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Abstract

Pre-processing MRI scans prior to performing volumetric analyses is common practice in

MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the

scan exists, and the amount of data in the scan, it is possible that the steps have an effect

on the volumetric output. To date, studies have compared between and not within pipelines,

and so the impact of each step is unknown. This study aims to quantify the effects of pre-

processing steps on volumetric measures in T1-weighted scans within a single pipeline. It

was our hypothesis that pre-processing steps would significantly impact ROI volume estima-

tions. One hundred fifteen participants from the OASIS dataset were used, where each par-

ticipant contributed three scans. All scans were then pre-processed using a step-wise

pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations

were assessed following each successive step, and all data were processed by the same

pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step,

scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic con-

sistency). A main effect of pipeline step was detected, and interestingly an interaction

between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline

run was detected. We then supply a correction for noise in the data resulting from pre-

processing.

1 Introduction

Magnetic Resonance Imaging (MRI) has become a central tool in both research and medicine

due to its ability to capture in vivo anatomic and functional data. Differences in structure and/

or metabolism between groups can be strongly correlated with behavior performance [1–4],

thus explaining the functions of the various regions of the cerebrum and cerebellum. Longitu-

dinal studies give insight into neurodegenerative diseases and psychiatric disorders [5–12].

Central to these studies and diagnoses are various methods of interacting with the MRI

data. Several studies [8, 9, 13, 14–19] have already investigated the effects of multiple software
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suites on a single dataset, finding that one often outperforms another in a certain regard. For

instance, the FreeSurfer suite [20] is widely used for cortical and subcortical parcellation, yet

recent studies have shown that Advanced Normalization Tools (ANTs) [21], a more recently

developed suite of software, outperforms FreeSurfer in certain aspects [17, 18, 22].

Pre-processing steps like rigid-body transformations, field-inhomogeneity corrections,

and skull-stripping are quite common [7, 18, 23–26]. While their effects on the data, such as

adjusting the position of the data within the field-of-view or the distribution of the histogram,

are well known and needed for the sake of both algorithmic robustness and multi-modal

approaches, the impact of such effects are not well investigated; few studies have investigated

different pre-processing steps and quantified their impact on the data [27, 28], and have done

so while also investigating varying software and pipelines. Further, few studies have quantified

the variance of multiple intra-subject scans resulting merely from pre-processing rather than

some other independent variable [29–32]. Consequently, no consensus on how each pre-pro-

cessing step impacts the downstream output has been established.

As it is unknown how each step within a single pipeline influences the overall output of the

pipeline, different researchers with similar questions could potentially achieve significantly dif-

ferent results that are not a product of the independent variable under investigation, but rather

the result of different pre-processing steps (let alone software). Differing pipeline steps may

introduce an unknown amount of noise into the data even if their pre-processing algorithms

are based in the same suite of software. This may be especially true if the various pre-process-

ing steps add different amounts of noise or variance as a difference of only 1 to 2% between

groups may be considered significant [33].

It is therefore the aim of this paper to assess the impact of common pre-processing steps on

scan-rescan variance and anatomic volume. We analyzed the estimated volumes of bilateral

putamen, hippocampus, and middle temporal gyrus in 115 participants, and varied pre-pro-

cessing steps to include images left in original space, rotated and cropped images, N4-bias cor-

rection, and skull-stripping of the images. We hypothesize that each different pre-processing

step will have a differential impact on the region of interest (ROI) estimated volume.

2 Methods

2.1 MRI acquisition

Hosted cross-sectional data from the Open Access Series of Imaging Studies (OASIS) project

[34] were used in this study. 115 participants whose age ranged between 20 and 29 (female = 68,

mean age = 22.8 ±2.48) were selected from the entire database, as we intended to only include

healthy young adults. All participants were scanned with a T1-weighted MPRAGE sequence

using following parameters: slice thickness = 1 mm, TR = 1900 ms, TE = 2.26 ms, field of

view = 218 × 250, voxel size = 1 × 0.977 × 0.977 mm, acquisition matrix = 256 × 215, flip

angle = 9˚. As each participant contributed three or four scans, the first three scans of each par-

ticipant were used in this study.

As all images were hosted in a 16-bit big-endian Analyze 7.5 format, images were converted

into NIfTI and MGZ formats via mri_convert for processing in ANTs- or FreeSurfer-based

pipelines, respectively, detailed below.

2.2 FreeSurfer

FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu) [20, 35] was used to render hippocampal,

putamen, middle temporal gyrus, and total brain volumes in all subjects. All scans were seg-

mented using the FS software with the command recon-all –subjid subjDir –all –sd /path/to/
workDir -notal-check –cw256. Volumes were then extracted from the aseg.stats, lh.aparc.

Pre-processing effects, a preliminary study
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DKTatlas.stats, and rh.aparc.DKTatlas.stats output files. FreeSurfer output was also hosted by

OASIS, and the same data were extracted from the hosted FS data; we expect our data to differ

from the OASIS FS data, as we are using an updated version of the software. While it is not the

aim of this paper to compare between diverse pipelines, but rather individual steps within a

single pipeline, FS was included due to its ubiquity in order to have a reference point for our

findings. Further, referencing the DKT atlas with produce complimentary labels to the proto-

col below.

2.3 Template construction

Twenty representative participants were selected in a pseudo-random fashion from the 115

participants (female = 10, mean age = 22.8 ±2.5) in order to construct a study-specific tem-

plate. First, scans were warped into a standardized coordinate space (MNI) [36, 37, 38] using a

nonlinear diffeomorphic normalization algorithm supplied by ANTs [14] with the following

command:

ANTS 3 –o<prefix> -i 100x100x100x20–t SyN[0.1]–r Gauss[3,0.5]–mCC[<template.nii.
gz>,<input.nii.gz, 4, 4]; WarpImageMultiTransf orm 3<input.nii.gz> <output.nii.gz>
Warp.nii.gz Affine.txt –R<template.nii.gz>.

Second, warped scans were then skull-stripped, as we intended to render both a head (brain

with meninges, skull, etc) and a brain (all non-brain information removed) template, for use

with images containing head, or just brain, information, respectively. Skull-stripping was done

utilizing ANTs and referencing the OASIS-30 template hosted at http://www.mindboggle.

info/data.html via antsBrainExtraction.sh –d 3 –a lab_template.nii.gz –e ref_template.nii.gz –
m probability_mask.nii.gz –f registration_mask.nii.gz–o<prefix>. Third, structural scans in

MNI space were then used to construct a lab-specific head and brain templates, following pre-

vious research [17, 21], via buildtemplateparallel.sh –d 3 –m 30x90x30 –t GR –s CC –c 2 –j 8 –
o<prefix> -z mni_icbm152_template.nii<structural_mni_scans.nii.gz>. This resulted in

templates derived from the statistical average of all input scans. Fourth, the lab-specific head

template was segmented according to the Desikan-Killiany-Tourville protocol using the Joint

Label Fusion toolkit and referencing the OASIS-TRT-20 dataset [22, 39–41]:

antsJointLabelFusion.sh –d 3 –t<template.nii.gz>–o<prefix> -p prior%04d.nii.gz –c 5 –
j 4 –g atlas_1/<atlas.nii.gz>–l labels_1/<labels.nii.gz> . . . -g atlas_20/<atlas.nii.gz>–l
labels_20/<labels.nii.gz>

This produced ROI-specific probabilistic priors in template space, for use in anatomic seg-

mentation. The ROI priors were produced only in head template space, as both the head and

brain templates existed in the same space, and in order to reduce template-mask confounds

during segmentation. Finally, priors for skull-stripping participant scans were constructed in

template head space. This was first accomplished by skull-stripping the head template by

referencing the OASIS-30 priors via

antsCorticalThickness.sh –d 3 –a<moving.nii> -e<fixed.nii> -t<brain_mask.nii> -m
<probability_mask.nii> -f<extraction_mask.nii> -p priors%d.nii.gz –o<prefix>.

Next a probability mask was constructed with SmoothImage 3<binary_mask.nii> 1
<probability_mask.nii>, an extraction mask was constructed with c3d<binary_mask.nii>

Pre-processing effects, a preliminary study
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-dilate 28x28x28vox –o<extraction_mask.nii> [42], and a registration mask constructed via

c3d<binary_mask.nii> -dilate 1 18x18x18vox –o<registration_mask.nii>.

2.4 Pre-processing participant scans

As we intended to investigate whether or not pre-processing MRI data has an impact on volu-

metric output, scans from each of the participants were then pre-processed in a stepwise fash-

ion such that the output of a previous step became the input for the subsequent step. Common

pre-processing steps [23–25, 29, 43, 44] were selected from the literature; all pre-processing

and segmentation was conducted on all three scans contributed by each participant. First,

images converted from the Analyze format to NIfTI format where left in native space (ORIG).

Second, a rigid-body transformation utilizing six degrees of freedom rotated (RROT) the

structural scans into approximate template space via antsRegistrationSyNQuick –d 3 –f
<template.nii> -m<input.nii> -t r –o<prefix>. RROT differs from ORIG in the location of

information within the domain, which may impact matrix-based calculations performed in a

diffeomorphic registration. Third, RROT scans were then used to produce N4-bias corrected

scans (N4BC) [45] via the ANTs-based toolkit N4BiasFieldCorrection –d 3 –i<input.nii.gz>
-s 4 –c [50x50x50x50,0.0000001]–b[200]–o<output.nii.gz>, where care was taken to use the

same parameters and arguments found in the antsBrainExtraction.sh script. This step corrects

non-uniform image intensities of the same tissue class which result from field inhomogenei-

ties. For example, gray matter in one region may have a very similar voxel intensity to white

matter of another region due local signal variation resulting from field inhomogeneities. Cor-

recting for such variance produces tissue classes that have similar intensity signatures. Finally,

scans were skull-stripped (N4SS), a process which involves the removal of non-brain tissues

(e.g., the durae), skull, and scalp, via antsBrainExtraction.sh –d 3 –a<input.nii.gz>–e
<template.nii.gz>–m<probability_mask.nii.gz>–o<prefix>. Additionally, as the skull-

stripping script performs the N4-bias correction prior to segmentation, RROT scans were

used as the input files in this step in order to avoid repeated bias corrections. Thus, each partic-

ipant would be measured by the ORIG, RROT, N4BC, and N4SS scans produced by the previ-

ous steps, in addition to the FreeSurfer (FS) measures (Fig 1).

2.5 Segmentation

Segmentation of the participant scans (ORIG, RROT, N4BC, and N4SS) was then conducted

in two steps. First, ANTs was used to register each scan to the template, resulting in a calcula-

tion of the bilateral diffeomorphic deformation of both template and participant scan to a

common midpoint. This was done with the command ANTS 3 -o Reg -i 100x100x100x20 -t
SyN[0.1] -r Gauss[3,0.5] -m CC[template.nii.gz, input.nii.gz,4,4]. Care was taken to register

non-skull-stripped scans (head) with the head template, and skull-stripped (brain) scans with

the brain template. Upon completion, the calculations were then used to warp 6 probabilistic

segmentation labels from template to participant space using a nearest-neighbor interpolation.

The labels included two subcortical structures (bilateral hippocampus and putamen) and one

cortical structure (bilateral middle temporal gyrus). The hippocampus was selected due to its

difficulty in segmentation, whereas the putamen was considered easier to segment being

clearly separated from nearby structures by white matter. The middle temporal gyrus was

selected in order to include a cortical measure. Segmentation of these various regions of inter-

est (ROIs) occurred via WarpImageMultiTransform 3<ROI_label.nii.gz><output.nii.gz>
-i Affine.txt InverseWarp.nii.gz –R<input.nii.gz>—use-NN. Upon review, and in accordance

with the literature [46], these ROI masks in participant space were then thresholded and binar-

ized via c3d<input.nii.gz>–thresh 0.5 1 1 0 –o<output.nii.gz>. In total, six measures

Pre-processing effects, a preliminary study
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(bilateral hippocampus, putamen, middle temporal gyrus) were produced for each of the pre-

processing steps (ORIG, RROT, N4BC, N4SS, and FS) for each participant (n = 115), yielding

a large number of observations. Further, repeated scans for each participant contributed addi-

tional measurements, which will be used to assess scan-rescan variance. ROI volumes were

extracted via c3d<input.nii.gz> -dup –lstat, while Dice similarity coefficients [47] were

extracted via c3d<input1.nii.gz><input2.nii.gz> -overlap<label>.

2.6 Total brain volumes

In order to perform a ratio correction, total brain volumes were calculated for all scans for

each participant, using both FreeSurfer-and ANTs-based tools. Calculations of total brain vol-

umes of the mgz files were pulled from the aseg.stats file, and total brain volumes of the NIfTI

files were derived from the binary BrainExtractionMask produced by antsBrainExtraction.sh
thereby giving six total brain volumes (TBV) for each participant, for each scan. Each ROI was

then converted into a ratio of TBV in order to account for hidden confounds such as scanner

warmth.

2.7 Repeated pipeline runs

In order to assess the consistency of the various software used in sections 2.4–6, the data from

all participants were processed via the pipeline described above a total of five times. This will

help determine if the various software interacts consistently or idiosyncratically with the MRI

data, as it is assumed that the algorithms perform consistently. Thus it can be determined

whether the significant variance, if any, is the product of the pre-processing software, scanner

inconsistencies, or the pre-processing steps within the pipeline. All scripts used for in this

study are available at https://github.com/nmuncy/Preproc_Effects.

Fig 1. Illustration of the pre-processing pipeline. OASIS data are first converted into structural NIfTI (ORIG) and MGZ files. MGZ files

are processed via FreeSurfer (FS). NIfTI files are rotated (RROT) which are then N4-bias corrected (N4BC). Also, RROT files are skull-

stripped (N4SS; which has its own bias correction step). The output of each pipeline step is registered with a segmented template, and ROI

masks are warped from template to participant pipeline-step space. ROI volumes are then extracted from the segmentation masks.

FreeSurfer pre-processing is entirely self-contained, and produced its own set of ROI volumes.

https://doi.org/10.1371/journal.pone.0186071.g001
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3 Results

3.1 Within-subject repeated measures

All analyses were performed on the volumetric output of six brain regions (left and right puta-

men, hippocampus, and middle temporal gyrus). To control for potential confounds (e.g. the

size and sex of the participant, daily hydration levels, scanner warmth, etc.), each volumetric

output was corrected by the total brain volume prior to analyses. The total brain volumes were

calculated separately for the FS- and ANTs-based pipelines, and these values were used as

denominators for their respective volume measurements, producing a ratio.

To determine the effect of pre-processing steps, we performed a multivariate repeated mea-

sure analysis on the six corrected ROI volumes and the five different pre-processing steps for

each of the 115 participants at an α = 0.05 level. That is, the regions of interest and the different

methods are the two within-subject factors. The Hotelling’s T2(4,113) value (a generalized

F statistic of a repeated measure that determines the discrepancy of sample volume mean and

hypothetical mean) of 7349.77 exceeded the critical value (CV) of 10.08 (generalized partial

η2 = 0.25), indicating that regional ratios of at least one of the pre-processing pipelines differed

significantly from the others across the tested regions. In other words, there are significant dif-

ferences in regional ratios that are dependent on how the scans are pre-processed. Addition-

ally, a main effect of ROI was detected (T2(5,113) = 10648.60, CV = 11.91, generalized partial

η2 = 0.33). Most interestingly, there is an interaction effect of pre-processing step and ROI

(T2(20,113) = 3637.80, CV = 40.47, generalized partial η2 = 0.13). This means that pre-process-

ing steps differentially affect the volumetric measurement of ROI for at least one of the steps.

Finally, there was no sex effect (F = 0.10, p = .75).

As the main effects and interaction of multivariate analysis were significant, we then per-

formed t-tests for each ROI to find which pre-processing steps significantly differ from each

other. Though it is unnecessary to perform any multiple comparison corrections because the

multivariate analysis was significant [48, 49], we performed the very conservative Bonferroni

correction (Table 1). In this follow-up analysis, we see the differential effects of pre-processing

on the regions. For the left and right putamen, three step comparisons produced significantly

different volumes after a Bonferroni correction (Table 1). ORIG differed significantly from

both RROT and N4BC in both hemispheres, and the right hemisphere differed between the

N4SS and FS. For the left and right hippocampus, ORIG produced significantly different

Table 1. Ratio pairwise comparisons of pipelines.

LPut RPut LHip RHip LMTG RMTG

Comparison t p t p t p t p t p t p

ORIG vs RROT 10.99 <.0001 11.20 <.0001 12.61 <.0001 12.33 <.0001 11.16 <.0001 13.48 <.0001

ORIG vs N4BC 13.2 <.0001 13.40 <.0001 15.50 <.0001 14.57 <.0001 8.65 <.0001 13.50 <.0001

ORIG vs N4SS -0.81 .42 -0.84 .40 -0.79 .43 -0.87 .39 -3.56 .0005 -2.73 .007

RROT vs N4BC 2.30 .02 2.57 .01 3.94 .0001 4.85 <.0001 -1.08 .28 1.70 .09

RROT vs N4SS -1.50 .14 -1.52 .13 -1.52 .13 -1.56 .12 -4.28 <.0001 -3.64 .0004

N4BC vs N4SS -1.62 .11 -1.65 .1 -1.69 .09 -1.77 .08 -4.26 <.0001 -3.74 .0003

N4SS vs FS -1.67 .10 -5.78 <.0001 -34.68 <.0001 -30.52 <.0001 -18.83 <.0001 -14.76 <.0001

Significant t-values show which method of pre-processing produces regional ratios that differ significantly from one another, i.e. which two pre-processing

steps produce dissimilar ratios for each region of interest. FS is only compared to N4SS as they have a similar pipeline. Also, these findings indicate that as

data move along the overall pipeline that is commonly performed (Orig! RROT! N4BC! N4SS), volumes significant differ depending on the brain

region of interest. Bolded values are significant at the Bonferroni corrected value of 0.05/7. L = left, R = right, Put = putamen, Hip = hippocampus,

MTG = middle temporal gyrus.

https://doi.org/10.1371/journal.pone.0186071.t001
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volumes from RROT and N4BC, but not from N4SS, and N4SS only differed from FS. The

RROT and N4BC steps also produced significantly different volumes in the hippocampi. For

the left and right MTG, all step comparisons significantly differed except RROT vs N4BC.

Please note that these results only apply when each ROI is corrected by total brain volume pro-

duced by each step. Without this correction, there are more ROI by step interactions (see

supplementary).

3.2 Repeated pipeline runs

The first scan from each participant was processed using the various pre-processing pipelines

four more times. These repeated pipeline runs allowed us to investigate whether the significant

mean ROI by step differences detected in Section 3.1 are the result of the different pre-process-

ing steps, or whether they were the result of the pre-processing algorithms creating variance

that did not previously exist in the actual data. In other words, repeated iterations of the

pipelines can tell us either (a) that the difference is the result pre-processing steps interacting

consistently with varying noise inherent in the data, or the result of each step producing a dif-

ferent but consistent amount of noise, or (b) that the steps produce differing and idiosyncratic

amounts of noise in the data. We assumed that if the repeated iterations of the pipelines pro-

duced statistically identical volumes, then the volumetric differences calculated were the result

of one or both parts of (a). Unfortunately, this study cannot tease apart the two parts of (a).

To analyze the five pipeline runs, we performed another multivariate repeated measure

analysis after repeatedly processing all data with FS and each of the ANTs-based pipelines.

Both methods produced statistically similar volumes for all the five runs (T2(4,114) = 4.08,

CV = 10.08, generalized partial η2 = 0.0002). This implies that the algorithms are consistently

interacting with the data.

As an additional summary measure for the multiple runs, we provided Dice similarity coef-

ficients (DSC) [50, 51] between the runs for each participant and each brain region as shown

in Table 2. DSC is a measure of overlap in space, where DSC is a distance measure of the over-

lap of two ROI labels divided by the total. Values for the DSCs range from 0 to 1, where

scores� 0.7 are considered “good” and a score of 1 indicates perfect agreement [52, 53]. All

steps had very high similarities.

3.3 Scan-rescan analysis

To test for scanner consistency, we processed the three repeated scans taken from the OASIS

dataset on the 115 participants through the same FS- and ANTs-based pipelines. Once again,

we performed a multivariate repeated measure analysis, now with three within-subject factors

(day, method, and ROI). The T2(2,114) value of 0.46 (critical value of 6.21 and generalized

Table 2. Dice similarity coefficients.

Step LPut RPut LHip RHip LMTG RMTG

ORIG 0.999 (0.0001) 0.999 (0.0002) 0.999 (0.0002) 0.999 (0.0002) 0.999 (0.0008) 0.999 (0.0007)

RROT 0.999 (0.0003) 0.999 (0.0006) 0.999 (0.0007) 0.999 (0.0008) 0.999 (0.0033) 0.999 (0.0048)

N4BC 0.999 (0.0006) 0.999 (0.0008) 0.999 (0.0011) 0.999 (0.0011) 0.999 (0.0068) 0.999 (0.0062)

N4SS 0.998 (0.0022) 0.998 (0.0022) 0.997 (0.0036) 0.997 (0.0034) 0.985 (0.0210) 0.987 (0.0170)

FS 1.000 (0.0000) 1.000 (0.0000) 1.000 (0.0000) 1.000 (0.0000) 1.000 (0.0000) 1.000 (0.0000)

Mean Dice coefficients across runs and participants, mean (SD). All pre-processing steps have extremely high similarities.

https://doi.org/10.1371/journal.pone.0186071.t002
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partial η2 = 0.00004) indicates the repeated scans of the same participant produced consistent

volumes for all the regions tested.

Thus, the significant ROI volumetric differences detected in Section 3.1 is in fact an effect

of pre-processing the data, and not due to the algorithms inconsistencies (Section 3.2) nor is

the differences the result of an artifact resulting from a scan-by-pipeline-step interaction (Sec-

tion 3.3).

3.4 Percent variability error correction

As the different steps in pre-processing give different mean corrected volumes, this variability

must be taken into account before comparing between groups’ regions of interest. One method

to account for these differences is to find the percent variability error in scan-rescan for each

pipeline step in order to find the error bounds. To calculate the percent variability error, we

followed the method described by Tustison et al., [22] and averaged the absolute difference for

scan-rescan for each participant in each method. That is, if Tijk is the kth scan in step j for par-

ticipant i (i = 1,. . .,N), then the percent variability error is

εij ¼
1

N

XN

i¼1

Xn

k¼2

2jTij1 � Tijkj

ðTij1 þ TijkÞ � ðn � 1Þ
ð1Þ

The percent variability error for each step is given in Table 3. Corrections for all six brain

regions are included. Each value indicates the percentage of the specific region value to add to

or subtract from each method’s corrected volume when comparing group averages, longitudi-

nal measurements, or the different pre-processing methods. In other words, if researchers are

using the N4BC ratio pipeline, their left hippocampal corrected volumes should be considered

as X ± 0.0151X (PVE = 1.51) or as

regional volume
total brain volume

�
regional volume

total brain volume
� 0:0151 ð2Þ

That is, if the hippocampal volume was 0.22% of the total brain volume for the N4BC, then

this value should be treated as 0.22% ± 0.003%, thereby giving the range of left hippocampal

volume percentage as 0.217%– 0.223%.

While these percentages may not seem significant, consider the percentages in terms of

actual volume. In this study, the average total brain volume produced by N4BC was 1,513,592

mm3. The left hippocampal volume range of 0.217%-0.223% becomes 3284.5–3375.3 mm3,

translating to a range of about 90.8 mm3. This is relevant in the comparison of groups using

the same pipeline, or of various studies using differing pipelines, where the upper bounds of

one group or pre-processing pipeline may actually fall within the lower bounds of another.

Table 3. The mean percent variability error for each method.

Step LPut RPut LHip RHip LMTG RMTG

ORIG 1.00 1.14 1.36 1.17 1.40 1.18

RROT 1.40 1.31 1.51 1.41 1.56 1.43

N4BC 1.48 1.43 1.51 1.46 1.60 1.45

N4SS 3.41 3.26 3.37 3.55 3.64 3.71

FS 2.42 2.41 2.35 1.86 3.09 2.58

Because the pre-processing methods are significantly different from each other, each step in each region needs a correction to be able to compare different

methods. Though the percent variability error may appear small, the values in this table are for the regional volume divided by the total brain volume.

https://doi.org/10.1371/journal.pone.0186071.t003
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Similar to a 95% confidence interval when estimating parameters, this range given by the per-

cent variability error takes the variance of the pre-processing method into account. This is so a

comparison between groups may be representative of independent variables and not simply

the differences of pre-processing methods or other confounds.

4 Discussion

4.1 Summary

This study investigated the effects of certain pre-processing steps in registration-based volu-

metric ROI segmentation. Analyses showed a main effect of pre-processing step, indicating

that the various steps investigated significantly altered the ROI-corrected volume. Further, and

importantly, an interaction of pre-processing step and ROI was discovered, indicating that the

alterations in ROI-corrected volumes were not consistent across different brain regions. The

significantly different corrected volumes found between the pre-processing steps may be the

result of the algorithm of each pre-processing step interacting with the data in a consistent but

unique fashion, although it is possible that the algorithms were in fact interacting with each

scan idiosyncratically. We tested this assumption by running all data through the same pipe-

line four additional times; no effect of run was detected. Additionally, it was possible that the

volumetric differences resulted from inconsistent scanner output, thereby producing an inter-

active effect between the pre-processing step and MRI noise. To test this, three scans of each

participant were processed through the same pipeline steps; an effect of repeated scans was not

detected, indicating consistent MRI output. As such, we concluded that it was the pre-process-

ing steps that significantly changed the ROI-corrected volumes, step to step, and not the algo-

rithms performing inconsistently or variance from the scanner itself. Finally, we supplied a

correction for each step and for each ROI to account for the noise in the data resulting from

pre-processing.

4.2 Limitations

First, only a few specific pre-processing steps were investigated in this study, and as such the

generalizability of our findings are quite restricted. In this preliminary study, an effort was

made to investigate whether or not unaccounted-for and significant variance existed in regis-

tration-based volumetric data, and whether the noise was a result of pipeline algorithms, scan-

ner output, or pre-processing protocol. As such, we used pre-processing steps based within the

same software suites in order to reduce potential confounds. While significantly different vol-

umes, resulting from pipeline steps, were detected, such findings are constrained to the param-

eters of our study. It is reasonable, however, that significant variance resulting from pre-

processing will be detected in other pipelines, in accordance with our findings, as pre-process-

ing algorithms alter the data directly. Further, and more importantly, our attempt to quantify

variance that is unaccounted for was done in order to address a deficit in the literature: while

numerous studies have investigated differences between differing pipelines [17, 18, 22, 27, 45,

54–61], these do not investigate the effects of pre-processing on the data within a single pipe-

line. If, as was detected in this study, pre-processing steps significantly change the data, then it

may not be meaningful to compare studies which differ in as little as a single pre-processing

step, and may be even less meaningful to compare studies using different pre-processing soft-

ware. Second, while we investigated discrete steps within a single pipeline, we did not investi-

gate the impact of various parameters within a single step. This was beyond the scope of this

study; we attempted to optimize the steps that were used according to extant literature in order

to investigate the impact of each step in the pipeline. Different parameters would assuredly

change the impact of each step, but comprehensively investigating all permutations of
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parameters within a pipeline would overwhelm the statistical models. Further, certain combi-

nations of parameters would be unjustifiable from the literature and inappropriate to use. It

would be relevant in a subsequent study to investigate various arguments in order to see if the

impact of each step in a pipeline could be optimized. Third, only three bilateral ROIs were

included in the analysis. A small number of ROIs were specifically used in order to avoid over-

whelming the statistical models. The hippocampus was selected as it is known to be sensitive

to pre-processing in registration-based pipelines due to a similar intensity signature with the

amygdala and the thin alveus which delineates anterior hippocampus from posterior/ventral

amygdala [35, 61]. The putamen was selected as we considered it to have good white-matter

boundaries with other subcortical gray-matter structures. The middle temporal gyrus was

selected both in order to have a cortical structure as well as to assess the impact of skull-strip-

ping in this pipeline as it has been established [27, 60, 62] that skull-stripping impacts cortical

volume. Fourth, a single scanning sequence was used in investigating the effect of pre-process-

ing step on ROI volumes. Using the established OASIS dataset was done in order to decrease

potential sources of noise in the data. It is likely that differing scanning sequences would pro-

duce different amounts of noise, which may produce an interaction with the pre-processing

pipeline. This, however, was also beyond the scope of this study, and warrants further investi-

gation. Fifth, the pipelines in this study used only registration-based segmentation. This was

done because it was the intention of this preliminary study to look at the impact on the data of

various steps within a single pipeline. Different pipelines (e.g. non-registration-based) would

undoubtedly have different variances associated with them and would be worth investigating.

4.3 Recommendations

As each step in the pre-processing pipeline produced differences in either volume or variance,

we recommend calculating the percent variance error (PVE) correction, to account for the dif-

ferential effects that these pre-processing steps have on the data, before comparing analyses.

Volumetric and morphometric studies reporting significance with a small difference in voxel

numbers are readily available [63, 64–74], and may be false positives as the data consists, in

part, of unaccounted noise, some of which stems from pre-processing. A difference of a few

tens of voxels in sensitive longitudinal or multi-group studies may well be accounted for by the

upper and lower bounds provided by the PVE correction, particularly if there are differences

in pre-processing steps. Additional noise is probable if there are further differences in scanning

sequences, MRI scanners, software suites, pipeline steps, and arguments used.

We also recommend, echoing Tustison et al., [75], that a detailed description of the pre-

processing used be provided in order to clarify any impact that pre-processing may have had

on the overall outcome of the analysis. Additionally, the inclusion of pre-processing steps will

help make replication an easier task [76, 77].
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