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ABSTRACT

Droplet Impingement on Superhydrophobic Surfaces

Cristian Esteban Clavijo Angeles
Department of Mechanical Engineering, BYU

Doctor of Philosophy

This dissertation explores the physics of droplet impingement on superhydrophobic sur-
faces. The research is divided in three categories. First, the effect of a slip boundary condition
on droplet spreading/retracting is considered. A model is developed based on energy conservation
to evaluate spreading rates on surfaces exhibiting isotropic and anisotropic slip. The results show
that larger slip causes the droplet to spread out farther owing to reduced friction at the interface for
both slip scenarios. Furthermore, effects of slip become magnified for large Weber numbers due to
the larger solid-liquid contact area during the process. On surfaces with anisotropic slip, droplets
adopt an elliptical shape following the azimuthal contour of the slip on the surface.

It is common for liquid to penetrate into the cavities at the superhydrophobic interface
following droplet impact. Once penetrated, the flow is said to be in the Wenzel state and many su-
perhydrophobic advantages, such as self-cleaning and drag-reduction, become negated. Transition
from the Wenzel to the Cassie state (liquid resides above the texture) is referred to as dewetting and
is the focus of the second piece of this dissertation. Micro-pillar pitch, height and temperature play
a role on dewetting dynamics. The results show that dewetting rates increase with increasing pillar
height and increasing surface temperature. A scaling model is constructed to obtain an explanation
for the experimental observations and suggests that increasing pillar height increasing the driving
dewetting force, while increasing surface temperature decreases dissipation.

The last piece of work of this dissertation entails droplet impingement on superheated sur-
faces (100◦C - 400◦C). We find that the Leidenfrost point (LFP) occurs at a lower temperature on
a hydrophobic surface than a hydrophilic one, where the LFP refers to the lowest temperature at
which secondary atomization ceases to occur. This behavior is attributed to the manner in which
vapor bubbles grow at the solid-liquid interface. Also in this work, high-speed photographs reveal
that secondary atomization can be significantly suppressed on a superhydrophobic surface owing
to the micro-pillar forest which allows vapor to escape hence minimizing bubble formation within
the droplet. However, a more in-depth study into different superhydrophobic texture patterns later
reveals that atomization intensity can significantly increase for small pitch values given the ob-
struction to vapor flow presented by the increased frequency of the pillars.

Keywords: superhydrophobic, droplet impingement, boiling, slip velocity, moving triple contact
line



ACKNOWLEDGMENTS

I wish to express gratitude to my sweet companion, Danielle Clavijo, who was extremely

supportive during my PhD. She demonstrated patience in the long hours I spent in the lab including

weekends and holiday breaks. I always found motivation to keep pushing forward at work because

of her positive and uplifting personality. She became the main care-taker of our son who was born

in the middle of my studies, allowing me to focus on my PhD work.

I thank my father, mother and sister. Their support began long before graduate school.

They were always interested in helping me succeed. During my PhD, they have been a source of

recreation and motivation by making sure family activities and reunions came to pass on a regular

basis regardless of how far apart we lived.

Other students in the lab became my close friends. Though many of my contributions may

not carry their name, my work was very much inspired by countless conversations with them.

They taught me scientific principles I did not understand, reminded me of physical laws I had

forgotten and engaged in postulating hypotheses for the phenomena observed. Julie Crockett is an

unbelievable mentor who allowed me to grow as a researcher and as a person. I thank her for her

patience with my stubborn personality and with the myriad of questions I asked her on a weekly

basis about what is the purpose of science, academia and life in general (sometimes I would ask

about research). In combination with Dan Maynes, they permitted me the freedom to suggest my

own direction throughout my PhD. Their expertise in the thermal fluids arena proved invaluable.

I am grateful for The Church of Jesus Christ of Latter-day Saints, Brigham Young Univer-

sity and all the people behind these two magnificent institutions. The mix between scholarship and

faith truly makes BYU a unique institution and one that provides an education far superior to that

which would be achieved by secular means alone.

Finally, I express gratitude to the National Science Foundation (Grant No. CBET 1235881

and Grant No. 1066356) for having funded this work.



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Droplet Impingement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Superhydrophobic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Current State-of-the-Art and Motivation for Current Work . . . . . . . . . . . . . . 10
1.2.1 Room Temperature Droplet Impingement on a Superhydrophobic Surface

with Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Wenzel to Cassie Transition During Droplet Impingement . . . . . . . . . 14
1.2.3 Droplet Impingement on a Superheated Superhydrophobic Surface . . . . . 16

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2 Effects of isotropic and anisotropic slip on droplet impingement on a su-
perhydrophobic surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Contributing Authors and Affiliations . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Surface Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1 Isotropic Slip Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Anisotropic Slip Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3 Wenzel to Cassie transition during droplet impingement on a superhy-
drophobic surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Contributing Authors and Affiliations . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 Surface Tension/Dissipation Force Balance . . . . . . . . . . . . . . . . . 57

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iv



Chapter 4 Hydrodynamics of droplet impingement on hot surfaces of varying wet-
tability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Contributing Authors and Affiliations . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 High Speed Imaging of Atomization . . . . . . . . . . . . . . . . . . . . . 72
4.5.2 Atomization Regime Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.3 Maximum Spread Diameters . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 5 Secondary atomization during droplet impingement on superheated hy-
drophobic and superhydrophobic surfaces . . . . . . . . . . . . . . . . . . 91

5.1 Contributing Authors and Affiliations . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 General Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Digital Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Secondary Atomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.1 Smooth Hydrophobic Surface . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7.2 Superhydrophobic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



LIST OF TABLES

2.1 Percent deviation of Dmax/Di, t̂Dmax , and t̂c between θ = 145◦ and 165◦ for three
different slip values. Values shown are for Oh = 0.002 and We = 150. . . . . . . . 28

3.1 Average values of profilometer measurements of pillar-arrayed superhydrophobic
substrates. Values for w, h and d are given in µm, while φs and r are dimensionless. 48

5.1 Intensity-to-noise ratios for impingement at Ts = 200◦C on the 8P and 16P surfaces
(top two rows) and intensity-to-intensity ratio between the surfaces (bottom row). . 102

vi



LIST OF FIGURES

1.1 Droplet impingement on a hydrophilic and hydrophobic surface at room tempera-
ture at high Weber number, 350, (top two sequences) and low Weber number, 10,
(bottom two sequence). Scale size, 2mm. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Photograph of the Lotus leaf with a water droplet on it prior to roll off [1]. . . . . . 5
1.3 (a) Schematic drawings of liquid in the Cassie state (top) and Wenzel state (bot-

tom). (b) SEM photograph of a superhydrophobic surface textured with pillars. . . 6
1.4 Schematic drawing of a droplet on four different types of solid surfaces varying in

wettability. The definition of the static contact angle is shown on the hydrophobic
surface, but the same definition applies to all surface types. . . . . . . . . . . . . . 6

1.5 Schematic drawing of a classical no-slip velocity profile (left) and a velocity profile
with slip at the wall (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 A water droplet boiling on an aluminum surface at 130◦C (30 ms between images).
Black and red arrows point to vapor bubbles and atomized droplets, respectively. . 10

1.7 Schematic of mass-spring-damper system commonly used to model droplet im-
pingement. High-speed photographs represent impingement on a superhydropho-
bic surface for We = 10 and 350, respectively. . . . . . . . . . . . . . . . . . . . . 12

1.8 Schematic drawings of truncated sphere and cylindrical shapes used to model
droplet impingement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Side and top view of a square pillar array textured surface. . . . . . . . . . . . . . 16
1.10 Droplet (5 µL) impinging at 0.3 m/s on a textured hydrophilic surface maintained

at a temperature of 275◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 (a) and (b) SEM images of the two types of superhydrophobic surfaces used in
this work. (c) Schematic of a water drop impinging on a superhydrophobic surface
where slip promotes larger spreading diameters. . . . . . . . . . . . . . . . . . . . 21

2.2 Top: Normalized maximum droplet spread diameter as a function of θ for two
different values of We. Solid lines represent data from the theoretical model devel-
oped herein for Oh = 0.002 and λ̂ = 0, while the markers are experimental data
from Antonini et al. [2] with Oh = 0.002±0.5%. Bottom: Normalized diameter
as a function of normalized time for Oh = 0.002, λ̂ = 0, and We = 50 and 150.
Dashed and solid lines represent θ = 145◦ and 165◦, respectively. . . . . . . . . . 28

2.3 Top: Model results for normalized droplet diameter as a function of normalized
time for θ = 165◦, Oh = 0.002, We = 20 (dashed lines) and 150 (solid lines), and
λ̂ values of 0, 0.02, 0.06, and ∞ as shown in the figure. Results from the model
developed by Attane et al. [3] are shown as markers (�). Bottom: Model results
for normalized surface and kinetic energy for λ̂ = 0.02 (dashed lines) and λ̂ = 0
(solid lines) as a function of normalized time for θ = 165◦, We = 150, Oh = 0.002
and Do = 2 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Normalized droplet diameter as a function of normalized time with We = 155 and
Oh = 0.0024. Solid and dashed lines correspond to the model for λ̂ = 0.0010 and
0.0051, respectively. Markers ( ,4) represent the experimental counterpart of the
model at equivalent slip values (Fc = 80% and 92%) for a 2.2 mm initial diameter
water droplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



2.5 Normalized maximum diameter as a function of We for millimetric size water
droplets on superhydrophobic surfaces (left) and hot (Leidenfrost) surfaces (right)
from available literature (Oh ∼ 0.0024). Left: (+) Antonini et al. [2], (∗) Aria
et al. [4], and (2) Clanet et al. [5]. Also shown are experimental data for the
Fc = 80% ( ) and Fc = 92% (O) surfaces, as well as corresponding model results
for λ̂ = 0.0010 (solid line) and λ̂ = 0.0051 (dashed line). Right: (4) and (#) are
experimental results on a Leidenfrost surface from Tran et al. 2012 and 2013 [6,7],
respectively. Solid, dashed and dash-dot lines represent the model with λ̂ = 0.0010
(θ = 155◦), λ̂ = 0.050 (θ = 180◦) and λ̂ = ∞ (θ = 180◦), respectively. . . . . . . 34

2.6 Model results for the normalized maximum diameter as a function of λ̂ for We =
10, 50, 150, and 250. For all scenarios shown, Oh = 0.002 and θ = 165◦. . . . . . 35

2.7 Top view images of a water droplet (Do = 2.2 mm) impinging a superhydrophobic
surface captured at maximum spread (∼ 2.7 ms after impact) with We = 180 and
Oh = 0.0024. (a) λ̂ = 0.0010 (Fc = 80%); (b) λ̂ = 0.0051 (Fc = 92%). The scale
is 1 mm for both images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Droplet impingement on anisotropic surface at We∼ 160 and t = 2.3 ms (left) and
t = 6.3 ms (right) after impact. Rib direction is indicated by lines in left panel.
Arrows point to satellite drops that form along the direction of greatest slip, α = 0. 37

2.9 Droplet diameter in the two primary spreading directions as a function of time for
impingement on an anisotropic surface. Solid line represents the transverse diam-
eter, while the dashed line represents the longitudinal diameter. Markers ( ) and
(4) represent experimental data along these directions, respectively. This scenario
is defined by Oh = 0.0024, θ = 160◦, We = 109, Do = 2.2 mm, w = 40 µm and
Fc = 93% (λ̂L = 0.0127). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Top: Normalized maximum diameter in the longitudinal and transverse directions
as a function of We. Dashed and solid lines represent the analytical model data for
the longitudinal and transverse directions, respectively, employing the slip profile
given by (2.14), while the markers (4 and  ) represent experimental data in these
corresponding directions. Dash-dot line represents analytical model data for the
transverse direction for the slip profile given by λ (α) = λLcos(α). Oh = 0.0024,
θ = 160◦, Do = 2.22 mm, w = 40 µm and Fc = 93% (λ̂L = 0.0127) for all cases.
Bottom: Normalized effective slip length as a function of the azimuthal direction.
The solid line represents Eq (2.14) and the dashed line is λ (α) = λLcos(α). . . . . 39

2.11 Model results for the droplet shape at t̂Dmax for different values of slip (left) and
Weber numbers (right). The data in both figures were calculated for Oh = 0.002
and θ = 165◦. Left: We = 150. Right: λ̂L = 0.03. . . . . . . . . . . . . . . . . . . 40

2.12 Model results for the ratio of the maximum diameter in the longitudinal direction
to the transverse direction as a function of longitudinal-direction slip for We values
of 20, 50, 150, and 250. The data shown is for Oh = 0.002 and θ = 165◦. . . . . . 41

viii



3.1 a) SEM photograph of superhydrophobic substrate used in this work. b) cosθc is
plotted as a function of r for φs = 0.2 where the Cassie or Wenzel state become
more energetically favorable for r→ ∞ and r→ 1, respectively. c) A 3 mm diam-
eter water droplet impacting a superhydrophobic substrate: (t = 0.0 ms) Prior to
impact; (t = 3.0 ms) Maximum spread; (t = 11.0 ms) Apparent contact angle at
the interface is no longer in the superhydrophobic regime, θ ∼ π/2; (t = 30.0 ms)
Necking between the rebounding and the pinned liquid becomes evident; (t = 33.3
ms) Droplet separation has occurred and pinned liquid remains behind in the Wen-
zel state as indicated by the arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Schematic of the experimental setup illustrating the position of the substrate on
the heater block and high-speed cameras 1 and 2, which captured droplet impact
velocity and dewetting dynamics, respectively. . . . . . . . . . . . . . . . . . . . . 48

3.3 a) Droplet spreading following impingement at We∼ 190 and ambient temperature
(Ts ∼ 25◦C). b) Temporal magnification of impaled area due to droplet curvature
at room temperature (•) and on a heated substrate T > 80◦C (∗). c) Schematic of
stencil used to map the extent of magnification during initial droplet impingement. 50

3.4 Dewetting process during impingement on a 16p18h substrate with Ts = 81◦C and
91◦C. In both cases, the impaled region gets smaller with time, but dewetting oc-
curs at a faster rate for Ts = 91◦C such that a complete transition from the Wenzel
to the Cassie state has occurred by 4.8 ms. Arrows indicate whether the lamellar
ring is moving away or towards the center. . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Temporal evolution of Ω∗ for the 8 µm (left) and 16 µm pitch (right) substrates. On
the left, pillar height is 4 µm (r = 1.59), 6 µm (r = 1.88) and 8 µm (r = 2.18) from
bottom to top, respectively, while on the right, pillar height is 8 µm (r = 1.59), 12
µm (r = 1.88) and 18 µm (r = 2.33) from bottom to top, respectively. N, H, �,  
and A represent Ts = 25◦C, 81◦C, 86◦C, 91◦C, and 96◦C. . . . . . . . . . . . . . . 53

3.6 a) Image sequence of dewetting event for the 8p8h substrate at 91◦C. Overlaid
circle of effective radius Rε used in evaporation and force balance models (bottom
sequence). b) Temporal decay of R∗ε for 10 data sets on the 16p18h substrate at
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Bottom panel: Ṙ∗ε/Φ with ∆Gw = 131×103 J mol−1 as a function of r. . . . . . . 62

ix



4.1 A 5 µL water droplet resting on the four different surfaces used in this work: (top)
hydrophilic and hydrophobic; (bottom) superhydrophilic and superhydrophobic. . . 70

4.2 Calibration plot between temperature measured by thermocouples and thermal
camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Image sequences of droplet impingement on all four surfaces at Ts = 150◦C and
We = 40. Atomization exists on the SHL and HL surfaces and is absent on the HB
and SHB surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Top view of droplet spreading at Ts = 150◦C and We = 40 on all four surfaces.
These images show the existence of vapor bubbles that form during impingement
at the solid-liquid interface on the HB and SHB surfaces, as well as the HL and
SHL surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Droplet impingement on all four surfaces at Ts = 275◦C and We = 25 (top) and
100 (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Schematic drawings of bubble dynamics inside the droplet during spreading on the
HL and HB surfaces for Ts = 275◦C and We = 25. . . . . . . . . . . . . . . . . . . 77

4.7 droplet impingement on the SHB surface at Ts = 175◦C and We = 50 (top panel)
and 220◦C and We = 100 (middle panel). Both of these scenarios represent cases
where the most atomization was observed on the SHB surface. Dynamics on the
HL surface are shown in the bottom panel for comparison at the second set of
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Top view of the impingement event for We= 50 and Ts = 200◦C on all four surfaces
to demonstrate minimal boiling behavior on SHB surface made evident by the
transparency of the spreading droplet. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Atomization regime map for all four surfaces. Circles represent scenarios where
atomization occurred, while triangles represent scenarios where atomization was
not observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Transition temperature to the Leidenfrost point or LFP as a function of We. Top
panel: Present results shown with data from Bertola [8] and Tran et al [9]. Bottom
panel: Present results for all four surfaces. . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Normalized maximum spread diameter as a function of We at the corresponding
LFP values for each surface and SHB at room temperature. Top panel: Present
results shown with data from Antonini et al. [10] and Tran et al. [11]. Bottom
panel: Present results for all four surfaces with a curve fit for clarity. . . . . . . . . 85

5.1 Representative evolution of the amount of atomized liquid as a function of time.
High-speed photographs represent impingement on the 8P surface at Ts = 320◦C
to depict levitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Original (top) and cropped (bottom) images for impingement on the 8P surface at
Ts = 200◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Representation of images at every step during processing for three arbitrary cases:
a falling droplet (top), moderate atomization (middle) and heavy atomization (bot-
tom). Ik

i j, Bk
i j, Mk

i j and Fk
i j represent the initial image (after cropping), the binary

image, the mask used to remove the droplet, and the final image from which an
average pixel intensity value to represent the amount of atomization was obtained. . 101

x



5.4 (a) Atomization intensity for droplet impingement on a 8P surface at Ts = 200◦C
as shown in Fig. 5.2. (b) and (c) Percentage of atomization that escapes the field of
view when pixel resolution is 12 µm as a function of time for impingement on the
8P (b) and smooth (c) surface. Solid lines represent the maximum and minimum
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 a) Impingement on the 8P surface at Ts = 260◦C and t = 2 ms where the creation
of new mask, Mk

i j-modified, to remove the droplet was necessary due to the large
amount of atomization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Temporal evolution of A for the HB surface. Surface temperatures between 138◦C
and 226◦C are conisdered in (a) and between 226◦C and 313◦C in (b). (c) Droplet
impingement at Ts = 138◦C and 313◦C for which atomization was not present. . . . 106

5.7 The maximum of atomization intensity on the smooth hydrophobic surface at a
given surface temperature as a function of surface temperature. Curve represents
Gaussian curve fit of data points and As,max, the maximum value of the data set, is
used as a normalization constant for subsequent results. . . . . . . . . . . . . . . . 108

5.8 Atomization intensity on all superhydrophobic surfaces normalized by As,max as
a function of time for Ts = 197◦C. Photographs represent impingement on their
corresponding surfaces at t ≈ 2.3 ms. . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 Atomization intensity on the 8P surface normalized by As,max as a function of time.
The top panel shows results for surface temperatures between 138◦C and 226◦C
while the bottom panel shows results between 226◦C and 337◦C. . . . . . . . . . . 110

5.10 Atomization intensity normalized by As,max for a superhydrophobic surface with a
pitch of 8 µm and pillar height, h = 4 µm (same as Fig. 5.9), and h = 14 µm. . . . 111

5.11 The maximum amount of atomization on all superhydrophobic surfaces for a given
surface temperature normalized by As,max as a function of surface temperature. . . . 112

xi



CHAPTER 1. INTRODUCTION

Research is driven by different purposes. One school of thought is solely based on curios-

ity where the researcher measures his/her success by increased understanding of the world around

them. On the other hand is the driving force of innovation seeking to engineer new solutions to

existing applications. While curiosity may be a part of such endeavor, emphasis is placed on how

the results might benefit others. While an entire spectrum exists between the two foregoing mental-

ities (for instance, Technology Readiness Level), the present work lends itself towards the former.

Thus, the body of this dissertation does not hint at the optimization of any existing technology

or soon-to-be technology, nor does its intent intimately pursue what thermal engineers nominally

seek after such as improving heat transfer rates. Rather, the author provides theoretical and exper-

imental evidence to explain unexplored physicochemical phenomena, the corresponding projects

which resulted from curiosity.

This work entails temporally and spatially transient behavior of surface tension domi-

nated flows, extreme water-repellency effects, interactions at solid-liquid-gas boundaries and phase

change, all in terms of a single millimetric droplet impinging on a solid surface. In Sec. 1.1,

background information is given regarding droplet impingement, superhydrophobic surfaces and

boiling. Common examples that people run into on a daily basis will be highlighted for each of

these cases, as well as current and potential applications. Sec. 1.2 will discuss the current state-

of-the-art research for the topics covered in each of the subsequent chapters in this dissertation

(Chapters 2, 3, 4 and 5). Unexplored corners of the field that motivated our studies shall be made

manifest, as well as the specific contributions of the author. Finally, the outline of the remainder

of the dissertation will be provided in Sec. 1.3.
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1.1 Background

1.1.1 Droplet Impingement

Droplet impingement on solid surfaces is a ubiquitous occurrence in everyday life. A few

examples include rain impacting house rooftops, crime-scene blood stains by which detectives

deduce how assassinations occurred, and even how some artists transfer ink onto their canvases

during gestural abstraction. There are also many applications that depend on our understanding of

this rather complex interaction. The resolution and accuracy of spray coatings, ink jet printers and

3D printers, to name a few, all depend on the spacing, frequency and deformation of impinging

droplets, and these technologies can only improve by understanding the fundamental physicochem-

ical behavior. While most droplet impingement scenarios in real life generally occur in a group

of droplets impacting a surface rather than a single one, academia often places emphasis on the

latter. This simplifies an otherwise extremely complex scenario and makes it possible to analyze

fundamental dynamics while still providing useful insight into real-life scenarios. The work here

is no exception and only considers single droplet impingement.

Cohesion of liquids results from intermolecular forces attracting liquid molecules to each

other. These interactions allow momentum to be transferred through a liquid and the magnitude

of its resistance is known as viscosity. Cohesion causes molecules at immiscible liquid-gas or

liquid-liquid interfaces to experience an inward pull (normal to interfacial curvature) due to the

uneven distribution of intermolecular forces. Surface tension is a result of this inward pull and

is commonly expressed as σ with units of force per unit length. Surface tension is thus a force

that acts tangentially to the surface of the liquid and seeks to minimize its interfacial area, thus

giving droplets their spherical shape. Although effects of surface tension can be neglected in most

fluid mechanic problems, flows that occur at the millimetric scale or less and contain liquid-gas

interfaces are typically dominated by surface tension, as is the case with droplet impingement.

The intricate physics of droplet impingement are due to the temporal and spatial nature

of the event. Furthermore, behavior varies widely depending on the wettability of the surface the

droplet comes in contact with. While other parameters vary the outcome of the event, such as the

composition of the liquid and the inclination of the surface relative to the impingement path, we

limit our discussion to a water droplet impinging normal to a stationary horizontal solid surface.
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When the surface is hydrophilic or “water-attracting” (e.g. glass), the droplet spreads out and

remains in a flat position. On the other hand, a droplet impinging on a hydrophobic or “water-

repelling” (e.g. Teflon coated cooking pans) surface spreads out at first but then recoils due to a

surface tension pull and rebounds. Both of these events are are shown in Fig. 1.1 for two different

impact speeds (0.3 m/s and 7.0 m/s). The images also show that for long times after impact, the

droplet assumes its equilibrium shape with the surface, which is independent of impact speed. The

difference in impingement behavior on hydrophilic and hydrophobic surfaces arise from the type

of van der Waal forces formed at the solid-liquid interface; hydrogen bonds prevail in the former

while dispersion forces in the latter.

Another important parameter in determining the outcome of the impingement event is the

momentum with which the droplet impacts the surface (also shown in Fig. 1.1). The Weber num-

ber, We = ρV 2D/σ , where ρ , V and D are the density of the liquid, and velocity and diameter at

impact, is the most commonly used non-dimensional number to quantify impingement. It provides

direct comparison between inertial and surface tension forces at impact (consequently it is often

referred to as the impact Weber number). For large Weber numbers, little droplets fly off from the

periphery of the droplet and the droplet is said to splash. On the other hand, when inertia is small

relative to surface tension, dynamics are governed by surface tension and minimal deformation

takes place.

1.1.2 Superhydrophobic Surfaces

A trip to the world-renown Denver Botanic Gardens will lavish the visitor with over 9,517

species of plants [12]. Towards the back of the exhibit, a peculiar group of circular plant leaves

(see Fig. 1.2), roughly a foot in diameter, sit next to a large pond. The name on the identifier

tag quickly reveals this family’s name: The Lotus Plant. Just a few feet away, a couple of water-

striders can usually be spotted on scene walking on water. What do these two have in common?

Superhydrophobic “skin”, which in both cases allows these plants and insects to thrive in their

environment.

Superhydrophobicity means extreme water repellency. In the case of superhydrophobic

plants such as the Lotus, when rain falls, water is unable to stick to the surface. Instead, the droplets

bounce or roll off the leaves, directing the water to the soil. Superhydrophobic surfaces exhibit
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Figure 1.1: Droplet impingement on a hydrophilic and hydrophobic surface at room temperature at
high Weber number, 350, (top two sequences) and low Weber number, 10, (bottom two sequence).
Scale size, 2mm.

much stronger repellency than hydrophobic ones (discussed in the last section) and “the Lotus

effect” has been coined to represent superhydrophobic interactions. In the case of the water-strider,

their superhydrophobic legs allow them to roam freely across the pond even though their body

density is larger than that of water. On the other side of the spectrum of wettability, extreme water-

loving surfaces also exist and are named superhydrophilic. One example of superhydrophilicity

found in nature is plant capillaries which distribute water against gravity throughout the plant [13].

While most of this dissertation is concerned with superhydrophobic interactions, experiments were

also conducted on surfaces over the entire wettability spectrum.
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Figure 1.2: Photograph of the Lotus leaf with a water droplet on it prior to roll off [1].

What causes a surface to be superhydrophobic or superhydrophilic? In either case, the solid

surface must exhibit micro or nano texturing in addition to a hydrophobic or hydrophilic coating.

When water comes in contact with the surface, the increase in solid-liquid contact area effectively

increases water repellency or water attraction macroscopically. Unique to a superhydrophobic

surface, two equilibrium states exist. Water can completely wet the textured interface, as is the

case on a superhydrophilic surface, or it can remain suspended above the texture due to surface

tension. The former state is called the Cassie state and the latter the Wenzel state; schematic

drawings of both of these are shown in Fig. 1.3a. The state of residence depends on many factors

such as how water nucleated at the interface (in the case of condensation) or the pressure of the

water flow relative to that in the gas at the interface.

With the advent of micro-fabrication techniques, nature is no longer the sole owner to su-

perhydrophobic technology. Figure 1.3 shows a Scanning Electron Microscope (SEM) photograph

of one of the superhydrophobic surfaces fabricated by the author, made up of pillars about 10 µm

in height. In fact, superhydrophobic sprays are now commonly sold in hardware stores for under

$20 and claim to keep your clothes and shoes dry in case of bad weather. Remarkably, there is

an increasing need for superhydrophobic surfaces at a grander commercial scale due to their many

hydrodynamic advantages. For example, superhydrophobic surfaces can reduce drag for internal

(piping networks which require large pumping requirements) or external (a torpedo traveling in

the ocean) flow scenarios. Drop-wise condensation is another attractive application of superhy-
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Figure 1.3: (a) Schematic drawings of liquid in the Cassie state (top) and Wenzel state (bottom).
(b) SEM photograph of a superhydrophobic surface textured with pillars.

Figure 1.4: Schematic drawing of a droplet on four different types of solid surfaces varying in
wettability. The definition of the static contact angle is shown on the hydrophobic surface, but the
same definition applies to all surface types.

drophobicity which can significantly increase heat transfer rates in industrial condensers due to

the quick removal of condensing droplets, as well as the increased surface area between vapor and

solid which results from texturing.

Because of the increasing need for superhydrophobic surfaces, diverse ways now exist to

quantify their effects. One of the most common is the sessile droplet contact angle test. Here, a

single droplet is gently placed on the surface of interest and the resulting angle between solid and

liquid, named the static contact angle, θ , is measured with a goniometer. Schematic drawings of

droplets on different surfaces, as well as the orientation of θ , are shown in Fig. 1.4. Generally

speaking, wettability is categorized as follows: superhydrophilic (SHL) θ = 0◦, hydrophilic (HL)

0◦ < θ < 90◦, hydrophobic (HB) 90◦ < θ < 120◦ and superhydrophobic (SHB) 120◦ < θ < 180◦.

For non-textured or smooth surfaces, the contact angle can be related to surface tensions

of all three interfaces present at the boundary via Young’s relation, σ cosθ 0 = γSG− γSL. Here, θ 0
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is named the Young contact angle, γSL and γSG are the solid-liquid and solid-gas surface tension

values and θ = θ 0 for smooth surfaces. On the other hand, θ on a superhydrophobic surface can

be predicted as follows [14, 15],

cosθ = rφs cosθ
0 +φs−1

cosθ = r cosθ
0

(1.1)

for liquid in the Cassie and Wenzel state. The roughness factor, r, is the area of the surface divided

by its normal-projected area (the second relation in Eq. (1.1) can also be applied to a SHL surface)

and the solid fraction φs is the area of the top of the pillars divided by the normal-projected area of

the surface. The difference between θ 0 and θ becomes clear with Eq. (1.1) in that θ , also generally

referred to as the apparent contact angle, is a macroscopic characteristic of a droplet on a surface

and can hence be applied to smooth or textured surfaces.

Another peculiar characteristic of SHB surfaces is that liquid flow experiences a micro-

scopic slip velocity condition at the plane of the wall over the cavities if it remains in the Cassie

state, thus reducing friction drag. Traditionally, internal or external fluid flow is said to yield

the so-called “no-slip” condition at the wall when the continuum assumption is valid (technically,

nanoscale slip always prevails on all surface types [16], but this magnitude of slip is negligible for

the current argument). The velocity profile on a SHB wall alternates between slip and no-slip as is

schematically depicted in Fig. 1.5, which results in an aggregate slip velocity at the plane of the

wall. This has been confirmed experimentally and theoretically [17,18]. The slip length, λ , is most

commonly used in theoretical arguments and can be related to the slip velocity, Vs, by λ = Vs/γ̇ ,

where γ̇ is the strain rate at the wall. Thus, λ is based on the assumption of a linear velocity profile

below the wall.

Philip was the first to obtain an expression for slip length in a channel flow under laminar

flow conditions with a longitudinal configuration of alternating no-slip and perfect-slip boundary

conditions, as well as for a transverse configuration [18, 19],

λL

w
=

1
π

ln ·sec((1−φs)π/2)

λT = λL/2
(1.2)
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Figure 1.5: Schematic drawing of a classical no-slip velocity profile (left) and a velocity profile
with slip at the wall (right).

where the subscripts L and T refer to the longitudinal and transverse direction and w is the pitch

or period of the texture (Fig. 1.3). Since the work of Philip, the slip length has been determined

for more complicated scenarios, including flow in a direction diagonal to the alternating wall-

cavity scenario [20, 21]. A discussion on how this boundary condition was applied for droplet

impingement is the essence of Chapter 2 of this dissertation.

1.1.3 Boiling

Boiling occurs when the pressure of a liquid is low enough relative to its temperature,

such that liquid molecules overcome their cohesive forces and become gas. There are countless

examples people run into on a regular basis, like cooking. However, boiling does not necessarily

require a high temperature and hence it is actually possible to boil water at room temperature if the

pressure is low enough. In this section, we focus on water boiling at ambient pressures and thus the

saturation temperature of water, Tsat, is ≈ 100◦C. The benefits of unraveling the complex physics

of boiling have extended beyond the kitchen and today affect many industrial processes including

combustion, electronic and power plant cooling, material quenching, etc.
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There are different types of boiling behaviors and these have been quantified into different

regimes. They were first identified by Nukiyama in 1934 [22] by immersing a wire into a water

bath and heating the wire electrically. He deduced the amount of thermal energy or heat flux, q′′,

into the water by the voltage and current supplied, and the temperature of the wire by changes to its

electrical resistance [23]. He observed the following regimes with increasing excess temperature,

∆Te (the temperature of the wire minus the saturation temperature of water): Free convection,

nucleate boiling, transition boiling and film boiling. Free convection is characterized by mild

boiling behavior with little or no bubbles, which largely depends on the amount of gas dissolved in

the liquid and surface type. In this regime, heat flux increases linearly with excess temperature and

can be described by Newton’s law of cooling, q′′ = h∆Te where h is the convection heat transfer

coefficient. As temperature increases, bubbles nucleate and grow rapidly, hence the name nucleate

boiling. Here, heat flux increases with much more sensitivity to excess temperature due to the latent

heat released during phase change and can no longer be predicted by Newton’s law of cooling.

Thus, in applications where high heat fluxes are desired for extreme cooling, nucleate boiling is

usually the regime of interest. As the excess temperature continues to increase, heat flux begins to

decrease (transition boiling). This occurs because the rapid formation of vapor bubbles begins to

insulate the liquid from the hot solid. Eventually, an entire vapor blanket forms thus reducing the

heat flux to a minimum. This point is known as the Leidenfrost point, LFP, and defines the start of

film boiling. If ∆Te increases past this point, the heat flux once again begins to increase, but this

time due to radiation from the hot surface.

Heat transfer for a single droplet on a heated surface is more difficult to quantify than for

pool boiling due to the inability to maintain steady state. Furthermore, the lifetime of a droplet is

usually on the order of tens of milliseconds [24]. Also, the temperature of the surface does not

remain constant but varies widely during the lifetime of the droplet, both temporally and spatially.

Surface wettability also makes a difference. Given the complexities in heat transfer, the ensued

hydrodynamics have been the subject of great scrutiny, for which one of the preferred methods of

analysis is high-speed photography. Fig. 1.6 shows three high-speed photographs of a water droplet

boiling on an aluminum surface at 130◦C. As can be seen in these images, bubbles grow due to

vapor expansion and burst, which results in little droplets flying upward–a mechanism commonly

referred to as secondary atomization.
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Figure 1.6: A water droplet boiling on an aluminum surface at 130◦C (30 ms between images).
Black and red arrows point to vapor bubbles and atomized droplets, respectively.

1.2 Current State-of-the-Art and Motivation for Current Work

In this section, a literature review is presented for the work in this dissertation, which is

divided into three categories for clarity:

• Droplet impingement on a superhydrophobic surface with slip (corresponding research com-

prising Chapter 2).

• Wenzel to Cassie transition during droplet impingement (corresponding research comprising

Chapter 3).

• Droplet impingement on superheated superhydrophobic surfaces (corresponding research

comprising Chapter 4, 5).

1.2.1 Room Temperature Droplet Impingement on a Superhydrophobic Surface with Slip

A review of experimental work will be presented first, followed by analytical work. Richard

and Quéré were the first to report droplet impingement dynamics on superhydrophobic surfaces

with low hysteresis, < 5◦, where hysteresis is defined as the difference of contact angles at the

advancing and receding front of the impinging droplet [25]. They used small droplets (∼ 1 mm in

diameter) which yielded high coefficients of restitution, ∼ 0.9, for impingement in the low Weber

number regime (We < 7). For larger hysteresis values,∼ 30◦, lower coefficients of restitution were

obtained, ∼ 0.8, and this was attributed to higher viscous dissipation. They argued coefficients of

restitution close to 1 were not possible due to oscillations of the droplet following the impact, and

hence a second channel for energy dissipation. Since then, studies have focused on the amount of
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deformation, either in terms of the height or diameter of the droplet during spreading and recoiling,

as a function of impact velocity, impact diameter and Weber number [26,27]. Clanet et al. proposed

that the maximum spread diameter, Dmax, should scale as D0We1/4, where D0 denotes impact

diameter, based on a balance between inertial and capillary forces [27]. He validated this scaling

with experiments using water on a superhydrophobic surface and mercury on a hydrophilic surface

over 100 < We < 103.

Bouncing behavior on a superhydrophobic surface is interesting because it is tantamount to

many oscillating systems in nature owing to the low friction interaction. To this end, Antonini et al.

compared superhydrophobic rebound with droplets on Leidenfrost and sublimating surfaces, both

of which are known to yield high coefficients of restitution [10]. A Leidenfrost rebound occurs

when a droplet impinges a hot surface such that the droplet never contacts the solid but rests on its

own vapor, while a sublimating rebound also sustains a vapor layer between solid and droplet but

this time the vapor belongs to the solid. Their experimental data for all three surfaces collapsed

onto the same curve and maximum diameter was concluded to universally scale as D0We0.4 over

100 < We < 102, which is slightly different than suggested by Clanet et al [27]. It is important

to note that much of past experimental work has only focused on contact angle characteristics of

a given surface, but not on specific phenotypical details such as the micro-structure arrangement.

Pearson et al. were the first to investigate the effects of micro-structures for droplet impingement on

anisotropic superhydrophobic surfaces made up of alternating ribs and cavities [28]. They reported

that spreading and recoiling consequently occurs in an anisotropic manner, thus yielding elliptical

rather than circular droplet shapes. As will be shown in Chapter 2, this motivated a predictive

model developed by the current author.

Many ways exist of mathematically modeling droplet impingement on a superhydrophobic

surface and one of the most common is based on a mass-spring-damper system, as shown in the

schematic drawing of Fig. 1.7. Here, the kinetic energy, which the droplet carries at impact,

transforms into surface potential energy as the droplet deforms. At maximum spread diameter,

kinetic energy vanishes since the droplet stops before reversing directions, while potential energy

reaches its maximum. During recoil, energy transfer resumes but this time from potential energy

to kinetic energy. Through the entire process, velocity gradients, ∇V , cause the total energy, ET ,
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Figure 1.7: Schematic of mass-spring-damper system commonly used to model droplet impinge-
ment. High-speed photographs represent impingement on a superhydrophobic surface for We = 10
and 350, respectively.

(kinetic plus potential) to decrease with time due to frictional dissipation and it can be modeled as

d
dt
(ET ) =−

∫
µ(∇V )2dΩ (1.3)

where the term on the right side of the equation represents dissipation of energy with t, µ and

Ω representing time, dynamic viscosity and droplet volume. The high-speed photographs in the

bottom two panels of Fig. 1.7 show that the mass-spring-damper system qualitatively mimics real-

life behavior relatively well for low Weber numbers. However, At high Weber numbers, the droplet

splashes, a phenomenon which the model is unable to capture.

In order to solve Eq. (1.3), a representative droplet shape must first be assumed and the

two most common examples include a truncated sphere or a cylinder as shown in Fig. 1.8. This
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Figure 1.8: Schematic drawings of truncated sphere and cylindrical shapes used to model droplet
impingement.

assumption makes it possible to define surface energy at any time. Second, a velocity field within

the droplet is also assumed in order to obtain a value for kinetic energy and dissipation, where

the two most common scenarios are shear-free flow and shear flow based on linear velocity gradi-

ents. Other assumptions commonly made include negligible dissipation at the triple contact line, a

constant contact angle and negligible evaporation through time.

Bechtel et al. proposed a model based on the truncated sphere assumption and evaluated the

temporal evolution of the height of the film for different Weber numbers, viscosities and surface

tension values [29]. They compared their results with Wachters and Westerling [30] who had

investigated droplet impingement on surfaces heated above the Leidenfrost point 15 years earlier.

The agreement was mediocre, with the model over predicting spreading and retraction rates, as well

as maximum spread diameters by 10% to 15%. Attane et al. later developed a model following

the cylinder-shape approach, which predicted experimental data within a few percent [31]. They

assumed a linear shear flow velocity profile which allowed them to obtain kinetic energy, Ek, and

viscous dissipation, Φ, as follows

Ek =
1
2

ρ

∫
(V 2

r +V 2
z )dΩ

Φ = 2µ

∫ [
(
∂Vr

∂ r
)2 +(

Vr

r
)2 +(

∂Vz

∂ z
)2 +

1
2
(
∂Vr

∂ z
+

∂Vz

∂ r
)2
]

dΩ

(1.4)

where r and z represent the radial and vertical direction (in subscript form, these variables denote

trajectory of variable in that direction). They also accounted for dissipation at the rim of the

spreading of the droplet, which others had neglected up to this point. Their model showed good
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agreement with the experiments of others for 100 < We < 103 including the foundational work by

Clanet et al. presented above [27].

Though several models had been proposed to date, none had considered the effects of slip.

This lack motivated the work that shall be presented in the second chapter of this dissertation.

The author builds on previous models by incorporating slip as a boundary condition at the solid-

liquid interface. Slip effectively reduces viscous dissipation and thus the total energy of the droplet

is expected to remain higher for all time yielding larger maximum spread diameters and larger

recoiling speeds. This was recently shown to be true by the author [32], both analytically and

experimentally, and is the epitome of the Chapter 2. A second model is constructed by the author,

also discussed in chapter 2, which is able to predict behavior on a surface with anisotropic slip. It

was found that the droplet spreads in an elliptical manner in this case and these effects increase

with increasing We. Experiments were also performed on anisotropic superhydrophobic surfaces

and validated the model.

1.2.2 Wenzel to Cassie Transition During Droplet Impingement

As mentioned earlier, liquid on a superhydrophobic surface can exist in either of two states:

Cassie or Wenzel, where Cassie refers to liquid sitting on the peak of the micro-texture and Wenzel

to liquid wetting the grooves. Such a microscopic characteristic can exert influence that is noticed

at the macroscale. For example, a droplet was shown to exhibit a much larger contact angle in

the Cassie, θ = 170◦, than when in the Wenzel state, θ = 130◦, in the case of a flat surface dec-

orated with microscopic spikes [33]. Both states still yield θ > 120◦ and are thus still considered

superhydrophobic interactions. Lafuma and Quéré reported that in addition to static contact angle

effects, the hysteresis is another variable, which highly depend on the state of the liquid [34]. They

measured a hysteresis of 5◦ in the Cassie state but, strikingly, 100◦ in the Wenzel state. Channel

flow can also exhibit significant differences between these states [35]. Woolford et al. reported a

reduction of 11% in the friction factor for Cassie-stable turbulent flow relative to a smooth channel,

whereas no reduction was obtained for Wenzel flow [17]. Their results showed good agreement to

accompanying numerical and analytical results, where drag reduction was attributed to slip at the

wall.
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Thus we see that many superhydrophobic advantages including droplet removal and drag

reduction are only possible under Cassie state conditions. This state, however, is metastable mean-

ing that fluctuations in the pressure of the liquid can induce it into the Wenzel state. It is therefore

of practical importance to investigate parameters that govern this transition such that transition

into the Wenzel state is hindered or reversal back to the Cassie state is possible. To this end,

Sun et al. fabricated a superhydrophobic surface by coating a wall with aligned carbon nanotubes

with temperature-responsive polymer poly(N-isopropylacrylamide) [36]. They observed that wet-

tability, quantified via the sessile droplet contact angle test, was sensitive to small temperature

variations, oscillating between 25◦C and 40◦C. In a different study, Krupenkin et al. investigated

the Wenzel to Cassie transition of a water droplet by increasing the substrate temperature and boil-

ing the penetrated liquid at the interface, which restored the droplet back to the Cassie state [37].

Other approaches have included electrolysis [38], magnets [39] and vibrations [40].

Analytical efforts have also been made from interfacial energy considerations. Consider a

superhydrophobic surface made up of square posts as shown in Fig. 1.9. It has been shown that

Cassie or Wenzel energy levels, UC and UW , respectively, can be defined as the surface tension at

every immiscible interface multiplied by the area over which it acts [41],

UC = γSLa2 +σ(b2 +2ab)+ γSG(b2 +2ab+4aH)

UW = γSL[(a+b)2 +4aH]
(1.5)

where a, b and H represent the post length, cavity length and post height, as shown in the figure.

Thus, the geometry of the superhydrophobic surface defines the energy landscape between both

states, where both are local energy minima thus making an in-between state unlikely at equilibrium.

Furthermore, it has been found that even when one state is energetically favorable, the liquid may

dwell in the other state due to the associated energy necessary to transition from one to the other,

or the so-called energy barrier [42].

Transition from the Wenzel to the Cassie state is difficult because of the mentioned energy

barrier and thus has only been achieved aggressively, as stated earlier. The current author shows

it is possible to passively transition from the Wenzel to the Cassie state (addressed in Chapter 4)

by increasing the energy differential between the two energy states and decreasing the energy bar-
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Figure 1.9: Side and top view of a square pillar array textured surface.

rier by increasing local temperature, all during a droplet impingement event. Experimental data is

presented over a wide range of surfaces (varying pillar pitch and height) and temperatures. A scal-

ing argument is constructed based on interfacial energy as the driving mechanism and dissipation

caused by the moving contact line.

1.2.3 Droplet Impingement on a Superheated Superhydrophobic Surface

Extensive research has been performed for droplet impingement on hot surfaces. However,

aluminum, steel and copper (hydrophilic) are normally used as test surfaces given their wide use

in industry [8], and thus droplet impingement on hot superhydrophobic surfaces remains largely

unexplored. A brief description is given here for impingement on hydrophilic surfaces. For sur-

face temperatures in the range of 100◦C < Ts < 110◦C, droplets spread and remain adhered to

the surface with minimal boiling behavior. For higher surface temperatures up to ∼ 300◦C, va-

por bubbles form within the droplet and burst resulting in the ejection of tiny droplets, which is

referred to as secondary atomization [43]. A high-speed event of secondary atomization on a tex-

tured hydrophilic surface is shown in Fig. 1.10. Heat transfer is significantly higher in this regime,

which results from the induced phase change [24]. As surface temperature continues to increase,

atomization slowly starts to decrease until it ceases completely. The temperature at which atom-

ization disappears is known as the Leidenfrost point (LFP), where a vapor layer insulates the water

from the heated surface [44] and occurs between 300◦C and 400◦C depending on the impact veloc-

ity [9, 24]. The heat transfer significantly decreases in this regime. Finally, as surface temperature

continues to increase above the LFP, atomization eventually resumes once again [11]. This is due

to increasing heat transfer into the liquid through thermal radiation.
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0 ms 2.0 ms 3.0 ms 4.0 ms 5.3 ms

Figure 1.10: Droplet (5 µL) impinging at 0.3 m/s on a textured hydrophilic surface maintained at
a temperature of 275◦C.

The Weber number also plays a significant role with impingement dynamics. The LFP

has been found to increase with increasing Weber number and is thus more appropriately termed

the Dynamic Leidenfrost point [9, 11, 45]. This relationship has been attributed to higher vapor

production being necessary to maintain a stable vapor layer between solid and liquid. Above the

LFP, the Weber number exerts a similar influence to impingement on a superhydrophobic surface

at room temperature. Namely, peripheral separation of droplets occurs for sufficiently high Weber

numbers (We > 100) due to higher inertia at impact [8]. Surface roughness (superhydrophilicity)

has been found to decrease the temperature at which the LFP occurs [11], although this is still a

matter of debate because opposite observations have been made [46–48].

Because studies have focused on hydrophilic surfaces, information on hydrophobic or su-

perhydrophobic surfaces is lacking. Hydrophobic and superhydrophobic surfaces are expected to

yield significantly different behavior for droplet impingement on superheated surfaces because of

what is known about the way vapor bubbles nucleate, grow and attach to a solid surface during

pool boiling. It has been shown that during boiling, vapor bubbles spread out and adhere to hy-

drophobic surfaces for a longer period of time prior to rising to the liquid-air surface, which is in

contrast to hydrophilic surfaces where bubbles bead up and rise more quickly [49, 50]. Because

of the apparent attraction between vapor bubbles and hydrophobic surfaces, the vapor blanket at

the Leidenfrost point can be formed at a lower temperature [51]. It is expected that a reduction

in Leidenfrost temperature also occurs for droplet impingement on a hydrophobic surface. Fur-

thermore, impingement dynamics on a superheated superhydrophobic surface may exhibit further

differences due to the ability of water to remain above the texture.
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To the author’s knowledge, only three previous studies have explored droplet dynamics

on heated hydrophobic or superhydrophobic surfaces. One of these studies investigated droplet

impingement dynamics on textured hydrophobic surfaces, but focused on measuring heat trans-

fer at the interface [52], leaving the ensued hydrodynamics unresolved. In a different study, Li

et al. presented high-speed image analysis of droplet impingement on heated surfaces across the

entire wettability spectrum but the highest surface temperature explored was 110◦C [53]. The last

study which pertains droplet dynamics on superheated superhydrophobic surfaces was performed

by Hays et al. but he only considered the sessile droplet case (We = 0). They reported mitigated

boiling behavior relative to a smooth surface [54]. Thus, we were motivated to pursue the investi-

gation of droplet impingement on superheated hydrophobic and superhydrophobic surfaces, which

is the subject of Chapters 4 and 5 of this dissertation. The surface temperature and Weber number

ranges explored include 100◦C - 415◦C and 10 - 220, respectively.

1.3 Dissertation Organization

Subsequent chapters are arranged as follows. Chapters 2 through 5 contain stand-alone

manuscripts that have either already been published, are under review, or will soon be submit-

ted. As such, each chapter contains a brief introduction, methodology, results and discussion and

conclusions sections. Chapter 2 demonstrates that the maximum diameter attained by a droplet

impinging on a superhydrophobic surface depends on the amount of slip. This dependency is

shown for both isotropic and anisotropic slip and analytically as well as experimentally. Chap-

ter 3 deals with the thermodynamic dependence of the Cassie to Wenzel transition during droplet

impingement. Once again, analytical and experimental approaches are used here. The following

two chapters, 4 and 5, cover boiling hydrodynamics for a droplet impinging on superheated su-

perhydrophobic surfaces. Chapter 4 presents a comprehensive analysis of droplet impingement on

surfaces across the entire wettability spectrum: superhydrophilic, hydrophilic, hydrophobic and

superhydrophobic, while Chapter 5 discusses more in-depth dynamics for atomization on differ-

ent superhydrophobic surfaces with pillars of varying height and pitch. Finally, conclusions are

presented in Chapter 6 to summarize all the work.
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CHAPTER 2. EFFECTS OF ISOTROPIC AND ANISOTROPIC SLIP ON DROPLET
IMPINGEMENT ON A SUPERHYDROPHOBIC SURFACE

This chapter is published in the journal Physics of Fluids. The formatting of this paper has

been modified to meet the stylistic requirements of this dissertation.

2.1 Contributing Authors and Affiliations

Cristian E. Clavijo, Julie Crockett, Daniel Maynes Department of Mechanical Engineering,

Brigham Young University, Provo, Utah 84602

2.2 Abstract

The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces

with isotropic and anisotropic slip are investigated. While several analytical models exist to predict

droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the ef-

fect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent

for many of these surfaces. This paper presents a model that accounts for slip during spreading

and recoiling. A broad range of Weber numbers and slip length values were investigated at low

Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the

impingement process for low Weber numbers but can exert significant influence for high Weber

numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical

shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing

Weber number. Experiments were performed on isotropic and anisotropic micro-structured super-

hydrophobic surfaces and the agreement between the experimental results and the model is very

good.
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2.3 Introduction

This paper is concerned with the dynamics of a droplet impinging on a superhydrophobic

surface with slip. Since the early work of Herminghaus on the effective surface energy between a

non-wetting liquid and a rough surface [55], the interaction between droplets and superhydropho-

bic (SH) surfaces has been rigorously explored due to its many industrial applications including

self-cleaning technology [56] and drop-wise condensation [40]. Furthermore, as interest in micro-

and nano-engineering grows, droplets will only receive increasing attention due to their ability to

act as micro-chemical reaction chambers with a highly controlled environment, repeatability and

scalability [57]. Cellular biology [58], forensic sciences [59], and lab-on-a-chip technology [60]

are a few examples of fields that have already been directly impacted by improvements in droplet

translation, manipulation, and transport phenomena.

When a droplet impinges on a SH surface, the droplet spreads out to some maximum di-

ameter after which the inward pull of surface tension causes the droplet to recoil and eventually

rebound. SEM images of SH surfaces used in this work are shown in Figure 2.1 (a) and (b), where

the pitch, w, and the ratio of the cavity area to the total projected area as the cavity fraction, Fc, are

shown. Friction resisting the flow of liquids over SH surfaces is generally reduced due to a nearly

shear-free condition at the liquid-air interface above the cavities (given a low viscosity fluid in the

cavities [61]), though exceptions to this trend have been observed for protruding menisci [62]. A

common simplification for the alternating slip and no-slip behavior that prevails above the cavities

and solid features, respectively, is to consider a spatially-uniform aggregate slip. The aggregate

non-zero velocity at the wall is referred to as the slip velocity, Vs, and the wall-normal distance into

the wall where the extrapolated velocity profile would reach zero, assuming a constant strain rate,

γ̇ , is commonly termed the effective slip length, λ =Vs/γ̇ [63], which increases as cavity fraction

and/or pitch increases. λ values been solved for Stokes flow on pillars [64] and ribs [65–69]. Be-

cause slip directly impacts dissipation of energy at the wall, it is logical to conclude that droplets

would spread farther during impingement (depicted in Figure 2.1 (c)), as has been observed for jet

impingement scenarios [70,71]. Effective slip length values as high as 60 µm on SH surfaces have

been previously reported for Cassie stable flows [72–74]. It is worth emphasizing that despite all

SH surfaces generally exhibiting high contact angles, not all inherently yield significant slip since

the latter is increasingly more sensitive to large cavity fraction and large pitch values.
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Figure 2.1: (a) and (b) SEM images of the two types of superhydrophobic surfaces used in this
work. (c) Schematic of a water drop impinging on a superhydrophobic surface where slip promotes
larger spreading diameters.

Some of the earliest experimental work addressing droplet impingement on SH surfaces

found the contact time of an impinging droplet (the total time a droplet spends in contact with

the solid surface) , was shown to be independent of impact velocity over the Weber number range

0.3 < We < 37, where We = ρV 2
o Do/σ . Here, ρ is density, Vo and Do are velocity and diameter

at impact, and σ is liquid-air surface tension [75]. Antonini et al. [2] conducted water droplet

impingement experiments over a broad range of surface types from very hydrophilic to superhy-

drophobic. Their data revealed that the maximum spread diameter decreases for surfaces with

increasing contact angles, θ , over the range 48◦ < θ < 166◦, due to the increased attraction be-

tween water and hydrophilic surfaces. A later study by this same group on droplet rebound revealed

that the maximum spread diameter was slightly larger for droplets that made no contact with the

surface during impingement (due to sublimating and Leidenfrost effects) indicating that the shear

stress at the wall may play a significant role during spreading [76].

Droplet impingement on azimuthally-varying wall shear stress surfaces was first explored

by Pearson et al. by using anisotropic SH surfaces with alternating ribs exhibiting high cavity frac-

tions (80% to 93%) and relatively large pitch (40 µm) [77]. They observed that a droplet spreads
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farther and faster in the direction along the ribs than in the transverse direction providing further

evidence that the shear stress at the wall can play a significant role even for a single impingement

event. This is in agreement with the work of Crowdy who mathematically showed that the effective

slip length along the direction of the ribs is twice that for the transverse direction [66]. However,

no analytical model was employed by Pearson et al. to explore the underlying mechanism causing

their observations.

Theoretical aspects of droplet impact began with Madejski who proposed a differential

energy balance model which accounted for surface energy and kinetic energy based on a two-

dimensional axisymmetric cylindrical flow field [78]. A truncated sphere model has since also

been developed [79]. More recently, Attane et al. improved on the cylinder model by accounting

for dissipation caused by the lamellar rim, resulting inbetter correlation to empirical data than other

models previously reported over a broad range of contact angles, Weber numbers and Ohnesorge

numbers, where Oh = µ/
√

ρσDo (µ is the dynamic viscosity of the liquid). While these models

allow for contact angles commonly observed on SH surfaces, none considerthe effect of slip, which

is surprising since slip has been shown to alter flow dynamics for many other scenarios including

jet impingement [70, 71, 80–82] and channel flow [69, 83, 84].

In this work, we present an analytical model capable of predicting droplet spreading dy-

namics on SH surfaces with non-negligible slip. It is based on an energy conservation approach

taking into consideration surface energy, kinetic energy, and dissipation. Results show that slip can

cause effects which existing models are unable to predict. Furthermore, a two dimensional model

able to handle anisotropic slip behavior for the case of droplet impingement is presented for the

first time. Experiments were also performed on isotropic and anisotropic SH surfaces to validate

the models and very good agreement was found.

Section 2 of this paper presents the analytical model derivation, followed by surface fab-

rication and experimental methodology. Results of both the model and experiments are presented

and discussed in Section 3 for the isotropic and anisotropic cases over a broad range of governing

parameters. Finally, Section 4 will present the conclusions of this work.
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2.4 Methodology

2.4.1 Theory

Isotropic Model

A differential model for post-impact droplet spreading and recoiling is now developed

based on conservation of energy. The liquid droplet is assumed to maintain the shape of a cylinder

while in contact with the surface where a shear flow velocity field exists. Similar approaches have

been widely employed in the past [3, 78, 85] and thus will only be briefly described.

A temporal conservation of energy model based on the exchange between surface energy,

Eσ , and kinetic energy, Ek, including viscous dissipation, Φ, is as follows

d
dt

(Eσ +Ek)+Φ = 0, (2.1)

where t is time and gravitational effects are negligible. Individual terms are defined as

Eσ = σ
(
πR2 +2πRH−πR2cosθ

)
, (2.2)

Ek =
1
2

ρ

∫
Ω

(
V 2

r +V 2
z
)

dΩ, (2.3)

and

Φ = 2µ

∫
Ω

[(
∂Vr

∂ r

)2

+

(
Vr

r

)2

+

(
∂Vz

∂ z

)2

+
1
2

(
∂Vr

∂ r
+

∂Vz

∂ z

)2
]

dΩ (2.4)

In the above equations, σ , ρ , and µ are the liquid surface tension, density, and dynamic viscosity,

respectively. R, H, and Ω are the radius, height, and volume of the droplet, respectively, and θ is

the apparent static contact angle. r and z are the radial and axial coordinates, and Vr and Vz are the

radial and axial velocity components, respectively. The model does not account for hysteresis and

thus θ remains constant throughout the event. However, it will be shown in Section 2.1.3 that the

model can predict dynamics on a SH surface with hysteresis as high as 20◦ with good accuracy.

The terms on the right side of (2.2) represent the surface energy along the top, side, and

bottom area of the cylindrical droplet. The velocity field,~V , necessary for (2.3) and (2.4) is defined
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as

~V =

Vr

Vz

=

 Crz

−Cz2

 (2.5)

where C is a constant that can be obtained by setting the time rate of change of the periphery of the

droplet, dR/dt, equal to the average radial velocity at the periphery as follows

dR
dt

=
1
H

∫ H

0
Vr(r = R)dz (2.6)

Both the surface and kinetic energy terms were normalized by their corresponding values

for a spherical droplet immediately before impact, defined as

Eσ ,o = σπD2
o (2.7)

Ek,o =
1
2

ρΩV 2
o (2.8)

where Do and Vo are the droplet diameter and velocity at impact. The viscous dissipation term was

normalized by

Φo = µ

(
Vo

Do

)2
πD3

o
6

(2.9)

After normalizing and substituting the velocity field (2.5) into (2.1), the final form of the energy

balance yields a non-linear ordinary differential equation,

d
dt̂

[
R̂2 (1− cosθ)+

1
3R̂

]
+

1
12

d
dt̂

[(
2
3
+

1
45R̂6

)(
dR̂
dt̂

)2
]
+

4Oh
(

3R̂4 +
2

3R̂2
+ sR̂

)(
dR̂
dt̂

)2

= 0 (2.10)

where the variables denoted with a hat represent normalized quantities. The normalized droplet

radius and time are defined as R̂ = R/Do and t̂ = tVo/(DoWe), where We = ρV 2
o Do/σ is the Weber

number at impact. Frictional loss due to the lamellar rim is accounted for in the viscous dissipation

term in (2.10) through the term proposed by Attane et al. [3], sR̂, where s = 1.41Oh−2/3. This

definition of s has shown good agreement with experimental data over the broad range of 1 <
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We < 2×103, 0.0022 < Oh < 0.585, and for θ as high as 170◦ [3]. The ranges used in this work

are well within these bounds.

Having introduced the energy balance previously employed by other researchers, in which

the no-slip condition prevails at the wall, we now build upon it by incorporating slip. We employ

Navier’s slip hypothesis [63] thus altering the boundary condition such that an apparent slip exists

at z = 0 and fluid velocity vanishes at z =−λ . The velocity field is now expressed as

~V =

 Cr(z+λ )

−C(z2 +2λ z)

 (2.11)

where Vz was obtained by satisfying ∇ ·~V = 0. Finally, substituting the slip-altered velocity field

(2.11) into (2.1) yields

d
dt̂

[
R̂2 (1− cosθ)+

1
3R̂

]
+

1
3888

d
dt̂

[
1

R̂10
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1
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R̂2
+

1
4
+

s
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dR̂
dt̂

)2

= 0 (2.12)

The normalized effective slip length is defined as λ̂ = λ/Do. Equation 2.12 serves as the basis for

the model of droplet impingement on a surface exhibiting isotropic slip.

Two initial conditions are necessary to solve (2.12). For the first, the initial surface energy

of the cylindrical droplet is set equal to the surface energy of its physical counterpart before impact

(Equation 2.7) such that R̂o = R̂(t̂ = 0). While there is no real solution for θ > 109.4◦, Attane et

al. showed that R̂o obtained at this upper θ limit (R̂o = 0.39) is a good representation for higher θ

values up to 170◦ [3]. For the second initial condition, the kinetic energy of the model at t = 0 is

set equal to that of a droplet immediately before impact (Equation 2.8), which results in

dR̂o

dt̂
=

(2λ̂ + R̂2
o/6)

√
324R̂10

o We√
6R̂6

o +108λ̂ R̂8
o +648λ̂ 2R̂10

o +0.2+6λ̂ R̂2
o +48λ̂ 2R̂7

o

(2.13)
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An adaptive step-size 4th order Runge-Kutta algorithm was employed to solve (2.12) with

the given initial conditions. R̂ was calculated as a function of t̂, where realistic values of θ , λ̂ ,

Oh, and We were chosen and specified for each simulation. The range of values explored were

145◦ < θ < 165◦, 0 < λ̂ < ∞ and 5 < We < 250 for 0 < t̂ < 0.5 to capture both the spreading and

recoiling phase. Low Oh values were used ∼ 2× 10−3. The results of this analysis for surfaces

with isotropic slip will be presented in Section 3.1.

Anisotropic Model

When the superhydrophobic surface of interest exhibits anisotropic texturing, such as the

alternating rib and cavity pattern shown in Figure 2.1 (b), an effective slip length that varies with

the azimuthal direction, α , prevails. Although the same governing equations and initial conditions

developed in the isotropic derivation apply here, an azimuthally-varying slip length, λ (α), must

now be accounted for. For the rib and cavity scenario, λ (α) can be expressed as [66]

λ (α) = λL

√
cos2α +

(
sinα

2

)2

(2.14)

In (2.14), λL represents the slip length along the direction of the ribs (longitudinal) where α = 0◦,

while λT denotes the slip length in the direction perpendicular to the ribs (transverse) where α =

90◦. λL can be computed from the following relation [65, 66]

λL =
w
π

ln
(

sec
(

π
Fc

2

))
(2.15)

where w and Fc maintain the same definition as in the isotropic derivation.

In order to solve (2.12) with anisotropic slip, it is necessary to discritize the domain spa-

tially and temporally. Spatially, the model was discretized in the azimuthal direction from 0◦ to

90◦ into I number of finite control volumes with a uniform slice angle of ∆α = 90◦/I. The corre-

sponding slip length for each control volume was determined from (2.14). As the droplet spreads,

control volumes with larger slip spread farther at every time step resulting in shorter control vol-

ume heights. In order to maintain a realistic spatially-uniform height, H̄, across the entire model

through time, the sum of all control volumes was set equal to the volume of the spherical droplet
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before impact
πH̄

I

I

∑
i=1

R2
i =

4π

3

(
Do

2

)3

(2.16)

to calculate H̄ after each time step. A 4th order Runga-Kutta scheme was employed to solve the

system of equations through time. Grid independence studies were carried out to ensure conver-

gence. The final number of control volumes used in the model for the domain 0◦ < α < 90◦ was

252 and the number of time steps used over 0 < t̂ < 0.5 was 3200.

Influence of Contact Angle Hysteresis

Depending on the physical and chemical architecture of a SH surface, the hysteresis can

range from a few degrees to several tens of degrees. Superhydrophobic surfaces explored in this

work exhibit hysteresis values of nominally 10◦ to 20◦. However, as stated in Section 2.1.1, our

model assumes a constant contact angle throughout the entire event, which we now justify.

Normalized maximum diameter as a function of contact angle over the range 40◦ < θ <

165◦ are shown in the top panel of Figure 2.2. Solid lines correspond to the model with no slip for

Oh= 0.002 and We= 50 and 150. Also shown with open markers are experimental results using the

advancing contact angle from Antonini et al. [2]. In the figure, Dmax/Do increases with We because

the initial energy of the system is greater. As θ increases, there is a decreased attraction or adhesion

between water and surfaces, resulting in decreased Dmax/Do. Both model and experimental data

show that the change in Dmax/Do is small within the range 145◦ < θ < 165◦. Variation in droplet

diameter as a function of time is shown in the bottom panel of Figure 2.2. Model results are

shown for θ = 145◦ and θ = 165◦ at We = 50 and 150, thus depicting the difference in trajectory

within our maximum hysteresis range for two arbitrary initial conditions. During the spreading

phase the effect of θ on diameter is minimal, whereas discrepancy increases during the recoiling

phase (∼ 10% at t̂ = 0.5 for both We). A model that accounts for a varying contact angle would

expectedly yield a trajectory within these bounds.

Table 2.1 presents the maximum deviation in the maximum diameter, Dmax/Di, the time

to maximum diameter, t̂Dmax , and the time from impact through spreading and recoiling to when

the normalized diameter returns to unity, t̂c, for θ = 145◦ and 165◦ at We = 150 and Oh = 0.002.

Deviation was calculated as the percent variation for any one of these parameters, X , between
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Figure 2.2: Top: Normalized maximum droplet spread diameter as a function of θ for two different
values of We. Solid lines represent data from the theoretical model developed herein for Oh =
0.002 and λ̂ = 0, while the markers are experimental data from Antonini et al. [2] with Oh =
0.002±0.5%. Bottom: Normalized diameter as a function of normalized time for Oh = 0.002,
λ̂ = 0, and We = 50 and 150. Dashed and solid lines represent θ = 145◦ and 165◦, respectively.

Table 2.1: Percent deviation of Dmax/Di, t̂Dmax , and t̂c between θ = 145◦ and 165◦ for three
different slip values. Values shown are for Oh = 0.002 and We = 150.

λ̂ Dmax/Di(%) t̂Dmax(%) t̂c(%)
0 1.4 2.3 1.4

0.01 1.8 2.7 4.8
0.06 3.2 3.6 4.0

θ = 145◦ and 165◦, namely (X145◦ −X165◦)/X145◦ . Results show that the influence of θ is small

and only rises modestly with slip. We thus conclude that the use of a single contact angle in the

slip model is a reasonable approximation and introduces only small error for the hysteresis values

of the SH surfaces considered in this paper.
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2.4.2 Surface Fabrication

Superhydrophobic surfaces were fabricated to conduct experimental validation of the model

results. Two surfaces with post and rib features (Figure 2.1 (a) and (b)) were fabricated to repre-

sent isotropic and anisotropic boundary conditions, respectively. We note that while square post

arrays have resulted in anisotropic behavior for thin film jet impingement dynamics in the Wenzel

state [81,82], they exhibit nearly isotropic behavior for Cassie droplet impingement flows, in spite

of the localized Wenzel state at the impingement point [?, 86]. All surfaces were fabricated on

silicon wafers using standard photolithography methods and etched using an Inductively Coupled

Plasma (ICP) Reactive Ion Etcher (RIE). A 100 nm coat of chromium was thermally evaporated

onto the wafers to promote adhesion for the subsequent solution of Teflon in FC-75 (0.2:100 v/v),

which was spun onto the wafers and baked (330◦C for 30 min) rendering them superhydrophobic.

The thickness of the coat of Teflon was nominally 200 nm.

Three SH surfaces were created with approximately 20 µm tall microstructures; two with

post structures and one with rib and cavity structures. Post surfaces featured pitches of 8 and

16 µm with corresponding Fc of 80% and 92%. Both exhibited an advancing contact angle of

165◦±3◦ and receding of 145◦±3◦. Effective slip lengths were estimated using the square pillar

lattice correlation of Ybert et al. [64] and yielded slip lengths of 2.3 µm and 11.3 µm for the 80%

and 92% Fc surfaces, respectively. The rib surface featured a 40 µm pitch and 93% cavity fraction.

This surface exhibited advancing and receding contact angles of 161◦ and 155◦, respectively, in

the longitudinal direction (along the ribs), and advancing and receding contact angles of 167◦ and

157◦, respectively, in the transverse direction. The effective slip for the rib surface was determined

using (2.15) and yielded a value of 28 µm in the longitudinal direction.

2.4.3 Experimental Procedures

A syringe and needle arrangement was used to release a water droplet, driven by gravity,

onto a horizontally-positioned SH surface. Droplet diameters were nominally 2.2 mm, which is

below the capillary length of a =
√

σ/ρg and thus effects of gravity on spreading dynamics were

neglected. Impact velocity was altered by adjusting the height of the needle. An APX RS Photron

high-speed camera, placed parallel to the surface, captured side-view images of the impingement
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at 6000 frames per second. For anisotropic surface droplet impingement, images were captured in

both orthogonal directions (parallel and perpendicular to the ribs). To reduce noise, the background

was subtracted from all images such that only the droplet was considered at each instant in time.

The impact velocity was inferred from the slope of a second-order polynomial fit to the position of

the center of mass of the falling droplet.

Uncertainty in the normalized diameter was due to random error and is depicted in the

subsequent figures in the following section as error bars based on a 95% confidence level, with

nominally 3 - 10 samples per scenario. Calibration uncertainty did not affect the normalized di-

ameter since the normalizing length was obtained with the same calibration. The droplet diameter

and impact velocity each had an uncertainty between 0.2 and 1.1%. Fluid property uncertainty

is primarily associated with temperature fluctuations of 3◦C, resulting in uncertainty for density,

surface tension and viscosity of 0.2%, 0.7%, and 6%, respectively. An error propagation analysis

of these uncertainties yielded a total uncertainty in the Weber number of 0.9 to 3.9%.

2.5 Results and Discussion

Spreading and recoiling dynamics on surfaces with isotropic and anisotropic slip ranging

the entire spectrum 0< λ̂ <∞ are explored. A physically-limiting upper reference value for λ̂ may

be assumed to occur around 0.06, which is representative of a 1 mm diameter droplet impacting

a SH surface with a 60 µm aggregate effective slip length. The infinite slip scenario represents

extensional flow which would occur for a droplet spreading on a shear-free gas layer with no

contact with the solid substrate. While this situation may be regarded as purely theoretical, some

examples include the Leidenfrost rebound [87], sublimating solid rebound [76], and more recently,

the perfect hydrophilic surface rebound [88], the former which we compare with our model for

λ →∞ later on. In Section 3.1, we first discuss the influence of the slip length and Weber number

on the spreading and recoiling dynamics for SH surfaces with isotropic slip. In Section 3.2, the

influence of these parameters on SH surfaces with anisotropic slip is discussed.
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2.5.1 Isotropic Slip Results

Transient Dynamics

When a droplet impinges an isotropic surface, spreading and recoiling dynamics are ax-

isymmetric and thus results shown in this section are invariant in the azimuthal direction. Repre-

sentative normalized droplet diameter as a function of normalized time are shown in the top panel

of Figure 2.3. Results are shown for We = 20 and 150, λ̂ = 0, 0.02, 0.06 and ∞, where Oh = 0.002

and θ = 165◦. For all We and λ̂ , the diameter increases with time (spreading phase) up to a max-

imum diameter, Dmax, after which it decreases (recoiling phase) due to the inward pull of surface

tension. As expected, higher We yields larger maximum diameter and higher rate of spreading due

to the higher kinetic energy at impact. The no-slip model developed by Attane et al. [3] is also

plotted for comparison at We = 150 and the results exactly coincide with our λ̂ = 0 results.

Introducing slip causes the droplet to spread to a larger Dmax/Do for either We since the

flow experiences less frictional resistance. Accompanying the increase in maximum diameter is a

slight increase in time to reach maximum diameter. Both of these effects occur for both We but

are more noticeable at We = 150 because the influence of slip is proportional to the contact area

covered during spreading.

Recoiling rates are expected to be lower than spreading rates since viscous dissipation

during spreading leaves less energy than the initial energy of the system available for recoiling. For

SH surfaces, this effect decreases until it is negligible as λ̂ → ∞ since slip has a direct implication

on dissipation (at λ̂ = ∞ no energy is dissipated). Finally, it is worth noting that Dmax for the

infinite slip case is 60% greater than the no slip case for We = 150. Interestingly, the influence of

increasing λ̂ on Dmax asymptotes quickly with λ̂ = 0.1 (not shown) yielding results within 10% of

the infinite slip scenario.

The bottom panel of Figure 2.3 shows model results that reveal the interplay of energy

exchange between the surface and kinetic energy of the system for a typical case. Here, the energies

are normalized by the total energy of the droplet just before impingement and are referred to as

Êσ and Êk, respectively. The data in the figure corresponds to the We = 150 case shown on the

figure in the top panel with λ̂ = 0 and 0.02, and Do = 2 mm. As kinetic energy is converted to

surface energy during spreading, it decreases rapidly with time. This conversion process continues
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Figure 2.3: Top: Model results for normalized droplet diameter as a function of normalized time for
θ = 165◦, Oh = 0.002, We = 20 (dashed lines) and 150 (solid lines), and λ̂ values of 0, 0.02, 0.06,
and ∞ as shown in the figure. Results from the model developed by Attane et al. [3] are shown
as markers (�). Bottom: Model results for normalized surface and kinetic energy for λ̂ = 0.02
(dashed lines) and λ̂ = 0 (solid lines) as a function of normalized time for θ = 165◦, We = 150,
Oh = 0.002 and Do = 2 mm.

until Êk = 0, which occurs at t̂Dmax where all energy in the system exists only in the form of surface

energy and the droplet is instantaneously stationary (dR̂/dt̂ = 0). Subsequently, the exchange of

energy reverses, but due to viscous dissipation, the available energy at this point is significantly

less than at the beginning of impingement (∼40% of the initial value for the no slip case) and thus

Êk does not return to its initial value. As t̂→ ∞, Êk vanishes completely.

During the initial stages of spreading, no noticeable differences in the energy partition are

observed between the λ̂ = 0 and λ̂ = 0.02 cases. Deviation becomes apparent at t̂ > 0.05 and

the slip-influenced values of Êk and Êσ remain higher throughout the remainder of the spreading

process since less dissipation occurs. Consequently, the surface energy at t̂Dmax is greater for the

slip case, concommitant with the spread diameter being greater as shown in the top panel.
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Figure 2.4: Normalized droplet diameter as a function of normalized time with We= 155 and Oh=
0.0024. Solid and dashed lines correspond to the model for λ̂ = 0.0010 and 0.0051, respectively.
Markers ( , 4) represent the experimental counterpart of the model at equivalent slip values
(Fc = 80% and 92%) for a 2.2 mm initial diameter water droplet.

Next we present experimental data to compare with the model results. Figure 2.4 shows

D/Do as a function of t̂ for We = 155, Oh = 0.0024 and for slip values of λ̂ = 0.0010 and 0.0051.

Experiments were conducted using the Fc = 80% and 92% surfaces described previously. During

the initial phase of spreading, the model underpredicts the experimental results for both scenarios.

This deficiency is native to most energy balance models due to the assumed initial droplet shape

and has been well documented [3]. Notwithstanding the underprediction during spreading, the

model predicts the maximum diameter with good accuracy. Both the experimental and model

results show that the influence of λ̂ is negligible during the initial spreading phase (t̂ < 0.1), after

which point deviation begins. In contrast with spreading, the model results more closely match the

experimental observations during recoiling suggesting that the model is unaffected by the assumed

initial droplet shape during this phase.

General Slip Effects

The left panel of Figure 2.5 shows the normalized maximum diameter as a function of

We. No data is shown for We > 200 because peripheral splashing can occur above this point.

Experimental results for both post surfaces are compared with model results at equivalent slip

length values (λ̂ = 0.0010 and λ̂ = 0.0051) for Oh = 0.0024 and θ = 155◦. We make no attempt

at validating the experimental results of others shown with the analytical model since slip could
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Figure 2.5: Normalized maximum diameter as a function of We for millimetric size water droplets
on superhydrophobic surfaces (left) and hot (Leidenfrost) surfaces (right) from available literature
(Oh∼ 0.0024). Left: (+) Antonini et al. [2], (∗) Aria et al. [4], and (2) Clanet et al. [5]. Also shown
are experimental data for the Fc = 80% ( ) and Fc = 92% (O) surfaces, as well as corresponding
model results for λ̂ = 0.0010 (solid line) and λ̂ = 0.0051 (dashed line). Right: (4) and (#) are
experimental results on a Leidenfrost surface from Tran et al. 2012 and 2013 [6, 7], respectively.
Solid, dashed and dash-dot lines represent the model with λ̂ = 0.0010 (θ = 155◦), λ̂ = 0.050
(θ = 180◦) and λ̂ = ∞ (θ = 180◦), respectively.

not be inferred from those experiments. Clanet et al. [5] gave no detail about their SH surface

characteristics except that θ ∼ 170◦; Aria et al. [4] used a SH surface made of carbon nanotube

(CNT) arrays making it impractical to obtain a representative effective slip length; and the SH

surface finish of Antonini et al. [2] consisted of a random etch where only a generalized RMS

could be inferred. Nonetheless, model results, as well as all experimental data, show that maximum

spread diameter increases with Weber number, as expected. The dependence on We1/4 as proposed

by Clanet et al. is shown in the dash-dot line and shows good agreement with the results [5]. At low

We, there is virtually no distinction between experiments and the analytical model, while at high

We, there is a clearer distinction since the droplet spreads sufficiently for surface characteristics

to exert influence. Generally, the analytical model serves as a good representation of the data

everywhere.

A closer examination of the higher Weber number range (150 < We < 210) shown in the

inset shows only the experiments performed in the present work, where the apparent slip can be

inferred. Error bars are not shown on data points where the error was smaller than the marker

size. For this We range, the model results show good agreement with the experimental data and

34



Figure 2.6: Model results for the normalized maximum diameter as a function of λ̂ for We = 10,
50, 150, and 250. For all scenarios shown, Oh = 0.002 and θ = 165◦.

a distinctly larger maximum diameter was observed on the Fc = 92% surface due to the higher

effective slip length.

The right panel of Figure 2.5 also shows the maximum spread diameter as a function of We

but for impingement on a surface with infinite slip (dash-dot line). The solid line represents the

same model results as in the left panel for λ̂ = 0.0010 and is plotted for comparison. Experimental

data is shown from Tran et al. [6,7], who performed millimetric drop (Do ∼ 2 mm) experiments on

surfaces above the Leidenfrost temperature, thus approximating the infinite slip scenario. The data

show that the model generally over predicts the experimental results by∼ 20%. This indicates that

the additional friction at the wall caused by the vapor layer may not be negligible [61] and thus

maximum diameter model results at infinite slip are higher for all We. For the sake of obtaining an

approximate slip value for Leidenfrost impingement, model results for λ̂ = 0.050 are also shown

as a representative fit to the experimental data.

The general influence of λ̂ and We on normalized maximum droplet diameter are explored

in Figure 2.6. Model results for Dmax/Do are plotted as a function of λ̂ for We values of 10, 50,

150 and 250, with Oh = 0.002 and θ = 165◦ for all cases. Maximum diameter increases with

increasing We for all λ̂ as well as with increasing λ̂ at constant We. This influence of slip is sig-

nificantly more pronounced for higher We. For We= 10, there is only a slight increase in maximum

diameter (< 6%) over the enitre range shown whereas, for We = 250, the normalized maximum

diameter increases 46%. At high We, because the thickness of the droplet gets smaller as it spreads,

the influence of slip becomes more dominant. Finally, we note that because droplets that impinge
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Figure 2.7: Top view images of a water droplet (Do = 2.2 mm) impinging a superhydrophobic
surface captured at maximum spread (∼ 2.7 ms after impact) with We = 180 and Oh = 0.0024. (a)
λ̂ = 0.0010 (Fc = 80%); (b) λ̂ = 0.0051 (Fc = 92%). The scale is 1 mm for both images.

on surfaces with higher slip may spread out significantly farther for the same initial conditions,

fingering may be induced prematurely around the periphery. This phenomenon (depicted in the

right panel of Figure 2.7 for We = 180) is characterized by a wavy lamellar rim [85, 89, 90].

2.5.2 Anisotropic Slip Results

An anisotropic SH surface is a surface where the slip length, λ , varies as a function of the

azimuthal direction, α . Spreading and recoiling dynamics differ from the isotropic scenario in that

the droplet spreads faster along the direction with less shear stress or greater slip length [77]. Fig-

ure 2.8 shows an anisotropic impingement event at We∼ 160. Because less resistance is associated

with the longitudinal direction, the droplet spreads farther in this direction and transitions to droplet

breakup earlier. The dark region in the center of the spreading droplet (left panel) represents a local

transition to the Wenzel state. Given that once the liquid enters into the superhydrophobic cavities

it remains stagnant, the bulk of the droplet presumably still slips above the cavities during spread-

ing and receding. Thus, anisotropic slip behavior prevails, as will be shown in the results later in
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Figure 2.8: Droplet impingement on anisotropic surface at We ∼ 160 and t = 2.3 ms (left) and
t = 6.3 ms (right) after impact. Rib direction is indicated by lines in left panel. Arrows point to
satellite drops that form along the direction of greatest slip, α = 0.

this section. The influence of Weber number and slip length on the eccentricity of the spreading

dynamics in the pre-splashing regime on anisotropic surfaces is the main focus of this section.

Transient Dynamics

Figure 2.9 provides D/Do for the longitudinal and transverse diameters as a function of

time for the case where Oh = 0.0024, θ = 160◦, We = 109, and λ̂L = 0.0127 (λ̂T = 0.0064)

(see (2.15)). Lines correspond to model results and markers to experiments. In the longitudinal

direction, the model predicts a maximum diameter ∼ 5% greater than in the transverse direction,

due to larger slip length, and with a slightly later arrival time (∼ 2%). Recoiling occurs faster in

the longitudinal direction since the maximum diameter is greater and thus there is greater surface

energy per perimeter length, in addition to greater slip. In the model, this causes the droplet

diameter in the longitudinal direction to become smaller than its orthogonal counterpart at t̂ ∼ 0.38,

while this effect occurs experimentally outside the window of time shown.

Experimental data presented in Figure 2.9 follows the general trends predicted by the

model. Longitudinal maximum diameter is predicted quite well, but the model significantly overes-

timates it in the transverse direction (∼ 10% overprediction). A possible explanation for this is that

the azimuthal distribution of slip on a uni-directional anisotropic surface proposed by Crowdy [66]
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Figure 2.9: Droplet diameter in the two primary spreading directions as a function of time for
impingement on an anisotropic surface. Solid line represents the transverse diameter, while the
dashed line represents the longitudinal diameter. Markers ( ) and (4) represent experimental data
along these directions, respectively. This scenario is defined by Oh = 0.0024, θ = 160◦, We = 109,
Do = 2.2 mm, w = 40 µm and Fc = 93% (λ̂L = 0.0127).

(Eq. (2.14)) may overpredict the slip that exists for droplet impingement, particularly in the trans-

verse direction. This is further evidenced by the earlier departure of the experimental data from

the model predictions, which occur at t̂ ∼ 0.1. A more in depth analysis of the slip profile is given

in the following section.

General Slip Effects

Maximum diameters as a function of Weber number are shown in the top panel of Figure

2.10 for the same conditions as Figure 2.9. In both directions, the maximum diameter increases

as Weber number increases. Additionally, the difference between the maximum diameter in both

directions also increases as We increases, suggesting that the influence of slip for an anisotropic

SH surface is magnified at higher Weber numbers. While the model predicts the longitudinal

maximum spread with good accuracy, it overpredicts the transverse maximum spread by 7% to

16% in the range 110 < We < 170, and thus underestimates the observed anisotropy.

The hydrodynamic slip length tensor provided by Crowdy [66] (Eqs (70) and (71)) is the

basis for (2.14) which assumes Stokes flow and that slip prevails in both of the orthogonal di-

rections, with λ̂L = 2λ̂T . Woolford et al. showed that for flow in a microchannel with SH walls

exhibiting transverse ribs at non-Stokes flow Reynolds numbers, the slip length decreases with in-
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Figure 2.10: Top: Normalized maximum diameter in the longitudinal and transverse directions as a
function of We. Dashed and solid lines represent the analytical model data for the longitudinal and
transverse directions, respectively, employing the slip profile given by (2.14), while the markers
(4 and ) represent experimental data in these corresponding directions. Dash-dot line represents
analytical model data for the transverse direction for the slip profile given by λ (α) = λLcos(α).
Oh = 0.0024, θ = 160◦, Do = 2.22 mm, w = 40 µm and Fc = 93% (λ̂L = 0.0127) for all cases.
Bottom: Normalized effective slip length as a function of the azimuthal direction. The solid line
represents Eq (2.14) and the dashed line is λ (α) = λLcos(α).

creasing Reynolds number [91]. Furthermore, other work has identified a decrease in slip over an

alternating solid-gas interface (as is the case in the transverse direction) for drooping mensici [62],

which could likely be the case for droplet impingement given the associated high impact pressure.

The implication of this is that at high Weber numbers the slip in the transverse direction is likely to

be much lower than that predicted by Crowdy. While no previous researcher has presented a model

to predict the slip length for droplet impingement flow over transverse ribs, we consider here the

limiting case where slip in the transverse direction vanishes such that λ (α) = λLcos(α). This rela-

tion, as well as (2.14), are shown in the bottom panel of Figure 2.10, and the effect on Dmax/Do in

the transverse direction is shown in the top panel. There is very good agreement for the transverse
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Figure 2.11: Model results for the droplet shape at t̂Dmax for different values of slip (left) and
Weber numbers (right). The data in both figures were calculated for Oh = 0.002 and θ = 165◦.
Left: We = 150. Right: λ̂L = 0.03.

values of Dmax/Do with the experimental data (longitudinal maximum diameters over the same We

range are unaffected). These results demonstrate that the azimuthal distribution of slip for droplet

impingement likely differs from that obtained for general Stokes shear flow. However, because an

exact slip distribution for droplet impingement flow has not yet been established, the results in the

following sections are based on (2.14).

Maximum Diameter Shape and Size

Model results of the shape of a droplet at maximum diameter are shown in the left panel of

Figure 2.11 for We = 150 and λ̂L = 0, 0.01, 0.03, and 0.06, while the right panel depicts the same

data for a fixed value of λ̂L = 0.03 and We = 20, 50, 150, and 250. For both cases, Oh = 0.002 and

θ = 165◦. When anisotropic slip prevails, the droplet shape at maximum diameter is elliptical with

the major axis aligned with the longitudinal direction as illustrated in the left panel of Figure 2.11.

Further, as slip increases, the eccentricity of the ellipse becomes more pronounced and the diameter

increases in both directions. The increase in diameter as λ̂L increases is more pronounced for the
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Figure 2.12: Model results for the ratio of the maximum diameter in the longitudinal direction to
the transverse direction as a function of longitudinal-direction slip for We values of 20, 50, 150,
and 250. The data shown is for Oh = 0.002 and θ = 165◦.

longitudinal direction (35% increase from no-slip) than transverse (20% increase) concomitant

with the higher slip in that direction. Similarly, increasing We also yields an increase in the droplet

eccentricity. Anisotropic dynamics captured by this model can explain the 2-pronged jet rebound

phenomenon recently observed by Pearson et al. [77, 92], who also performed their experiments

on alternating rib/cavity anisotropic surfaces. They reported that given moderate Weber numbers,

the anisotropic droplet shape would cause a rebounding droplet to momentarily split into two jets.

To explore droplet eccentricity further, the ratios of longitudinal maximum diameter to

transverse, DL,max/DT,max, are shown in Figure 2.12. The figure shows DL,max/DT,max as a function

of λ̂L for We values of 20, 50, 150, and 250. It illustrates that the diameter ratio increases with

increasing λ̂L for all We as a result of frictional differences becoming more evident at large λ̂L. On

the other hand, the behavior of the system approaches non-eccentric, zero slip behavior for very

small λ̂L. Further, the figure shows that the diameter ratio increases for increasing We at any fixed

λ̂L. At higher We, the rate of increase of the ratio of the diameters decreases for sufficiently large

λ̂L due to the asymptotic behavior of λ̂ on the system for large slip values as discussed previously.

For instance, for We = 150 and λ̂ = 0.1 on an isotropic surface, the maximum diameter is within

10% of the maximum diameter associated with infinite slip. Thus, the eccentricity of the droplet

inherent of larger longitudinal slip is diminished at very high λ̂ values. The value of the maximum
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diameter in the transverse direction therefore approaches the value of the maximum diameter in

the longitudianl direction for large λ̂ or simply lim
λ̂→∞

DL,max/DT,max ∼ 1.

2.6 Conclusion

Spreading and recoiling dynamics of an impinging droplet on superhydrophobic surfaces

with slip were explored. A theoretical model was developed based on an energy balance includ-

ing surface and kinetic energy, as well as viscous dissipation. In contrast to what has been ac-

complished previously, the slip length, which prevails on SH surfaces with high pitch and cavity

fraction, was incorporated into the model. Additionally, a two-dimensional numerical scheme was

developed to predict the impingement dynamics on SH surfaces exhibiting anisotropic slip. Both

models showed good agreement with experiments performed in this work, as well as available em-

pirical data found in the literature. Slip, over its entire physical domain (0 < λ̂ < 0.06), was found

to increase the droplet maximum diameter significantly on both isotropic (35% for We = 150)

and anisotropic surfaces (36%/20% in the longitudinal/transverse direction for We = 150). Fur-

thermore, slip effects were magnified for increasing Weber number over the range explored here

(5 < We < 250) on both surface types. For anisotropic SH surfaces, the droplets were found to

spread and recoil in an elliptical shape. The eccentricity of the ellipse at maximum diameter in-

creased for increasing slip and Weber number, with the major axis aligned in the direction of

greatest slip. During spreading and recoiling, the fluid spread out faster and farther in the direction

aligned with the ribs, concomitant with greater slip. A new azimuthal relation for the slip length

of the form cos(α) was discussed for droplet impingement on unidirectional superhydrophobic

surfaces.
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CHAPTER 3. WENZEL TO CASSIE TRANSITION DURING DROPLET IMPINGE-
MENT ON A SUPERHYDROPHOBIC SURFACE

This chapter has been submitted for publication in the journal Physical Review Fluids. The

formatting of this paper has been modified to meet the stylistic requirements of this dissertation.

3.1 Contributing Authors and Affiliations

Cristian E. Clavijo, Julie Crockett, Daniel Maynes Department of Mechanical Engineering,

Brigham Young University, Provo, Utah 84602

3.2 Abstract

Superhydrophobic surfaces offer many industrial advantages such as drag reduction and

self-cleaning behavior as long as the liquid remains suspended above the composite solid/gas inter-

face (Cassie state). These advantages are hindered when liquid penetrates the gas cavities (Wenzel

state), and this is commonly referred to as impalement. Current efforts to drive impaled liquid

out of, or dewet, the cavities are locally-disruptive to the flow such as boiling or mechanically

vibrations. In this work, we reveal that passive dewetting is possible during droplet impingement

on micropillar substrates under the right thermodynamical conditions. Exploration included sub-

strates with pillar-to-pillar spacing of 8 µm and 16 µm, pillar diameters of 3 µm and 6 µm, and

pillar heights of 4 µm to 8 µm and 8 µm to 18 µm, respectively. The substrate temperature range

considered was 23◦C < Ts < 96◦C. Results revealed that dewetting increases with increasing pillar

height and increasing substrate temperature. Two hypotheses for the driving mechanism are for-

mulated based on evaporation and surface energy. First order models are consequently constructed

revealing that dewetting does not occur due to evaporation, but is caused by surface energy gra-

dients at the interface. Dissipation in the flow is taken into account due to hydrodynamic and

non-hydrodynamic mechanisms; the latter is found to dominate resistance.
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3.3 Introduction

The behavior of a liquid that comes in contact with a solid surface is highly influenced by

the wettability of the surface [93–95]. One commonly used metric to macroscopically determine

the extent of hydrophobicity is the static contact angle formed at the triple contact line, which for

water is generally between 90◦ and 120◦ on a hydrophobic solid [96]. If the hydrophobic substrate

exhibits nano- or micro-scale roughness, however, contact angles can exceed 150◦, and such sub-

strates are referred to as superhydrophobic (SH) [55,77,96]. Surface roughness allows many types

of plants [97] and insects [98,99] to thrive in nature and enables unique characteristics that promote

extremely low adhesion to water solutions [100]. Consequently, drag-reduction [84, 91, 101, 102],

self-cleaning [56] and enhanced drop-wise condensation [40] surfaces can be realized. These char-

acteristics are made possible by the existence of a solid/gas composite layer at the interface (Cassie

state). Superhydrophobic substrates are finding use in many man-made applications ranging from

medicine to microelectronics [95] and are also of great fundamental interest [71, 80, 103–106].

If liquid impregnates the cavities (Wenzel state), hereafter referred to as impalement, many

of the advantages posed by the superhydrophobic effect are compromised due to the dramatic

increase in apparent adhesion between liquid and solid. It is, therefore, of significant interest to

understand the thermodynamic landscape between the Cassie and Wenzel state in order to avoid

transition from the former to the latter or to investigate possible pathways of reversibility once

impalement has occurred. The transition between these two potential energy minima [107] has

indeed been of great recent scrutiny [107–117].

Whether a sessile droplet resides in the Cassie or Wenzel state depends on the architecture

of the SH substrate. For instance, the pressure difference, ∆P, required for impalement on a pattern

of alternating rectangular ribs and cavities decreases with increasing cavity length, l, as ∆P∼ l−1

and thus the likelihood of impalement increases with cavity size [108]. Other factors that play a

role include the solid fraction, φs, defined as the solid area in contact with the liquid divided by

the projected area; Young, or static, contact angle, θ 0; and roughness factor, r, defined as the total

solid surface area divided by the projected area, which for a pillar-type arrangement depicted in

Fig. 3.1a is r = 1+πdh/w2 (d is pillar diameter, h is pillar height and w is pillar center-to-center

spacing or pitch). The concept of a critical contact angle, θc, was defined by Bico et al. [118]

as cosθc = (φs− 1)/(r− φs) and is plotted in Fig. 3.1b as a function of r for φs = 0.2, which
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Figure 3.1: a) SEM photograph of superhydrophobic substrate used in this work. b) cosθc is
plotted as a function of r for φs = 0.2 where the Cassie or Wenzel state become more energetically
favorable for r → ∞ and r → 1, respectively. c) A 3 mm diameter water droplet impacting a
superhydrophobic substrate: (t = 0.0 ms) Prior to impact; (t = 3.0 ms) Maximum spread; (t =
11.0 ms) Apparent contact angle at the interface is no longer in the superhydrophobic regime,
θ ∼ π/2; (t = 30.0 ms) Necking between the rebounding and the pinned liquid becomes evident;
(t = 33.3 ms) Droplet separation has occurred and pinned liquid remains behind in the Wenzel
state as indicated by the arrow.

is a typical solid fraction. If cosθ 0 is larger than cosθc, then the Wenzel state is highly favored

and becomes increasingly more so as r→ 1. On the other hand, if cosθ 0 is smaller than cosθc,

energetic favorability is given to the Cassie state.

For a Cassie droplet on a substrate with moderate r values, the Cassie state is generally said

to be metastable and becomes vulnerable to impalement for bouncing droplets due to local pres-

sure increase [119, 120]. Figure 3.1C depicts a millimetric droplet bouncing on a SH substrate for

a pillar structured surface (w = 16 µm and h = 18 µm). Here, impalement occurred at impact and

as the droplet rebounds, the impaled liquid leaves a smaller drop behind (time, t ∼ 33.3 ms). These

images illustrate the general frailty of micro-structured SH substrates where if several droplets

continuously impact it, the substrate may not remain “dry”. Cassie stability can be enhanced by

employing hierarchical substrates such as nano-scale roughness on micro-features [120, 121] or
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simply very tall micro-features [119], either of which effectively increases r by increasing the to-

tal solid surface area. However, moderate micro-structured SH substrates (smallest feature size

∼ 100−102 µm) are often desired in droplet-impingement applications due to the associated large

hydrodynamic [77, 122] and/or thermal [123] slip effects. Thus, it has become of interest to inves-

tigate impalement reversibility pathways for micro-structured substrates, which thus far has proven

difficult [109, 124, 125]. We address this issue in the present work.

Impalement into a SH micro-pillar substrate during droplet impingement was reported by

Reyssat et al. [119]. The pillars were 2.5 µm and 10 µm in diameter and height, respectively.

Though impingement was axisymmetric, the impaled region exhibited sharp corners due to the

lattice arrangement of the pillars, which coincide with the arrangement used in this work. Later,

Krupenkin et al. investigated Wenzel to Cassie dynamics for a sessile ionic water droplet on micro-

pillar SH substrates of similar lattice arrangement to Reyssat et al. [119], which was induced into

the Wenzel state by applying voltage between the droplet and substrate [110, 125]. The temper-

ature at the solid-liquid interface (originally at room temperature) was increased instantaneously

well above saturation temperature (> 200◦C) by running a current through a thin conductive layer

coated on the surface. This caused the liquid at the interface to vaporize and thus the droplet rapidly

(∼ 50 ms) returned to the Cassie state. While this technique achieves a Wenzel to Cassie transi-

tion, the mechanisms used may be adverse in applications where high temperatures are detrimen-

tal. Similar approaches have been attempted by other groups [126], as well as magnetism [127],

electrolysis [128], vibrations [129] and more recently, hemiwicking of a low surface tension liq-

uid [130]. However, there are no current solutions for passive transition back to the Cassie state

once liquid has impaled the surface. In this paper, we discuss a mechanism through which this tran-

sition occurs during droplet impingement, which we shall refer to as “dewetting”. Specifically, we

explore millimetric water droplet impingement on SH substrates composed of micro-pillar struc-

tures (Fig. 3.1a). The influence of substrate temperature (below saturation temperature of water),

pillar height and pitch are quantified.

In Section 3.4 experimental and data processing methodologies are detailed. Experimen-

tal results showing the influence of substrate temperature, micro-structure height and spacing on

dewetting are discussed in Section 3.5. In Section 3.6, first order models are postulated to explain

the behavior and identify the mechanisms at play. Although not the primary point of the paper, the
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mathematical development of the observations reveal that the experiments lend themselves to the

isolation of contact line dissipation form hydrodynamic dissipation, which is difficult to achieve

experimentally [131]. Finally, the results are summarized and conclusions drawn in Section 3.7.

3.4 Methodology

Superhydrophobic substrates arrayed with micro-pillars (SEM photograph shown in Fig.

3.1a) were fabricated on 4-inch silicon wafers (∼ 500 µm thick) using photolithography and

reactive-ion etching. Once etched to the desired depth, the substrates were coated with a∼ 100 nm

Chromium layer in an electron beam evaporator to promote adhesion of a subsequent ∼ 200 nm

thick layer fluoropolymer (4, 5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole).

Seven different substrate geometries were created with constant solid fraction, φs ∼ 0.11,

but varying pitch and height. Three substrates exhibited an 8 µm pitch, nominal pillar diameters of

3 µm, and 4, 6 and 8 µm pillar heights, respectively. The other four substrates exhibited a 16 µm

pitch, nominal pillar diameter of 6 µm, and 8, 12, 16 and 18 µm pillar heights, respectively. These

geometrical parameters were chosen such that water would reach the bottom of the cavities during

impalement, thus pinning the rebound [132]. Reyssat et al. [?] showed that impalement does not

fully penetrate for h/(w−d)2 > 106 m−1 for a water droplet impinging at a velocity similar those

investigated here. For the tallest pillars in both the 8 µm and 16 µm pitch substrates, h/(w−d)2 =

0.32× 106 m−1 and 0.18× 106 m−1, respectively, thus showing we are well within the complete

impalement threshold. This will also be evidenced by the experimental results presented later.

From here on, we will refer to the substrates by the following convention: XpY h (e.g. 8p6h refers

to the 8 µm pillar pitch, 6 µm pillar height substrate). Pillar height variation across a single

substrate (within the region of interest) was on the order of 2%. Final values of pillar diameters,

d, and resultant φs and r are reported in Table 3.1. The apparent static contact angle, θ , for a

sessile water droplet in the Cassie state for all substrates was nominally 166±3◦ with a hysteresis

of ∼ 20◦.

Experiments were conducted by releasing a single water droplet from 20 cm above a

horizontally-positioned SH substrate as shown in Figure 3.2. One droplet size (∼ 24 µL) and

impact velocity, Vo (∼ 1.96 m/s), were considered across all tests. These were chosen such that the

droplet would spread out sufficiently far during impingement and allow a clear view of the impaled
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Figure 3.2: Schematic of the experimental setup illustrating the position of the substrate on the
heater block and high-speed cameras 1 and 2, which captured droplet impact velocity and dewet-
ting dynamics, respectively.

Table 3.1: Average values of profilometer measurements of pillar-arrayed superhydrophobic
substrates. Values for w, h and d are given in µm, while φs and r are dimensionless.

w/h d φs r w/h d φs r
8/4 3.0 0.11 1.59 16/8 6.0 0.11 1.59
8/6 3.1 0.11 1.88 16/12 6.4 0.13 1.96
8/8 2.8 0.10 2.12 16/16 5.9 0.11 2.18
- - - - 16/18 6.1 0.11 2.32

region. The resulting impact Weber number, Weo = ρoV 2
o Do/σo, was nominally 190 (ρ is liquid

density, D is droplet diameter, σ is liquid-gas surface tension, and the subscript o is used to denote

pre-impact conditions at room temperature). Do was obtained with a high speed camera positioned

parallel to the substrate and Vo by fitting a curve to the temporal position of the falling droplet.

Uncertainty in Vo and Do was approximately 1%, while uncertainty in the fluid properties ρo and

σo was 0.2% and 0.7%. Overall uncertainty in Weo was 3.7%.

The superhydrophobic substrate was placed on top of an aluminum block which was heated

from the bottom with the sides insulated. Four type K thermocouples (error for absolute measure-

ment∼ 2.2◦C) were embedded 1 mm below the top of the block at different locations revealing that

the temperature variation across that plane of the block was less than 1◦C. To determine substrate
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temperature, a silicon wafer was coated with a thin film of known emissivity (0.96) and placed

on top of the aluminum block. Its temperature, as measured with a thermal camera, was nomi-

nally 4◦C lower than the thermocouples in the range 80◦C < Ts < 100◦C, where Ts will denote the

substrate temperature prior to droplet contact from now on.

To capture dewetting events, a second high speed camera was positioned at an inclination

of 70◦ above the horizontal, as to not interfere with the falling droplet. Figure 3.3A shows a

representative impingement event on the 16p18h substrate at room temperature from both camera

views. A dark region in the center of the droplet can be observed in the later panels of the top

view sequence, which has already been established as impaled liquid on SH substrates of similar

scale [?,86]. The impaled region is not visible in the first two frames because the drop obscures the

view during the initial moments of impingement. Thus, data reported in this work entails dynamics

for t > 2.5 ms (at room temperature) and t > 2 ms (for Ts > 80◦C), due to a decrease of viscosity of

the droplet and hence slightly faster spreading at higher Ts. After this point and up to∼ 3.5 ms, the

lingering curvature of the droplet optically magnifies the area of impalement. This effect endures

until the droplet becomes flat in the thin film and is quantified below. An edge finding algorithm

based on pixel-value gradient detection was used to measure the impaled area, A, as a function

of time (note A is constant in Fig. 3.3a) not including the air bubble at the center, which forms

due to air entrapment. The volume of the impaled liquid, Ω, was obtained by Ω = A(1− φs)h.

Generally, 10 trials were conducted for each scenario (a given surface at a given temperature).

Overall uncertainty, including randomized uncertainty due to scatter, of penetrated volume at any

time was obtained based on a 95% confidence level and resulted between 2.7% and 4.3% across

all cases.

During the initial stages of impingement, the top of the droplet forms a concave interface

(see the first four images of the sequence shown in Fig.3.3), with a radius of curvature, R(t). Given

the difference in index of refraction between water (nw = 1.33) and air (na = 1.00), the concavity

acts like a magnifying lens such that the high speed camera detects a larger impaled region than

actually exists. Magnification endures until the interface becomes flat (i.e. R → ∞). To obtain

the temporal magnification, M(t), four small dots (∼ 0.1mm) were marked on a superhydrophobic

substrate creating a square similar in size to the impaled area at (-i,0), (i,0), (0,j) and (0,-j) around

the center of the impingement as shown in Fig. 3.3c. Each of the four points were then tracked
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Figure 3.3: a) Droplet spreading following impingement at We ∼ 190 and ambient temperature
(Ts ∼ 25◦C). b) Temporal magnification of impaled area due to droplet curvature at room tempera-
ture (•) and on a heated substrate T > 80◦C (∗). c) Schematic of stencil used to map the extent of
magnification during initial droplet impingement.

with the top camera during impingement and the temporal evolution of the area, As = a× b, was

divided by the unmagnified area to obtain M at each time step. Results are shown in Fig. 3.3b,

where t = 0 corresponds to the time when the droplet first contacts the substrate. The symbols

represent an average of 5 tests. Results show that magnification is modest (< 5%) throughout the

spreading event and under 1% after 3.5 ms from impingement.
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Figure 3.4: Dewetting process during impingement on a 16p18h substrate with Ts = 81◦C and
91◦C. In both cases, the impaled region gets smaller with time, but dewetting occurs at a faster rate
for Ts = 91◦C such that a complete transition from the Wenzel to the Cassie state has occurred by
4.8 ms. Arrows indicate whether the lamellar ring is moving away or towards the center.

3.5 Experimental Results

Here, we quantify the effects that superhydrophobic architecture and substrate tempera-

ture have on the Wenzel to Cassie transition (dewetting) during droplet impingement. Dewetting

rates are considered up to the point when the retracting droplet obscures the impaled region prior

to rebound (typically ∼ 8 ms). Two representative image sequences of dewetting events on the

16p18h substrate at 81◦C and 91◦C are shown in Fig. 3.4. The data for the 81◦C case shows

that the impaled region, which can be clearly seen by the third panel (t = 2.2 ms), is shrinking

with time indicating that dewetting is occurring. However, some liquid remains trapped in the

pillars at the end of the event. For the 91◦C case, the rate of dewetting is faster and the impaled

liquid completely vanishes at t = 4.8 ms. We note that dewetting is not necessarily achieved on

all substrates or at all temperatures, as will be shown later. The arrows in the last three panels of

the top sequence indicate whether the droplet is spreading (arrows point outwards) or retracting

(arrow point inwards), thus illustrating that dewetting is not influenced by whether the droplet is

spreading or retracting. Finally, the images reveal that although impingement is axisymmetric, the

square lattice arrangement of the micro-pillars causes the impaled region to deviate from a circular

shape and exhibit sharp corners, in accordance with the work of Reysatt et al. [119].

Results that are shown in Fig. 3.5 characterize the temporal dewetting dynamics for sub-

strate temperatures of 25◦C < Ts < 96◦C. The temporally varying volume of penetrated or im-

paled liquid is normalized by a characteristic volume based on the projected area of the droplet
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and the height of the pillar array for the given substrate, which yields the normalized volume,

Ω∗ = 4Ω/(πD2
oh). The three panels on the left present data for the 8 µm pitch substrates with

pillar heights of 8 µm (top), 6 µm (mid) and 4 µm (bottom), while the three panels on the right

represent the 16 µm pitch substrates with pillar heights of 18 µm (top), 12 µm (mid) and 8 µm

(bottom). Each curve is the average of 10 trials at the same conditions as explained in Sec. 3.4.

First, dewetting behavior for the 8 µm pitch substrates is discussed. The data of the top left

panel (8p8h substrate) shows that at a substrate temperature of 25◦C (room temperature) dewetting

does not occur (normalized impaled volume is invariant with time). At Ts = 81◦C, dewetting

occurs with Ω∗ decreasing with time and the rate of dewetting increasing with increasing Ts. At

Ts = 91◦C and 96◦C, the impaled volume transitions completely from the Wenzel to the Cassie state

by approximately 5 s and 3 s, respectively. It is also noted that the initial normalized dewetting

rate, dΩ∗/dt (at t ∼ 2 ms), increases with increasing substrate temperature and this behavior is

consistent with all substrates considered.

As pillar height decreases at constant pitch, dewetting becomes less sensitive to temper-

ature. For the 8p6h substrate, dewetting does not occur for any temperatures explored up to

Ts = 81◦C and only modest dewetting is evident for the Ts = 86◦C and 91◦C cases. At Ts = 96◦C,

dewetting is pronounced, with only 29% of the initial impaled volume remaining in the impaled

state after 8 ms. The nature of the decrease in Ω∗ with time is different for this scenario than for

the 8p8h substrate. For Ts ≥ 86◦C, the impaled volume decreases but then levels off and ceases to

change (dewetting stops) with time at t ∼ 4 ms and this behavior is more evident as Ts increases

further. The data in the bottom left panel shows that the impaled volume is unchanging with time

(no dewetting occurs) for all temperatures explored for the 8p4h substrate, further demonstrating

the observation that dewetting rates decrease with decreasing pillar height.

Similar dewetting trends are observed on the 16 µm pitch substrates (right panels of Fig.

3.5). For the 16p18h case, no dewetting occurs at room temperature, but dewetting rates increase

significantly for elevated substrate temperatures. Complete dewetting is observed for substrate

temperatures of 86◦C, 91◦C and 96◦C at 6.7 ms, 4.8 ms and 3.7 ms, respectively. Similar to the

8p8h surface, dΩ∗/dt (at t ∼ 2 ms) increases with increasing temperature. On the 16p12h substrate,

the rate of dewetting is not as great as on the 16p18h substrate and only becomes apparent at

Ts = 86◦C, with the dewetting rate increasing for Ts = 91◦C and 96◦C. For these two temperatures,
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Figure 3.5: Temporal evolution of Ω∗ for the 8 µm (left) and 16 µm pitch (right) substrates. On
the left, pillar height is 4 µm (r = 1.59), 6 µm (r = 1.88) and 8 µm (r = 2.18) from bottom to
top, respectively, while on the right, pillar height is 8 µm (r = 1.59), 12 µm (r = 1.88) and 18 µm
(r = 2.33) from bottom to top, respectively. N, H, �,  and A represent Ts = 25◦C, 81◦C, 86◦C,
91◦C, and 96◦C.

the final impaled volumes are 69% and 36% of the initial impaled value for the room temperature

scenario. When dewetting occurred for the 16 µm pitch substrates, the impaled volume always

decreased with time and no plateauing trends were observed in contrast to the 8p6h substrate.

However, dewetting did not occur for the 16p8h substrate at any temperature. Data for the 16p16h

substrate are not shown in Fig. 3.5 for clarity, but lie between the data for the h = 12 and 18 µm

cases.

In summary, dewetting rates increase with increasing h and Ts, although no dewetting oc-

curs for the shortest pillar height (for either pitch) at any Ts, or for the lowest substrate temperature

(ambient) at any h. Both the 8 and 16 µm pitch substrates yielded similar behavior at correspond-

ing r values (i.e. 8p4h and 16p8h, 8p6h and 16p12h, etc. See Table 1).
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All of the image results showed that impalement was initially nearly axisymmetric, but

that the symmetry evolved during dewetting into a more “square” shape due to the square lattice

arrangement of the micro-pillars. Shown in Fig. 3.6a are images of the dewetting event for the 8p8h

substrate at a surface temperature of 91◦C and the behavior described below is representative. Due

to the entrapped air bubble during impact described previously, there was no impalement in the

center of the impaled region (as shown in the images), with the radius of this region denoted as

Rb. The total impaled volume was obtained by integrating over the dark region to determine the

total impaled area, which is then multiplied by the pillar height. An effective radius of the impaled

region can thus be computed as Rε =
√

Ω/(π(1−φs)h) and this will be important for the analysis

that is conducted in the following section. A normalized effective radius (R∗ε = Rε/(Do/2)) was

computed as a function of time for all cases considered.

Shown in Fig. 3.6b is R∗ε as a function of time for the 16p18h substrate at Ts = 86◦C,

with 10 individual trials included. The data reveal excellent repeatability for all trials and shows a

linearly decreasing effective radius with increasing time over the majority of the dewetting event.

Deviation from linearity occurs only as Rε approaches the radius of the air bubble trapped in the

center, where interaction of this bubble and the effect of individual pillars becomes important. Also

shown in the figure is a linear fit to the data from ∼ 2 ms to ∼ 5 ms. The implication of this is

that the dewetting rate dR∗ε/dt ≡ Ṙ∗ε is constant over most of the dewetting process. The data for

all scenarios exhibited a similar linear relationship, although with a different slope. The behavior

of Ṙ∗ε (in the initial dewetting regime where it’s constant) is shown in Fig. 3.6c as a function of

substrate temperature for all substrates where dewetting occurred. The figure shows that for a given

Ts, dewetting rates increase for increasing r values, as expected.

3.6 Analysis

Three independent mechanisms exist that may cause dewetting to occur: buoyancy-driven

convection, evaporation and a force resulting from a surface energy gradient between the Wenzel

and Cassie states. First, a temperature gradient (decreasing in the vertical direction away from the

wall) exists within the impaled liquid and could yield bulk movement of the liquid due to varying

density. A buoyancy-induced force would scale as ρβ∆T gΩ with ρ , β , ∆T and g representing liq-

uid density, the volumetric thermal expansion coefficient, temperature differential and acceleration
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Figure 3.6: a) Image sequence of dewetting event for the 8p8h substrate at 91◦C. Overlaid circle of
effective radius Rε used in evaporation and force balance models (bottom sequence). b) Temporal
decay of R∗ε for 10 data sets on the 16p18h substrate at Ts = 86◦C. c) Ṙ∗ε as a function of Ts for the
8p6h (N), 16p12h (4), 8p8h ( ), 16p16h (#) and 16p18h (A) substrates (background color added
to emphasize separation due to increasing r values).

due to gravity. However, dewetting due to buoyancy effects is unlikely because of the thinness of

the impaled liquid film, h, embedded in the pillar array. Further, although a temperature gradient

may induce warmer liquid at the bottom to flow in the direction of decreasing temperature, the ris-

ing liquid would be instantaneously replaced by descending colder liquid. Thus, buoyancy will not

be considered here. Evaporation of the impaled liquid through the peripheral liquid-air interface is

expected to increase with increasing temperature and increasing liquid-gas interfacial area (∝ h),

both of which agree with trends exhibited by the data. The last mechanism exists because of a sur-

face energy gradient between the Wenzel and Cassie states, which induces an inward pull (in the
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Figure 3.7: Schematic representation of dewetting models for evaporation (a) and a force balance
(b). Pillars are not shown on schematics on the left for clarity.

negative radial direction) on the impaled liquid. Figure 3.7 shows schematic illustrations of evap-

oration and a balance of surface energy and dissipative forces acting on the impaled thin film of

liquid. To quantify the extent to which these mechanisms influence dewetting, scaling arguments

are considered further below.

3.6.1 Evaporation

Evaporation around the periphery of the impaled liquid at the liquid-gas interface is con-

sidered by assuming the impaled volume of liquid is axisymmetric with effective radius, Rε , and

liquid-gas interfacial area, Ap = 2πRεh(1−φp), where φp = d/w is the solid fraction around the

periphery of the effective impaled disk. The rate of evaporation, ṁ, in this scenario is governed by

ṁ = h̄Ap (ρs@Ts−ρs@To) (3.1)

where h̄ is an average mass transfer coefficient and the term in parenthesis represents the difference

in density of the saturated vapor at the substrate temperature, Ts, and ambient temperature, To, and

is the driving potential. To obtain an estimate of the highest evaporation rates possible, forced

convection was assumed. Thus, an average mass transfer coefficient, h̄, can be estimated via the

following empirical relation for forced convection over a flat interface [23]

h̄L
DAB

= .664Re1/2
e Sc1/3 (3.2)
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Here, L represents the streamwise length of the flow at the liquid-air interface, DAB is the binary

diffusion coefficient of water vapor in air (adjusted for local pressure, DAB = 4.2× 10−5 m2/s),

Ree = V̄ L/ν is the Reynolds number and Sc = ν/DAB is the Schmidt number (νair is the kinematic

viscosity of air and V̄ is the velocity of the flow).

Air under the droplet is driven by the spreading motion of the droplet. Because the droplet

impacts the substrate with velocity, Vo, we assume V̄ ∼Vo ∼ 2 m/s. The characteristic length in the

direction of the air flow, L, is the height of the interfacial area through which evaporation occurs,

L ∼ h. The tallest pillars tested in this work were 18 µm, which yields Ree ∼ Sc ∼ 1. Finally, a

representative R value from experimental observations is 10−3 m. Use of these values and Eqs.

(3.1) and (3.2) yields an upper bound for the evaporation rate of ∼ 10−8 kg/s. This value is at least

two orders of magnitude smaller than typical measured dewetting rates and as a result we conclude

that evaporation is not the dominant mechanism.

3.6.2 Surface Tension/Dissipation Force Balance

A force balance in the radial direction (see Fig. 3.7 for the coordinate system) on a disk of

effective radius Rε can be expressed as FU = ΣFΦ,i where FU represents the force due to a surface

energy gradient between the Wenzel and Cassie state and ΣFΦ,i includes all dissipative forces.

Inertia is neglected because the “system” consists of only the thin disk of impaled liquid and not

the entire droplet.

The total surface energy includes interactions between all immiscible interfaces (solid-gas,

solid-liquid and liquid-gas) and is obtained by multiplying interfacial areas by their respective

surface tensions [107, 116, 117, 133]. When liquid dwells in the Wenzel state, its total surface

energy can be expressed as [116, 117]

Uw = γLπR2
εr+σ2πRhφp (3.3)

where γL and σ are liquid-solid and liquid-gas surface tension values. The second term on the

right-hand side of (3.3) is very small compared to the first term for the current situation where

h << Rε and is neglected. Energy in the Cassie state can also be easily defined and simplified via

57



Young’s relation, cosθ 0 = (γG− γL)/σ , as [116, 117]

Uc = πR2
ε [σ(1−φs)−σφscosθ

0 + γGr] (3.4)

where γG is solid-air surface tension.

It is the difference of the foregoing energy states that either promotes or resists dewetting

(the system will tend towards the lower energetic state). Thus, it is useful to define an effective

surface energy state, Ueff , as the difference between the two [116, 134]

Ueff ≡Uw−Uc =−πR2
εσ
[
cosθ

0 (r−φs)+1−φs
]

(3.5)

where we expect dewetting to occur for Ueff > 0 and the rate of dewetting to increase with increas-

ing Ueff . The presence of the air bubble in the center of the impaled region is easily taken into

account by redefining Ueff as

Ueff =−π(R2
ε −R2

b)σ
[
cosθ

0 (r−φs)+1−φs
]

(3.6)

where Rb is the radius of the bubble and observations reveal it to be essentially constant. A force

stemming from Ueff can be obtained by FU =−∇Ueff [134, 135] to yield,

FU = 2Rεπσξ (3.7)

In the above expression, ξ = [cosθ 0(r− φs)+ 1− φs]. FU acts in the negative radial direction–

thus facilitating dewetting–when ξ < 0. Pillar height, h, comes into play in Eq. (3.7) through the

roughness factor (r = 1+πdh/w2). Increasing h effectively increases the magnitude of FU (since

θ 0 > π/2), and thus provides an explanation for the experimental observations that dewetting rates

increase with pillar height due to an increasing driving force. Equation (3.7) further reveals that

the dewetting rates observed from the experiments does not depend on pillar height exclusively,

but rather on the roughness factor, which explains why substrates with similar r values exhibited

similar behavior.
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The Young contact angle, θ 0, can have an instantaneous value within the hysteresis range

for a given liquid-solid interface. For the present surfaces, the interface is water-Teflon and the

measured advancing and receding values show that 113◦ < θ 0 < 128◦. Given the nature of the

experiments it is impossible to know the instantaneous value of θ 0 as the impaled liquid retreats

through the pillar forest. To demonstrate the sensitivity of θ 0 on the driving force, ξ is shown as a

function of r in Fig. 3.8 for θ 0 = 120◦ and 127◦. If ξ is positive, the driving force from Eq. (3.7) is

positive and dewetting is not expected to occur, while the converse is true for negative values of ξ .

For a given value of θ 0, ξ will be positive at small roughness values (no dewetting) and becomes

negative as the roughness increases. At roughness values in the range 1.6 - 1.9, small changes in

the instantaneous value of θ 0 can lead to the value of ξ changing from a positive to a negative, or

vice-versa. An implication of this is that the dewetting rate for a particular substrate can change

with time, and that small changes in θ 0 can result in dewetting stopping. We hypothesize that this

is the dynamic at play for the substrates where dewetting was observed initially, followed by a

dewetting rate that vanished.

Recall from the data of Fig. 3.5 that dewetting first began at roughness values between

r = 1.59 (the 8p4h or 16p8h substrate, neither of which ever dewet) and 1.88 (the 8p6h sub-

strate). Dashed vertical lines are depicted in Fig. 3.8 corresponding to these roughness values.

For roughness values greater than r = 1.88, dewetting always occurred (with the rate dependent

on temperature) and for roughness values less than r = 1.59, dewetting was never observed. The

magnitude of ξ at θ 0 = 127◦ changes sign at r = 1.59 and at θ 0 = 120◦ the change in sign occurs

at 1.88. These values of θ 0 lie within the measured hysteresis range and we safely conclude that

the instantaneous value of θ 0 during the dewetting process is between 120◦ and 127◦.

The receding impaled liquid results in a moving three-phase (solid-liquid-gas) contact line,

hereafter simply referred to as “contact line”, that extends around the periphery of the impaled

region. The motion of moving contact lines result in large dissipation rates due to velocity gradients

within the liquid domain (hydrodynamical dissipation), friction due to molecular hopping at the

contact line (generally referred to as nonhydrodynamical dissipation having been derived from

Molecular Kinetic Theory, MKT) and a precursor film. Precursor film dissipation has only been

deemed important at moving contact lines of completely wetting liquids [136] and is thus neglected

here.
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Figure 3.8: Experiments revealed that dewetting (ξ < 0) begins somewhere between 1.59 < r <
1.88 (vertical dashed lines) indicating that the contact angle adopted at the periphery of impalement
lies between 120◦ and 127◦ (solid lines).

A hydrodynamic dissipation force due to velocity gradients at the bottom surface and ad-

jacent to the vertical pillars scales as µṘεRε , where µ is the viscosity of the impaled liquid, Rε is

the effective radius of the impaled (wet) region, and Ṙε is the dewetting rate. Equating this dissi-

pation scaling with the driving force due to surface tension gradients given in Eq. (3.7) yields the

following scaling

µṘε ∼ σξ (3.8)

Because the driving and dissipative forces are linearly dependent on Rε , the scaling sug-

gests Ṙε is constant for a given scenario. Common models for liquid viscosity are of the form µ ∼

10B/(T−C) where T is the absolute temperature of the impaled liquid and B and C are empirically-

derived constants of best fit for the distribution of dynamic viscosity with temperature [137]. Sub-

stituting this temperature dependency for viscosity into (3.8) and rearranging suggests that all data

should collapse in the following manner

Ṙε

ξ
∼ 10−B/(T−C) (3.9)

where σ has been assumed to be constant and is dropped from the scaling. Shown in the top panel

of Fig. 3.9 is a comparison of the scaling of Eq. (3.9) with the experimental data, where Ṙε/ξ is

plotted as a function of the surface temperature, where ξ was determined at a constant value of

θ 0 = 123.5◦. For the scaling, coefficients for the viscosity of water obtained from literature are
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utilized, with B = 247.8 K and C = 140 K [137] and T being set to the measured substrate tem-

perature for each scenario. The experimental data for all scenarios considered (shown in symbols)

collapse to a similar power-law curve. The scaling of Eq. (3.9) is also shown in the figure and

although the model also suggests a power relationship (governed by the dependence of viscosity

in temperature), it does not capture the trend followed by the experimental data, which exhibits

a much stronger dependence on temperature. This mismatch between the scaling and the data

indicates that hydrodynamic dissipation is not the dominant mode of dissipation during dewetting.

We now consider dissipation caused by the moving contact line. Derivation of dissipation at

the contact line due to molecular hopping is extensive and stems from Eyring’s MKT model [138].

Blake et al. adapted this MKT model and developed an expression for a moving contact line

dissipative force [139], which is used here. When the contact angle at the moving contact line is

similar to the static contact angle, which is the case here, the dissipative force can be expressed

as [140–142]

FΦ,CL = 2πRε Ṙε

h̄
λ 3 e∆Gw/NkBT (3.10)

where λ is the individual molecular displacement, kB is the Boltzmann constant, ∆Gw is the acti-

vation free energy of wetting, N is Avogadro’s number and h̄ is Planck’s constant. The downside

of this theoretical manifestation is the difficulty of comparing it with experiments. Because λ and

∆Gw are usually not known a priori, they are obtained by curve fitting empirical data of a specific

liquid-solid-gas interaction. Tabulated values vary widely and available data only exists for very

specific scenarios at specific temperatures (normally room temperature) [139–143]. Furthermore,

care must be taken when interpreting and utilizing such empirical results due to the sensitivity of

these constants: λ is raised to the third power and ∆Gw dwells inside an exponential. For simplicity

and to form a scaling argument, λ is discarded from Eq. (3.10), thus giving the following scaling

FΦ,CL ∼ Rε Ṙεe∆Gw/NkBT (3.11)

The driving force, FU , is now balanced with the triple line dissipative force to yield

Ṙε ∼ ξ Φ (3.12)
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with Φ = e−∆Gw/NkBT . This relation also indicates that dewetting speed is constant for a given sce-

nario (i.e. no dependance on Rε ), which agrees with the experimental behavior already discussed

(Fig. 3.6b). Furthermore, the scaling of Eq. (3.12) also suggests that the experimental data should

collapse as a function of temperature with Ṙε/ξ .

The middle panel of Fig. 3.9 again shows the experimental results for Ṙ∗ε/ξ as a function

of Ts. The experimental data collapses and agrees with the scaling argument in Eq. (3.12) with

∆Gw = 131× 103 J mol−1. This value of ∆Gw was obtained by performing a least squared fit to

the experimental data. A value for ∆Gw is not available from the literature for a water-Teflon-air

interface at the specific temperatures explored, however, the value obtained here is within a factor

of three to a published value for a glycerol/water mixture (70% aqueous) on Mylar polyester tape

(also a hydrophobic interaction), where ∆Gw = 49×103 J mol−1 [139]. The scaling of Eq. (3.12)

with this value of ∆Gw is also shown in the middle panel of Fig. 3.9 for comparative purposes,

where the dependence on temperature is not as great as demonstrated by the experimental data.

Finally, Ṙ∗ε normalized by the exponential of Eq. (3.12) is shown as a function of r in the bottom

panel of Fig. 3.9. The experimental data collapses into an approximately linear decay as a function

of r, as suggested by Eq. (3.12), where ξ ∝ r.

The models developed in this section arise from a force balance between the driving force

generated by the surface tension gradient that exists between the Wenzel and Cassie state and a

dissipation force. The results suggest that hydrodynamic dissipation exerts only a small influence,

while the contact line dissipation plays the predominant role in the dissipation and resistance to

dewetting. The scale analysis (contact line dissipation) agrees very well with the experimental

observations that increasing pillar height and increasing substrate temperature increase dewetting

rates. These two occur for different reasons, the former because of an increase in the driving force,

while the latter because of a decrease in dissipation.

3.7 Conclusion

In this paper the transient process where a localized Wenzel state incurred during droplet

impingement recedes or “dewets” back to the Cassie state has been explored. Unlike other mech-

anisms previously considered for transition from the Wenzel to Cassie state, which aggressively

affect the flow, such as boiling or vibrations, the one discussed here achieves dewetting passively.
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Experiments reveal that dewetting rates are strongly dependent on the substrate temperature and

micro-pillar height. The influence that both of these parameters exert on the process were quanti-

fied over a temperature range of 25◦C to 96◦C, pillar height range from 4 µm to 18 µm, and for two

pitch values, 8 µ and 16 µm. Two dewetting mechanisms were considered to explain the dewet-

ting behavior, with one based on evaporation and the other based on a force balance. Evaporation

was found to exert negligible influence. The force balance equated the driving force, based on a

gradient between the Wenzel and Cassie energy states with dissipation. Hydrodynamic and non-

hydrodynamic (based on molecular hopping at the triple contact line) dissipations were considered

(with forces that act in opposition to the dewetting motion). A scaling argument revealed that hy-

drodynamic dissipation plays a minor role and that nonhydrodynamic dissipation exerts dominant

influence. The overall results can be summarized as follows:

• The rate at which dewetting occurs increases with increasing substrate temperature and pillar

height.

• Both the experiments and scaling suggest that geometrical parameters (such as pillar height

or pitch) are not individually important, but a combination in the form of the roughness factor

governs the dynamics.

• A force resulting from an energy gradient between the Wenzel and Cassie states drives

dewetting, while contact line resistance inhibits the flow.

• The scaling provides a physical explanation for the experimental observations: Increasing h

induces dewetting due to an increased driving force, while increasing Ts also induces dewet-

ting but due to decreased dissipation.

These findings have broader implications in the design and commercialization of superhydropho-

bic surfaces for varying applications, especially those focused on single droplet or multi-droplet

mobility. Further research should include micro-features of differing geometry (square posts, ribs,

etc.) and different liquid-solid hydrophobic interactions.
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CHAPTER 4. HYDRODYNAMICS OF DROPLET IMPINGEMENT ON HOT SUR-
FACES OF VARYING WETTABILITY

This chapter has been submitted for publication in the International Journal of Heat and

Mass Transfer. The formatting of this paper has been modified to meet the stylistic requirements

of this dissertation.

4.1 Contributing Authors and Affiliations

Cristian E. Clavijo, Julie Crockett, Daniel Maynes Department of Mechanical Engineering,

Brigham Young University, Provo, Utah 84602

4.2 Abstract

This work presents on the hydrodynamics of water droplet impingement on superheated

solid surfaces across the entire wettability spectrum: superhydrophilic, hydrophilic, hydrophobic

and superhydrophobic. While a large body of work exists on droplet impingement on hydrophilic

and superhydrophilic surfaces, impingement on the latter two has been largely neglected and the

present results show that dynamics are dramatically different. Experiments ranging in surface

temperature from 125◦C to 415◦C and Weber numbers from 10 to 225 were performed and an-

alyzed using high-speed imaging. Some of the most striking differences are as follows. While

atomization is always present for impingement on the hydrophilic and superhydrophilic surfaces

at temperatures below the Leidenfrost point, atomization is absent at low Weber numbers and at

low excess surface temperatures on the hydrophobic surface. At high surface temperatures, the

attraction of vapor bubbles on the hydrophobic surface allows a vapor blanket to form more read-

ily thus leading to Leidenfrost behavior at a much lower temperature than classically observed on

a hydrophilic surface. One of the most interesting phenomenon that will be discussed includes

what will be described as a “pseudo-Leidenfrost” state for impingement on the superhydrophobic
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surface. Because water can be suspended at the peaks of the roughness on a superhydrophobic

interface, vapor escapes from underneath the droplet thus mimicking Leidenfrost behavior for all

excess temperatures. This results in minimal atomization for superhydrophobic impingement over

the entire regime explored. Finally, maximum spread diameters for Leidenfrost impingement are

tabulated as a function of the Weber number for all surfaces and are shown to be larger on the

smooth surfaces than on the textured ones indicating that droplet spreading at the Leidenfrost

point is not independent of surface type as previously supposed.

4.3 Introduction

Significant interest in the interaction between droplets and superheated solid surfaces is

evident by the plethora of publications in the last few years [8, 46, 53, 144–150]. This scenario is

present in a wide array of applications including spray cooling, coating, biochemical reactions and

combustion. The physics involved are rich and complex including both hydrodynamic and thermal

transport phenomena. From a hydrodynamical stand point, a droplet impinging a hot surface can

have dramatically varying results. It may boil violently, atomize and splash, or rebound without

either splashing or atomizing (or a combination of the two). Instantaneous heat transfer rates

correspondingly vary dramatically across these regimes. While ample research has been performed

in this field, most of it has focused on interactions with hydrophilic-type surfaces. Thus, open

questions for impingement boiling on hydrophobic and superhydrophobic surfaces still remain.

This work addresses some of these questions.

In 1997, Bernardin et al. published some of the first comprehensive boiling regime maps

for droplet impingement on heated aluminum (hydrophilic) surfaces for impact Weber numbers,

We = ρV 2D/σ , (where ρ , σ , V and D represent liquid density and surface tension, impact velocity

and initial diameter, respectively) of 20, 60 and 220 [24]. They observed that at low excess sur-

face temperatures (contact boiling regime), boiling increased with increasing surface temperature,

where boiling was described as the presence of vapor bubbles, droplet breakup and the ejection of a

fine mist or shower of tiny droplets. This shower of droplets is generally referred to as atomization

or secondary atomization; we will refer to it as atomization throughout this paper. On the other

hand, they found that for sufficiently high surface temperatures, atomization was no longer present

and the droplet would rebound as if on a superhydrophobic surface. [24]. This regime is known
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as film boiling and the lowest surface temperature at which atomization ceases to occur has been

named the Leidenfrost point (LFP) [9,30,44,151,152]. The lack of atomization is attributed to the

presence of a thin vapor film at the solid-liquid interface by which vapor can be transported from

the droplet, thus preventing vapor bubbles from bursting [8, 9, 11, 24].

With improved high-speed imaging technology and controlled micro-fabrication techniques,

Tran et al. later provided another detailed study of droplets impinging on heated smooth [9] and

textured [11] hydrophilic surfaces. They also constructed regime maps, but this time with surface

temperatures as high as 600◦C. An entirely new regime applicable to droplets was introduced,

namely ”spraying film boiling”, which occurs at surface temperatures well above the LFP. Here,

atomization once again is present and is also attributed to bursting vapor bubbles [9]. However, the

primary mode of heat transfer is radiation through the thin vapor film which still exists between

the droplet and the hot surface. Their results further showed that the transition temperature from

contact to film boiling increases with Weber number and that surface texture decreases the LFP,

both of which are a result of a balance between vapor production (surface temperature) and inertia

of the impacting droplet (Weber number). Lastly, they concluded based on observations made us-

ing an optically-transparent sapphire plate as the impinged surface, that the liquid does not contact

the solid for impingement during film boiling [9]. These results provide further evidence that at

the LFP, transport through the vapor film prevails and inhibits bubble formation and atomization.

The maximum spread diameter, Dmax, at the LFP provides insight to the dynamics of the

system as well and has been explored in multiple previous works [48, 53, 153–155]). Tran et al.

showed that Dmax is larger at the LFP on a hydrophilic surface than on a superhydrophobic surface

maintained at room temperature for We < 1000, though both exhibit similar spreading/retracting

dynamics [9]. These trends have also been confirmed elsewhere [10]. Larger maximum spread

diameters during Leidenfrost impingement are attributed to droplets being hotter (less viscous) and

not interacting with the solid (less frictional resistance). These results seem to indicate that droplet

spreading/retracting dynamics in the film boiling regime may be independent of the wettability of

the surface since the droplet is suspended above its own vapor with negligible contact with the

solid [11]. However, the results of the present work will show that Dmax at the LFP is different for

surfaces of varying wettability suggesting that lack of atomization does not always imply a stable

vapor film.

67



More recently, the morphology of an impinging droplet on hot aluminum surfaces over a

wide range of surface temperatures and Weber numbers was presented by Bertola [8]. A regime

map was developed based on atomization and whether a droplet remained intact following impact.

The regime maps that shall be disclosed herein only denote regions where atomization was or was

not observed but are not indicative of droplet breakup regions (breakup is discussed to a smaller

extent). The work by Bertola also highlighted that maximum spread diameters are unattainable for

We greater than 100 at the LFP due to peripheral droplet separation, though this value is lower than

that reported by Tran et al. [9, 11] (We≈ 200).

Though previous research has covered a broad range of experimental conditions and pro-

vided great insight into the physics of the interaction between a droplet and a heated hydrophilic

surface, impingement on hydrophobic and superhydrophobic surfaces at elevated temperatures has

received only modest attention [52, 53]. All work available, to the authors’ knowledge, on droplet

impingement on heated hydrophobic/superhydrophobic surfaces is now described. Park et al. per-

formed experiments of droplets (360 µm in diameter) impinging on hydrophilic and hydrophobic

surfaces over a temperature range of 110◦C to 210◦C [52]. However, because the study was mainly

focused on thermal transport considerations between solid and droplet, little information on boil-

ing hydrodynamics was provided. They reported that the residence time was generally lower for

impingement on a hydrophobic substrate, but no information regarding Leidenfrost transition tem-

peratures or maximum spread diameter at the LFP was given. In a different work, Li et al. report

hydrodynamic behavior of impinging droplets, such as droplet height, diameter and dynamic con-

tact angles, on surfaces of varying wettability (hydrophilic to superhydrophobic) but the maximum

surface temperature explored was limited to 110◦C [53]. More recently, a publication has de-

scribed boiling dynamics of a water droplet on heated hydrophobic and superhydrophobic surfaces

(< 230◦C) in which they reported minimized boiling behavior on superhydrophobic surfaces, but

only a sessile droplet was considered [54]. Thus, hydrodynamics of droplet impingement on hy-

drophobic and superhydrophobic surfaces at temperatures well above saturation remains largely

unexplored.

This paper presents on the phenomena of a millimetric water droplet impinging on heated

surfaces of varying wettability (superhydrophilic to superhydrophobic) over a surface tempera-

ture range of 125◦C to 415◦C. Given that a broad body of work on hydrophilic/superhydrophilic
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impingement already exists, the main contribution of this work is attributed to dynamics on hy-

drophobic and superhydrophobic surfaces. Notwithstanding, experiments were also conducted on

hydrophilic and superhydrophilic surfaces for comparison with other works in the literature. Sec-

tion 4.4 provides a detailed methodology of the experimental approach. In Section 4.5, high-speed

images are provided which qualitatively show the difference in atomization and vapor bubble for-

mation across the different types of surfaces for varying We and surface temperatures. Atomization

regime maps are constructed for each surface, which clearly identify the LFP as a function of the

Weber number. Maximum spread diameters at the LFP as a function of time and impact Weber

number are also provided. Finally, conclusions are given in Section 4.6.

4.4 Experimental procedure

Four surface types were fabricated on 500 µm thick / 100 mm diameter polished sili-

con wafers: superhydrophilic (SHL), hydrophilic (HL), hydrophobic (HB) and superhydrophobic

(SHB). For the HL surface, an unaltered polished silicon wafer was used. For the HB surface, a

thin coat of Teflon was applied to a wafer in the following manner to render it hydrophobic. Teflon

(4, 5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole) was dissolved in FC-40 to yield a 0.2% Teflon

solution, which was subsequently applied to the wafer by spin coating (a ∼ 100 nm chromium

layer was applied first for adhesion promotion). The wafer was then placed on a hot plate at 90◦C

for 5 minutes, 165◦C for 5 minutes and 330◦C for 20 minutes. The resultant Teflon coat was∼ 200

nm thick. Teflon was chosen as the coating material due to its stronger thermal stability than other

hydrophobic coats such as organosilanes. For the SHL and SHB surfaces, wafers were first ar-

rayed with a square lattice arrangement of micro-pillars via photolithography and etching (6 µm

diameter, 8 µm height and 16 µm center-to-center spacing). Teflon was applied in a similar man-

ner to the description above to yield the SHB surface, while the SHL surface was left uncoated.

Roughness is known to increase hydrophilicity/phobicity on a given surface per the Wenzel and

Cassie-Baxter equations, respectively: cosθ = rcosθe and cosθ = rφcosθe + φ − 1, where θ , r,

θe and φ respectively represent the apparent contact angle, the overall surface area divided by its

projected area (roughness), intrinsic contact angle, and the area of the top of the pillars divided

by the projected area of the surface (solid fraction). For the SHB and SHL surfaces, r ≈ 1.6 and

φ ≈ 0.11. SEM images and sessile water droplets on all four surfaces are shown in Figure 4.1. The
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Figure 4.1: A 5 µL water droplet resting on the four different surfaces used in this work: (top)
hydrophilic and hydrophobic; (bottom) superhydrophilic and superhydrophobic.

static contact angles on all four surfaces at room temperature were 0◦ (SHL), 30◦ (HL), 120◦ (HB)

and 160◦ (SHB) (droplet remained in the Cassie state on the SHB surface), with a±3◦ uncertainty.

For heating, an aluminum block was embedded with four 500 W cartridge heaters and four

thermocouples (5 mm below the surface) upon which the wafers were placed. The surface temper-

ature of the wafer, Ts, (the value reported in this work as “surface temperature before impact”) was

deduced by placing a silicon wafer coated with a thin coat of known emissivity (0.96) and measur-

ing its temperature with a thermal camera. Thermal camera values were usually 2◦C - 10◦C lower

than thermocouple readings depending on the temperature of the block. Figure 4.2 shows the re-

lation between the thermal camera measurements and thermocouple measurements (symbols) and

a linear fit up to 350◦C, a limit imposed by the coat of known emissivity. For block temperatures

above this point, the surface temperature of the wafer was deduced by extrapolation. The range

of surface temperatures tested in this work was 125◦C - 415◦C for the HL and SHL surfaces, and

125◦C - 340◦C on the HB and SHB surfaces. The temperature range on the hydrophobic surfaces

was limited by the glass transition temperature of Teflon. Water contact angle tests were performed

on the HB and SHB surfaces regularly after experiments to verify that no Teflon degradation had

occurred.
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Figure 4.2: Calibration plot between temperature measured by thermocouples and thermal camera.

Impingement events were captured in the following manner. A distilled water droplet (5

µL, D = 2.2 mm) was released from a syringe (needle gauge 30) some height above the heated

wall such that the impact Weber number was varied by varying the release height. All events were

captured with a high-speed camera at 3000 - 6000 fps with a spatial resolution of 12 µm/pixel.

Regime maps were constructed based on whether atomization was observed. Atomization was

defined as a mist of very small droplets that are ejected during spreading and did not include

satellite droplet separation at the periphery of the drop. The LFP was defined as the lowest surface

temperature at which atomization was no longer observed. Whether atomization was present in a

given scenario was determined by visual inspection of the high-speed videos. While the presence

of atomization was generally easy to detect, determining its presence near transitional boundaries

(onset of film boiling) was not straightforward in some cases. The reason for this is that atomization

decays as surface temperature nears the LFP such that its intensity slowly decreases making the

definite temperature at which it completely stops difficult to establish. Furthermore, it has been

said that atomization dynamics near the LFP are probabilistic [8]. This is why the transition from

the atomization to atomization-free regimes is generally given with a temperature resolution of

10◦C to 40◦C [8, 9, 11]. For the present work, the resolution is 25◦C.

Impact parameters such as droplet velocity and initial and maximum spreading diameters

were extracted via a computer vision algorithm. Impact droplet diameter was obtained by D =√
4A/π , where A was the area captured by the camera and the impact velocity was calculated

by fitting a straight line through the center of gravity of the descending droplet during the last 15
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- 20 frames prior to impact. Liquid properties such as density and surface tension were always

evaluated at room temperature. Uncertainty in the droplet diameter and the impact Weber number

is about 1% and 3%, respectively. Each scenario was repeated between 5 - 12 times and the total

uncertainty was based on a T-test 95% confidence interval.

4.5 Results & Discussion

Results are organized as follows. In Section 4.5.1, high-speed images of droplet impinge-

ment on all four surface types are shown for different Weber numbers and surface temperatures.

Hypotheses are postulated based on the observations and discussed qualitatively. In Section 4.5.2,

atomization regime maps are presented. LFP values are compared with other work available in the

literature and differences across varying surface types are addressed. In Section 4.5.3, maximum

spread diameters as a function of We for all surfaces at their respective LFP are presented. We note

that this study is only concerned with the initial rebound of a droplet (typically within 12 ms of

impact) and not subsequent ones.

4.5.1 High Speed Imaging of Atomization

Basic differences between the SHL/HL and the SHB/HB surfaces at low Ts and low We will

be discussed first. This scenario is depicted through the high-speed image sequence in Fig. 4.3,

where the rows (from top to bottom) represent impingement on SHL, HL, HB and SHB surfaces,

respectively, at Ts = 150◦C and We = 40. The times for all frames are given in the figure, where

maximum spread diameter on the HB surface occurs at ≈ 3 ms. The photographs show that atom-

ization does not begin on any of the surfaces by 3 ms. At 9 ms, the droplets on the SHL and HL

surfaces have completely spread out over the surface and exhibit atomization, while the droplets

on the HB and SHB surfaces are rebounding with no atomization having taken place. Atomization

on the SHL surface is more abundant than on the HL surface because of the increase in surface

area due to the texturing, having also been reasoned elsewhere [11]. The spread-and-stick behav-

ior on the HL and SHL surfaces, as well as the repelling behavior on the HB and SHB ones, is

similar to impingement at room temperature given the low excess temperature here. Because the

liquid remains attached on the former two surfaces, it will eventually completely vaporize for large
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Figure 4.3: Image sequences of droplet impingement on all four surfaces at Ts = 150◦C and We =
40. Atomization exists on the SHL and HL surfaces and is absent on the HB and SHB surfaces.

enough times (∼ 1 s). On the other hand, the lack of atomization on the HB and SHB surfaces may

be attributed to the smaller maximum spread diameter (smaller contact area) and less time spent in

contact with the surface, both of which result in less heat transfer. As stated earlier, the presence

of atomization implies the presence of bursting vapor bubbles, which leads one to conclude that

vapor bubbles exist on both the HL and SHL surfaces for this scenario, while their existence on the

other surfaces remains as of yet undetermined. Furthermore, if bubbles exist on the HB and SHB

surfaces, why do they not burst?

To investigate further, impingement was filmed from a top view at the same surface tem-

perature and Weber number. The photographs are shown in Fig. 4.4 and depict dynamics which

occur before the rebounding jet begins to form on the HB and SHB surfaces (≈ 4.3 ms). As seen
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from this view, it is evident that the spread diameter is generally larger on the HL and SHL sur-

faces as already discussed. Furthermore, the presence of vapor bubbles is verified here on these

surfaces, which is not surprising given an excess temperature of roughly 50◦C. Interestingly, these

photographs also show the presence of bubbles on the HB and SHB surfaces. The presence of

vapor bubbles but lack of atomization (at least any that could be captured by the same camera

arrangement that captured atomization on the other surfaces) then suggests that no bubble bursting

occurs. One possible explanation is that the lamellar film on the HL and SHL surfaces must be

thin enough as to allow “venting of the vapor bubbles” through atomization [9]. The larger spread

diameters support the idea of a thinner lamella film via a conservation of volume inspection, ad-

mittedly qualitatively. This establishes an important technicality often used–or misused–loosely in

the field. The contact boiling and atomization regime for droplet impingement should not be used

interchangeably since they are not one and the same. Here, the former precedes the latter (in terms

of temperature), but does not necessarily coincide.

Next, we continue to explore dynamics on all surfaces at low We but higher surface tem-

peratures. The top panel of Fig. 4.5 shows impingement dynamics at T = 275◦C and We = 25.

Atomization is evident on the HL and SHL surfaces as expected at this temperature. Similar to the

results of Fig. 4.3, no atomization occurs on either the HB or SHB surface even though surface

temperature is much higher. First, dynamics on the HB surface will be discussed. The lack of

atomization here is unexpected since spreading on the HB surface exhibits diameters of similar

lengths to the HL surfaces (which was not the case at We = 40) and thus similar thin film thickness

and boiling behavior should prevail. Experiments were performed at the same We for lower tem-

peratures to test whether the film boiling regime had been reached. These experiments, for which

images are not shown, resulted in atomization over the range 200◦C < Ts < 270◦C indicating that

the LFP on the HB surface occurs at Ts ≈ 275◦C. This result is intriguing because transition to

film boiling at this We does not occur on the HL and SHL surfaces until Ts ≈ 365◦C and 320◦C,

respectively. What causes the LFP to occur on a hydrophobic surface at lower temperatures? It

has been shown previously that vapor bubbles on smooth hydrophobic substrates tend to grow in a

flat manner and spread out over the solid (analogous to a water droplet on a hydrophilic surface),

which is in contrast to bubble growth on a hydrophilic surface where bubbles bead up (analogous

to a water droplet on a hydrophobic surface) [49, 50, 156]. Thus, bubble growth structure on the
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Figure 4.4: Top view of droplet spreading at Ts = 150◦C and We = 40 on all four surfaces. These
images show the existence of vapor bubbles that form during impingement at the solid-liquid in-
terface on the HB and SHB surfaces, as well as the HL and SHL surfaces.

hydrophobic surface facilitates the formation of a vapor blanket, which leads to transition to film

boiling at lower temperatures. A schematic drawing of the expected bubble growth is shown in

Fig. 4.6. Early transition to film boiling has also been observed for hydrophobic pool boiling [51]

and immersed hydrophobic solid spheres [157].

To evaluate LFP dependence on Weber number, the experiments were repeated at the same

surface temperature (Ts = 275◦C) as the top panel of Fig. 4.5 but at a higher We (We = 100). This

is shown in the bottom panel of Fig. 4.5. The images depict that atomization occurs on the HL

and SHL surfaces, as it did for the lower Weber number case, though both exhibit more violent

atomization, as well as peripheral droplet break up associated with the increased kinetic energy at
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Figure 4.5: Droplet impingement on all four surfaces at Ts = 275◦C and We = 25 (top) and 100
(bottom).
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Figure 4.6: Schematic drawings of bubble dynamics inside the droplet during spreading on the HL
and HB surfaces for Ts = 275◦C and We = 25.

impact. Furthermore, the rebound on the SHL surface is characterized by the formation of a vertical

jet, which has only been observed on textured hydrophilic surfaces and may be associated with

“converging liquid motion toward the axis of the flattened drop” [11]. Interestingly, the droplet on

the HB surface does atomize at this We indicating that the LFP at this Weber number must occur

at a higher temperature. This result suggests that LFP increases with Weber number on the HB

surface, a trend that is consistent with hydrophilic surfaces [8, 9, 11]. This trend occurs as a result

of larger inertial impacts requiring higher vapor production at the interface to maintain a stable

vapor film layer.

Remarkably, Fig. 4.5 shows that atomization is absent on the SHB surface at Ts = 275◦C

for both We. As will be shown in the following section, atomization does not occur on the SHB

surface at this surface temperature for any of the We explored. To investigate behavior on the

SHB surface further, experiments were conducted at other surface temperatures and various Weber

numbers. We found that atomization was generally minimal and only present for a few specific

scenarios. As an example, two impingement events on the SHB surface are shown in Fig. 4.7,

which are representative of scenarios with the largest amount of atomization observed on the SHB

surface over the entire regime explored. The top row represents SHB impingement at We = 50 and

Ts = 175◦C while the second and third row correspond to We = 100 and Ts = 220◦C for the SHB

and HL surfaces, respectively. Impingement on the HL surface is shown for visual comparison.

As is evident in these images, the amount of atomization that occurs on the superhydrophobic

surface is almost indistinguishable, in accordance with a previous study of sessile droplets on

heated superhydrophobic surfaces of similar solid fractions [54].
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Figure 4.7: droplet impingement on the SHB surface at Ts = 175◦C and We = 50 (top panel) and
220◦C and We = 100 (middle panel). Both of these scenarios represent cases where the most
atomization was observed on the SHB surface. Dynamics on the HL surface are shown in the
bottom panel for comparison at the second set of conditions.

Minimized atomization during contact boiling is attributed to the hydrophobic texture (micro-

pillars) and rationalized as follows. First, the pillars do not permit liquid intrusion into the open

space between them (even if liquid penetrates at the impingement point due to stagnation pres-

sure, it is likely that the liquid returns to the Cassie state due to the elevated temperature of the

surface [158]). The prevailing Cassie state results in a reduction of contact area between solid and

liquid (solid fraction is 11% for the current case) and thus heat transfer to the liquid is decreased.

Second and more importantly, the cavities in between the micro-pillars allow vapor to continuously

escape from underneath the droplet, thereby mitigating vapor bubble formation and atomization.

This is drastically different from behavior on other surface types during contact boiling where

vapor must vent through the droplet itself, causing atomization.

To further investigate this idea, impingement events were recorded from a top view on

all four surfaces in the contact boiling regime as shown in Fig. 4.8 at We = 50 and Ts = 200◦C.
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Figure 4.8: Top view of the impingement event for We = 50 and Ts = 200◦C on all four surfaces
to demonstrate minimal boiling behavior on SHB surface made evident by the transparency of the
spreading droplet.

These photographs depict boiling activity on the SHL, HL and HB surfaces, which can be easily

recognized by the opaque nature of the droplet. In contrast, the droplet on the SHB surface does not

display boiling and remains transparent suggesting that vapor transport from underneath suppresses

bubble activity. Thus, droplet impingement on the superheated SHB surface is tantamount to what

occurs on the other surfaces (SHL, HL and HB) in the film boiling regime, namely, vapor is able

to freely escape from underneath the droplet through the vapor film. This alternate flow path for

vapor flux minimizes vapor bubbles forming within the droplet on these surfaces, thus suppressing

atomization. The open space in the hydrophobic pillar forest allows vapor to escape in a similar
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manner even when contact prevails. One may thus analogously refer to droplet impingement on

the SHB surface in the contact boiling regime as a pseudo-Leidenfrost effect. As discussed earlier,

no atomization was observed on the SHB surface at Ts = 275◦C at any We indicating that a stable

film boiling regime exists for the SHB surface and this will be discussed in the next section.

But if vapor is free to escape through the superhydrophobic interface during contact boiling,

why does atomization on the SHB surface occur at all? We hypothesize that if vapor production

at the solid-liquid interface is higher than the rate at which vapor can escape through the textured

interface, vapor will build up in the liquid with a force proportional to the rate of vapor generation

[46] forming “domes” (see Fig. 4.4). These domes, which can burst in a similar way to bubbles

formed on a different surface type, are the cause of the minimally observed atomization but only

induces atomization when the droplet becomes sufficiently thin during spreading/retraction (i.e.

for high enough Weber numbers; discussed in next section). Future work should explore different

types of superhydrophobic surfaces to quantify the relationship between resistance to vapor flow

through the texture and the corresponding magnitude of atomization.

4.5.2 Atomization Regime Maps

Atomization regime maps were constructed for all surfaces over the range of 10<We< 225

and 150◦C < Ts < 415◦C as shown in Fig. 4.9. Circular symbols (accompanied by shaded regions)

represent scenarios where atomization did occur, while triangular ones represent scenarios where

atomization did not, where transitional boundaries fall in between. Each scenario was repeated 5

to 12 times with more repetitions near the boundaries. We begin by describing behavior on the HL

and SHL surfaces and note that atomization always occurred for all temperatures between 125◦C

and the LFP regardless of the We. Transition to film boiling on these surfaces increases with We,

which agrees with what has been previously reported [8,9,11]. This is due to an increase in inertial

pressure at impact associated with increasing We, which requires a higher surface temperature to

maintain the vapor blanket at the interface, as stated earlier.

Tran et al. showed that atomization resumes on smooth hydrophilic surfaces at surface

temperatures approaching 500◦C, and called this regime “spraying film boiling” [9]. In the cases

considered here, atomization was never observed above the LFP on any of the surfaces, indicating

that the spraying film boiling regime was likely not reached in the present experiments. Results
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Figure 4.9: Atomization regime map for all four surfaces. Circles represent scenarios where atom-
ization occurred, while triangles represent scenarios where atomization was not observed.
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also show that the LFP is lower for the SHL surface than for the HL surface, for all We. This occurs

because surface texturing effectively increases the solid surface area, which increases heat transfer

to the droplet, promoting the formation of a stable vapor layer at lower surface temperature [11].

Next, we discuss the atomization regime map for the HB surface (third panel in Fig. 4.9).

The map is similar in form to the HL and SHL maps, but shows two exceptions. First, no atom-

ization occurs at We≈ 10 for any Ts, or at Ts ≈ 125◦C for any We. Lack of atomization at We≈ 10

is attributed to minimal spreading on the hydrophobic surface at relatively low We, which results

in a thicker spreading drop. Thus, while vapor bubbles still form at the solid-liquid interface, they

never penetrate the free surface of the droplet. Lack of atomization at Ts ≈ 125◦C is due to the

relatively low heat transfer rate into the droplet. Here, the short time the droplet spends flat on

the surface is much less than the time it takes for atomization to begin on the hydrophilic surface

(∼ 50 ms). The second difference regarding impingement on the HB surface is the lower surface

temperature associated with transition to film boiling relative to both the HL and SHL surfaces for

all We explored. A hypothesis for this early transitional behavior was formulated and described in

conjuction with Fig. 4.5, and is related to the attraction of vapor bubbles to the surface.

Atomization behavior differs dramatically on the SHB surface. First, the map (bottom panel

of Fig. 4.9) depicts a significantly smaller atomization or contact boiling regime. Furthermore, the

intensity of the atomization in this regime is significantly less than that on other surfaces as noted

previously (see Fig. 4.7). This was attributed to the ability of vapor to escape through the cavities

in the pillar forest, which, being similar to vapor transport on other surface types at the LFP, was

named the pseudo-Leidenfrost state. This map shows that a transition exists (Ts≈ 245◦C) from this

pseudo-Leidenfrost state to a more stable Leidenfrost state, where no atomization was observed.

This transition indicates that increasing surface temperature (thus increasing vapor production)

stimulates vapor dome growth enough to form a more continuous vapor layer above the texture

yielding a larger path for vapor to escape.

Figure 4.10 shows the LFP (based on the regime maps in Fig. 4.9) as a function of We. The

top panel includes LFP values for the SHL and HL surfaces, as well as data from Tran et al. [9,11]

and Bertola [8]. The bottom panel shows the LFP for all surfaces in this work. Error bars are based

on the resolution of temperature ranges at which experiments were performed, 25◦C. Data from

Tran et al. represent LFP values for droplet impingement on heated smooth hydrophilic [+] and
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Figure 4.10: Transition temperature to the Leidenfrost point or LFP as a function of We. Top panel:
Present results shown with data from Bertola [8] and Tran et al [9]. Bottom panel: Present results
for all four surfaces.

two types of textured hydrophilic silicon wafers similar to the ones used in this work. The pillar

diameter on their textured hydrophilic surfaces was 9 µm and the pillar height was 8 µm, while

the pitch values were 29 µm [4] and 13 µm [5]. Surface temperature values reported by Tran

et al. in their publication [9, 11] were based on thermocouple readings embedded in the stainless

steel holder upon which the wafers were placed rather than actual wafer surface temperatures.

These values were later corrected by Bertola [8] to represent actual surface temperature and the

corrected values are the ones shown here. The second set of data are from Bertola [2] and represent

experiments performed on a heated aluminum surface with average surface roughness of 0.1 µm.

All trends in the top panel of Fig. 4.10 show that the LFP increases with We. LFP values on

the hydrophilic surface show very good agreement with results of Tran et al. for We < 50, but
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exhibit an offset of about 20◦C at higher Weber numbers, which falls within the resolution of the

experiments. Superhydrophilic LFP values reported in this work differ from those of Tran et al. by

50◦C and 75◦C at low and high Weber numbers, respectively. This is rather unexpected since their

texture also consisted of micro-pillars, but differences might be related to pillar diameter where

those used by Tran et al. were 50% larger than the ones used here. This would further explain

their lower LFP values which are a consequence of higher heat transfer rates. Results from Bertola

match more closely our data for the SHL surfaces. This may be due to roughness on the aluminum

surface, which approximates the superhydrophilic scenario, although some discrepancy is expected

due to the different material used. Data in the bottom panel of Fig. 4.10 shows that the LFP on the

SHL surface is nominally 12% less than that on the HL surface over the entire We range explored,

while the LFP on the HB and SHB surfaces are respectively 20% and 40% smaller than for the HL

surface. Moreover, the SHB surface exhibited no dependence of the LFP on the Weber number

over the entire We range explored. Given the probabilistic nature of the transitional boundaries

aforementioned, it is difficult to determine this dependence definitively.

4.5.3 Maximum Spread Diameters

In this section, we discuss the relationship between the normalized maximum spread diam-

eter (Dmax/D) at the LFP and the Weber number as shown in Fig. 4.11. Weber numbers of 100 and

greater generally resulted in satellite droplet ejection (matching the work of Bertola [8]) thus lim-

iting the We range that was explored. Maximum spread diameters on a superhydrophobic surface

at room temperature are typically provided for comparison when discussing Leidenfrost droplet

rebound since both undergo a repelling interaction [159, 160]. We do likewise here and thus the

top panel depicts our results for impingement on the SHB surface at room temperature alongside

with results for the HL and SHL surfaces at their respective LFP values (where the LFP at a given

We was defined in Sec. 4.5.2). Also shown are experimental data from Antonini et al. (super-

hydrophobic surface at room temperature) [10] and Tran et al. (hydrophilic and superhydrophilic

surfaces at their respective LFP values) [11] for comparison.

Our data compares well with the two data sets from the literature in Fig. 4.11. All data

sets show that Dmax/D increases with increasing We for all scenarios, as expected. However, the

maximum diameter is lower on the superhydrophobic surface at room temperature than at the
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Figure 4.11: Normalized maximum spread diameter as a function of We at the corresponding LFP
values for each surface and SHB at room temperature. Top panel: Present results shown with data
from Antonini et al. [10] and Tran et al. [11]. Bottom panel: Present results for all four surfaces
with a curve fit for clarity.

LFP for the hydrophilic and superhydrophilic surfaces. This should not be surprising given two

facts. First, even though the vapor blanket “insulates” the droplet from the heated surface on a

Leidenfrost impingement, the temperature of the bottom of the droplet is still close to saturation

temperature since it is continuously vaporizing. Because the bottom of the droplet houses the

largest velocity gradients [161], the reduction of liquid viscosity (due to increased temperature)

is significant and allows for larger spreading. Second, Leidenfrost spreading encounters virtually

no solid-liquid contact and thus approaches an infinite slip scenario [32], which is in contrast with

spreading on the SHB surface at room temperature, which experiences no shear over cavities but

frictional resistance over the pillars.
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Having shown agreement between our data and that of previous researchers, focus is now

turned to results for all surfaces considered in this work. The bottom panel of Fig. 4.11 consti-

tutes our results shown in the top panel with the addition of the HB and SHB surface results at

their respective LFP values. A curve fit to each data set is shown for clarity. Since no transition

to Leidenfrost behavior on the SHB surface occurred for We < 50 (atomization was absent at all

temperatures), impingement was evaluated at a constant surface temperature of 230◦C, the LFP

value at higher We. The data here shows that the maximum spread diameter is larger on the HB

and SHB surface at their respective LFPs for all We than for the SHB surface at room temperature,

as was the case with the HL and SHL surfaces. More interestingly, the figure shows that Dmax/D

is lower for both textured surfaces (SHL and SHB), which virtually overlap each other, than for

the smooth surfaces (HL and HB) for all We. This difference is greater than the uncertainty of

the experiments, which is low given that length calibration uncertainty does not play a role due to

the manner of normalization. For example, at We ≈ 33, Dmax/D = 2.61 on the HB surface, but

only 2.22 on the SHB and SHL surfaces, yielding an 18% increase, while uncertainty was about

2% on either surface. The differences in maximum spread diameter across all the surfaces suggest

that Leidenfrost rebound is not independent of surface type. In other words, it is unlikely that a

full vapor film exists at the interface, which would create independence of spreading dynamics

from the solid surface characteristics. At first glance, it seems reasonable to assume that the con-

siderable differences in LFP temperatures across the different surfaces may cause the measured

discrepancies through differences in viscosity. However, we see that Dmax/D on the SHL and SHB

surfaces collapse to nearly the same curve even though the LFP on the former is generally 100◦C

greater than on the latter. This suggests that surface architecture plays a dominant role over surface

temperature.

It is likely that very little, if any, solid-liquid contact prevails during impingement on the

HB surface since it exhibited the highest maximum spread diameters. As mentioned earlier, vapor

bubbles spread out on a hydrophobic solid lending themselves to a continuous vapor film sooner.

On the other hand, more friction must be present during spreading on the other surfaces since the

maximum spread diameters on those are smaller. First, let us compare results between the HB

and the textured surfaces (SHB and SHL). It is likely that some contact between the top of the

pillars (either SHB or SHL) and the liquid prevails during spreading at the LFP since vapor can
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dwell and vent through the micro-pillar forest [46]. This contact exerts frictional resistance on the

flow yielding smaller maximum spread diameters than on the HB surface, though it is difficult to

ascertain to what extent contact is present. Solid-liquid contact and atomization are not mutually

exclusive as discussed earlier so long as vapor can escape through the cavities at the interface.

Differences in maximum spread diameters between the HB and HL surface are now dis-

cussed. While this difference is not as large as that of the HB and textured surfaces, it is a measur-

able difference nonetheless. This is interesting because both surfaces are smooth and there is no

texture which might exert frictional resistance on the flow during spreading. Once again, we high-

light that viscosity changes due to surface temperature are unlikely since the LFP values associated

with the HB surface are lower even though it is the surface that exhibited larger spreading. Thus,

we hypothesize that the differences in maximum spread diameters are related to the way in which

bubbles form and bead up on the hydrophilic surface. This idea is concomitant with protruding

menisci which increase friction, rather than providing a favorable slip condition, at the solid-liquid

interface [162]. On the other hand, bubbles do not bead up on the HB surface, but rather spread

out in a flat manner consequently enhancing slip.

Earlier in the paper, we discussed that contact boiling and atomization regimes are not

one and the same. Given the differences in maximum spread diameter discussed here, another

important distinction is now brought to light: film boiling and atomization-free regimes are not

the same. Discrepancy in terminology may have in part existed because droplet impingement is

often categorized with similar regimes used in pool boiling. For example, if atomization is present,

the impingement event may be said to be in the contact or “nucleate” boiling regime, whereas if

atomization is absent, it is assumed to be in film boiling. The results in this section indicate that

the lack of atomization and a stable vapor film may not always coincide since surface-type plays a

role in spreading dynamics even when atomization has disappeared.

4.6 Conclusion

In this paper, the hydrodynamics of a single droplet impinging on a superheated solid

surface were analyzed. Previous research has focused on smooth and textured hydrophilic sur-

faces and, as such, experiments here were performed on a smooth hydrophobic and a micro-pillar

textured superhydrophobic surface. A smooth hydrophilic and a micro-pillar textured superhy-
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drophilic surface were also used for comparison, as well as data available in the literature. The

ranges of surface temperatures and Weber numbers considered were 150◦C to 415◦C and 10 to

225, respectively. High-speed images were acquired and presented to qualitatively discuss the as-

sociated impingement dynamics across the different surface types. Results were quantified into

regime maps which depict where atomization is present. Finally, the maximum spread diame-

ter at the LFP prior to peripheral droplet breakup for each surface was quantified and compared

across all surfaces as a function of the Weber number. Results can be summarized as follows for

impingement on the hydrophobic surface explored here:

• Atomization is absent at low Weber numbers (We ≈ 10) for all surface temperatures and at

low surface temperatures (Ts ≈ 125◦C) for all Weber numbers. The former occurs because

the droplet does not spread as far as it does on a hydrophilic surface prior to retraction

resulting in a thicker spreading film, while the latter because the droplet spends less time in

contact with the surface. Both of these behaviors prevent vapor bubbles from bursting.

• Transition to the Leidenfrost regime occurs at lower surface temperatures than on the hy-

drophilic or superhydrophilic surfaces for all Weber numbers explored. Given the attraction

of vapor bubbles to the hydrophobic surface, a vapor blanket at the solid-liquid interface is

more readily formed.

• At the Leidenfrost point, the droplet spreads out farther prior to retraction compared to all

other surfaces at their respective LFP. This behavior is not attributed to lower viscosity since

the LFP values of some of the other surfaces are higher.

For impingement on the superhydrophobic surface:

• Atomization is significantly less intense than on all other surface types and occurs for a

much narrower range of parameters. The hydrophobic micro-pillars at the interface cause

water to be suspended above them and thus vapor escapes from underneath the droplet,

which promotes Leidenfrost-like behavior at all conditions.

• Transition to the Leidenfrost regime occurs at a much lower surface temperature than all

other surface types.
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• Maximum spread diameter at the LFP is lower than both the hydrophobic and hydrophilic

surfaces for all We. This indicates that some solid-liquid contact may prevail during spread-

ing, thus exerting frictional resistance on the flow.
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CHAPTER 5. SECONDARY ATOMIZATION DURING DROPLET IMPINGEMENT
ON SUPERHEATED HYDROPHOBIC AND SUPERHYDROPHOBIC SURFACES

This chapter will be submitted for publication to the International Journal of Heat and Mass

Transfer. The formatting of this paper has been modified to meet the stylistic requirements of this

dissertation.

5.1 Contributing Authors and Affiliations

Cristian E. Clavijo, Kimberly Stevens, Julie Crockett, Daniel Maynes Department of Me-

chanical Engineering, Brigham Young University, Provo, Utah 84602

5.2 Abstract

This paper presents on secondary atomization dynamics during droplet impingement on

superheated hydrophobic and superhydrophobic surfaces (one smooth hydrophobic and three dif-

ferent superhydrophobic surfaces). The superhydrophobic surfaces used are made up of circular

pillars 4 µm in height with varying center-to-center distance (pitch): 8 µm, 12 µm and 16 µm. The

range of surface temperatures explored is 110◦C < Ts < 337◦C. An image processing algorithm

was developed to quantify the temporal behavior of secondary atomization captured via high-speed

photography across the different surfaces and different surface temperatures. The results show that

secondary atomization is initially absent following impact (< 1 ms) on all surfaces, after which

point it begins, and its intensity is a function of surface temperature and surface type. The maxi-

mum amount of atomization for a given scenario is highly dependent on surface temperature. For

low surface temperatures, atomization increases with temperature, but then begins to decrease at

high surface temperatures. This rise and fall behavior is tantamount to the classical relationship

between heat flux and excess temperature for the case of pool boiling. Both scenarios depend

on vapor bubble formation dynamics at the interface and the stability of the so-called Leidenfrost

90



vapor film for which surface wettability has an impact. Surface pitch also plays a significant role

in secondary atomization dynamics with its intensity being significantly higher for smaller pitch

surfaces. The implications of these results suggest that not all superhydrophobic surfaces sustain

Leidenfrost-like behavior at all excess temperatures.

5.3 Introduction

This paper is concerned with droplet impingement on hydrophobic and superhydrophobic

solid surfaces heated above the saturation temperature of the liquid. Boiling is present in a myriad

of industrial applications. Understanding its complexities is crucial for further advancements in

quenching, electronic and power plant thermal management and other applications where high heat

transfer rates are necessary [163–165]. Research on the interaction of sessile or impinging droplets

on hot surfaces is of particular interest because it mimics situations such as spray cooling and

condensation processes. The study of a single (rather than multiple) droplet impinging on a surface

further facilitates the analysis of secondary atomization, which is defined as the ejection of small

droplets during droplet impingement due to bursting vapor bubbles [8, 43, 166]. Understanding

secondary atomization is crucial in order “to achieve a better control of spray cooling,” [167]

amongst other applications. Most research on droplet impingement on hot surfaces has focused on

hydrophilic surfaces such as aluminum, steel, copper, etc. However, as superhydrophobic surfaces

continue to gain popularity due to their hydrodynamic advantages including drag reduction and

drop-wise condensation, it will be important to understand impingement behavior on these surfaces

at elevated temperatures [168,169]. Hydrophobic (HB) and superhydrophobic (SHB) surfaces have

shown significant deviation from hydrophilic (HL) behavior in pool boiling [49–51, 157, 170] and

are hence expected to also affect droplet impingement boiling dynamics, which has only been

explored scarcely [45, 52–54]. In this work, attention is given to “secondary atomization” and its

behavior with time, surface temperature and surface type.

First, we provide a brief review of what is known regarding droplet impingement dynamics

on heated hydrophilic surfaces. At surface temperatures within a few degrees of saturation tem-

perature, the droplet spreads, sticks to the surface and exhibits minimal boiling behavior during its

lifetime [24, 30, 151, 152]. The major mode of heat transfer here is due to convection and evap-

oration. For higher surface temperatures (tens of degrees above the saturation temperature of the

91



liquid), the droplet is said to be in the nucleate/contact boiling regime and is characterized by va-

por bubbles nucleating, growing and bursting, which results in the ejection of micro-sized droplets

termed secondary atomization. Latent energy transfer is the major mode of thermal transport in

this regime. At surface temperatures much higher than saturation temperature (a few hundreds

of degrees above the saturation temperature of the liquid), the droplet rebounds off the surface as

though it were superhydrophobic and no signs of boiling or secondary atomization are displayed;

this regime is known as film boiling. Such repelling behavior has come to be known as the Lei-

denfrost effect, having been first reported by Leidenfrost [44], and occurs due to a vapor film that

prevails between the droplet and the surface. When hydrophilic surfaces are textured with micro-

pillars (1 - 10 µm), the transition temperature to film boiling (also known as the Leidenfrost point,

LFP) is lower because the increase in liquid-solid contact area promotes higher liquid to vapor

conversion [11, 45].

This paper focuses on secondary atomization, which we define as ejected droplets (also

known as secondary droplets) due to bursting vapor bubbles and not ejected droplets from the

periphery of the lamella due to droplet breakup. Chaves et al. explained the genesis of a secondary

droplet in that when a growing/rising vapor bubble reaches the top liquid-air interface of the droplet

(commonly referred to as the lamella when spreading), it bursts when the liquid film between

the vapor and the air becomes thin enough [171]. Consequently, the liquid seeks to minimize

its surface energy by filling in the resulting “concavity” and in doing so, a Rayleigh jet forms

begetting a secondary droplet. Vapor bubble diameters are on the order of 102 to 103 µm [171],

while secondary droplets remain around 102 µm in diameter [166], having also been confirmed

in the present study. Secondary atomization does not start immediately following droplet impact

because not enough heat has been transferred to nucleate and grow vapor bubbles [43, 166, 172].

The duration of this period of time before secondary atomization begins is on the order of a few

milliseconds but varies with surface temperature, solid/liquid thermal properties and impact Weber

number, We = ρV 2D/σ , where V , D, ρ and σ represent impact velocity and diameter, and liquid

density and surface tension [172]. Interestingly, secondary droplets can fly off at speeds exceeding

that of the droplet at impact. For instance, Lee et al. measured atomization speeds of 4.2 m/s for a

droplet impact speed of 1.97 m/s [148].
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This study will show that secondary atomization dynamics unfold differently on HB and

SHB surfaces than on HL surfaces. The following description summarizes the relevant work avail-

able in the literature regarding general boiling on HB/SHB surfaces. The attraction between a

vapor bubble and a HB surface promotes the formation of a vapor film and thus transition to film

boiling occurs at a lower temperature than on a hydrophilic surface during pool boiling [49, 170].

In the case of a SHB surface, the critical heat flux is much lower (< 85%) than on a hydrophilic

surface [51] and similar behavior was observed for a hot sphere immersed in a liquid bath [157].

These dynamics have been attributed to the hydrophobic texture upon which water can rest thus

trapping gas prematurely at the interface inhibiting heat transfer [157]. In a previous publication,

the current authors revealed that atomization is almost completely suppressed during droplet im-

pingement on a superhydrophobic surface over the range 125◦C < Ts < 340◦C, where Ts represents

surface temperature. However, the study only employed a single superhydrophobic surface. Here,

in-depth consideration is given to the temporal evolution of the amount of secondary atomization

on SHB surfaces with varying pitch or center-to-center spacing.

Previous methods, such as phase doppler anemometry [173,174], particle image velocime-

try [148] and droplet counting [166, 175], have revealed essential characteristics of secondary

droplets including size, speed and population. In this paper, focus is instead given to time scales

including the onset and cessation of atomization, as well as to the comparison of atomization inten-

sities across different surfaces and temperatures during spreading. Previous methods were deemed

unsuitable due to their low resolution in comparing atomization intensity across different cases.

Thus, a new algorithm was developed and implemented.

The manuscript will proceed as follows. First, a description of the experimental setup used

in these experiments is described in Sec. 5.4. A general discussion of the dynamics of secondary

atomization for hydrophobic and superhydrophobic surfaces is discussed in Sec. 5.5. After the

image processing algorithm is discussed in Sec. 5.6, the temporal behavior of secondary atom-

ization for three different superhydrophobic surfaces and one smooth surface at different surface

temperatures will be presented in Sec. 5.7. Finally, conclusions are presented in Sec. 5.8.
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5.4 Experimental Setup

Secondary atomization during a droplet impingement event was analyzed for a range of

surface temperatures and surface architectures (one smooth hydrophobic and three textured su-

perhydrophobic surfaces). The experimental setup and surface fabrication methodology has been

previously described [45] and thus is only briefly outlined here. Details pertaining to the manner

of data processing and quantification of atomization will be described in Sec. 5.6.

Three SHB surfaces were fabricated by standard photolithography and etching techniques.

Silicon wafers (500 µm thick and 10 cm in diameter) were used as the substrate. All SHB surfaces

consisted of a square-lattice arrangement of circular pillars 4 µm in height and a solid fraction of

11% (solid fraction is defined as the area of the top of the pillars divided by the projected area of

the surface). The three different pitches used were 8 µm (pillar diameter, d = 3), 12 µm (d = 4.5)

and 16 µm (d = 6), and we shall refer to these surfaces as 8P, 12P and 16P throughout the paper. A

200 nm coat of Teflon was applied on all surfaces to render them superhydrophobic. The advancing

and receding contact angle on these surfaces were typically 168◦ and 145◦ ±3◦, respectively.

Additionally, a fourth surface was fabricated by applying Teflon on a smooth silicon wafer (referred

to as the smooth hydrophobic surface here), which yielded an advancing and receding contact angle

of 128◦ and 113◦ ±3◦, respectively.

A syringe filled with distilled water was positioned 15 cm above the surface of interest such

that a droplet (∼ 5 µL) would impact the surface at We≈ 85. This Weber number value was chosen

to allow the droplet to spread out without incurring peripheral droplet ejection [8] and was kept

nominally constant for all scenarios. The surface was positioned on top of a polished aluminum

block which was heated by embedded cartridge heaters. A thermal camera was used to determine

the temperature of the surface during testing. The range of surface temperatures explored was

110◦C < Ts < 337◦C to avoid degradation of the Teflon coating, which occurs at higher tempera-

tures. A high-speed camera was positioned horizontally to record impingement events at 3000 fps

and each scenario was repeated 5 - 8 times. A halogen lamp was positioned opposite to the camera

for optimum illumination. Despite the fact that halogen lamps are traditionally considered to be a

“constant” light source, when connected to AC power subtle oscillations in pixel intensity (1% -

5% of maximum possible pixel value) were detected by the camera. In order to mitigate this effect,

the lamp was instead connected to a DC power source and operated at 400 watts.
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The impact Weber number was determined as follows. The projected area of the droplet, as

viewed from the camera, was calculated during its descent. The diameter prior to impact was ob-

tained assuming the measured area was circular, which was nominally the case since the diameter

of the droplet (≈ 2.2 mm) always remained below the capillary length of water (≈ 2.7 mm). The

impact velocity was obtained from a linear fit to the position of the center of gravity of the droplet

during descent. Dynamic viscosity and surface tension values were evaluated at room temperature

and uncertainty in these quantities was based on temperature fluctuations of ±1.5◦C. Droplet im-

pact diameter and velocity had an uncertainty of ∼ 1%. Overall uncertainty in the Weber number

based on a 95% confidence interval was ±3%.

5.5 General Dynamics

Prior to disclosing details regarding the manner of quantification of secondary atomization,

general dynamics will be discussed here qualitatively to aid the reader in understanding the subse-

quent processing methodology and results. A representation of secondary atomization for a typical

droplet impingement event on a SHB surface is shown in the schematic of Fig. 5.1. A small period

of time, ti, prevails immediately following impact where secondary atomization is not present as

discussed earlier for a hydrophilic surface. In these experiments, the Weber number, as well as the

solid-liquid thermal properties were held constant yielding ti ≈ 0.8 ms generally across all cases

where atomization was present.

For t > ti, the amount of atomized liquid increases with time as vapor bubbles continue

to burst. This trend continues until t = t f when secondary droplets cease to be ejected, and the

amount of atomized liquid remains constant with time (shown in Fig. 5.1). Cessation of atom-

ization is attributed to a decrease in the local temperature of the solid, as well as a now-heavily

bubble-populated interface [166], both of which mitigate heat transfer. Technically, atomization

will eventually resume as the surface temperature heats up again (t >> t f ), however, the time

frames considered here are relatively short and this does not occur. t f values reported by Moita

et al. varied between a few milliseconds up to 20 ms for impingement on a hydrophilic surface.

Here, t f ≈ 2.5 ms on the 8P surface and ≈ 3.0 ms on the smooth surface for the range of surface

temperatures explored. Sometimes, the droplet was observed to levitate above the surface during

spreading due to droplet breakup (photographs in Fig. 5.1). This occurs due to liquid film shrink-
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Figure 5.1: Representative evolution of the amount of atomized liquid as a function of time. High-
speed photographs represent impingement on the 8P surface at Ts = 320◦C to depict levitation.

ing at the periphery of emerging convection cells, which in turn causes a springing motion in the

separated droplets levitating them above the solid surface [171]. This levitating phenomenon did

not have an effect on t f values.

In order to determine whether the amount of atomization at t f is the maximum, it is im-

portant to establish how much of the atomized liquid has either evaporated or fallen back to the

substrate by that time. The evaporation of an arbitrary atomized droplet during flight can be esti-

mated by a convection mass transfer analysis. The Sherwood number, Sh = hmd/DAB (where hm

and DAB are the convective mass transfer coefficient and the binary diffusion coefficient for vapor
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in air), for a water droplet in air can be expressed as [176]

Sh = 2+0.6Re1/2Sc1/3 (5.1)

where Re = ud/νa and Sc = νa/DAB represent the Reynolds number and the Schmidt number,

respectively (u and d are the velocity and diameter of the atomized droplet and νa is the dynamic

viscosity of the medium or air in this case). Values for an average secondary droplet size and

velocity were obtained from the literature (d = 150 µm, u = 4 m/s) and were also verified with our

experiments. The total mass transfer rate can be obtained via Newton’s law of cooling, ṁ= hmA∆ρ

where ∆ρ is the difference in vapor density at room and saturation temperature, thus yielding a

maximum possible evaporation rate. This analysis yields an evaporation rate of about 4× 10−8

kg/s. The initial mass of an average secondary droplet is ≈ 1.8× 10−9 kg and hence evaporation

causes a mass loss of about 6% by t = t f , and will be neglected.

On the other hand, a simple force analysis in the vertical direction (positive in the direction

opposite to the gravitational vector) for an atomized droplet can be utilized to determine the amount

of time it spends in the air,

mu̇ =−mg−βdu− γd2u|u| (5.2)

where m and g represent the mass of the atomized droplet and the gravitational constant, and u is

a function of time. The two far-right terms on the right hand side of Eq. (5.2) represent the linear

and quadratic aerodynamic drag, respectively, and β = 1.6× 10−4 N·s/m2 and γ = 0.25 N·s2/m4

are the corresponding drag coefficients for a water droplet in air [177]. Here, the movement of the

atomized droplet has been assumed to be in the vertical direction, which has been shown to be a

good assumption [172] and was observed to be the case for our experiments as well. The solution

of Eq. (5.2) yields that the duration of the droplet in air is about 400 ms prior to falling back on

the substrate, which is much greater than t f ≈ 2.5 ms. Thus, both of the analyses for evaporation

and droplet flight time demonstrate that the amount of atomization at t f is an absolute maximum.
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Figure 5.2: Original (top) and cropped (bottom) images for impingement on the 8P surface at
Ts = 200◦C.

5.6 Digital Image Processing

High-speed photographs of an impingement event on the 8P surface at Ts = 200◦C is shown

in Fig. 5.2. The amount of atomization was quantified by analyzing photographs and the method-

ology is described in this section. However, we first wish to emphasize the difficulty in this task,

which arises because atomization is inherently a 3-dimensional phenomenon and photography is

2-dimensional. Other methods presented in the literature that also seek to quantify atomization

by processing photographs such as the work by Moita et al. [166] and Castanet et al. [175] are

constrained by the same limitations. Photographs include blurred secondary droplets which fall

outside the depth of field and omit secondary droplets that become “hidden” behind others or are

far from the focus plane. Consequently, the results that will be provided in this paper must be inter-

preted with this understanding. The results nevertheless yield sufficiently good contrast between

the different scenarios considered and agree with visual inspection and the literature.

The first step in the algorithm was to ensure that atomization was weighted in a spatially-

consistent manner across all scenarios. The original images were 1024× 1024 pixels (top panel

of Fig. 5.2). To achieve horizontal symmetry, images were cropped to a width, W , of 850 pixels

(≈ 4.6×Do) with the droplet in the center, as shown in the bottom panel of Fig. 5.2. Given that

maximum spread diameter is ≈ 3×Do for We = 85 [32], the entire droplet was able to fit in the
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reduced frame at all times during spreading thus allowing atomization stemming from the droplet

to be within the field of view (atomization eventually escaped the cropped frame and this effect

will be quantified later). Images were also cropped vertically 850 pixels above the droplet-surface

interface.

Resulting cropped images will be denoted by Ik
i j where k represents the time step, and i and

j represent the row and column location of a pixel. Y and X will denote the maximum number of

rows and columns, respectively (Y = X = 850 for all images). I0
i j represents the image when the

droplet first hits the surface at t = 0 ms and the time corresponding to subsequent images, I1
i j, I2

i j,

... can be calculated by t = k/fps ms (fps = 3000 s−1 in this paper unless stated otherwise). A

background image, which consisted of an image with no droplet (referred to as an empty frame),

was defined as Oi j. We note that all images were 8-bit grayscale color graphics and thus possible

pixel values ranged from 0 to 255. All subsequent variables will assume a normalization by 255

yielding values which fall within 0 and 1 (0-black and 1-white).

In order to identify the location of the droplet and the amount of atomization present, the

absolute value of the subtraction of every image with the background image was calculated,

Sk
i j = |Ik

i j−Oi j| (5.3)

where Sk
i j will be referred to as the subtracted image. A binary threshold was determined based

on the average random noise present in the images, which was calculated by subtracting N = 100

different background images from each other and calculating the average pixel value, Oave, across

all subtractions as follows

Oave =
1

Y ×X

Y

∑
i

[
X

∑
j

(
1
N

N

∑
n,n6=m

|On
i j−Om

i j |

)]
(5.4)

The average random noise had a nominal value of Oave = 0.0036 with a standard deviation of

0.0028. The binary threshold value was chosen to be six standard deviations above the mean,

0.0036+ 6× 0.0028 = 0.0204. The first two columns of Fig. 5.3 show the transition from an

image Ik
i j to a binary image Bk

i j for three arbitrary cases.
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Figure 5.3: Representation of images at every step during processing for three arbitrary cases: a
falling droplet (top), moderate atomization (middle) and heavy atomization (bottom). Ik

i j, Bk
i j, Mk

i j

and Fk
i j represent the initial image (after cropping), the binary image, the mask used to remove the

droplet, and the final image from which an average pixel intensity value to represent the amount of
atomization was obtained.

In order to remove the main droplet from the images and only consider atomization, a mask,

Mk
i j, was utilized (see third column of Fig. 5.3). Here, a value of 0 was assigned to all areas in Bk

i j

with more than 10×103 connected pixels (having been determined a posteriori) and a value of 1

elsewhere. The remaining active pixels in Bk
i j were used as a second mask (not shown in Fig. 5.3)

on Sk
i j to reduce background noise on the final image, Fk

i j (fourth column of Fig. 5.3), and only

consider pixels containing atomization. In short, the formula applied to all images is given by

Fk
i j = |Ik

i j−Oi j| ◦Mk
i j ◦Bk

i j (5.5)

where ◦ represents the Hadamard product. A spatial average of Fk
i j was obtained by

Ak =
1

Y ×X

Y

∑
i

[
X

∑
j

(
Fk

i j

)]
(5.6)
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Table 5.1: Intensity-to-noise ratios for impingement at Ts = 200◦C on the 8P and 16P surfaces
(top two rows) and intensity-to-intensity ratio between the surfaces (bottom row).

12 µm (%) 22 µm (%) 51 µm (%)
PD1 (16P) 120 40 20
PD1 (8P) 8850 1780 320

PD2 4420 1360 280

to yield the atomization intensity, Ak, in a given image. From now on, Ak will just be denoted as A,

is unitless (given the aforementioned normalization) and is assumed to be a function of time.

Next, pixel resolution is considered, which refers to the physical length scale covered by a

single pixel. Pixel resolution is inversely related to the size of the field of view and both a large field

of view and sufficiently high resolution are desired. Three different resolutions were tested: 12 µm,

22 µm and 51 µm (per pixel side length), with 12 µm being the highest resolution possible in our

experimental setup. For all of these cases, the frame size was constant at 850 × 850 pixels, which

resulted in physical frame side lengths of 10.2 mm, 18.7 mm and 43.4 mm, respectively (recall

droplet diameter ≈ 2.2 mm). The 8P and 16P surfaces, which generally yielded the largest and

lowest amount of atomization, respectively, were tested at each of these resolutions for Ts = 200◦C

and each test was repeated three times. The averaged results shown in Table 5.1 represent the

percent difference, PD1, between the maximum atomization intensity during impingement, Amax,

and noise, Amin, for each surface,

PD1 = (Amax−Amin)/Amin×100% (5.7)

Percent differences of the maximum intensities between both surfaces, PD2, were also calculated

PD2 = (Amax,8P−Amax,16P)/Amax,16P×100% (5.8)

These results indicate that the signal-to-noise ratio for either surface, as well as the intensity ratio

between them increased significantly with increasing pixel resolution (51 µm → 12 µm). The

images in Figures 5.2 and 5.3 correspond to a resolution of 12 µm.
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Next, we evaluate the effect of pixel resolution on field of view. Figure 5.4a shows the

temporal evolution of A on the 8P surface at Ts = 200◦C with a resolution of 12 µm. The data

shows that A is zero until t ≈ 0.8 ms, as expected, after which point it begins to increase with

time. After reaching a maximum point at t ≈ 2.5 ms, A begins to decrease. This decrease is not

physically realistic since we have shown that secondary droplets do not evaporate significantly or

fall back to the substrate within this window of time, but occurs here because they escape the field

of view of the camera. A pixel resolution of 51 µm was used to enlarge the field of view and

ensure that all atomization fell within the camera view at all times. A comparison of the amount of

atomization in these larger images was compared to a cropped image equivalent to the physical size

of the 12 µm resolution images. Figure 5.4b,c show the percent of the atomization not captured

by the cropped image as a function of time. The results indicate that atomization begins leaving

the field of view at t ≈ 2.7 ms for the 8P surface and t ≈ 3.5 ms for the smooth surface (these tests

were performed at surface temperatures where the maximum amount was observed). The amount

of escaped atomization naturally increases with increasing time as secondary droplets continue

to leave the field of view. In this paper, we limit our analysis to t < 2.7 ms, this being the time

at which secondary droplets escape the field of view for the highest atomizing surface at a pixel

resolution of 12 µm is used.

Now we quantify the influence of using a single or an averaged background image (based

on an array of 100 images) on the temporal evolution of A. Impingement events on the 8P and 16P

surface at Ts = 260◦C and 170◦C, respectively, were analyzed. Data showed that using an aver-

aged background image yields an atomization intensity nominally 1% - 2% lower of the maximum

atomization intensity value on the 8P surface (A≈ 10.8×10−3) compared to using a single back-

ground image. Atomization intensity on the 16P surface was virtually unaffected by the choice of

background. Consequently, all results will be based on a single background image.

The last consideration that shall be given regards scenarios for which significant atomiza-

tion was present (Fig. 5.5). Here, the masking process described earlier caused the pixels from

the main droplet to be connected to some pixels containing atomization in B j (second panel of

Fig. 5.5). This resulted in the mask assuming a droplet shape that included a significant portion

of the atomization region (third panel of Fig. 5.5). This type of behavior only occurred on the 8P

and smooth surfaces at surface temperatures above 230◦C and 260◦C, respectively, and typically
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Figure 5.4: (a) Atomization intensity for droplet impingement on a 8P surface at Ts = 200◦C as
shown in Fig. 5.2. (b) and (c) Percentage of atomization that escapes the field of view when pixel
resolution is 12 µm as a function of time for impingement on the 8P (b) and smooth (c) surface.
Solid lines represent the maximum and minimum values.

ceased for t ≥ 3.5 ms when the atomization began to dissipate. For t < 3.5 ms, a new mask was

created with a shape more representative of the droplet. To accomplish this, the pixel location

belonging to the highest point of the main droplet, ym, was manually selected at every time step

from Ik
i j such that all pixels from the mask above the horizontal line were removed. This resulted

in a modified mask, which more closely represented the shape of the main droplet (last panel of

Fig. 5.5). However, the horizontal crop along the top of the droplet caused pixels where atomiza-

tion was present to be removed, shown in red in M j-modified. To evaluate the influence of this on
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Figure 5.5: a) Impingement on the 8P surface at Ts = 260◦C and t = 2 ms where the creation of new
mask, Mk

i j-modified, to remove the droplet was necessary due to the large amount of atomization.

the results, the amount of removed atomization was calculated for impingement on the 8P surface

at Ts = 260◦C as a function of time. The average amount of atomization intensity removed was

nominally 7×10−5, which resulted in around 1% of the maximum A.

Thus, the image processing algorithm captures secondary atomization in a quasi-2-dimensional

manner. Resulting absolute intensity values in and of themselves do not represent a physical quan-

tity, but rather they are useful in a relative sense when comparing to other scenarios (whether as a

function of surface temperature or type).

5.7 Secondary Atomization

5.7.1 Smooth Hydrophobic Surface

Secondary atomization dynamics on the HB surface will be discussed first followed by a

discussion on the SHB surfaces. Figure 5.6a depicts the temporal evolution of A on the smooth

HB surface for 138◦C < Ts < 226◦C. The data shows that atomization does not occur for a surface

temperature of 138◦C. The heat transfer to the droplet at this temperature is insufficient for vapor

bubbles to grow and burst during spreading/retracting [45]. For higher surface temperatures, at-

omization takes places for t > 0.8 ms (shown in the inset) and A increases with Ts for all times.

As can be seen in the main plot of Fig. 5.6a, atomization is modest for Ts = 167◦C, but the image

processing algorithm is able to detect its presence and growth with time (as can be seen in the inset

image). Higher atomization intensity with increasing surface temperature is due to higher vapor

production rates at the solid-liquid interface, which induces faster vapor bubble growth.
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Figure 5.6: Temporal evolution of A for the HB surface. Surface temperatures between 138◦C and
226◦C are conisdered in (a) and between 226◦C and 313◦C in (b). (c) Droplet impingement at
Ts = 138◦C and 313◦C for which atomization was not present.
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Figure 5.6b displays results for A on the smooth surface for surface temperatures of 226◦C

and higher (data for Ts = 226◦C is shown in both (a) and (b) for comparison). Here, surface

temperature causes an opposite effect in that atomization intensity decreases with increasing Ts.

For the highest surface temperature, Ts = 313◦C, atomization has ceased and remains absent up

to 337◦C (not shown). Decreasing atomization with surface temperature is due to the formation

of the so-called vapor blanket, which yields Leidenfrost behavior and atomization becomes absent

due to vapor escape through the vapor blanket. The two scenarios devoid of atomization in Figure

5.6a and b, one occurring at the beginning of the contact boiling regime (138◦C) and one at the end

(313◦C) deserve further consideration. High-speed photographs of these two scenarios are shown

in Fig. 5.6c and interestingly depict different spreading behavior. The droplet on the Ts = 138◦C

surface exhibits classic droplet spreading and retraction behavior whereas the droplet on the Ts =

313◦C surface spreads out farther promoting peripheral (or satellite) droplet formation. This is

evidenced by the bulbous lamellar ring (compare images corresponding to t = 2.5 ms). Satellite

droplets eventually detach from the main droplet, as can be observed by 6.1 ms. Given the 175◦C

difference between both cases, one might suspect that this temperature difference is the cause of

peripheral droplet ejection. However, we know that the droplet temperature in both cases remains

below saturation, ≈ 100◦C, since the droplet remains in the liquid state. Therefore, the observed

difference is instead attributed to a larger slip boundary condition which is associated with a full

vapor blanket (Ts = 313◦C) rather than a partial one (Ts = 138◦C). It has been shown that larger slip

causes droplets to spread out farther and consequently promotes satellite droplet formation [32].

The maximum values of atomization intensity during a given event, Amax, on the smooth

surface (corresponding to Fig. 5.6) as a function of surface temperature are shown in Fig. 5.7. The

data (symbols) shows that atomization is absent for very low and very high excess surface tem-

peratures with a maximum, As,max, at Ts = 226◦C, as previously discussed. A gaussian curve was

used to fit the data (solid line), which shows good agreement with the behavior, and is similar to

that of heat flux vs. excess temperature for pool boiling. In that case, heat flux also increases up to

some maximum point (known as the critical heat flux) and then decreases towards the Leidenfrost

point. Our data discloses for the first time a similar rise-and-fall behavior of atomization during the

contact boiling regime for impinging droplets. While other work has identified that atomization

is present during contact boiling [8, 9, 24], the current work represents the first relative quantifi-
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Figure 5.7: The maximum of atomization intensity on the smooth hydrophobic surface at a given
surface temperature as a function of surface temperature. Curve represents Gaussian curve fit of
data points and As,max, the maximum value of the data set, is used as a normalization constant for
subsequent results.

cation of atomization intensity changes within this regime. Further implications of these results,

such as the relationship between heat flux and atomization, remain open-ended and require further

investigation.

5.7.2 Superhydrophobic Surfaces

Next we present results pertaining the SHB surfaces. For comparative purposes, atomiza-

tion intensities on the SHB surfaces will be normalized by the maximum value on the smooth

surface, As,max, shown in Fig. 5.7. Figure 5.8 depicts dynamics at Ts = 197◦C for all SHB surfaces.

The data show that atomization is absent on the 16P surface for all time, while it increases with

time on the 12P and 8P surfaces. The maximum value of atomization intensity here falls within

12% of atomization on the smooth HB surface. Intensity is higher for decreasing pitch, and is

rationalized as follows. Since gas cavities prevail within the textured interface (since water re-

mains suspended above the texture) and allow vapor to escape thus preventing vapor bubbles from

forming as rapidly [45]. However, resistance to vapor flow increases with decreasing pitch since

the distance between adjacent pillars becomes smaller inducing larger velocity gradients and thus

atomization increases. This has been verified elsewhere for micro-pillars of similar height and the
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Figure 5.8: Atomization intensity on all superhydrophobic surfaces normalized by As,max as a func-
tion of time for Ts = 197◦C. Photographs represent impingement on their corresponding surfaces
at t ≈ 2.3 ms.

drag force, F , was found to be inversely related to pitch, p, as follows [135]

F ∝
1

p2 ln(p)
(5.9)

This relation demonstrates the steep increase in drag resistance on the escaping vapor with de-

creasing pitch. Of course, bubble growth is also dependent on the solid-liquid contact area, which

influences the heat transfer. However, in this work all SHB surfaces exhibit similar solid fractions

and thus similar solid-liquid contact area. Consequently, atomization increases with decreasing

pitch due to increasing resistance to vapor flow, as demonstrated by the data.

Now we consider atomization on the 8P surface more in depth as it is the highest atomizing

SHB surface. Figure 5.9 shows A/As,max as a function of time for surface temperatures between

138◦C and 226◦C (top panel), and between 226◦C and 337◦C (bottom panel). The data in the top

panel shows that increasing surface temperature results in increasing atomization intensity, which

is similar to behavior on the smooth surface. Interestingly, data in the bottom panel shows that A

continues to increase with increasing surface temperature from 226◦C to 313◦C. This is in con-

trast to the smooth surface, where atomization began to decrease for Ts > 226◦C as the interfacial
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Figure 5.9: Atomization intensity on the 8P surface normalized by As,max as a function of time.
The top panel shows results for surface temperatures between 138◦C and 226◦C while the bottom
panel shows results between 226◦C and 337◦C.

vapor film matured. Nonetheless, atomization eventually decreases at Ts = 337◦C indicating that

atomization on the 8P surface reaches a maximum at a surface temperature of about 313◦C. Fur-

thermore, decreasing atomization with temperature suggests that a Leidenfrost point on this surface

exists, though the temperature at which this occurs remains unknown given the physical limitation

of the Teflon coating used here.

The data in Fig. 5.9 further shows that for Ts = 255◦C and 313◦C, atomization intensity

is 50% to 70% higher on the 8P surface than the greatest value for the smooth surface. This is

unexpected given the presence of cavities at the superhydrophobic interface, which should facilitate

vapor escaping and mitigating atomization. To investigate further, additional experiments were

performed on a SHB surface also with a 8 µm pitch pillar arrangement, but taller pillar height,

h = 14 µm (recall for the 8P surface, h = 4 µm). These results are shown in Fig. 5.10 and

demonstrate that atomization intensity at 313◦C on the h = 14 µm is actually higher than on the

h = 4 µm surface for all t. These results indicate that while gas cavities at a superhydrophobic
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Figure 5.10: Atomization intensity normalized by As,max for a superhydrophobic surface with a
pitch of 8 µm and pillar height, h = 4 µm (same as Fig. 5.9), and h = 14 µm.

interface allow vapor to escape, they also promote liquid contact at the peak of the texture since

the vapor can now dwell in the cavities. In other words, on a smooth surface, the vapor blanket

separates the liquid and solid phases, however, on a superhydrophobic surface, vapor can dwell

inside the cavities prolonging solid-liquid contact. Here, the h = 14 µm surface has over three

times the volume for vapor to dwell in as the h = 4 µm pitch surface and this may be responsible

for increased solid-liquid contact and hence higher atomization (a systematic study of the effect of

pillar height on atomization is beyond the scope of this paper). Thus, two competing mechanisms

exist. Vapor escape through the cavities, which mitigates bubble formation, and prolonged solid-

liquid contact, which enhances local bubble formation. When the latter behavior is dominant,

higher atomization than a smooth surface may result illustrating that superhydrophobic surfaces

may not always be advantageous over smooth surfaces in applications requiring low atomization.

Finally, the relationship between the maximum atomization intensity for each of the SHB

surfaces and surface temperature is shown in Fig. 5.11. Here we show that increasing atomization

with decreasing pitch holds for all surface temperatures during contact boiling. The data further

show that all pitches exhibit negligible atomization at Ts = 110◦C, which is expected given the

low excess surface temperature. The 16P surface exhibits a maximum at Ts = 138◦C, after which

it decreases with surface temperature. The 12P and 8P surfaces display similar behavior but the

maximum values occur at Ts = 226◦C and 313◦C, respectively. Similar to Fig. 5.7, here, the rise-

and-fall of atomization is evident and atomization disappears as surface temperature approaches

the Leidenfrost point (not reached on the 8P surface). These results make clear that surface pitch
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Figure 5.11: The maximum amount of atomization on all superhydrophobic surfaces for a given
surface temperature normalized by As,max as a function of surface temperature.

affects the temperature at which maximum atomization occurs as well as the LFP with the value

of each occurring at lower surface temperatures for increasing pitch.

5.8 Conclusions

In this paper, secondary atomization resulting from droplet impingement on hydrophobic

and superhydrophobic surfaces was investigated. An image processing algorithm was developed

to analyze high-speed photographs and compare atomization intensity across different scenarios.

Surface temperatures ranged from 110◦C to 337◦C and the Weber number was maintained constant

at 85 for all tests. The results show that secondary atomization intensity versus surface temperature

follows a similar trend to heat flux vs. surface temperature in pool boiling. Namely, atomization

intensity increases with increasing surface temperature and after reaching a maximum value, it

begins to decrease as the vapor film at the interface becomes stabilized (film boiling). Atomiza-

tion on the superhydrophobic surfaces was found to depend largely on the center-to-center spacing

between adjacent pillars (pitch). The surface with the smallest pitch induced the greatest atom-

ization for all surface temperatures and atomization always decreased for increasing pitch values.

This behavior was attributed to increasing resistance to vapor flow through the micro-pillar forest

with decreasing pitch values. The Leidenfrost point was consequently found to be dependent on

pitch and occurs at higher temperatures for decreasing pitch values. Atomization is not always less

on a superhydrophobic surface than on a smooth one, as previously supposed [45]. A hypothesis
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was presented arguing that the amount of secondary atomization depends on a balance between

solid-liquid contact and resistance to vapor flow.
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CHAPTER 6. CONCLUSIONS

This dissertation explored the physics of single droplet impingement on micro-structured

superhydrophobic surfaces. Attention was given to the effects of slip velocity on spreading/retracting

(Chapter 2), Wenzel-to-Cassie transition (Chapter 3), general dynamics at surface temperatures

above saturation (Chapter 4) and secondary atomization intensity on different superhydrophobic

surfaces (Chapter 5). Analytical, numerical and experimental approaches were utilized throughout

this work. The preferred method of experimental exploration included high-speed photography to

capture the impingement events, image processing to extract desired parameters from the high-

speed photographs, and photolithography to fabricate the superhydrophobic samples.

Superhydrophobic surfaces are said to yield a slip boundary condition due to the periodic

gas-liquid (nearly shear free) contact at the interface. An analytical model was developed to an-

alyze isotropic or axisymmetric slip during droplet impingement. The results showed that larger

slip leads to larger spreading diameters. This behavior is associated with a decrease in viscous dis-

sipation such that kinetic energy remains higher during the event. In order to analyze anisotropic

slip (representative of a superhydrophobic surface with uni-direction ribs/cavities), the governing

equation derived for the analytical model was discretized in the azimuthal direction. These results

also showed that larger spreading diameters occur due slip, but preferential spreading occurred in

the longitudinal direction of the ribs concomitant with larger slip. This resulted in elliptical-type

shapes during spreading. Experiments were performed and agreed with the models.

When liquid resides on top of the superhydrophobic texture, the liquid is said to be in the

Cassie state. On the other hand, when liquid penetrates into the cavities, it is said to be in the Wen-

zel state. The advantages posed by superhydrophobic surfaces due to slip are often voided when

transition occurs from the Cassie to the Wenzel state. We investigated transition form the latter to

the former when penetration occurred during droplet impact. Experiments revealed that tall micro-

pillars (relative to the center-to-center spacing of the texture) and elevated surface temperatures
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permitted liquid to revert back to the Cassie state. A scaling analysis was developed to explain the

observed behavior and conclusions are as follows. Increasing pillar height increases an effective

driving potential for flow to dewet the cavities. This driving potential is based on the interfacial

energy between all immiscible phases at the interface. On the other hand, increasing surface tem-

perature caused resistance to dewetting to decrease. This resistance was due to hydrodynamic and

non-hydrodynamic (molecular hopping at the triple contact line) dissipation forms.

Given the ever increasing need for higher heat fluxes, an investigation was also performed

for droplet impingement on surfaces heated above the saturation temperature of the liquid. This

study was two fold. First, dynamics were investigated on surfaces varying across the entire wet-

tability spectrum: superhydrophilic, hydrophilic, hydrophobic and superhydrophobic. The results

revealed that the hydrophilic surface exhibited the highest temperature for the Leidenfrost point,

or temperature where atomization ceases to occur. The superhydrophilic surface followed and its

lower temperature was due to the increased solid-liquid contact area provided by the texture. The

hydrophobic surface also had a lower Leidenfrost point temperature, but in this instance, this be-

havior was due to vapor bubbles being more attracted to the surface thus promoting the formation

of a vapor film earlier. The most striking behavior in this study was that secondary atomization on

the superhydrophobic surface was nearly absent at all surface temperature explored. Thus, droplet

impingement seemed to “skip” the contact boiling regime and always exhibited film boiling char-

acteristics. This behavior occurred due to the ability of vapor to drain from underneath the droplet

through the hydrophobic texture. Finally, maximum diameters were evaluated at their respective

Leidenfrost point temperatures and it was found that they were smallest when spreading on a tex-

tured surface. This indicates that solid-liquid contact prevails during droplet impingement at the

Leidenfrost point.

Second, in order to explore this peculiar behavior of suppressed atomization on superhy-

drophobic surfaces, a second study was performed using a smooth hydrophobic and four different

superhydrophobic surfaces. We found that secondary atomization is not always suppressed on a

superhydrophobic surface. In fact, droplets can display larger amounts of atomization than on

smooth hydrophobic surfaces. The largest amount of atomization occurred on the superhydropho-

bic surface with the smallest pitch, which coincides with the idea that the obstruction of vapor flow

causes vapor bubbles to prevail and burst, resulting in secondary atomization. Lastly, this study re-
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vealed the relationship between secondary atomization and surface temperature, which mimicked

the relationship between heat flux and surface temperature for the case of pool boiling. The surface

temperatures at which the maximum amount of atomization occurs were provided, as well as the

temporal evolution of atomization for each surface explored.

6.1 Future Work

In Chapter 3 of this dissertation, a hypothesis was formulated to describe the Wenzel to

Cassie transition for droplet impingement on a superhydrophobic surface. Understanding the

physical complexities of this transition is necessary to design robust superhydrophobic surfaces

for industrial use. I give four reasons why further pursuing this project, and how, would be valu-

able. First, our mathematical arguments, which was based on an interfacial (potential) energy

gradient, were postulated following observation of dewetting on a pillar-arrayed surface and con-

sidered “sound” when the equations agreed with experimental trends. These equations can be

easily arranged to predict dewetting on other surface arrangements, such as uni-directional ribs,

triangular/square pillars, pyramids, etc., and their agreement with new experiments would support

the hypothesis. Second, further pursuit of this study facilitates a second well-sought-after physico-

chemical effect, namely, the isolation of friction at the triple contact line from viscous friction. This

is a scenario difficult to establish given the induced shear stresses during contact line movement.

Third, the use of different liquids besides water would also yield further insight. For example, glyc-

erol offers a liquid which has significantly higher viscosity than water and exhibits more adhesion

to Teflon, while maintaining similar interfacial energy values to that of water. The equations ascer-

tain that as a result friction forces should increase while the driving force should remain constant,

which should likewise be confirmed experimentally. Fourth, our hypothesis should be expanded

to dewetting of sessile water droplets in the Wenzel state (such as one which originated due to

condensation or one that was pushed into the Wenzel state) due to surface heating.

The boiling experiments presented in this dissertation also give room for subsequent follow-

up studies. The idea that vapor escapes from underneath the droplet through the pillar forest can

be confirmed by evaluating a superhydrophobic surface with “corral” type structures which are ex-

pected to completely obstruct vapor flow. Atomization on such surfaces would be expected to ex-

ceed that of atomization on pillar-type surfaces, and in so doing would strengthen the hypothesis of
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vapor escape. While nano-particles are typically much smaller than the size of nucleation sites nec-

essary for vapor to grow, the literature has seen big differences in boiling droplets for hydrophilic

interactions. Superhydrophobic surfaces with nano-scale texture has not been explored. Also, if

the boiling dynamics observed are merely dependent on polarity considerations, then a non-polar

liquid should exhibit similar boiling behavior on all four surfaces tested (superhydrophilic to super-

hydrophobic), but in reversed order. Finally, a strong analytical/numerical model to predict droplet

impingement boiling would, needless to say, be a excellent complement to the experiments, vali-

date the hypothesis of vapor escape and be useful in prediction. In order for a model of this type to

be built though, in my opinion, the researcher must take a step back and first solve much simpler

scenarios. Some of these simpler scenarios might include the nucleation and growth of a vapor

bubble on the peak of a pillar and its descent into the surrounding gas cavities.
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