed for circular data, meaning the p value will be 

one for perfectly isotropic orientations and zero if every measurement is perfectly unidirectional.  

We also use Rayleigh's test, which tests against a random bone orientation.   

The individual bones and articulated units show a strong N-S trend.  Rao’s U test 

produces a p value of .06, which denotes a probable anisotropic orientation, but not conclusively.  

Rayleigh's test produced a p value much less than .01 and satisfies the assumption of unimodal 

distribution, meaning we can reject the null hypothesis and conclusively say that the orientations 

of the bones are not isotropic and there is a preferred orientation.   

The sample size for disarticulated bones and articulated units with a large and small end 

we used to test for flow direction is small (n= 21) and this test did not yield statistically 

significant p values.  

The bone orientations corroborate our bedform paleocurrent measurements (n=27) with 

flow directions to the north (Fig. 11).  During the Cretaceous, the inundation of the North 

American continent initiated in the North, which supports our bone orientation measurements 

indicating the flow was toward the North.  The anisotropically orientated bones were likely 
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influenced by a semi-unidirectional, semi-consistent flow as opposed to a single flooding event 

where the bones would be frozen or suspended in a chaotic, isotropic flow orientation (Eberth et 

al., 2006; Britt et al., 2009).  We also see the articulated limbs in a straight orientation as 

opposed to bent at the joints, meaning the distal end of the limbs are oriented parallel to flow 

direction.  This suggests a sustained flow that was sufficient to orient an entire articulated unit.  

We speculate that even brief, but rapid flow would be sufficient to orient bones and articulated 

units, such as limbs.   

 Articulation & Association 

The quarry preserves articulated and closely associated portions of skeletons, but no fully 

articulated skeletons.  Nineteen percent of the bones have at least two elements articulated while 

almost 33% of the bones are articulated or closely associated.  The most notable articulation 

groups include the sauropod skulls, which, outside of the Late Jurassic, are exceptionally rare.  In 

fact, the articulated skulls at DNM-16 were the first articulated sauropod skulls reported from the 

Cretaceous of the western hemisphere (Chure, et al., 2010). The most significant articulated 

specimens are the holotype skull articulated with four cervical vertebrae, DINO 16488, (Fig. 

12A) and the rostrum of a damaged skull, DINO 17848, (Figs. 12B and 13A-C).  The damaged 

skull preserves a completely articulated rostrum as well as partially disarticulated posterior 

portions of the mandible. In close association with these skulls are several disarticulated post-

cranial elements.  All the skulls are in the upper left quadrant of the quarry save for one isolated 

braincase, DINO 39727 (Fig. 12D).    

  Other articulated elements include several limb bones including the femora, tibiae, and 

fibulae (DINO 44913, DINO 44915, DINO 44916) (Fig. 12L-M and 12H) (Fig. 13D and 13F), 

articulated tibia and fibula (DINO 44922) (Figs. 12K and 13F), and one front limb including the 
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humerus, radius, ulna, and three metacarpals (DINO 44917) (Figs. 12N and 13E).  Phalanges are 

uncommon and never found in articulation.  There is also a partial foot with articulated 

metatarsals, which is closely associated to a tibia, fibula, and astragalus (DINO 44918, DINO 

44916) (Fig. 12I and Fig. 13E).  The remaining elements include an articulated sternal and 

coracoid (DINO 44919) (Fig. 12F), two cervical vertebrae (DINO 44914) (Fig. 12G), and partial 

pelvis with several sacral vertebrae with associated and articulated caudal vertebrae (DINO 

16485) (Fig. 12E). 

 The articulated units were sheathed in at least minimal soft tissue, perhaps large amounts 

of tissue, while entrained in fluvial flow after minimal rotting, minimal transport, rapid burial 

(hyoid, and stapes bones, and sclerotic rings still in eye area of best skull), otherwise this level of 

articulation and preservation would not be probable. 

5.2 Bone Modification 

Bone modification reveals much about taphonomic factors impacting the bones (Voorhies, 

1969; Shipman,1981; Behrensmeyer, 2007).  Here, we present information on taphonomic 

features on the bones from DNM-16 and interpret these markings.  Except for bones exposed to 

modern weathering or crushing/fracturing or due to tectonics, expansive clays, and slope 

slumping, most bones from DNM-16 provide substantial taphonomic information degradation.   

 Pitting 

Approximately 20% of the bones bear some degree of pitting.  This pitting ranges from 

clusters of numerous pits that are evenly and widely distributed across a bone’s surfaces, to 

distinct isolated clusters of shallow pitting (Fig. 14).  The pitting is either widespread across the 

entire bone or isolated to one or two surfaces, with 39% preferentially on the stratigraphic down 

side and 25% on all sides.  We did not observe any isolated pits.  
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The individual pits are low in relief (<1 mm) with rounded edges.  The pits are circular to 

elliptical with the outermost surface of bone being removed, but never breaching past the dense 

cortical bone.  Several pits penetrate to 1.5-2 mm deep, however, these deeper pits are 

gradational as the edges merge with shallower pitting before they grade to deeper pitting.  The 

dimensions of these pits are hard to constrain as the pits are never isolated.  The edges are poorly 

defined and often coalesce with surrounding pits to form one large harvested surface.  The pits 

still contain cemented matrix, which would not exist if the markings were modern in origin.  

The ends of 6% of the limb bones are completely missing and often the ends of these 

bones not only lack articular surfaces but are occupied by concavities that extend deep into the 

bone shafts (Fig. 14A). 

Dangerfield et al. (2005) and Britt et al. (2008) identified similar pitting patterns on fossil 

and modern bones.  The pits on modern bones were created by termites (Wood, 1976; Wylie et 

al., 1987; Tappen, 1994; Backwell et al., 2012).  These works noted that deep excavations into 

the ends of bones were the function of preferential insect scavenging of the softer, soft tissue-rich 

bone.    

 Scratch/Tooth Marks 

Scratch marks are present on a single bone, DINO 44921, a scapula.  The marks consist 

of cm-scale, similarly oriented, arcuate scratch marks c. 25 mm long and <1 mm deep (Fig. 14F).  

Aside from these, there are no definite scratch or damage marks caused post mortem.   

These scratches are similar to trample marks from the Dalton Wells Quarry (Britt at al., 

2009), however, the trample marks from Dalton Wells are very closely spaced with only a 

millimeter or two separating each mark in their sets, whereas these DNM-16 marks have c. 25 

mm between each mark.  In addition, trample marks are not visible on any other bones and due 
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to the high likelihood of flesh being present on the bones at the time of burial, they more closely 

related to tooth marks as a byproduct of vertebrate scavenging. 

 Pre-lithification Breakage 

The fractures and breakage surfaces of the bones are rough, and perpendicular to the long 

axis of the bones.  Pre-lithified breakage typically displays smooth, oblique fractures, if the 

bones are still fresh, or step fractures if the bones are dry (Shipman, 1981; Villa and Mahieu, 

1991).  The surfaces of the bones, although highly fractured, do not display any examples of pre-

lithification breakage.  Thus, there is no evidence of trampling in the quarry. 

 Weathering 

Pre-burial weathering was noted following Behrensmeyer (1978). There is no evidence of 

weathering, indicating the bones were buried soon after death, before the bones could be 

weathered. 

 Abrasion 

Except for a pair of large, articulated cervical vertebrae (DINO 44914), there is no 

evidence of abrasion.  The neural arches and the upper portion of these cervical vertebrae are 

missing and they were not damaged or lost during collection. The uppermost preserved surfaces 

of both vertebrae are planar, with the upper surfaces in the same plane in the quarry.  This plane 

was covered with mudstone at the time of discovery.  Beneath the mudstone, the fine, internal 

trabeculae of the highly pneumatic vertebrae are visible (Fig. 13E).  

This abrasion is interpreted as erosion by scouring.  The bones were buried upright and 

scoured by a later, sand-laden flow through the same channel, which excised and smoothed the 

surface.  During the waning flow mud settled over the abraded surface.  It is possible that similar 
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scouring destroyed some bones.  This suggests there may have been several episodes of burial, 

scouring, and secondary burial, and is strong evidence for the ephemerality of the system.  

 Crushing 

We did not quantify the number crushed bones but crushing and other post-burial 

deformation is evident on many bones.  The complete, articulated skull (DINO 16488) is 

moderately crushed about 50% from side-to-side and about 33% obliquely.  Likewise, the two 

large cervical vertebrae are severely dorsoventally crushed, with an estimated 50% reduction in 

volume. More robust elements, such as limb bones and phalanges range from uncrushed to 

flattened.  Crushing is attribute to post-depositional compaction of sediments.  The relationship 

of the amount of crushing as related to sediment type (e.g., mudstone, to clayey sandstone, to 

clean sandstone) was not noted during collection or preparation.  However, our experience in the 

lab with many vertebrate localities indicates crushing is largely tied to the amount of clay in the 

matrix.  Clean sands minimize crushing while the greater the clay content, the greater is the 

amount of crushing.  We conclude that variable clay content of the matrix at DNM-16 explains 

the variable degrees of bone crushing. 

 Post-Depositional Breakage 

The fracture surfaces are rough, and propagate straight across the short axis of the bones as 

opposed to smooth and oblique.  Micro fractures that do not propagate all the way through the 

bone are common.  The straight fractures perpendicular to the long axis imply post-burial 

breakage (Shipman, 1981).  All portions of broken bones are present which is symptomatic of in 

situ breakage and cementation, or cementation prior to breakage.   
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DISCUSSION 

The stratigraphic, sedimentological, and taphonomic data presented above was conducted 

to provide new insights into the stratigraphic position, depositional environment, and 

development of the DNM-16 bonebed.  In this section we consider the implications of these data. 

The Ruby Ranch Member of the Cedar Mountain Formation is characterized by red, 

mauve, and purple paleosols (Kirkland et al., 1997) indicating an oxidized, well-drained, 

semiarid environment (Hartley et al., 2013).  The top of the Ruby Ranch Member is commonly 

overprinted by a thick, highly oxidized paleosol (Sorensen, 2011), marking a depositional hiatus 

that we identify as the K2 sequence boundary.  This paleosol is not present in the study area and 

it was likely eroded with development of the Naturita Formation system tract.  The Naturita 

Formation is dominated by grey paleosols indicating poorly oxidized, poorly drained soils in a 

time when the climate was becoming more humid due to the encroaching seaway (White, et al., 

2000), with the grey paleosols reflecting the shift to poorly drained conditions (Hartley et al., 

2013).  This marked change from well drained to poorly drained, coupled with the mud-

dominated base of the Naturita Formation with sparse channels, shows a shift to relatively higher 

accommodation.  Higher in the Naturita Formation, the channels laterally accreted in a low-

accommodation system dominated by medium-sized rivers meandering across the landscape 

(Sorenson, 2011).  Currie (1997), Greenhalgh and Britt (2007), and Sorensen (2011) identify a 

terrestrial sequence boundary at the top of the Ruby Ranch Member of the Cedar Mountain 

Formation (LK-2); however, they do not identify the system tract of the Naturita Formation 

(Mussentuchit/Dakota members in their papers).  We believe the quarry to be located in a 

transitional to aggradational systems tract (Currie, 1997) as a non-marine, fluvial system.  

Our sedimentological study focused on the channel complex that includes the DNM-16 

quarry.  Masters et al. (2004) and Maxson (2011) concluded that the DNM-16 channel complex 
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was created in an anastomosing fluvial system.  Anastomosing fluvial systems have well defined 

channels and confined flows (Schumm, 1968; Miall, 1977).  This is also the case for meandering 

fluvial systems, although they generally contain a single channel as opposed to branching 

channels (Allen, 1970).  The channel morphology and lateral discontinuity of the DNM-16 

sandstone channels do not fit a well-confined channel model.  A braided fluvial system aligns 

with the rapid sedimentation, however this also does not match the stacking pattern, nor does it 

account for the abundance of mud and fine-grained sand in the DNM-16 system, as braided 

fluvial systems are generally sandy (Miall, 1977).  We conclude the DNM-16 depositional 

environment was that of a distributive fluvial system, which diverts away from a primary 

channel and does not return.  Distributive fluvial systems differ from tributary fluvial systems in 

that they are unconfined unless the channel is incising, channel dimensions decrease or remain 

constant distally in the system while tributary fluvial systems increase in dimensions, and 

grainsize decreases downstream with no input from tributaries (Davidson et al., 2013). 

The repetitive vertical stacking of muds/fine sand deposition (lithofacies Sr, Sp, Hr, and 

Hp) alternated with medium sand deposition (lithofacies St and Su) is indicative of alternating 

low velocity and high velocity flow (Southard and Boguchwal, 1990).  This is also evident from 

the abrasion of the two vertebrae that had the neural arches scoured off as the system reactivated 

after a time of little or no flow.  Overall, the variance shows this to be a system that is ephemeral 

with times of high flow velocity, low flow velocity, stagnant flow, or no flow.  The strongest 

evidence fluctuating flow is the flaser-like bedding (Bhattacharya 1997; Martin, 2000). 

With the alternating lithofacies, the DNM-16 channels and surrounding area have 

abundant fine-grained material and mud.  This is further punctuated by the lack of anything 

larger than very coarse sand, aside from the bones and gastroliths.  We attribute this is due to the 
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ephemerality of the system.  If flow was consistent the sediments would be better sorted and the 

muds winnowed out (Voorhies, 1969; Allen, 1970), but the local system is laden with fine-

grained sediments, especially clays.  In the Mississippi River, the bedload is primarily sand, 

while the suspended load is silt and clay.  The silts and clays are transported through a consistent 

flow and are deposited in the Mississippi Delta (Lane, 1938).  In the DNM-16 system, the mud 

and silt is not transported further, but is being deposited, indicating a waning flow.  This supports 

our hypothesis that DNM-16 represents the distal reaches of a distributive fluvial system. 

At the eastern edge of the DNM-16 channel system the terminal edges of sandstones 

curve upsection (Fig 4B). The bases of these sandstone channels are incised into floodplain 

mudstones, indicating channel scour, which is known to occur, even in the distal reaches of 

distributary systems (Weissmann et al., 2015), although the distal end of a system is typically not 

highly erosive. We speculate the upcurved ends of channels relates to it being a paleovalley fill 

and differential compaction of underlying floodplain clays.  

In the distal portion of a distributive fluvial system, the sedimentation rate is high as the 

channels become less confined and the flow capacity decreases, which provides a mechanism for 

the bones to be rapidly buried.  The abundance of climbing ripples in the quarry and related 

channels are indicative of rapid sedimentation rates.  The articulation of the bones, due to the 

presence of soft tissue at the time of final burial, also indicates a rapid sedimentation rate.  The 

absence of bone weathering indicates the bones were buried shortly after death. Behrensmeyer 

(1978), studied the weathering stages of bones in different environments over time.  After one 

year of being exposed, every environment produced at least stage one weathering with a stage 3 

from the swamp. Similarly, from the observation of modern, fresh carcasses, Voorhies (1969) 

discerns that after a year, the bones were cracked and split, showing signs of heavy weathering.  
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He also observed that bioerosion from insects and larger scavengers removed the flesh of a calf 

in two weeks and disarticulation was complete after almost three months.  Abydosaurus is much 

larger than a calf and would have taken longer to strip the flesh and disarticulate.  In either case, 

Abydosaurus was only partially disarticulated with no weathering.  We suspect this means 

Abydosaurus was buried due to rapid sedimentation rates within weeks post mortem. 

The presence of theropod teeth in the quarry as well as the possible tooth marks are 

evidence of possible vertebrate scavenging.  With the abundance of Abydosaurus carrion, 

feeding would have been minimal and not aggressive, as was the case when a large number of 

elephants died during a drought (Coe, 1978).  Voorhies (1969) states that if food were scarce or 

the bones were exposed for lengthy periods, they might have been devoured completely, 

however, if they are only exposed briefly, then the scavengers would have a short time to be 

selective before they were buried, meaning vertebrate scavenging occurred without abundant 

damage to the bones.   

The selective feeding principle also applies to the maker of the only other feeding traces 

on the bones, termites.  Termites probe to find the most nutrient-laden portions of bones - the 

cartilage-covered articular ends (Britt et al., 2008).  In time, they would devour the entire bone if 

it were exposed at the surface or just below the surface (Wylie et al., 1987).  Termite scavenging 

is expected to be the most abundant on the underside of the bones and on the articular ends 

where the insects are not exposed (Tappen, 1994).  This is true in most of the bones, however, 

there are some that are pitted on all sides, providing two scenarios for the DNM-16 termite trace.  

In the first scenario, the bones are completely buried and the insects burrow on all sides of the 

bones without being exposed at the surface.  In the second scenario, the bones were exposed long 

enough to exhibit burrowing on all sides.  The former is more likely for two reasons.  The bones 
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show no weathering, meaning they were not exposed at the surface for long, and even if the 

bones were exposed, they would be noticeably more pitted on the underside, which contradicts 

the even pitting seen on the bones.  However, this may also be due to the presence of soft tissue, 

apart from the fact that bone DINO 44913 is the only articulated bone that exhibits noticeable 

pitting on the surface, which is only light pitting.  

Masters et al. (2004) proposed the carcasses accumulated on sand bars between 

bifurcating channels, or sediment traps.  Our finding that the assemblage is catastrophic and 

monospecific makes this an unlikely scenario because a perennial stream would likely trap 

carcasses of a variety of taxa.   

In sum, the fluvial system of the DNM-16 channel complex is best explained by the 

distributive fluvial system hypothesis.  The DNM-16 architectural and lithofacies elements, as 

well as the taphonomic conditions (Fig. 15), match the architectural and facies elements 

described by Fisher et al. (2007), Nichols and Fisher (2007), Nichols (2012), and Weissmann et 

al. (2013) (Fig. 16).  The distributive fluvial systems also cover much of the earth today and are 

likely to be much more prevalent in the rock record than is currently recognized (Hartley et al., 

2010; Weissmann et al., 2010).  Finally, many of the fluvial systems are distributive fluvial 

systems in both the Cedar Mountain and Morrison formations, just below the Naturita Formation 

(Gary Weissmann, personal communication, 2016; Owen et al., 2015). 

CONCLUSION 

Abydosaurus was gregarious and the individuals preserved at DNM-16 died in a single 

catastrophic event during the late Albian middle Cretaceous as the Cretaceous seaway advanced 

southward.  There was a marked changed of environment from the semiarid environment of the 

Ruby Ranch Member.  The animals were preserved during a shift from an erosional phase to a 
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depositional phase at the base of the Naturita Formation, immediately above the Ruby Ranch 

Member of the Cedar Mountain Formation.  The erosive nature of the Naturita and DNM-16 

channels compiled with deep paleosols of the Ruby Ranch Member indicate a hiatus in 

deposition, which indicates the LK-2 sequence boundary at the base of the Naturita Formation.   

The Naturita Formation consist overwhelmingly of smectitic clays.  The base of the 

formation is mud-dominated with sparse channels, indicating high accommodation.  Up-section, 

the accommodation space decreases, preserving conglomeratic to sandy horizons representing 

fluvial meander belts, which were subsequently flooded by the Mowry and Mancos seaway.   

The DNM-16 system is an ephemeral distributive fluvial system with a high variance in 

flow velocity, grain size, mud content, and an abundance of angular grains and lithics.  The 

sedimentation rate was high and this is likely due to a rapid decrease in flow velocity as the 

channels become unconfined or less confined leading to rapid burial of Abydosaurus.  As the 

flow become unconfined, the flow ceased to scour and deposited sheet sands, or poorly 

channelized, minor channels.  The high mud content indicates the quarry is located in the distal 

portions of the distributive fluvial system. 

The quarry preserves a group of at least seven individuals, mainly subadult in age, with one 

juvenile and one possible adult or large subadult.  The quarry is monospecific, which points to a 

single, localized event as opposed to a death assemblage over time.  The carcasses were 

transported a short distance, with portions of skeletons held together with soft tissues.  The bones 

were scavenged by small theropods before burial and by termites before and after burial.  After 

burial, compaction of the muddy layers and local tectonics flattened, crushed, and fractured the 

bones.   
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This study clarifies the local stratigraphy, which has previously been a point of conflict.  It 

also shows the DNM-16 depositional environment, previously interpreted as an anastomosing 

system, was a distributive fluvial system.  Distributive fluvial systems are widespread across our 

planet, yet are given little recognition in the rock record.  We hope this study will bring attention 

to their abundance in the rock record, solidify the stratigraphic nomenclature for the Dinosaur 

National Monument area, and bring to light the importance of incorporating taphonomic 

information into depositional environment interpretations. 
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Fig. 1.  DNM-16 Locality map.  A) Paleogeographic location of DNM-16 during the late Albian, modified from 
Chure et al., 2010.  B) Aerial view of DNM-16 at Dinosaur National Monument in relation to the western United 
States.  Red box denotes study area.  Photo source: Dinosaur National Monument, 109°18’5” N and 40°26’25” W 
Google Earth. May 29, 2017. 
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Fig. 2.  Generalized stratigraphic models of the Dinosaur National Monument area.  Modified stratigraphic columns 
from Chure et al. (2010), Sprinkel et al. (2012), and Kirkland et al. (2016). 
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Fig. 3.  Stratigraphic columns of the DNM-16 study area.  A) Stratigraphic columns from East to West.  B) Aerial 
map correlating the location of the three measured sections.  Photo source: Dinosaur National Monument, 
109°18’5” N and 40°26’25” W Google Earth. May 29, 2017. 
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Fig. 4.  Plan view of the quarry and surrounding area.  A) DNM-16 channels in B emplaced with the surrounding 
channels of the Cedar Mountain and Naturita formations.  B) DNM-16 quarry channels and associated sandstone 
channels and their general morphology, as well as photo locations for Fig. 5A-B, and D.  Slight vertical 
exaggeration due to oblique photo angle.  Note: north is down in this figure to show the top as stratigraphic up.  
Photo source: Dinosaur National Monument, 109°18’5” N and 40°26’25” W Google Earth. May 29, 2017. 
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Fig. 5.  Outcrop view of the DNM-16 sandstone lithofacies highlighted in red.  Channel thickness ranges between 
0.5 m and 2 m.  A) Looking north from the top of the Naturita Formation.  B) Looking east from the west side of the 
hill; the channels pinch out and cannot be seen any further west (refer to Fig. 4B for reference).  C) Looking east 
toward the quarry from the west side of the channel complex (refer to Fig. 4B for photo location).  D) From the 
quarry looking west (refer to Fig. 4B for photo location).  E) South of Carnegie quarry looking west.  A-E display 
the thin, poorly defined sandstone channels as well as the lateral discontinuity. 
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Fig. 6.  Sandstone and heterolithic lithofacies from the DNM-16 quarry beds.  A-H, sandy lithofacies and some 
heterolithic lithofacies with the following abbreviations: Sp) sandstone with planar laminations, St) sandstone with 
trough cross bedding, Sm) massive sandstone, Sr) sandstone with ripple laminations and/or flaser like bedding, Scr) 
sandstone with climbing ripple laminations and/or flaser like bedding, Su) sandstone with undulatory bedding, Scl) 
sandstone with rip-up clasts, Scb) sandstone with convoluted bedding, Hp) heterolithic with planar laminations, Hr) 
heterolithic with ripple laminations and/or wavy like bedding. 



   
 

44 
 

 
Fig. 7.  Heterolithic and sandstone lithofacies from the DNM-16 quarry.  A-D, heterolithic lithofacies and some 
sandstone lithofacies with the following abbreviations:  Sp) sandstone with planar laminations, St) sandstone with 
trough cross bedding, Sm) massive sandstone, Sr) sandstone with ripple laminations and/or flaser like bedding, Hp) 
heterolithic with planar laminations, Hr) heterolithic with ripple laminations and/or wavy like bedding, Ht) 
heterolithic with trough cross bedding.  E) The Mp lithofacies with weak planar laminations and Stage I gypsum 
snowballs.  F) The Mn lithofacies as a homogenous grey/green siltstone. 
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Fig. 8.  Size and shape histograms of Abydosaurus elements (n=170).  A) Size distribution of cataloged elements.  
B) Element shapes distribution. 
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Fig. 9.  Femur lengths. Lengths from 6 of the 7 left femora found within DNM-16 (the 7th femur, DINO 44916, was 
not collected).  The lengths are comparable except for femur DINO 44913. 

Fig. 10.  Bone and articulated segment orientation.  A) Bone and articulated segment orientations.  B) Vector 
measurements on long bones and articulated units based on assumptions that the smallest end of a bone or 
articulated unit points downstream. 
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Fig. 11.  Paleocurrent measurements from DNM-16 channel bedforms. 

Fig. 12.  Quarry map of DNM-16, emphasizing skull elements, articulated and closely associated elements (shown 
in red).  All elements pertain to Abydosaurus, except for two shed theropod teeth.  A) Holotype of Abydosaurus 
mcintoshi, articulated skull and cervical vertebrae.  B) Articulated skull, part lost to collecting.  C) Disarticulated 
skull, nearly complete.  D) Isolated braincase.  E) Partial pelvis with articulated sacral vertebrae and associated and 
articulated caudal vertebrae.  F) Partial scapulocoracoid.  G) Two articulated cervical vertebrae of a larger 
individual.  H) Articulated hindlimb associated with  I) articulated metatarsals.  J) closely associated metacarpals.  
K) partial articulated hindlimb.  L) articulated hindlimb.  M) articulated hindlimb.  N) articulated forelimb. Grid 
squares represent 1 m2. 
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Fig. 13.  Skulls and articulated limbs of Abydosaurus mcintoshi. A) Abydosaurus skull, part of the holotype DINO 16488.  
This skull includes stapes, hyoid elements, and some sclerotic rings. See Fig. 12A.  B) Part of an almost completely 
disarticulated skull, DINO 17849.  See Fig. 12C.  The only articulated elements were the braincase and the maxillary and 
premaxillary teeth which were found as a set of "dentures” (teeth in order as in life but the teeth were not in the maxilla or 
premaxilla.  C) Skull consisting of an articulated rostrum and dentaries with posteroventral elements disarticulated, DINO 
17848).  D) Hind limb found fully articulated (DINO 44916).  See Fig. 12H.  E) Largely articulated front limb with the 
humerus at bottom and a metacarpal at the top of the image (DINO 44917).  See Fig. 12N.  Two other metacarpals were 
previously collected, but phalanges were uncommon and never found in articulation.  F) Three articulated and aligned 
limbs (DINO 44913, DINO 44915, and DINO 44922). The bone-bearing lithosome dips at about 68°S, and the bones in 
the quarry, including D-E are preserved parallel to the bedding plane. 
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Fig. 14.  Bone surface modification of Abydosaurus mcintoshi bones. A) Deep pit near proximal end of left femur, 
DINO 44915.  Extreme bone loss is attributed to termite consumption of the articular end and trabecular bone. B) 
Dorsal rib covered with termite pits (DINO 44923). Box indicates area enlarged in C) Detail of termite pitting.  D) 
Termite pits on femur, DINO 44913. E) Cervical vertebra, DINO 44914, in dorsal view.  Upper surface of centrum 
truncated by fluvial scouring.  Select internal trabeculae of what was the pneumatized interior of the centrum 
indicated by arrows.  Post scouring, the trabeculae were covered with mud, which is still present in bottom right.  F) 
Probable tooth scratch marks on blade of scapula, DINO 44921. 
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Fig. 15.  Taphogram for DNM-16 quarry showing hypothesized sequence and duration of the events. 
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Fig. 16.  Distributary fluvial system models. A) Proximal to distal trends in channel form and size in a distributive 
fluvial system noting likely matches for DNM-16 channel architecture.  Distance from illustrated proximal to distal 
portions is likely tens of kilometers. Modified from Nichols and Fisher, 2007. B) Schematic plan view of a 
distributive fluvial system showing proximal to distal trends. Active channel belt in yellow; abandoned channel belts 
in orange; muddy deposits inferred between the channel belts and shown in reds and grays; wetland/lacustrine in 
blue.  C) Schematic cross section of a hypothetical distributive fluvial system from proximal (top) to distal (bottom) 
ends and the postulated position of DNM-16 within the system.  Sandstones in yellow; wetland/lacustrine in dark 
gray; No vertical scale inferred. Modified from Weissmann et al., (2013). 
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Table 1 
Description of facies found within the DNM-16 quarry beds. 
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Table 2 
Taxa from DNM-16 and their associated elements. 
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