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ABSTRACT 

Criteria for Selecting PEGylation Sites on Proteins for Higher Thermodynamic Stability 
 

Paul B. Lawrence 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 
 

PEGylation of protein side-chains has been used for more than 30 years to enhance the 
pharmacokinetic properties of protein drugs, and has been enabled by the recent development of 
many chemoselective reactions for protein side-chain modification. However, there are no 
structure- or sequence-based guidelines for selecting sites that provide optimal PEG-based 
pharmacokinetic enhancement with minimal loss to biological activity. 

  
Chapter 1 is a brief introduction to protein PEGylation. In chapter 2 we use the WW 

domain of the human protein Pin 1 (WW) as a model system to probe the impact of PEG on 
protein conformational stability. Using a combination of experimental and theoretical approaches, 
we develop a structure-based method for predicting which sites within WW are most likely to 
experience PEG-based stabilization, and show that this method correctly predicts the location of 
a stabilizing PEGylation site within the chicken Src SH3 domain. PEG-based stabilization in 
WW is associated with enhanced resistance to proteolysis, is entropic in origin, and likely 
involves disruption by PEG of the network of hydrogen-bound solvent molecules that surround 
the protein. Chapter 3 shows that PEG-based stabilization of the WW domain depends strongly 
on the identity of the PEG-protein linker, with the most stabilizing linkers involving conjugation 
of PEG to an Asn side-chain amide nitrogen. Chapter 4 investigates the interplay between 
structure-based guidelines for PEG-base stabilization developed in chapter 2 and the different 
chemistries explored in chapter 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: PEGylation, Therapeutic Proteins, Thermodynamic Stability, Circular Dichroism, β-
sheet.   
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1 INTRODUCTION 

Peptides and proteins are attractive targets for treatment of many human diseases.1-3 However, 

their benefits are limited because of fast degradation by proteases, filtration through the kidneys, 

aggregation, and recognition/neutralization by antibodies.4-9 To mitigate these problems Davis 

and Abuchowsky4,5 developed a technique in 1977 called PEGylation in which they covalently 

attached a 5000 da polyethylene glycol (PEG) molecule to the surface of bovine serum albumin. 

Abuschowsky et al.5 reported that the PEGylated bovine serum albumin showed substantial 

changes in solubility, electrophoretic mobility in acrylamide gel, ion exchange chromatography, 

sedimentation, and extended protein half-life in blood. PEGylation has also been shown to 

reduce protein aggregation, proteolysis, recognition by antibodies, and increase protein shelf-

life.6-8,10,11 There are currently ten FDA approved PEGylated therapeutic proteins, antibody 

fragments, and oligonucleotides on the market, including PEGylated bovine adenosine 

deaminase: pegademase bovine (Adagen®); and PEGylated L-asparaginase: pegaspargase 

(Oncaspar®); PEGylated products of  interferon-α (IFN- α): peginterferonα-2b (PegIntron®)  and 

peginterferonα-2a (Pegasys®); PEGylated granulocyte colony stimulating factor  (G-CSF): 

pegfilgrastim (Neulasta®); PEGylated growth hormone receptor antagonist: pegvisomant 

(Somavert®); a PEGylated 28-nucleotide aptamer against  vascular  endothelial  growth factor  

(VEGF); PEGylated erythropoietin (Mircera®); PEGylated anti-tumornecrosis factor  (TNF)-

 α(Cimzia®); and PEGylated recombinant porcine uricase (urate oxidase) (Puricase®).12 
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PEGylated proteins typically have longer half-lives than the parent protein due in part to the 

decrease in renal clearance.  Hydration of the PEG polymer increases the hydrodynamic radius 

of the PEGylated protein 5-10 times greater than what one would calculate from the polymers 

molecular weight.6 This hydration effect causes an increase to the molecular size of the PEG-

protein conjugate, which reduces renal filtration and increases circulation time. PEG-protein 

conjugates with molecular weights of below 20 kDa are filtered through the kidneys; while 

molecules above 20 kDa are generally excreted via the liver.13,14 

PEGylation also addresses the challenge of proteolytic degradation and immunogenicity of 

protein therapeutics. A common model that is used to explain how PEG protects proteins from 

proteases and antigenic determinants involves the large PEG polymer shielding the protein 

surface.10 Proteases and antibodies have reduced access to the protein surface due to steric 

obstruction by PEG.  

The FDA approved two PEGylated protein drugs (peginterferon-α2b and peginterferon-α2a) 

in 2000 and 2001, respectively, for the treatment of chronic hepatitis C (HCV). Prior to using 

peginterferon-α2b and peginterferon-α2a, hepatitis patients were treated in combination with 

ribavirin and interferon-α (IFN-α).15 A problem with this treatment was the plasma half-life for 

IFN-α was only 4-6 hours, which required patients to receive three subcutaneous injections a 

week. Also, the short plasma half-life of IFN-α resulted in continual fluctuations in plasma 

concentration, which created periods of time for the virus to replicate and develop 

resistance.10PEGylating IFN-α with a linear 12 kDa PEG10,16 via an amide bond to a surface 

exposed lysine resulted in an increased plasma half-life of 27-37 hours. IFN-α was also 

PEGylated with a 40 kDa branched PEG10,17 (peginterferon-α2a) resulting in a plasma half-life 
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of 65 hours. PEGylation of IFN-α  has resulted in approximately a ten fold increase to plasma 

half-life. The increased plasma half-life of peginterferon-α2a has reduced the amount of 

subcutaneous injections and more than doubled patients response to treatment of HCV.  

 

1.1 Methods of PEGylation 

 The least complicated strategy for attaching PEG to proteins uses an excess of PEG 

polymers that are functionalized with succinimide18,19, maleimide20,21, and aldehyde22,23 groups. 

The resulting PEG electrophile reacts with naturally occurring nucleophiles in the side-chains of 

lysine and cysteine. A major problem with this approach is that many different nucleophiles on 

the protein surface can react with the excess PEG reagent, resulting in a heterogeneous mixture 

of protein-PEG conjugates (Figure 1-1 A). Identification and purification of these protein 

mixtures is difficult because the proteins vary in the location of the PEGylation sites and the 

extent of PEGylation.24 This method of PEGylation may result in PEG attachment near or at the 

active site of proteins, thereby diminishing biological activity (see Figure 1-1 A). To avoid this 

problem, many groups have developed site-specific PEGylation strategies that are selective for 

cysteine, for the N-terminal amino group, or for an unnatural amino acid. 

PEGylation of the N-terminus is a common site-specific strategy (see Figure 1-2 A) that 

takes advantage of the different pKa values of the α-amine group of the N-terminal amino acid 

(pKa, 7.6-8.0) and the ε-amine group of the lys side-chain (pKa, 10.0-10.2).25 Under mildly 

acidic conditions, PEG polymers that are functionalized with an aldehyde are conjugated 

selectively to the N-terminus via reductive alkylation.26 
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Figure 1-1 Examples of protein PEGylation. (A) Random PEGylation. (B)  Cysteine PEGylation. (C) 
Chemoselective PEGylation of unnatural amino acids. 

 

Site-specific PEGylation of naturally occurring or genetically introduced cysteine residues 

using maleimide, vinyl sulfone, ortho-pyridyl disulfide, thiol, and iodoacetamide PEG reagents is 

a common approach27,28 (see Figure 1-2 c-f). Recently Davis et al.29 have designed an elegant 

method for converting the thiol of a cysteine residue into dehydroalanine via bisalkylation of the 

thiol, followed by  β-elimination to generate the unsaturated dehydroalanine containing protein. 
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The newly installed dehydroalanine is a Michael acceptor, which can then be treated with a thiol 

containing PEG polymer to form the protein-PEG conjugate (see Figure 1-4 a). Davis applied 

this method to a single cysteine mutant of the serine protease subtilisin Bacillus lentus (SBL) to 

installed an allyl sulfide in place of the cysteine thiol followed by cross-metathesis with an allyl-

PEG to form the protein-PEG conjugate.30 It is important to note that functionalizing 

dehydroalanine-containing proteins with thiols is known to result in a mixture of diastereomers, 

each containing one of two possible Cys-functionalized epimers at the site of modification.  

Another way to incorporate PEG site-specifically into proteins is to use unnatural amino 

acids that have unique chemoselective handles such as azides, terminal alkynes, ketones, and 

alkenes. Some examples of these unnatural amino acids include: Azidohomoalanine (Aha), 

homopropargylglycine (Hpg), homoallylglycine (Hag), trans-crotylglycine (Tcg), 

azidonorleucine (Anl), 2-aminooctynoic acid (Aoa), p-ethynylphenylalanine (p−EtF) , p-

bromophenylalanine (p−BrF), p−iodophenylalanine (p−IF), p-azidophenylalanine (p−AzF), p-

acetylphenylalanine (p−AcF), p-propargyloxyphenylalanine (p−pPa), and oxonorvaline 

(Onv).31,32 The unnatural amino acids in Figure 1-3A are all methionine analogs that use 

endogenous translational machinery to incorporate the amino acid site-specifically into full 

length proteins.33-35 Using the amber stop codon and mutated aminoacyl tRNA synthetases 

(aaRSs) the unnatural amino acids in Figure 1-3B are incorporated into proteins by using E. 

coli36,37, yeast38, or cell-free methods.31,39 After incorporation of the unnatural amino, the unique 

chemical handle is then used to conjugate an appropriately functionalized PEG polymer to the 

protein. For example, Aha (see Figure 1-4b) has an azido group that will chemoselectively react 

with an alkyne-functionalized PEG polymer in a bioorthogonal copper-catalyzed [3+2] 

cycloadditon reaction termed a “click reaction”.40 
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Figure 1-2. Amine and thiol reactive PEG derivatives. a) PEG aldehyde. b) PEG succinimidyl carboxyl methyl ester. 
c) PEG maleimide. d) PEG vinyl sulfone. e). PEG orthopyridyl disulfide. f) PEG iodoacetamide 
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Figure 1-3. Structures of unnatural amino acids. *Tcg requires overexpression of wild type methionyl-
tRNAsynthetase 

 

Cho et al.36 incorporated a ketone-containing amino acid called p-acetylphenylalanine (p-

AcF Figure 1-3) into the human growth hormone (hGH) via amber suppression. The ketone was 

then reacted with a 30kDa linear PEG-oxyamine to form a very stable oxime linkage (see Figure 

1-4c). Lin et al. genetically modified ubiquitin with homo-propargylglycine (Hpg see Figure 1-3) 

via auxotrophic expression. They then synthesized an iodoaryl-PEG polymer of 5kDa and used 

the Sonogashira C-C cross-coupling reaction to form the PEG-protein conjugate (see Figure 1-

4d). Davis et al.41 used the Suzuki-Miyaura cross-coupling reaction with a 2kDa functionalized 

PEG boronic acid and unnatural p-iodophenylalanine (p-IF Figure 1-3), which was incorporated 

into an all β-helix protein from Nostopunctiforme via amber suppression (Figure 1-4 e).  
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Figure 1-4. Unnatural amino acids with chemoselective handles. a) PEG thiol. b) PEG alkyne. c) PEG oxyamine. d) 
PEG alkyne conjugation via Sonogashira cross-coupling. e) PEG boronic acid conjugation via Suzuki-Miyaura 

cross-coupling. 

 

Alternatively, efforts to incorporate PEGylated unnatural amino acids directly into 

proteins have experienced some recent success (see Figure 1-5).  Shozen42 and Zang43 recently 

incorporated PEGylated p-aminophenylalanine (PEGnAF) and lysine (PEGnLys) derivatives 

having 4, 8, and 12 PEG units into streptavidin using a frame shift suppression method based on 
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a four-base codon-anticodon pair.  A longer 24-unit PEG could also be incorporated, but at 

significantly reduced yields. A branched PEGylated variant of p-amniophenylalanine 

(i.e.PEG12x3AF ≈ 2kDa) was not successfully incorporated into the protein, probably due to steric 

bulk of the branched PEG. These early results are encouraging, but if this method is to be used 

more broadly, it will need to provide access to the larger PEGs (~20–40 kDa) that are more 

typically used in therapeutic contexts. 

 

Figure 1-5. PEGylated amino acids. p-aminophenylalanine (PEGnAF) and lysine (PEGnLys) 

 

1.2 The Effect of PEGylation on Protein Thermodynamic Stability 

 

The pharmacokinetic benefits of PEGylated proteins are thought to derive from increased 

hydrodynamic volume of the PEG-protein conjugate.11 The increased volume helps reduce the 

protein from being filtered out of the serum via the kidneys.5,7,8,44,45 The large PEG polymer also 

shields the protein from proteases, antibodies, and aggregation.6-8,10 However, aggregation, 
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proteolytic degradation, and recognition/neutralization by antibodies are also related to the 

protein conformational stability.46-48 Protein aggregation49, proteolysis50-52, and immune 

responses53,54 are accelerated when the protein folding energy landscape allows a significant 

population of unfolded, misfolded, or partially folded conformations. Therefore, it seems 

reasonable to expect PEGylated proteins that increase conformational stability upon PEGylation 

to have additional pharmacokinetic advantages over PEGylated proteins that did not have an 

increase in conformational stability.  

However, the impact of PEGylation on protein conformational stability is incompletely 

understood. Protein PEGylation can increase,55-80 decrease,81,82 or have no effect on protein 

conformational stability,63,83-87 and conflicting reports have indicated different results for the 

same protein.60,88-92 The molecular basis for these differences is unclear, though they likely 

include (1) using different methods for assessing conformational stability, (2) using PEGylation 

strategies that generate heterogeneous mixture of protein-PEG conjugates, (3) along with 

differences in the location of the PEGylation site, (4) PEG length, and (5) the chemistry of the 

PEG-protein linkage.  

Understanding how PEGylation affects the conformational stability of proteins at the 

molecular level is important for the rational improvement of protein therapeutics. If we could 

understand the mechanism of how PEG stabilizes and destabilizes proteins then scientists could 

develop engineering guidelines for selecting the best PEGylation sites. These newly developed 

guidelines would help reduce wasted time, money and effort for finding the optimal PEGylation 

sites in therapeutic proteins.  
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1.2.1 Mechanism of PEG-based Protein Stabilization 

 

Recent studies have begun to provide some mechanistic insight to PEG-based protein 

stabilization. Liu et al.93 used molecular dynamic simulations to investigate the energetic 

consequences of attaching PEGs of various sizes (10, 50, 100, and 200 PEG units) to LysB29 of 

insulin. Attachment of PEG to insulin was shown to reduce the solvent accessible surface area 

(SASA) for both hydrophobic and hydrophilic residues. A Lennard-Jones energy analysis of 

PEGylated insulin suggests that PEG-protein interactions are predominantly hydrophobic in 

nature. The radial distribution of water in these MD simulations indicates that water molecules 

near the protein surface are being released to bulk solvent upon PEGylation, a result consistent 

with hydrophobic PEG-protein interactions. Liu et al. find that decreasing the SASA of insulin 

via PEGylation is stabilizing because the backbone hydrogen bonds (which are critical for 

secondary structure) are protected from water molecules that would disrupt the hydrogen 

bonding network.94 

Meng et al.95 used stopped-flow fluorescence and equilibrium denaturation experiments 

to study the impact of PEGylation on the stability SH3 domain. Selective PEGylation at the N-

terminus via reductive alkylation with a 5 kDa and 10 kDa polymer resulted in no increase to 

thermodynamic stability whereas non-specific modification of the N-terminal α-amine and two 

lysine ε amines with a 10 kDa PEG did increase the thermodynamic stability by ~0.93 kcal/mol. 

The data suggests that stabilization is dependent on the number of PEG polymers attached 

instead of the size of the polymer. They extracted the m-value from the chemical denaturation 

curves of the PEGylated and non-PEGylated proteins. This parameter is correlated to the amount 

the protein surface exposed to solvent upon folding.96 Meng et al. concluded that PEG stabilizes 



12 

the SH3 by decreasing the SASA in the folded state more prominently than in the unfolded state. 

Meng et al. also investigated how PEGylation affects the folding kinetics of SH3 domain. The 

data show that PEG-based stabilization is in part a result of decreasing the unfolding rate 

significantly more than the folding rate.  

Xu and coworkers56 functionalized the trimeric α-helical coiled coil 1CW with a 2 kDa 

PEG maleimide at a solvent exposed Cys located midway between the N- and C-termini of 1CW 

(see figure 2). CD experiments demonstrated that PEGylation enhances the helicity of 1CW and 

does not disrupt its ability to form a coiled coil. Small-angle X-ray scattering studies revealed 

that the PEG within PEGylated 1CW is more compact than would be expected for a 

corresponding free PEG.55,97 Molecular dynamics simulations provided evidence for stabilizing 

interactions of the PEG oxygen atoms with solvent exposed Lys residues on 1CW, along with 

interactions between PEG and hydrophobic residues on the coiled-coil surface, with 

accompanying decreases in SASA.57,98 The simulations suggest that PEG occupies the lys ε-

ammonium group such that competing interactions between lysine and backbone carbonyl 

oxygens are weakened, thereby strengthening the backbone hydrogen bonds and increasing the 

helix stability.  

However, careful analysis of variable temperature CD data for 1CW and its PEGylated 

counterpart by Pandey et al.99 found that PEGylation actually destabilizes the 1CW coiled coil 

by a small but measurable amount.  Alanine mutagenesis experiments confirmed the presence of 

favorable interactions between the Cys-linked PEG and Lys residues at positions 15 and 21 of 

1CW, though such interactions are not favorable enough to overcome the intrinsically 

destabilizing impact of PEGylation on 1CW.99 However, installing additional Lys residues 

closer to the PEGylation site (i.e., at the i+3 and i+4 positions relative to the PEGylated Cys) 
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results in a 1CW variant that is stabilized by PEGylation (ΔΔGf = -0.28 kcal/mol) owing to a 

favorable three-way interaction between the two Lys residues and the PEGylated Cys.  

Interestingly, this interaction can occur even when Cys is modified with a maleimide derivative 

that lacks PEG, indicating that the three-way interaction involves the maleimide linker and not 

PEG.99 

 Several researchers have hypothesized that PEGylation stabilizes proteins by reducing 

their internal structural dynamics.100-103 Rodriguez-Martinez et al. probed this effect by using 

FTIR spectroscopy to calculate the rate of hydrogen/deuterium exchange within PEGylated α-

chymotrypsin (α -CT). They observed that increasing the degree of PEGylation corresponded to 

slower kinetics of hydrogen/deuterium exchange. They explain that slower hydrogen/deuterium 

exchange demonstrates that the protein core is becoming more rigid and the structural dynamics 

are being reduced.  

Previous simulations suggest that PEG can engage in both hydrophobic and hydrogen-

bonding interactions with groups on the protein surface, though the limited number of atomic-

resolution structures of PEGylated proteins make it difficult to know whether these interactions 

have significant structural or thermodynamic consequences. For example, a low resolution 

crystal structure reported by Svergun et al.104 suggests that PEG partially covers the surface of 

PEGylated hemolglobin, and is presumably involved in interactions with surface residues.  In 

contrast, the NMR and crystallography studies of Cattni et al105 on PEGylated plastocyanin 

suggest that the PEG and the protein behave as independent domains without structural evidence 

for strong interactions. 

Diverse studies agree that PEG-based changes to protein surface solvation play a key role 

in whether or not PEGylation results in substantial increases to protein conformational stability.  
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Because such increases are associated with enhanced resistance to proteolysis, structure-based 

mastery of these effects remains an important goal.  Early work along these lines is promising 

and provides hope that such a goal is reasonably attainable.  

 

1.3 Previous Work in the Price Lab 

 

Our lab seeks to understand why PEGylation may or may not increase the thermodynamic 

stability of PEGylated proteins at the molecular level. We seek to develop rational structure-

based guideline for the optimal design of PEGylated therapeutic protein drugs. These guidelines 

would assist protein chemists in determining the location, linker chemistry, and oligomer length 

that will provide optimal PEG-based stabilization without diminishing biological activity. We 

recently showed that attaching a short PEG (comprising four ethylene oxide units) to a single 

Asn side chain at position 19 in the WW domain of the human protein Pin 1 increases WW 

conformational stability by -0.70 ± 0.04 kcal mol-1 due to accelerated folding and slowed 

unfolding.106 Shorter PEG chains impart less stability to WW than the four-unit PEG, whereas 

longer PEG chains provide similar stability.  In this dissertation, we continue to use the WW 

domain as a model system for identifying structural features that are common to stabilizing 

PEGylation sites.    

This dissertation details the progress we have made in identifying the mechanism by 

which PEG stabilizes the WW domain. Chapter 2 explains how the location of the PEGylation 

site strongly influences the ability of PEG to stabilize the WW, and suggests that this stabilizing 

effect comes from PEG-based partial desolvation of the protein surface. Chapter 3 shows that 

PEG-based stabilization of the WW domain depends strongly on the identity of the PEG-protein 
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linker.  Chapter 4 investigates the interplay between structure-based guidelines for PEG-base 

stabilization developed in chapter 2 and the different chemistries explored in chapter 3.  
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2 CRITERIA FOR SELECTING PEGYLATION SITES ON PROTEINS FOR 

HIGHER THERMODYAMIC AND PROTEOLYTIC STABILITY 

 

2.1 Introduction 

Here we use a small protein, the WW domain of the human protein Pin 1 (hereafter called 

WW) as a model system for understanding how PEGylation generally impacts the 

conformational stability of β-sheet proteins (Figure 2-1).  The WW domain is an extensively 

characterized1-23 β-sheet protein that contains three antiparallel β-strands connected by two 

reverse turns.23 The folding free energy landscape of Pin WW can be approximated as a simple 

two-state reaction-coordinate diagram in which the unfolded ensemble proceeds through a high-

energy transition state to the folded conformation without passing through discrete 

intermediates.3 The small size of WW facilitates the direct chemical synthesis of homogeneous 

site-specifically PEGylated variants.24,25 WW is much smaller than many of the PEGylated 

proteins of pharmaceutical interest.  However, recent efforts to increase WW conformational 

stability via glycosylation have been successfully applied in two larger proteins,21 suggesting that 

insights gained from WW PEGylation will be applicable to larger therapeutically relevant 

proteins. 
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Here we identify locations within WW where PEGylation increases conformational 

stability and use a combination of experimental and computational approaches to probe the 

origins of PEG-based stabilization. We use the resulting insights, along with structural 

information for WW to identify features that are common to stabilizing PEGylation sites. We use 

these structural features to develop criteria for predicting stabilizing PEGylation sites within 

WW.  Finally, we show that PEG-based increases to conformational stability correlate with 

enhanced resistance to proteolysis. These results highlight the possibility of using modern site-

specific PEGylation techniques to install PEG oligomers at locations that lead to optimal 

increases in conformational and proteolytic stability. 

 

 

 

 

 

 

 

 

 

 
Figure 2-1. Sequence of the protein WW and ribbon diagram of WW (PDB: 1PIN), with side chains shown as sticks.  

Positions where we incorporated Asn vs. AsnPEG4 are highlighted with color, according to the impact of 
PEGylation on conformational stability.  Stabilizing positions are highlighted in green; neutral positions are 

highlighted in yellow; and destabilizing positions are highlighted in red. 
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2.2 Results and Discussion 

2.2.1 Impact of PEGylation on WW Conformational Stability 

As described previously, PEGylation of an Asn residue at position 19 with a reverse turn 

of WW increases WW conformational stability by accelerating folding and slowing unfolding.25 

We wondered whether this effect was unique to position 19 or whether PEGylation might 

similarly stabilize other positions.  To address this question, we generated proteins 14, 16, 17, 18, 

23, 27, 28, 29 and 32, in which wild-type residues at positions 14, 16, 17, 18, 23, 27, 28, 29 and 

32, respectively, have been changed to Asn (Asn already occupies positions 26 and 30 in the 

unmodified protein WW, see Figure 2-1).  We also prepared PEGylated proteins 14p, 16p, 17p, 

18p, 23p, 26p, 27p, 28p, 29p, 30p, and 32p, in which positions 14, 17, 18, 19, 23, 26, 30, and 

32, respectively, are occupied by AsnPEG4, a PEGylated Asn derivative in which a four-unit 

PEG oligomer has been attached to the Asn side-chain amide nitrogen (Figure 2-1).  These 

PEGylation sites sample the various secondary structural environments present in WW, including 

reverse turns (positions 16, 17, 18, 26, 27, 28, 29, 30) and β-strands (positions 14, 23, 32). 

Circular dichroism (CD) spectra of these variants at 25 °C (Figure 2-2) are generally very 

similar in shape and magnitude to that of wild-type unmodified protein WW, suggesting that 

changing wild-type residues to Asn generally does not introduce dramatic alterations to the 

folded conformation of the resulting Asn mutants relative to WW.  The exceptions to this trend 

are easily seen in the CD spectra of proteins 14, 23, and their PEGylated counterparts 14p and 

23p, which are similar in shape to that of WW, though substantially smaller in magnitude.  

Variable temperature CD data for 14, 14p, 23, and 23p (see below) provide an explanation for 

this observation: 14, 14p, 23, and 23p appear to be two-state folders like WW, but are much less 
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stable.  Whereas WW is fully folded at 25°C, 14, 14p, 23, and 23p each exist as equilibrium 

mixtures of fully folded and fully unfolded conformations at 25 °C.  The CD spectrum of a two-

state folder under equilibrium conditions is the weighted average of its fully folded and fully 

unfolded conformations. Therefore, the CD spectra of 14, 14p, 23, and 23p at 25 °C should be 

similar in shape but smaller in magnitude than the CD spectrum of WW.  This is in fact what we 

observe.  In contrast, variable temperature CD data indicate that WW, 14, 14p, 23, and 23p 

should be each fully folded at 2 °C. Consistent with this expectation, the CD spectra of these 

variants at 2°C (Figure 2-2) are much closer in magnitude to that of WW, suggesting that their 

fully folded conformations are likewise similar to that of WW.  However, without high-

resolution structural data, we cannot eliminate the possibility of substantial structural 

rearrangements in 14, 14p, 23, and 23p.  Therefore, in the discussion below, we avoid using data 

from these compounds in our efforts to develop structure-based guidelines for identifying 

optimal PEGylation sites. 

We used variable temperature CD experiments to assess the conformational stability of 

PEGylated proteins 14p, 16p, 17p, 18p, 23p, 26p, 27p, 28p, 29p, 30p, and 32p relative to their 

non-PEGylated counterparts 14, 16, 17, 18, 23, WW, 27, 28, 29 and 32 in 20 mM aqueous 

sodium phosphate (pH 7.0). We also performed these same measurements on 100 µM solutions 

of 19p and 19, which were characterized previously at 10 µM and at 50 µM.24,25 The results of 

this analysis appear in Figure 2-2 and Table 2-1. CD data indicate that each of these variants is a 

two-state folder like the wild-type WW protein. PEGylation substantially increases WW 

conformational stability at positions 16, 19, 26, 29, and 32 and moderately increases WW 

conformational stability at position 17. In contrast, PEGylation has essentially no impact on WW 

conformational stability at positions 14, 18, 28 and 30; and is substantially destabilizing at  
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positions at positions 23 and 27.  No specific secondary structural motif appears to be generally 

amenable to PEG-based stabilization: stabilizing and destabilizing positions occur within both β-

strands and reverse turns. 

Van’t Hoff analysis allows us to parse the impact of PEGylation on WW conformational 

stability (∆∆Gf) into enthalpic (∆∆Hf) and entropic terms (–T∆∆Sf). At several positions, large 

uncertainties in ∆∆Hf and in –T∆∆Sf preclude further analysis.  However, an interesting trend 

emerges from the data for stabilizing positions 16, 19, 26, and 29 (see Table 2-1).  At each of 

these positions, –T∆∆Sf is negative (i.e. favorable) whereas ∆∆Hf is positive (i.e. unfavorable). 

Figure 2-2. CD spectra of wild-type protein WW; non-PEGylated variants 14, 16, 17, 18, 19, 23, 27, 28, 29, 32; and 
PEGylated variants 14p, 16p, 17p, 18p, 19p, 23p, 26p, 27p, 28p, 29p, 30p, and 32p in 20 mM sodium phosphate 
buffer, pH 7 at 25 °C and at low temperature (i.e. at 2°C, except for 16, 27, 27p, and 29p, which were analyzed at 
1°C---variable temperature CD data for these compounds suggests that each is fully folded at 1°C and at 2°C, so 
these spectra are directly comparable).  Spectra were obtained at 100 µM, except for 16, 16p, 27, 27p, 28, 28p, 29, 
and 29p, which were obtained at 50 µM. 
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This observation suggests an entropic origin for the PEG-based increase to WW conformational 

stability at these positions. 

2.2.2 PEGylation with 2000 Da Oligomer 

The PEG oligomers used in therapeutic proteins are typically much longer than the four-

unit oligomer we used in the experiments described above. We previously showed that attaching 

a 2000 Da PEG oligomer to an Asn at position 19 continues to increase WW conformational 

stability, even though the 2000 Da oligomer is much longer (~45 ethylene oxide units) than the 

four-unit oligomer.25 We wondered whether the energetic impact of the 45-unit PEG at the 

positions described above would mirror the results described in table 2-1 for the four-unit PEG. 

 To test this hypothesis, we prepared WW variants 16p45, 18p45, 19p45, 26p45, 27p45, 

28p45, and 29p45 in which we incorporated an Asn-linked 45-unit PEG (AsnPEG45) at positions 

16, 18, 19, 26, 27, 28, and 29, respectively.  We assessed the conformational stability of these 

variants relative to their non-PEGylated counter- parts using variable temperature CD 

experiments.  The results of this analysis are shown in Table 2-2. 

Like the four-unit PEG, the 45-unit PEG increases conformational stability at positions 16, 

19, 26, and 29, and decreases stability at position 27. Whereas the four-unit PEG had no effect at 

positions 18 and 28, the 45-unit PEG is destabilizing at these positions. Van’t Hoff analysis of 

these results indicates that –T∆∆Sf is negative (i.e. favorable) and ∆∆Hf is positive (i.e. 

unfavorable) at stabilizing positions 16, 19, 26, and 29, suggesting that the 45-unit oligomer 

likewise increases WW stability via an entropic effect.   

 

Table 2-1 . Impact of the Four-unit PEG Oligomer on WW Conformational Stability at Various Sites. 
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Protein Sequence Tm (°C) ∆Tm (°C) ∆∆Gf 
(kcal/mol) 

∆∆Hf 
(kcal/mol) 

–T∆∆Sf 
(kcal/mol) 

14 KLPPGWEKNMSRSSGRVYYFNHITNASQFERPSG 34.0 ± 0.8 
-0.6 ± 5.3 0.0 ± 0.4 -0.1 ± 3.4 0.1 ± 3.3 

14p KLPPGWEKNMSRSSGRVYYFNHITNASQFERPSG 33.4 ± 5.2 

16 KLPPGWEKRMNRSSGRVYYFNHITNASQFERPSG 50.6 ± 0.2 
10.1 ± 0.3 -0.90 ± 0.03 3.8 ± 1.4 -4.7 ± 1.3 

16p KLPPGWEKRMNRSSGRVYYFNHITNASQFERPSG 60.7 ± 0.3 

17 KLPPGWEKRMSNSSGRVYYFNHITNASQFERPSG 53.6 ± 0.4 
1.9 ± 0.6 -0.18 ± 0.05 -2.2 ± 0.8 2.0 ± 0.8 

17p KLPPGWEKRMSNSSGRVYYFNHITNASQFERPSG 55.5 ± 0.5 

18 KLPPGWEKRMSRNSGRVYYFNHITNASQFERPSG 56.9 ± 0.2 
0.0 ± 0.7 0.00 ± 0.07 -3.7 ± 0.9 3.7 ± 0.9 

18p KLPPGWEKRMSRNSGRVYYFNHITNASQFERPSG 57.0 ± 0.7 

19 KLPPGWEKRMSRSNGRVYYFNHITNASQFERPSG 55.6 ± 0.2 
7.7 ± 0.4 -0.70 ± 0.04 3.6 ± 1.4 -4.3 ± 1.4 

19p KLPPGWEKRMSRSNGRVYYFNHITNASQFERPSG 63.3 ± 0.3 

23 KLPPGWEKRMSRSSGRVNYFNHITNASQFERPSG 28.5 ± 0.9 
-5.2 ± 1.3 0.40 ± 0.10 4.1 ± 1.4 -3.7 ± 1.3 

23p KLPPGWEKRMSRSSGRVNYFNHITNASQFERPSG 23.3 ± 1.0 

WW KLPPGWEKRMSRSSGRVYYFNHITNASQFERPSG 58.0 ± 0.7 
6.6 ± 0.7 -0.58 ± 0.06 3.4 ± 0.9 -4.0 ± 0.9 

26p KLPPGWEKRMSRSSGRVYYFNHITNASQFERPSG 64.6 ± 0.2 

27 KLPPGWEKRMSRSSGRVYYFNNITNASQFERPSG 55.0 ± 0.1 
-4.0 ± 0.4 0.38 ± 0.04 0.5 ± 0.9 -0.1 ± 0.9 

27p KLPPGWEKRMSRSSGRVYYFNNITNASQFERPSG 51.0 ± 0.4 

28 KLPPGWEKRMSRSSGRVYYFNHNTNASQFERPSG 53.2 ± 0.5 
0.0 ± 0.7 0.00 ± 0.07 0.6 ± 0.8 -0.6 ± 0.8 

28p KLPPGWEKRMSRSSGRVYYFNHNTNASQFERPSG 53.2 ± 0.5 

29 KLPPGWEKRMSRSSGRVYYFNHINNASQFERPSG 50.0 ± 0.3 
4.1 ± 0.4 -0.36 ± 0.04 3.6 ± 1.4 -4.3 ± 1.4 

29p KLPPGWEKRMSRSSGRVYYFNHINNASQFERPSG 54.1 ± 0.3 

WW KLPPGWEKRMSRSSGRVYYFNHITNASQFERPSG 58.0 ± 0.7 
0.4 ± 0.7 0.00 ± 0.07 -0.5 ± 1.1 0.5 ± 1.1 

30p KLPPGWEKRMSRSSGRVYYFNHITNASQFERPSG 58.4 ± 0.2 

32 KLPPGWEKRMSRSSGRVYYFNHITNANQFERPSG 45.1 ± 0.2 
5.3 ± 0.3 -0.45 ± 0.02 -0.1 ± 0.6 -0.3 ± 0.6 

32p KLPPGWEKRMSRSSGRVYYFNHITNANQFERPSG 50.3 ± 0.2 

16 KLPPGWEKRMNRSSGRVYYFNHITNASQFERPSG 50.6 ± 0.2 
16.7 ± 0.2 -1.38 ± 0.03 8.2 ± 0.9 -9.6 ± 0.9 

16p/26p KLPPGWEKRMNRSSGRVYYFNHITNASQFERPSG 67.3 ± 0.1 

19 KLPPGWEKRMSRSNGRVYYFNHITNASQFERPSG 55.6 ± 0.2 
14.2 ± 0.2 -1.26 ± 0.02 6.1 ± 0.7 -7.3 ± 0.7 

19p/26p KLPPGWEKRMSRSNGRVYYFNHITNASQFERPSG 69.8 ± 0.1 

29 KLPPGWEKRMSRSSGRVYYFNHINNASQFERPSG 50.0 ± 0.3 
6.7 ± 0.4 -0.56 ± 0.04 1.9 ± 0.6 -2.5 ± 0.6 

26p/29p KLPPGWEKRMSRSSGRVYYFNHINNASQFERPSG 56.8 ± 0.3 

16/19 KLPPGWEKRMNRSNGRVYYFNHITNASQFERPSG 56.9 ± 0.1 
8.5 ± 0.2 -0.80 ± 0.02 1.2 ± 0.5 -2.0 ± 0.5 

16p/19p KLPPGWEKRMNRSNGRVYYFNHITNASQFERPSG 65.4 ± 0.1 

 

Table 2-2. Impact of PEGylation with the 2000 Da (~45-unit) Oligomer on WW Conformational 

Stability at Various Sites. 

Protein Tm (°C) ∆Tm (°C) ∆∆Gf ∆∆Hf –T∆∆Sf 

The WW sequence is shown with amino acids abbreviated according to the standard one-letter code.  N 
represents AsnPEG4. Observed data are given ± standard error at 100 µM protein concentration in 20 mM 
sodium phosphate buffer, pH 7 (except for proteins 27, 27p, 28, 28p, 29, and 29p, which were characterized at 
50 µM protein concentration).  Observed values of ΔΔGf were derived from variable temperature CD 
experiments at the melting temperature of the corresponding non-PEGylated protein. 
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(kcal/mol) (kcal/mol) (kcal/mol) 

16 54.9 ± 0.1 
4.7 ± 0.3 -0.39 ± 0.03 5.1 ± 1.2 -5.5 ± 1.2 

16p45 59.6 ± 0.3 

18 55.3 ± 0.8 
-0.3 ± 0.9 0.02 ± 0.08 3.3 ± 1.5 -3.3 ± 1.5 

18p45 55.1 ± 0.4 

19 55.9 ± 0.2 
7.4 ± 0.4 -0.67 ± 0.05 1.7 ± 1.6 -2.4 ± 1.5 

19p45 63.3 ± 0.4 

WW 58.0 ± 0.7 
3.3 ± 0.7 -0.27 ± 0.06 5.1 ± 0.8 -5.3 ± 0.8 

26p45 61.3 ± 0.1 

27 55.0 ± 0.1 
-7.0 ± 0.3 0.65 ± 0.04 -0.4 ± 1.0 1.1 ± 1.0 

27p45 48.0 ± 0.3 

28 53.2 ± 0.5 
-4.5 ± 0.6 0.36 ± 0.05 4.0 ± 1.0 -3.7 ± 1.0 

28p45 48.7 ± 0.3 

29 48.6 ± 0.4 
4.7 ± 0.5 -0.36 ± 0.04 1.6 ± 1.3 -2.0 ± 1.3 

29p45 53.3 ± 0.3 

 

The close correlation between the position-dependent results for the four-unit and 45-unit 

oligomers in these experiments suggests that insights gained from the four-unit oligomer should 

be reasonably predictive for longer oligomers that more closely resemble those currently used in 

therapeutic proteins. 

2.2.3 Mechanistic Origins of PEG-based Stabilization 

We next used temperature jump kinetic experiments to assess the contribution of folding 

and unfolding kinetics to the PEG-based changes in conformational stability described above, 

with the goal of gaining insights into how PEG can stabilize proteins. At stabilizing positions 19 

and 26, and to a lesser extent at position 17, PEGylation accelerates folding and slows unfolding.  

In contrast, at neutral positions 14, 18, and 30, PEGylation slows both folding and unfolding by 

similar amounts, resulting in no overall change to folding thermodynamics. These results are 

shown in Table 2-3. Accelerated folding and slowed unfolding could be consistent with 

Data are given + standard error at 50 uM protein concentration in 20 mM sodium phosphate buffer, pH 7 
(except for proteins WW and 26p45, which were characterized at 100 uM protein concentration) at the 
melting temperature of the corresponding non-PEGylated protein. Values of Tm, ∆∆Gf, ∆∆Hf and –T∆∆Sf 
were derived from variable temperature CD experiments. 
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simultaneous stabilization of the native state and the transition state, with the native state 

experiencing greater stabilization. Alternatively, these observations are also consistent with 

simultaneous destabilization of the unfolded ensemble and transition state, with the unfolded 

ensemble experiencing greater destabilization. 

Table 2-3. Predicted and Experimentally Observed Impact of PEGylation with the Four-Unit Oligomer on WW 
Folding Thermodynamics and Kinetics at Selected Sites. 

 Experimental Observations CG Model Predictions 

Protein ∆∆Gf 
(kcal/mol) kf (s-1) kf ratio ku (s-1) ku ratio ∆∆Gf 

(kcal/mol) kf ratio ku ratio 

14 
0.0 ± 0.4 

1.9 ± 0.1 
0.7 ± 0.2 

1.9 ± 0.2 
0.7 ± 0.5 0.39 0.96 0.92 

14p 1.2 ± 0.3 1.3 ± 0.8 

16 
-0.90 ± 0.03 

--- 
--- 

--- 
--- 0.28 --- --- 

16p --- --- 

17 
-0.18 ± 0.05 

5.7 ± 0.2 
1.08 ± 0.05 

5.7 ± 0.3 
0.82 ± 0.08 0.05 0.85 0.95 

17p 6.2 ± 0.3 4.7 ± 0.4 

18 
0.00 ± 0.07 

7.1 ± 0.2 
0.78 ± 0.05 

7.1 ± 0.3 
0.78 ± 0.09 0.06 1.07 1.07 

18p 5.6 ± 0.3 5.5 ± 0.6 

19 
-0.70 ± 0.04 

6.2 ± 0.2 
1.3 ± 0.1 

6.2 ± 0.2 
0.44 ± 0.04 0.11 1.04 1.33 

19p 8.0 ± 0.5 2.7 ± 0.2 

23 
0.40 ± 0.10 

--- 
--- 

--- 
--- 0.68 --- --- 

23p --- --- 

WW 

-0.58 ± 0.06 
9.0 ± 0.7 

2.3 ± 0.2 
9.0 ± 1.1 

0.9 ± 0.1 0.86 0.50 1.90 
26p 20.5 ± 0.6 8.4 ± 0.4 

27 
0.38 ± 0.04 

--- 
--- 

--- 
--- 0.24 --- --- 

27p --- --- 

28 
0.00 ± 0.07 

--- 
--- 

--- 
--- 0.16 --- --- 

28p --- --- 

29 
-0.36 ± 0.04 

--- 
--- 

--- 
--- 0.03 --- --- 

29p --- --- 

WW 

0.00 ± 0.07 
9.0 ± 0.7 

0.86 ± 0.07 
9.0 ± 1.1 

0.9 ± 0.1 0.02 0.78 1.07 
30p 7.7 ± 0.2 7.7 ± 0.3 

 

To help discern between these two mechanistic possibilities, we studied PEGylated 

proteins 14p, 16p, 17p, 18p, 19p, 23p, 26p, and 30p and their non-PEGylated counterparts using 

Observed data are given ± standard error at 100 µM protein concentration in 20 mM sodium phosphate buffer, 
pH 7 (except for protein 27, 27p, 28, 28p, 29, and 29p, which were characterized at 50 µM protein 
concentration).  Observed values of ∆∆Gfwere derived from variable temperature CD experiments; kf and ku 
were derived from temperature jump kinetic experiments.  Predicted values of ∆∆Gf, and kf and ku rations are 
from coarse-grained native topology simulations.  Both are given at the melting temperature of the corresponding 
non-PEGylated protein. 
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a coarse-grained native-topology-based (CG) model in which only the heavy atoms of the protein 

and the PEG conjugate are included. We have used similar models in the past to study the effect 

of glycosylation, ubiquitination, and myristoylation on protein folding.26-29 

 The CG model includes native interactions only within the protein, but may provide 

quantitative predictions regarding the impact of PEGylation on WW folding kinetics and 

thermodynamics. In this CG approach, the PEG is modeled as an excluded-volume polymer that 

is exposed to the solvent and cannot form favorable interactions with protein side-chain or 

backbone groups. Therefore, PEG-based changes to WW conformational stability in this model 

are assumed to come from changes in the free energy of (1) the unfolded state ensemble, which 

might not be as compact as the folded state and might therefore be more affected by an excluded 

volume PEG oligomer; or (2) the folded state due to unfavorable steric interactions between the 

PEG oligomer and the protein, which may prevent complete folding of the protein.  Both effects 

(i.e. (1) and (2)) are expected to depend on the position of the PEGylation site. 

The CG model captures the observed destabilization of 23p and 27p relative to 23 and 27, 

respectively (Table 2-3).  For the variants where PEGylation has no substantial observed impact 

on conformational stability (14p, 18p, 28p, 30p), the CG model simulations also predict a 

minimal effect, with the exception of position 14, where the CG model predicts strong 

destabilization. The small effect of PEG on stability for these variants is also reflected by the 

kinetic rates predicted from the CG simulations (Table 2-3). A more substantial disagreement 

between the CG model and experimental observations is seen at stabilizing positions 16, 19, 26, 

and 29.  The CG model predicts that PEGylation will strongly destabilize 16p and 26p relative to 

16 and WW, respectively, and have a minimal effect on 19p and 29p relative to 19 and 29, 

respectively.  In contrast, we observe strong stabilization at each of these positions and faster 
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folding rate.  The limited predictive ability of the coarse-grained native topology model suggest 

that PEG does not influence WW stability via a primarily excluded-volume mechanism. 

An alternative to this mechanistic hypothesis is that PEG-based increase to 

conformational stability comes from stabilization of the transition state and native state relative 

to the unfolded ensemble.  This scenario could potentially involve favorable PEG-protein 

interactions in the transition state and in the native state.  In the crystal structure of the parent 

WW domain, the side chain at position 19 appears to be oriented toward several nearby OH-

containing side-chains, including Ser16, Tyr23, and Ser32 (Figure 2-1).  We wondered whether 

interactions between PEG and nearby OH groups contribute to the observed PEG-based 

stabilization.  If so, the orientation of the side-chain at position 19 should also be an important 

factor. 

To test this hypothesis, we prepared proteins D-19 and D-19p, in which D-Asn or D-

AsnPEG4 occupy position 19, respectively (D-AsnPEG4 is the enantiomer of AsnPEG4 shown in 

Figure 2-1). Incorporating D-Asn or D-AsnPEG4 should invert the orientation of the side-chain at 

this position. Previous work by Kelly and coworkers indicates that WW can tolerate D-amino 

acids within this reverse turn without substantial disruption of secondary and tertiary structure.4 

The observed similarity of the CD spectra of D-19 and D-19p to those of their counterparts 19 

and 19p (see Figure 2-136) is consistent with this assertion, as are the nearly identical melting 

temperatures of 19 and D-19 (55.6 ± 0.3 °C and 55.4 ± 0.3 °C, respectively. Whereas PEGylation 

of Asn at position 19 increases WW conformational stability by -0.70 ± 0.04 kcal/mol, 

PEGylation of D-Asn at position 19 has no effect (ΔΔGf = 0.01 ± 0.04 kcal/mol), suggesting that 

side-chain orientation is an important feature of stabilizing PEGylation sites. 
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We recently probed the extent to which the Asn-linked PEG-oligomer at position 19 

engages in favorable interactions with nearby Ser16 and Tyr23 side-chains.30 For convenience, 

these previously reported data are also shown in Table 2-4.  Removing the OH group at position 

16 by replacing Ser with Ala reduces the stabilizing impact of PEGylation from -0.70 ± 0.04 kcal 

mol-1 (compare 19p vs. 19) to -0.51 ± 0.02 kcal mol-1 (compare 19p-16A vs. 19-16A in Table 2-

4).  Similarly, replacing Tyr23 with Phe reduces the stabilizing impact of PEGylation to -0.43 ± 

0.03 (compare 19p-23F vs. 19-23F in Table 2-4).  In contrast, we observed here that replacing 

Ser32 with Ala has no significant effect (compare 19p-32A vs. 19-32A in Table 2-4).  In 

principle, these results could be interpreted in terms of direct favorable interactions between PEG 

at position 19 and the OH groups at positions 16 and 23, but not at position 32, presumably 

because of its distance from position 19.  

However, direct PEG-OH interactions are absent from previously reported MD 

simulations of 19p,30 suggesting that such interactions are not a significant component of PEG-

based stabilization.  Instead, the simulations show the PEG oligomer at position 19 extending 

predominantly into the solvent, with a high degree of conformational entropy.  The flexible PEG 

oligomer also appears to increase the conformational entropy of amino acid residues within 19p 

relative to 19 (as measured by root-mean-square deviations of the simulated structures for 19p 

and 19 vs. the crystal structure of the parent WW protein), but without substantially disrupting 

the native-state interactions present in the reverse turns and β-strands of 19p.30 These simulations 

are consistent with our observations that PEG-based stabilization at position 19 is associated 

with an unfavorable increase in enthalpy, which is offset by a favorable increase in entropy 

(Table 2-1). Moreover, the simulations imply that the influence of nearby OH groups on PEG-
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based stabilization at position 19 must occur via an indirect mechanism rather than via direct 

PEG-OH contacts. 

We wondered whether OH groups near other “stabilizing” PEGylation sites might be 

similarly (though indirectly) important to the observed PEG-based stabilization.  To address this 

question, we identified one or more OH-containing side chains (Ser, Thr, or Tyr) near positions 

16, 26, 29, and 32, and replaced these residues individually with Ala or Phe.  The results of this 

analysis are shown in Table 2-4.  Replacing Tyr23 or at Ser32 with Phe or Ala, respectively, 

decreases the stabilizing impact of PEGylation at position 16 (Table 2-4; compare 16p-23F vs. 

16-23F; and 16p-32A vs. 16-32A). 

Similarly, replacing Thr29 with Ala decreases the stabilizing impact of PEGylation at 

position 26 (Table 2-4; compare 26p-29A vs. 26-29A).  In contrast, PEG-based stabilization 

actually increases at positions 29 and 32 upon removal of OH groups at Ser32 and Tyr23, 

respectively (Table 2-4; compare 29p-32A vs. 29-32A; 32p-23F vs. 32-23F).  Interpretation of 

these last two results is complicated by the strong destabilizing impact of the Ser32Ala and 

Tyr23Phe mutations in these variants.  In any case, these mutagenesis experiments are difficult to 

rationalize on the basis of direct favorable PEG-OH interactions and hint at a more indirect 

influence. 

In agreement with this conclusion, fully atomistic simulations of PEGylated proteins 16p, 

19p, 26p, and 29p provide no evidence for strong direct PEG-OH interactions.  Figure 2-3 shows 

the results of these simulations. For each variant, we calculated the average interaction energy 

between PEG and every residue within WW (Figure 2-3, large graphs), along with the total 

energy of PEG-protein interface during the simulation (Figure 2-3, insets). Snapshots from the 
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simulation of each variant are also shown in Figure 2-3, though these do not indicate the lifetime 

of individual interactions, which in some cases are relatively transient. 

Table 2-4. Effect of mutagenesis near selected PEGylation sites within WW. 

Protein Sequence Tm (°C) ∆Tm (°C) ∆∆Gf 
(kcal/mol) 

∆∆Hf 
(kcal/mol) 

-T∆∆Sf 
(kcal/mol) 

19 KLPPGWEKRMSRSNGRVYYFNHITNASQFERPSG 55.6 ± 0.2 
7.7 ± 0.4 -0.70 ± 0.04 3.6 ± 1.4 -4.3 ± 1.4 

19p KLPPGWEKRMSRSNGRVYYFNHITNASQFERPSG 63.3 ± 0.3 

D-19 KLPPGWEKRMSRSnGRVYYFNHITNASQFERPSG 55.4 ± 0.3  
-0.2 ± 0.4 0.01 ± 0.04 0.7 ± 0.5 -0.7 ± 0.5 

D-19p KLPPGWEKRMSRSnGRVYYFNHITNASQFERPSG 55.2 ± 0.3 

19-16A KLPPGWEKRMARSNGRVYYFNHITNASQFERPSG 51.0 ± 0.2 
5.8 ± 0.3 -0.51 ± 0.02 2.5 ± 0.5 -3.0 ± 0.5 

19p-16A KLPPGWEKRMARSNGRVYYFNHITNASQFERPSG 56.8 ± 0.1 

19-23F KLPPGWEKRMSRSNGRVFYFNHITNASQFERPSG 51.4 ± 0.4 
5.0 ± 0.5 -0.43 ± 0.03 1.8 ± 0.6 -2.2 ± 0.6 

19p-23F KLPPGWEKRMSRSNGRVFYFNHITNASQFERPSG 56.5 ± 0.1 

19-32A KLPPGWEKRMSRSNGRVYYFNHITNAAQFERPSG 54.5 ± 0.3 
8.4 ± 0.3 -0.71 ± 0.03 2.2 ± 0.4 -2.9 ± 0.4 

19p-32A KLPPGWEKRMSRSNGRVYYFNHITNAAQFERPSG 62.8 ± 0.1 

19-16A,23F KLPPGWEKRMARSNGRVFYFNHITNASQFERPSG 45.8 ± 1.0 
8.0 ± 1.1 -0.72 ± 0.08 -4.2 ± 1.5 3.5 ± 1.5 

19p-16A,23F KLPPGWEKRMARSNGAVFYFNHITNASQFERPSG 53.7 ± 0.3 

16 KLPPGWEKRMNRSSGRVYYFNHITNASQFERPSG 50.6 ± 0.2 
10.1 ± 0.3 -0.90 ± 0.04 3.8 ± 1.4 -4.7 ± 1.3 

16p KLPPGWEKRMNRSSGRVFYFNHITNASQFERPSG 60.7 ± 0.3 

16-Y23F KLPPGWEKRMNRSSGRVFYFNHITNASQFERPSG 50.9 ± 0.6 
5.5 ± 0.7 -0.45 ± 0.06 1.7 ± 1.5 -2.1 ± 1.5 

16p-Y23F KLPPGWEKRMNRSSGRVFYFNHITNASQFERPSG 56.4 ± 0.3 

16-S32A KLPPGWEKRMNRSSGRVYYFNHITNAAQFERPSG 55.0 ± 0.3 
6.6 ± 0.3 -0.58 ± 0.03 2.3 ± 0.5 -2.9 ± 0.5 

16p-S32A KLPPGWEKRMNRSSGRVYYFNHITNAAQFERPSG 61.6 ± 0.1 

WW KLPPGWEKRMSRSSGRVYYFNHITNASQFERPSG 58.0 ± 0.7 
6.6 ± 0.7 -0.58 ± 0.06 3.4 ± 0.9 -4.0 ± 0.9 

26p KLPPGWEKRMSRSSGRVYYFNHITNASQFERPSG 64.6 ± 0.2 

WW-T29A KLPPGWEKRMSRSSGRVYYFNHIANASQFERPSG 40.4 ± 0.7 
4.8 ± 0.8 -0.32 ± 0.06 4.0 ± 0.7 -4.4 ± 0.7 

26p-T29A KLPPGWEKRMSRSSGRVYYFNHIANASQFERPSG 45.2 ± 0.2 

29 KLPPGWEKRMSRSSGRVYYFNHINNASQFERPSG 50.0 ± 0.3 
4.1 ± 0.4 -0.36 ± 0.04 0.3 ± 0.5 -0.6 ± 0.5 

29p KLPPGWEKRMSRSSGRVYYFNHINNASQFERPSG 54.1 ± 0.3 

29-S32A KLPPGWEKRMSRSSGRVYYFNHINNAAQFERPSG 40.4 ± 0.5 
11.6 ± 0.8 -0.88 ± 0.06 -4.1 ± 1.7 3.3 ± 1.7 

29p-S32A KLPPGWEKRMSRSSGRVYYFNHINNAAQFERPSG 52.0 ± 0.7 

32 KLPPGWEKRMSRSSGRVYYFNHITNANQFERPSG 45.1 ± 0.2 
5.3 ± 0.3 -0.45 ± 0.02 -0.1 ± 0.6 -0.3 ± 0.6 

32p KLPPGWEKRMSRSSGRVYYFNHITNANQFERPSG 50.3 ± 0.2 

32-Y23F KLPPGWEKRMSRSSGRVFYFNHITNANQFERPSG 30.0 ± 1.3 
10.3 ± 1.5 -0.61 ± 0.11 7.7 ± 2.9 -8.3 ± 2.9 

32p-Y32F KLPPGWEKRMSRSSGRVFYFNHITNANQFERPSG 40.3 ± 0.7 

Data are given ± standard error at 100 µM protein concentration in 20 mM sodium phosphate buffer, pH at the 
melting temperature of the corresponding non-PEGylated protein.  N represents AsnPEG4.nand n represent D-Asn 
and D-AsnPEG4 respectively. Values of Tm, ∆∆Gf, ∆∆Hf,and –T∆∆Sf were derived from variable temperature CD 
experiments. 

 Simulation results for neutral positions 14, 17, 18, and 28 (Figure 2-3B) generally show 

weak PEG-protein interactions while simulations for stabilizing positions 16p, and 26p show a 
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strong PEG-protein interaction (Figure 2-3A). For 16p, the simulations suggest the presence of 

strong interactions between PEG and Arg17 and Arg21. Similarly, the PEG in 26p appears to 

interact strongly with Trp11 and Gln3. However, strong tight PEG-protein interfaces even occur 

in simulations of destabilized variants 23p and 27p (Figure 2-3C), suggesting that favorable 

PEG-protein interactions are not sufficient for increasing the overall conformational stability of 

WW. Moreover, simulations of 19p and 29p show that PEG-based stabilization can occur even in 

the absence of strong PEG-protein interactions (Figure 2-3A), indicating that direct PEG-OH 

interactions are not responsible for the observed impact of OH groups on PEG-based 

stabilization.  Other factors, including the conformational entropy of PEG as well the solvation 

of WW surface residues must also make important contributions.  

However, the ability of a highly flexible PEG to stabilize some WW variants even in the 

absence of strong PEG-protein interactions, together with the observed impact of nearby OH 

groups described above suggest the possibility that changes in WW solvation may also play a 

role in PEG-based stabilization.  One possibility is that differential solvation of these nearby OH 

groups in the presence or absence of PEG affects protein conformational stability. 

We investigated this possibility in the simulations of 16p and 26p by analyzing the 

organization of water near residues that interact strongly with PEG. Figure 2-4 show plots of the 

radial distribution function of water about Tyr23 or Phe34 in 16p vs. 16 and about Trp11 or 

Thr29 in 26p vs. 26. These radial distribution function plots show the density of water molecules 

as a function of the distance from the indicated residues in 16p and 26p vs. 16 and WW, 

respectively. For proteins 16p vs. 16, PEGylation results in lower water density (and therefore  
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A. Stabilizing Positions (Observed ∆∆G below -0.3 kcal/mol) 

 

 

B. Neutral Positions  (Observed ∆∆G between +0.1 and -0.3  kcal/mol) 

C. Destabilizing Positions (Observed ∆∆G > +0.3  kcal/mol) 

Figure 2-3.  Results of atomistic simulations of WW variants PEGylated at (A) stabilizing, (B) neutral, and (C) 
destabilizing positions. Plots show the average interaction energy between PEG at a given position and every 
other residue within WW. Insets show histograms of these interactions. A snapshots from each simulation of each 
variant (green) is overlaid with the crystal structure of the unmodified protein WW (grey).  AsnPEG4 is 
highlighted in red.  Side chains that appear to engage in interactions with the PEG are shown as green sticks. In 
some cases, the PEG-protein interactions are relatively transient; therefore snapshots are not always 
representative of the entire simulation. 
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higher water disorder) around Tyr23 and Phe34. Interestingly, this change in water molecule 

organization is long-range and can extend out to 10 Å from the protein, indicating that PEG not 

only affects the first hydration shell but also more distant shells. We observe similar effects in the 

water around Trp11 and Thr29 in proteins 26p vs. WW. The insets in each panel of Figure 2-4 

show histograms of the number of water molecules observed in the simulations at a distance < 3 

Å from the indicated side chain (i.e., the first hydration shell). In 26p, PEG results in a decrease 

in the number of water molecules (i.e. dehydration) in the first solvation shell around Trp11.  A 

smaller amount of dehydration occurs about Phe34 in 16p. 

 

Figure 2-4.  Simulated radial distribution function of water about Tyr23 or Phe34 acids in 16 vs. 
16p (top panel) or about Trp11 or Thr29 in WW vs. 26p (bottom panel).  Insets show 
histograms of the number of water molecules at a distance of < 3 Å from the indicated side 
chains (i.e. the first hydration shell). 
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We would expect this PEG-based dehydration (i.e. release of water from the protein 

surface to bulk solvent) to be entropically favorable, offset by a smaller increase in enthalpy due 

to the loss of protein-water hydrogen bonds, an expectation consistent with our earlier 

observations that PEG-based stabilization is entropic in origin (Table 2-1, compare 19p vs 19: 

∆∆Hf = 3.6 ± 1.4 kcal mol-1; -T∆∆Sf = -4.3 ± 1.4 kcal mol-1). We speculate that this dehydration 

effect is more pronounced near water-binding OH groups and is the origin of the observed 

impact of OH groups on the PEG-based stabilization of WW. 

We explored this possibility experimentally by assessing the impact of increasing 

amounts of heavy water (D2O) on the conformational stability of 19p vs. 19.  The results of this 

analysis are shown in Figure 2-5A.  Non-PEGylated 19 is -0.47 ± 0.05 kcal mol-1 more stable in 

buffer containing 98% D2O than in buffer containing no D2O. In contrast, a similar increase in 

D2O only increases the stability of 19p by -0.25 ± 0.04 kcal mol-1.  

 

 

Figure 2-5. The change in (A) conformational stability (∆Gf) or (B) heat capacity (∆Cp) 
associated with folding of 19 (black solid line) or 19p (red dashed line) in the presence of 
increasing amounts of D2O in 20 mM phosphate (pH 7) at 25 °C and at a concentration of 100 
µM. 
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Previous studies indicate that D2O decreases the internal flexibility and increases the 

conformational stability of proteins, and suggests that the origin of this effect is in the increased 

strength of the non-covalent O–D···X interaction (i.e., a deuterium bond) relative to the non-

covalent O–H···X interaction (i.e., a hydrogen bond).31  This difference in strength provides an 

energetic incentive for the oxygen atoms within D2O to engage in more solvent-solvent 

deuterium bonds and fewer solvent-protein hydrogen bonds. This effect increases the 

compactness of the folded protein and makes unfolding less favorable. We hypothesize that 

increasing D2O concentration to 98% stabilizes non-PEGylated 19 more profoundly than 

PEGylated 19p because 19p is less solvated than 19, with fewer solvent-protein hydrogen bonds 

to replace with stronger solvent-solvent deuterium bonds. 

Increasing the D2O concentration also affects the heat capacity change due to folding 

(∆Cp) for 19 and 19p (Figure 2-5B).  For 19, ∆Cp increases from -0.66 ± 0.07 kcal mol-1 K-1 (no 

D2O) to 0.01 ± 0.12 kcal mol-1 K-1 (98% D2O).  In contrast, the ∆Cp for 19p (-0.74 ± 0.05 kcal 

mol-1 K-1 in H2O) is not substantially affected by increasing amounts of D2O.  In the context of 

protein folding, negative values of ∆Cp are associated with folding processes that decrease the 

amount of solvent-accessible surface area by burying non-polar side chains (or, alternatively, 

with unfolding processes that increase solvent-accessible surface area by exposing non-polar side 

chains to solvent).32We hypothesize that increasing D2O concentration makes ∆Cp of 19 less 

negative because the unfolded conformation of 19 in D2O is more compact, with less exposed 

non-polar surface area than the unfolded conformation of 19 in H2O (i.e., the stronger network 

deuterium bonds in D2O more effectively constrains the unfolded conformation of 19 than does 

the weaker network hydrogen bonds in H2O). In contrast, we hypothesize that the ∆Cp of 19p is 
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independent of D2O concentration because PEG disrupts the strong network of deuterium bonds 

surrounding the protein, thereby attenuating the penalty for unfolding in D2O. 

2.2.4 PEGylation at Two Stabilizing Sites 

We next wondered whether simultaneously PEGylating two of the identified “stabilizing” 

positions would result in more substantial increases to WW conformational stability.  To address 

this question, we prepared PEGylated proteins 16p/26p, 19p/26p, 26p/29p, and 16p/19p and 

their mono- and non-PEGylated counterparts (16/26p, 16p, and 16; 19/26p, 19p, and 19;16/19p, 

16p/19, and 16/19; and 26p/29, 29p, and 29, respectively, see Table 2-5), in which Asn or 

AsnPEG4 has been incorporated at each of two stabilizing positions as indicated.  We assessed 

the conformational stability of these variants using variable temperature CD experiments; results 

are shown in Table 2-5. 

Doubly PEGylated compound 19p/26p is -1.26 ± 0.03 kcal mol-1 more stable than its 

non-PEGylated counterpart 19, a larger increment than we observed above for mono-PEGylation 

at position 19 or at position 26.  We used double mutant cycle analysis to determine whether the 

PEG oligomers at positions 19 and 26 stabilize 19p/26p independently or whether they interact 

with each other (either favorably or unfavorably).  When Asn occupies position 19, PEGylation 

at position 26 stabilizes WW by -0.59 ± 0.02 (compare 19/26p with 19).  When AsnPEG4 

occupies position 19, PEGylation at position 26 stabilizes WW by -0.55 ± 0.04 (compare 

19p/26p with 19p), a nearly identical amount.  These results suggest that the PEG oligomers at 

these positions do not interfere with each other and contribute independently and additively to 

the overall stabilization of 19p/26p relative to 19. 
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Table 2-5. Simultaneous PEGylation with the Four-unit Oligomer at Two Positions within WW. 

Protein Tm (°C) ∆Tm (°C) ∆Gf 
(kcal/mol) 

∆∆Gf 
(kcal/mol) 

∆Hf 
(kcal/mol) 

∆∆Hf 
(kcal/mol) 

–T∆Sf 
(kcal/mol) 

–T∆∆Sf 
(kcal/mol) 

16 50.6 ± 0.2 
12.1 ± 0.3 

0.00 ± 0.02 
-1.02 ± 0.03 

-30.2 ± 0.8 
4.6 ± 1.2 

30.5 ± 0.8 
-5.6 ± 1.2 

16/26p 62.6 ± 0.3 -1.02 ± 0.02 -25.9 ± 0.8 24.9 ± 0.8 

16p 60.7 ± 0.3 
6.6 ± 0.3 

-0.90 ± 0.03 
-0.49 ± 0.03 

-26.6 ± 1.1 
4.3 ± 1.1 

25.8 ± 1.1 
-4.8 ± 1.1 

16p/26p 67.3 ± 0.1 -1.38 ± 0.01 -22.3 ± 0.3 20.9 ± 0.3 

19 55.6 ± 0.2 
6.8 ± 0.2 

0.00 ± 0.02 
-0.59 ± 0.02 

-31.4 ± 0.6 
4.4 ± 0.7 

31.4 ± 0.6 
-5.0 ± 0.7 

19/26p 62.4 ± 0.1 -0.59 ± 0.02 -26.9 ± 0.4 26.3 ± 0.4 

19p 63.3 ± 0.3 
6.4 ± 0.3 

-0.70 ± 0.04 
-0.55 ± 0.04 

-27.8 ± 1.2 
2.5 ± 1.3 

27.1 ± 1.2 
-3.0 ± 1.3 

19p/26p 69.8 ± 0.1 -1.26 ± 0.02 -25.3 ± 0.4 24.0 ± 0.4 

16/19 56.9 ± 0.1 
5.4 ± 0.2 

0.00 ± 0.01 
-0.49 ± 0.02 

-30.2 ± 0.3 
1.4 ± 0.5 

30.2 ± 0.3 
-1.9 ± 0.5 

16/19p 62.4 ± 0.1 -0.49 ± 0.01 -28.8 ± 0.4 28.3 ± 0.4 

16p/19 63.2 ± 0.1 
2.2 ± 0.1 

-0.63 ± 0.01 
-0.17 ± 0.02 

-31.6 ± 0.5 
2.6 ± 0.6 

30.9 ± 0.4 
-2.7 ± 0.6 

16p/19p 65.4 ± 0.1 -0.80 ± 0.01 -29.0 ± 0.4 28.2 ± 0.4 

29 50.0 ± 0.3 
7.1 ± 0.4 

0.00 ± 0.03 
-0.60 ± 0.04 

-28.1 ± 0.4 
1.3 ± 0.6 

28.1 ± 0.4 
-1.9 ± 0.6 

26p/29 57.1 ± 0.2 -0.60 ± 0.02 -26.8 ± 0.5 26.2 ± 0.5 

29p 54.1 ± 0.3 
2.6 ± 0.4 

-0.36 ± 0.02 
-0.20 ± 0.03 

-27.8 ± 0.4 
1.7 ± 0.6 

27.5 ± 0.4 
-1.9 ± 0.6 

26p/29p 56.8 ± 0.3 -0.56 ± 002 -26.1 ± 0.5 25.6 ± 0.5 

         

 

In the other doubly PEGylated variants shown in Table 2-5, the PEG oligomers appear to 

interfere with each other unfavorably such that full additive stabilization is not observed.  For 

example, mono-PEGylated 16p/19 and 16/19p are -0.63 ± 0.02 and -0.49 ± 0.02 kcal mol-1 more 

stable, respectively, than their non-PEGylated counterpart 16/19.  If the PEG oligomers at these 

positions contributed independently to WW stability in doubly PEGylated 16p/19p, we would 

expect 16p/19p to be -1.13 ± 0.02 kcal/mol more stable than non-PEGylated 16/19.  In contrast, 

we observe that 16p/19p is only -0.80 ± 0.02 kcal mol-1 more stable than 16/19, indicating that 

the PEG oligomers at positions 16 and 19 interfere unfavorably with each other in 16p/19p.  We 

observe analogous results for 29, 26p/29, 29p, and 26p/29p. 

Tabulated data are given ± standard error at 100 µM protein concentration in 20 mM sodium phosphate buffer, 
pH 7. Values of ∆∆Gfwere derived from variable temperature CD experiments and are given at the melting 
temperature of the corresponding non-PEGylated protein (i.e. 16, 19, 16/19, 23, and 29, respectively). 
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In both of these situations, the doubly PEGylated compounds contain two PEG oligomers 

within a single reverse turn.  It is possible that the oligomers interfere sterically with each other 

in such close proximity.  Alternatively, it is possible that PEG oligomers at these two 

neighboring positions tend to interact with the same partners on the WW surface such that when 

two oligomers are present, full additive stabilization is not possible. 

More difficult to understand is the unfavorable interference between PEG oligomers at 

positions 16 and 26 in doubly PEGylated 16p/26p.  Positions 16 and 26 are not close to each 

other in primary sequence, are more than 15 Å apart in the WW structure, and actually occupy 

opposite faces of WW.  The unfavorable interference between PEG oligomers at positions 16 

and 26 must not involve direct contact between the PEG oligomers or even competing 

interactions with the same side-chains, but might involve more subtle effects.   

Fully atomistic simulations of doubly PEGylated compounds 16p/19p and 19p/26p 

provide support for our hypothesis that PEG oligomers in close proximity can interfere with each 

other. For example, in 16p/19p, the PEG oligomers at positions 16 and 19 are unable to engage 

in the same PEG-protein interactions that were available to them in mono-PEGylated 16p and 

19p (i.e. with Arg21), respectively, presumably because of steric interference (Figure 2-6A).  In 

contrast, the PEG-protein interactions at positions 19 and 26 in 19p/26p are the same that were 

available in mono-PEGylated 19p and 26p, respectively, suggesting that distance can prevent 

PEG oligomers from interfering with each other (Figure 2-6B).   

 However, PEG-based changes to the network of hydrogen-bound solvent molecules 

around might also be able to explain the non-additive interference observed between the PEG 

oligomers in 16p/19p. It is possible that the PEG oligomers at 16 and 19 perturb this network of 
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solvent molecules in the same general area such that introducing a second nearby PEG doesn’t 

have a large additional impact.  

 

 

Figure 2-6. Comparison between the PEG-protein interactions in (A) doubly PEGylated 16p/19p vs. mono-
PEGylated 16p and 19p and in (B) doubly PEGylated 19p/26p vs. mono-PEGylated 19p and 26p.  Graphs show the 
average PEG-protein interaction energy between AsnPEG4 at the indicated positions and every other residue within 
WW.  Results from mono-PEGylated variants are shown in black, whereas results from doubly PEGylated variants 
are shown in red.  Also shown are snapshot from the simulations of the doubly PEGylated variants (green), overlaid 
with the crystal structure of the unmodified WW (grey).  In each snapshot, AsnPEG4 is highlighted in orange at 
position 19 and in red at positions 16 or 26.  Side chains that appear to engage in interactions with PEG in each 
snapshot are shown as green sticks. 
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This is consistent with what we observe in the double mutant cycle for 16/19, 16/19p, 

16p/19, and 16p/19p, as described above:  the second introduced PEG has a smaller impact on 

WW conformational stability than the first. In contrast, when the attached PEGs are sufficiently 

far apart, the first and second PEGs impact WW conformational stability independently and 

additively. 

2.2.5 Structure-Based Selection of Stabilizing PEGylation Sites 

Based on these mechanistic insights, we wondered whether (1) side chain orientation and 

(2) the presence of nearby OH groups could be used as structure-based criteria to identify 

positions most likely to experience substantial entropic PEG-based stabilization.  To this end, we 

analyzed each of the PEGylation sites discussed above in x-ray crystal structure of the parent 

WW domain from which 16p, 17p, 18p, 19p, 26p, 27p, 28p, 29p, 30p, 32p and their non-

PEGylated counterparts were derived.  We limited this analysis to these variants because their 

CD spectra indicate close structural similarity to the parent WW domain. 

At each PEGylation site, we defined vectors a and b (Figure 2-7): vector a begins with the 

backbone alpha carbon and ends at the side-chain center-of-mass (determined by averaging the 

x,y,z coordinates of each side-chain atom); vector b begins with the side-chain center-of-mass 

and ends at side-chain oxygen atom of the nearest Ser, Thr, or Tyr residue. We then measured the 

angle θ between vectors a and b at each position using the following relationship:  cos θ = a·b / 

(|a|·|b|).  Small values of θ indicate that a side chain is oriented toward the nearest Ser, Thr, Tyr 

residue, whereas large values of θ indicate orientation away from the nearest Ser, Thr, or Tyr 

residue. Values of θ for all the positions investigated are shown in Table 2-6. 
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Table 2-6. The angle θ at various PEGylation sites within WW 

PEGylation 
Site 

Native 
residue 

∆∆Gf 
(kcal/mol) θ (°)  

16 Ser -0.90 ± 0.03 95 
17 Arg -0.18 ± 0.05 121 
18 Ser 0.00 ± 0.07 145 
19 Ser -0.70 ± 0.04 31 
26 Asn -0.58 ± 0.06 83 
27 His 0.38 ± 0.04 155 
28 Ile 0.00 ± 0.07 128 
29 Thr -0.36 ± 0.04 98 
30 Asn 0.00 ± 0.07 150 
32 Ser -0.45 ± 0.02 47 

 

 

Figure 2-6. The angle θ between vectors a and b at positions (A) 16, (B) 19, (C) 26, (D) 29, and (E) 32.  Alpha 
carbons (C), side-chain centers-of-mass (COM), and oxygens of nearest OH-containing side-chain are highlighted 
with blue-, orange-, and purple-filled circles, respectively. 

 

∆∆Gf values associated with PEGylation at each position are from table 2-1. 
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Next, we examined the relationship between the angle θ and the PEG-based stabilization 

(∆∆Gf) of 16p, 17p, 18p, 19p, 26p, 27p, 28p, 29p, 30p, and 32p, relative to their non-PEGylated 

counterparts. Figure 2-8 indicates that PEGylation tends to be most stabilizing at positions with 

smaller values of θ (i.e. at positions that are oriented toward nearby Ser, Thr, or Tyr side chains).  

Most importantly, had we used the correlation line shown in Figure 2-8 prospectively, we would 

have correctly predicted that PEGylation at positions 16, 19, 26, 29 and 32 would result in 

substantial (< -0.30 kcal mol-1) increases to conformational stability. 

 

 

We tested the utility of the angle θ as a predictor of PEG-based stabilization within other 

proteins by calculating θ for each residue within the chicken Src SH3 domain (hereafter called 

SH3, Figure 2-9A).33 Thr20 and Thr22 are within the same loop near the N-terminus of SH3 and 

Figure 2-7. Relationship between the angle θ and PEG-based stabilization at a given site (∆∆Gf) 
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are only 3.7 Å apart from each other.  More importantly, Thr20 is oriented toward Thr22, with θ 

= 77 °C (Figure 2-9A).  The correlation observed between θ and PEG-based stabilization in the 

context of WW (Figure 2-8) led us to predict that PEGylation of an Asn residue at position 20 of 

SH3 would enhance conformational stability. To test this hypothesis, we used solid-phase peptide 

synthesis to prepare SH3 T20N and SH3 T20NPEG, in which Thr20 has been replaced by Asn 

or by Asn(PEG)4, respectively. We assessed the conformational stability of these variants using 

variable temperature CD experiments, run in triplicate for each variant (Figure 2-9B). 

Data from these experiments are readily fit to equations derived from a two-state folding-

unfolding model.  The melting temperature Tm of SH3 T20NPEG (74.0 ± 0.8 °C) is 13.0 ± 0.9 

°C higher than that of non-PEGylated SH3 T20N (Tm = 61.1 ± 0.3 °C), corresponding to an 

increase in stability of -1.2 ± 0.1 kcal mol-1 at 61.1 °C. Atomistic simulations suggest that 

PEGylation of SH3 T20NPEG is associated with lower water density (and higher water 

disorder) around nearby polar side chains, including Thr22, suggesting a similar origin for PEG-

based stabilization in SH334 and in WW (see Figure 2-10). It is remarkable that a four-unit PEG 

oligomer can have such a large effect on the stability of the 56-residue SH3 domain. This 

substantial increase in SH3 conformational stability is consistent, suggesting that the angle θ (i.e. 

the orientation of a side-chain with respect to nearby OH groups) is a reasonable predictor of 

PEG-based stabilization in β-sheet- and reverse-turn-containing proteins. 
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Figure 2-8. (A) Ribbon diagram of chicken Src SH3 (PDB ID: 1SRL), with Thr20 highlighted in green.  Inset shows 
the angle θ between vectors a and b at position 20.  Alpha carbons (Cα), side-chain centers-of-mass (COM), and 
oxygens of nearest OH-containing side-chain are highlighted with blue-, orange-, and purple-filled circles, 
respectively. (B) Variable temperature CD data for SH3 T20N and SH3 T20NPEG at 50 µM in 20 mM sodium 
phosphate buffer, pH 7, run in triplicate for each variant. 
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We wondered whether the PEG-based stabilization observed at selected positions in WW 

would be associated with enhanced protection from proteolytic degradation.  To address this 

question, we assessed the resistance of the WW variants described above to degradation by 

pronase and by proteinase K.35 We previously showed that PEGylation at stabilizing position 19 

protected WW from proteolysis.25 Recall that PEGylation at position 19 is stabilizing (∆∆Gf =  -

0.70 ± 0.04 kcal mol-1. The half-life of PEGylated 19p in pronase is 3.6 ± 0.3 times longer than 

that of non-PEGylated 19; we observed a similar effect in proteinase K (Table 2-7).  At neutral 

position 18 (where PEGylation does not change conformational stability), the same four-unit 

PEG oligomer provides much less protection against proteolysis: the half-lives of 18p in pronase 

and in proteinase K are only1.23 ± 0.06 and 1.7 ± 0.3 longer, respectively, than those of non-

PEGylated 18 (Table 2-7). 

Proteolysis experiments with the other PEGylated WW variants and their non-PEGylated 

counterparts described above follow a similar trend (see Table 2-7), with increased resistance to 

Figure 2-9.  (A) Results of atomistic simulations of SH3 T20NPEG.  The plot shows the average interaction energy 
between PEG at a given position and every other residue within SH3 T20N. Inset shows histograms of these 
interactions. A snapshot from the simulation of SH3 T20NPEG (green) is overlaid with the crystal structure of the 
unmodified protein SH3.  AsnPEG4 is highlighted in red.  Side chains that appear to engage in interactions with the 
PEG are shown as green sticks. In some cases, the PEG-protein interactions are relatively transient; therefore 
snapshots are not always representative of the entire simulation. (B) Simulated radial distribution function of water 
about the indicated nearby polar side chains in SH3 T20N vs. SH3 T20NPEG.  Insets show histograms of the 
number of water molecules at a distance of < 3 Å from the indicated side chains (i.e. the first hydration shell). 
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proteolysis observed in cases where PEG is most strongly stabilizing.  For example, the half-

lives of doubly PEGylated 19p/26p in pronase and in proteinase K are 5.9 ± 0.9 and 6.9 ± 1.9 

times longer, respectively, than those of non-PEGylated 19/26.  This trend is illustrated in Figure 

2-11, which shows the ratio of the half-lives of each matched pair of PEGylated vs. non-

PEGylated WW variants plotted against the conformational stability of each PEGylated variant 

relative to its non-PEGylated counterpart.  The plot suggests that beyond a certain basal level, the 

proteolytic protection imparted by the four-unit oligomer is substantially enhanced at positions 

where PEG also increases WW conformational stability.   

Table 2-7. Impact of PEGylation with PEG4 at various sites on resistance of WW variants to proteolysis 

Site ∆∆Gf (kcal/mol) Pronase  t1/2 
ratio Proteinase K t1/2 ratio 

16 -0.90 ± 0.03 2.0 ± 0.2 2.3 ± 0.3 
17 -0.18 ± 0.05 1.19 ± 0.07 --- 
18 0.00 ± 0.07 1.23 ± 0.06 1.7 ± 0.3 
19 -0.70 ± 0.04 3.6 ± 0.3 3.4 ± 0.4 
26 -0.58 ± 0.06 1.7 ± 0.2 2.7 ± 0.3 
27 0.38 ± 0.04 0.86 ± 0.05 0.9 ± 0.1 
28 0.00 ± 0.07 1.1 ± 0.1 1.0 ± 0.1 
29 -0.36 ± 0.04 1.7 ± 0.2 2.0 ± 0.3 

16/26 -1.38 ± 0.01 2.3 ± 0.2 4.1 ± 0.5 
19/26 -1.26 ± 0.02 5.9 ± 0.9 6.9 ± 1.9 
16/19 -0.80 ± 0.01 3.1 ± 0.3 --- 
26/29 -0.56 ± 0.02 3.2 ± 0.4 --- 

 

These data provide support for our hypothesis that globally optimal PEGylation sites are 

characterized by the ability of the PEG oligomer to increase protein conformational stability. 

Tabulated data are given ± standard error. Values of ΔΔGf are presented as given in table 2-1.  The t1/2 ratio for a 
given site in pronase or proteinase K is the ratio of the half-life of the PEGylated WW variant to the half-life of 
the corresponding non-PEGylated WW variant in the indicated protease.  Proteolysis experiments were 
performed at 50 µM protein concentration in 20 mM sodium phosphate, pH 7. 
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However, one could argue that this observed dependence of proteolytic resistance on 

PEG-based conformational stabilization (Table 2-7, Figure 2-11) is a result of local effects that 

are important for four-unit PEGs, but which are insignificant for longer PEGs.  Indeed, one 

might expect steric hindrance to be the dominant contributor to the proteolytic resistance 

associated with longer PEGs, independent of conformational stabilization. To test this 

hypothesis, we assessed the ability of a 45-unit PEG to protect WW variants 16p45, 19p45, 

26p45, 28p45, and 29p45 from proteolysis.  This 45-unit PEG is clearly much shorter than the 

20–40 kDa PEGs typically found in PEGylated protein drugs. However, WW is a small protein 

(~4 kDa); the 45-unit PEG (~2 kDa) comprises ~33% of the total masses of these PEGylated 

WW variants, a PEG/protein composition approaching that of many PEGylated protein drugs 

(Pegfilgrastim, for example, is 50% PEG: a ~20 kDa PEG attached to a ~20 kDa protein). 

If steric hindrance were the only significant contributor to the proteolytic resistance 

associated with longer PEGs, one would expect PEG-based changes in protein conformational 

stabilization to matter less and less with increasing PEG/protein ratios.  For example, one would 

expect proteolytic resistance in the 33:67 PEG/protein conjugates (e.g., the 45-unit PEG WW 

variants) to be less dependent on conformational stability than in the 5:95 PEG/protein 

conjugates (e.g., the 4-unit PEG WW variants). Instead, we find that a PEG/protein ratio of 

33:67, PEG-based increases to proteolytic resistance remain strongly correlated with the impact 

of the 45-unit PEG on conformational stability. At “stabilizing” positions 16, 19, 26, and 29, the 

increases in conformational stability associated with the 45-unit PEG oligomer are accompanied 

by 2.3-, 5.6-, 2.8-, and 2.8-fold increases in half-life, respectively, in the presence of pronase (see 

Table 2-8 ).  However, at “destabilizing” position 28 (∆∆Gf = 0.36 ± 0.05 kcal mol-1), the 45-unit 
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PEG oligomer has no substantial impact on proteolytic stability.  These observations are 

not consistent with the hypothesis that steric hindrance is the only significant factor contributing 

to PEG-based proteolytic resistance, and suggest that PEG-based changes to conformational 

stability also play an important role for PEG/protein conjugates approaching the compositions 

typical of PEGylated protein drugs. 

 

 

 

 

 

 

Figure 2-10. Plot of PEG-based proteolytic stability (expressed as the ratio of half-life of a given PEGylated WW 
variant to the half-life of its sequence-matched non-PEGylated counterpart) in the presence of pronase (blue circles) 
or proteinase K (orange squares) vs. PEG-based conformational stability (∆∆Gf). 
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Table 2-8. Impact of PEGylation with PEG45 at various sites on resistance of WW variants to proteolysis 

Proteins ∆∆Gf (kcal/mol) Pronase  t1/2 ratio 

16p45 vs. 16 -0.39 ± 0.03 2.3 ± 0.5 

19p45 vs. 19 -0.67 ± 0.05 5.6 ± 1.2 

26p45 vs. WW -0.27 ± 0.06 2.8 ± 0.5 

28p45 vs. 28 0.36 ± 0.05 1.1 ± 0.3 

29p45 vs. 29 -0.59 ± 0.08 2.8 ± 0.5 

 

2.3 Conclusion 

Advances in protein chemistry now allow site-specific PEGylation of any arbitrary 

position on the protein surface. Why pursue predictive tools for identifying optimal PEGylation 

sites when one can simply scan a PEGylated side chain through a list of potential sites and pick 

the one(s) that provide the best balance between enhanced pharmacokinetic properties and 

biological function?36,37 Such a trial-and-error approach is unsatisfying from a scientific point of 

view; is both time- and resource-intensive (site-specific side-chain modification is much more 

challenging to carry out than alanine-scanning mutagenesis, for example) and may therefore be 

limited by practical considerations to a subset of potential surface sites; and must be repeated for 

each new protein of interest.  In contrast, rational structure-based guidelines for identifying 

optimal PEGylation sites have the potential to circumvent this time-consuming step in 

PEGylated protein drug development. 

We have developed a structure-based method for predicting which sites within the WW 

domain are most likely to experience PEG-based stabilization, and have shown that PEG-based 

stabilization is associated with enhanced resistance to proteolysis. We developed this method 

Tabulated data given ± standard error. Values of ∆∆Gf are presented in table 2-2. The t1/2 ratio for a given site in 
pronase is the ratio of the half-life of the PEGylated WW variant to the half –life of the corresponding non-
PEGylated WW variant. Proteolysis experiments were performed at 50 µM protein concentration in 20 mM 
sodium phosphate, pH 7.  
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based on mutagenesis experiments, which showed that side-chain orientation and the presence of 

nearby OH groups can modulate PEG-based stabilization at a given site. MD simulations suggest 

that stabilization cannot always be explained by favorable PEG-protein interactions because the 

formation of a tight PEG-protein interface is coupled by an entropic loss in many cases. While 

direct PEG-OH interactions cannot explain the increased thermodynamic stability, it is likely that 

nearby OH groups may instead exert a more indirect influence, involving the network of 

hydrogen-bound solvent molecules surrounding the protein. The simulations indicate that PEG 

can increase the disorder of water molecules around nearby residues. Solvent isotope 

experiments are consistent with this possibility, as are our observations that PEG-based 

stabilization is entropic in origin, with beneficial increases in entropy compensating for 

unfavorable increases in enthalpy. 

We find that 45-and four-unit PEGs have a similar impact on WW conformational and 

proteolytic stability, suggesting that the structure-based model developed using the four-unit 

PEG will apply in the context of the larger oligomers typically used in therapeutically relevant 

proteins. Most importantly, we have also shown that our structure-based method can correctly 

predict a location within the Src SH3 domain (another β-sheet protein) where PEGylation 

enhances conformational stability.  

2.4 Supporting Information 

2.4.1 Atomistic Simulations of PEGylated WW variants 

To study the effect of PEGylation on the folded state of WW Prof. Yaakov Levy’s lab 

used all-atom modeling. Using Coot7 software,38 we built the models of the modified version of 

WW with Asn or AsnPEG4 at the various positions (14, 16, 17, 18, 19, 23, 26, 27, 28, 29, 30). 
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We also built the models of the variant with Asn or Asn-PEG at the position 19 with the 

additional mutations (16F, 21T, both of them); the impact of PEGylation on these variants was 

assessed previously by variable temperature circular dichroism experiments.24 For all these 

variants, simulations reveal a change in solvation of the residues in sites 17 and 23 is observed, 

which is consistent with the observed PEG-based stabilization. 

To build models for the Asn-linked PEG, we constructed a model AsnPEG4 amino acid, 

which was blocked with an acetyl group on the main-chain amino group, and an amide on the 

main chain carbonyl group.  Using Gaussian 09 Rev. B.0139 at the Hartree-Fock level of theory 

and the 6-13G(d) basis set,40-48 we derived the Mulliken partial charges49 for this system.  The 

programs antechamber, parmchck, and tleap50 followed by acpype51 were used to prepare 

GROMACS-format force field files based on the AMBER99SB-ILDN force field. These 

parameters were then incorporated into the AMBER99SB-ILDN files. 

The molecular dynamics (MD) simulations were performed using GROMACS Version 

4.5.4.52 We used the modified AMBER99SB-ILDN force field53 with the incorporated Asn-PEG 

residue.  The various WW variants were solvated in a box with periodic boundary conditions 

containing pre-equilibrated SPC/E54 water molecules. The size of the box was selected to assure 

distance of at least 1 nm between the solute and the box walls. The average sizes of the box for 

the non-PEGylated and PEGylated variants are 5x5x5 and 6x6x6 nm3, respectively (with 

~14,000 and 17,000 water molecules, respectively, in the box). Sodium and chloride ions were 

added to maintain overall system neutrality. The LINCS algorithm55 was used to control bonds 

during the simulation.  Leapfrog algorithm was employed with step of 2 fs. All the simulations 

were performed at constant pressure (1 atm) and temperature (300 K); the latter was controlled 

using a modified scheme of Berendsen thermostat.56 
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Before the runs, the proteins were relaxed using steepest descent method of energy 

minimization.  The minimization was folled by the equilibration of the system in two phases.  

The first phase was conducted under an NVT ensemble; second under NPT enxemble (100 ps 

each phase).  For all modified WW variants as well as for unmodified WW variants we 

performed 3 simulations for 100 ns each.  The radial distribution analysis for water molecules 

was calculated as the probability to find the water oxygen atom next to specific atoms (Oγ for 

Ser, Nε for Arg, OH for Tyr, Oγ1 for Thr, and Cz for Phe). 

For each variant, we calculated the average interaction energy between PEG and every 

residue within WW (Figure 2-3, large graphs).  We also calculated the total energy of the PEG-

protein interface during the simulation.  The insets in Figure 2-3 show the histogram of this 

interface for each variant, providing insight into the strength and diversity of the observed PEG-

protein interactions. For example, at a given PEGylation site, a histogram with sharp peak near 0 

kcal mol-1 indicates that the PEG oligomer at this position is mostly solvent-exposed and does 

not engage extensively in PEG-protein interactions.  In contrast, a histogram with lower energies 

suggests a more stable, more extended PEG-protein interaction interface. The width of the 

histogram suggests a diverse interface, namely, low specificity. Snapshots from the simulation of 

each variant are also shown in Figure 2-3, though these do not indicate the lifetime of specific 

interactions, which in some cases are relatively transient.  

2.4.2 WW variant Synthesis 

Proteins14, 14p, 16, 16p,16-Y23F, 16p-Y23F, 16-32A, 16p-32A,17, 17p, 18, 18p, 19, 

19p,D-19,D-19p, 19-32A, 19p-32A, 23, 23p,WW, 26p,WW-T29A, 26p-T29A,27, 27p, 28, 28p, 

29, 29p,29-S32A, 29p-S32A,30p, 32, 32p,32-Y23F, 32p-Y23F,16/26p, 16p/26p, 19/26p, 
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19p/26p, 16/19, 16/19p, 16p/19, 16p/19p, 26p/29, 26p/29p, 16p45, 18p45, 19p45, 26p45, 

27p45, 28p45, and 29p45 Figure 2-12 were synthesized as C-terminal acids, by microwave-

assisted solid-phase peptide synthesis, using a standard Fmoc Nα protection strategy as described 

previously.24,25Amino acids were activated by 2-(1H-benzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU, purchased from Advanced ChemTech) and 

N-hydroxybenzotriazole hydrate (HOBt, purchased from Advanced 

ChemTech).Fmoc-Gly-loaded Novasyn Wang resin and all Fmoc-protected α-amino acids with 

acid-labile side-chain protecting groups were purchased from EMD Biosciences, except for 

Fmoc-Asn(PEG4)-OH (N2-fluorenylmethyoxycarbonyl-N4-[11-methoxy-3,6,9-trioxaundecyl]-L-

asparagine) and Fmoc-Asn(PEG45)-OH, which were synthesized as described previously,24 and 

Fmoc-D-Asn(PEG4)-OH (N2-fluorenylmethyoxycarbonyl-N4-[11-methoxy-3,6,9-trioxaundecyl]-

D-asparagine), which was synthesized as described below.  

WW variants were synthesized on a 25μmol scale. A general protocol for manual solid-

phase peptide synthesis follows: Fmoc-Gly-loaded NovaSyn Wang resin (69.4mg, 25μmol at 

0.38 mmol/g resin loading) was aliquotted into a fritted polypropylene syringe and allowed to 

swell first in CH2Cl2, and then in dimethylformamide (DMF). Solvent was drained from the resin 

using a vacuum manifold. 

To remove the Fmoc protecting group on the resin-linked amino acid, 1.25 ml of 20% 

piperidine in DMF was added to the resin, and the resulting mixture was allowed to sit at room 

temperature for 1 minute. The deprotection solution was then drained from the resin with a 

vacuum manifold. Then, an additional 1.25 mL of 20% piperidine in DMF was added to the resin, 

and the reaction vessel was placed in the microwave. The temperature was ramped from rt to 

80 °C over the course of 2 minutes, and held at 80°C for 2 minutes. The deprotection solution 
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was drained from the resin using a vacuum manifold, and the resin was rinsed five times with 

DMF. 

 

 

 

 

 

Figure 2-11. Sequences for PEGylated and non-PEGylated WW variants. 
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For coupling of an activated amino acid, we prepared a stock coupling solution of 100 

mL NMP, 3.17 g HBTU (0.01mol, 0.1M) and 1.53 g HOBt (0.01 mol, 0.1M) for a final 

concentration of 0.1M HBTU and 0.1M HOBt. The desired Fmoc-protected amino acid (125 

μmol, 5 eq) was dissolved by vortexing in 1.25 mL coupling solution (125 μmol, 5 eq HBTU; 

125 μmol, 5 eq HOBt). To the dissolved amino acid solution was added 44 μL DIEA (250μmol, 

10eq). [Only 3 eq were used during the coupling of Fmoc-Asn(PEG)-OH monomer, and the 

required amounts of HBTU, HOBt, and DIEA were adjusted accordingly.] The resulting mixture 

was vortexed briefly and allowed to react for at least 1 min. The activated amino acid solution 

was then added to the resin, and the reaction vessel was placed in the microwave. The 

temperature was ramped from rt to 70 °C over 2 minutes, and held at 70°C for 4 minutes. 

Following the coupling reaction, the activated amino acid solution was drained from the resin 

with a vacuum manifold, and the resin was subsequently rinsed five times with DMF. The cycles 

of deprotection and coupling were alternately repeated to give the desired full-length protein.  

Acid-labile side-chain protecting groups were globally removed and proteins were 

cleaved from the resin by stirring the resin for ~4h in a solution of phenol (0.125 g), water (125 

μL), thioanisole (125 μL), ethanedithiol 62.5 μL) and triisopropylsilane (25 μL) in trifluoroacetic 

acid (TFA, 2 mL). Following the cleavage reaction, the TFA solution was drained from the resin, 

the resin was rinsed with additional TFA. Proteins were precipitated from the concentrated TFA 

solution by addition of diethyl ether (~40 mL). Following centrifugation, the ether was decanted, 

and the pellet was dissolved in ~40mL 1:1 H2O/MeCN, frozen and lyophilized to remove 

volatile impurities. The resulting powder was stored at -20°C until purification. 
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2.4.3 WW Variant Purification and Characterization 

Immediately prior to purification, the crude protein was dissolved in 1:1 H2O/MeCN. 

Proteins were purified by preparative reverse-phase HPLC on a C18 column using a linear 

gradient of water in acetonitrile with 0.1% v/v TFA. HPLC fractions containing the desired 

protein product were pooled, frozen, and lyophilized. Proteins were identified by electrospray 

ionization time of flight mass spectrometry (ESI-TOF, spectra appear below in Figures 2-13 

through 2-64), and purity was analyzed by Analytical HPLC shown in Figures 2-65 through 2-

118). 

2.4.4 ESI-TOF data 

ESI-TOF spectra for proteins WW, 14, 14p, 16, 16p,16-Y23F, 16p-Y23F, 16-32A, 16p-

32A,17, 17p, 18, 18p, 19, 19p,D-19,D-19p, 19-32A, 19p-32A, 23, 23p,26p,WW-T29A, 26p-

T29A,27, 27p, 28, 28p, 29, 29p,29-S32A, 29p-S32A,30p, 32, 32p,32-Y23F, 32p-Y23F,16/26p, 

16p/26p, 19/26p, 19p/26p, 16/19, 16/19p, 16p/19, 16p/19p, 26p/29, 26p/29p, 16p45, 18p45, 

19p45, 26p45, 27p45, 28p45, and 29p45 are shown in Figures 2-13 through 2-64.  

 

 

Figure 2-13. ESI TOF spectrum for parent protein WW. Expected [M+3H]3+/3 =  1328.3351 Da. Observed 
[M+3H]3+/3 = 1328.3538 Da. 
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Figure 2-14. ESI TOF spectrum for the WW variant 14. Expected [M+3H]3+/3 = 1314.3157 Da. Observed 
[M+3H]3+/3 = 1314.3428 Da 

 
Figure 2-15. ESI TOF spectrum for WW variant 14p. Expected [M+3H]3+/3 = 1377.6892 Da. Observed [M+3H]3+/3 

=  1377.6863 Da. 

 

Figure 2-16. ESI TOF spectrum for WW variant 16. Expected [M+3H]3+/3 =  1337.3387 Da. Observed [M+3H]3+/3 
= 1337.3389 Da. 
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Figure 2-17. ESI TOF spectrum for WW variant 16p. Expected [M+3H]3+/3 =1400.7123 Da. Observed [M+3H]3+/3 
= 1400.7298 Da. 

 
Figure 2-18. ESI TOF spectrum for WW variant 16-Y23F. Expected [M+3H]3+/3 =1332.007 Da. Observed 

[M+3H]3+/3 = 1332.008 Da. 

 
Figure 2-19. ESI TOF spectrum for WW variant 16p-Y23F. Expected [M+4H]4+/4 = 1046.787 Da. Observed 

[M+4H]4+/4 = 1046.769 Da. 
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Figure 2-20. ESI TOF spectrum for WW variant 16-S32A. Expected [M+3H]3+/3 = 1332.007 Da. Observed 

[M+3H]3+/3 = 1332.061 Da. 

 
Figure 2-21. ESI TOF spectrum for WW variant 16p-S32A. Expected [M+4H]4+/4 = 1046.787 Da. Observed 

[M+4H]4+/4 = 1046.663 Da. 

 
Figure 2-22. ESI TOF spectrum for WW variant 17. Expected [M+3H]3+/3 = 1314.3157 Da. Observed [M+3H]3+/3 

= 1314.3139 Da 
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Figure 2-23. ESI TOF spectrum for WW variant 17p.   Expected [M+3H]3+/3 = 1377.6892 Da. Observed 

[M+3H]3+/3 = 1377.6786 Da. 

 
Figure 2-24. ESI TOF spectrum for WW variant 18. Expected [M+3H]3+/3 = 1337.3387 Da. Observed [M+3H]3+/3 = 

1337.3350 Da. 

 
Figure 2-25. ESI TOF spectrum for WW variant 18p. Expected [M+3H]3+/3 = 1400.7123 Da. Observed [M+3H]3+/3 

= 1400.6989 Da. 
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Figure 2-26. ESI TOF spectrum for WW variant 19. Expected [M+3H]3+/3 = 1337.3387 Da. Observed [M+3H]3+/3 = 

1377.3404 Da. 

 
Figure 2-27. ESI TOF spectrum for WW variant 19p. Expected [M+3H]3+/3 = 1400.7123 Da. Observed [M+3H]3+/3 

= 1400.6444 Da. 

 
Figure 2-28. ESI TOF spectrum for WW variant D-19. Expected [M+3H]3+/3 = 1337.339 Da. Observed [M+3H]3+/3 

= 1337.323 Da. 
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Figure 2-29. ESI TOF spectrum for WW variant D-19p. Expected [M+3H]3+/3 = 1400.712 Da. Observed 

[M+3H]3+/3 = 1400.690 Da. 

 
Figure 2-30. ESI TOF spectrum for WW variant 19-32A. Expected [M+3H]3+/3 = 1332.007 Da. Observed 

[M+3H]3+/3 = 1331.990 Da. 

 
Figure 2-31. ESI TOF spectrum for WW variant 19p-32A. Expected [M+3H]3+/3 = 1395.381 Da. Observed 

[M+3H]3+/3 = 1395.366. 
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Figure 2-32. ESI TOF spectrum for WW variant 23. Expected [M+3H]3+/3 = 1311.9950 Da. Observed [M+3H]3+/3 = 

1311.9834 Da. 

 
Figure 2-33. ESI TOF spectrum for WW variant 23p. Expected [M+3H]3+/3 = 1375.3685 Da. Observed [M+3H]3+/3 

= 1375.3442 Da. 

 
Figure 2-34. ESI TOF spectrum for WW variant 26p. Expected [M+3H]3+/3 = 1391.7086 Da. Observed [M+3H]3+/3 

= 1391.6963 Da. 
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Figure 2-35. ESI TOF spectrum for WW variant WW-T29A. Expected [M+3H]3+/3 = 1318.332 Da. Observed 

[M+3H]3+/3 = 1318.308 Da. 

 
Figure 2-36. ESI TOF spectrum for WW variant 26p-T29A. Expected [M+3H]3+/3 = 1381.705 Da. Observed 

[M+3H]3+/3 = 1381.701 Da. 

 
Figure 2-37. ESI TOF spectrum for WW variant 27. Expected [M+3H]3+/3 =  1320.6631 Da. Observed [M+3H]3+/3 

= 1320.6982 Da 
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Figure 2-38. ESI TOF spectrum for WW variant 27p. Expected [M+3H]3+/3 =  1384.0366 Da. Observed [M+3H]3+/3 

= 1384.0736 Da. 

 
Figure 2-39. ESI TOF spectrum for WW variant 28. Expected [M+3H]3+/3 =  1328.6547 Da. Observed [M+3H]3+/3 

= 1328.6591 Da.

  

Figure 2-40. ESI TOF spectrum for WW variant 28p. Expected [M+3H]3+/3 = 1392.0282 Da. Observed [M+3H]3+/3 
= 1392.0336 Da. 
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Figure 2-41. ESI TOF spectrum for WW variant 29. Expected [M+3H]3+/3 = 1332.6668 Da. Observed [M+3H]3+/3 = 
1332.6737 Da. 

 

Figure 2-42. ESI TOF spectrum for WW variant 29p. Expected [M+3H]3+/3 = 1396.0404 Da. Observed [M+3H]3+/3 
= 1396.0446 Da. 

 

 

Figure 2-43.ESI TOF spectrum for WW variant 29-S32A. Expected [M+3H]3+/3 = 1327.355 Da. Observed 
[M+3H]3+/3 = 1327.359 Da. 
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Figure 2-44. ESI TOF spectrum for WW variant 29p-S32A. Expected [M+4H]4+/4 = 1043.284 Da. Observed 
[M+4H]4+/4 = 1043.293 Da. 

 

Figure 2-45.  ESI TOF spectrum for WW variant 30p. Expected [M+3H]3+/3 = 1391.7086 Da. Observed [M+3H]3+/3 
= 1391.7291 Da. 

 

 

Figure 2-46. ESI TOF spectrum for WW variant 32. Expected [M+3H]3+/3 = 1337.3387 Da. Observed [M+3H]3+/3 = 
1337.3148 Da. 
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Figure 2-47. ESI TOF spectrum for WW variant 32p. Expected [M+4H]4+/4 = 1050.7861 Da. Observed [M+4H]4+/4 
= 1050.7815 Da. 

 

 

Figure 2-48. ESI TOF spectrum for WW variant 32-Y23F. Expected [M+3H]3+/3 = 1332.007 Da. Observed 
[M+3H]3+/3 = 1332.002 Da 

 

 

Figure 2-49. ESI TOF spectrum for WW variant 32p-Y23F. Expected [M+3H]3+/3 = 1395.381 Da. Observed 
[M+3H]3+/3 = 1395.380 Da. 
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Figure 2-50. ESI-TOF spectrum for WW variant 16/26p. Expected [M+4H]4+/4 = 1050.7861 Da. Observed 
[M+4H]4+/4 = 1050.7768 Da. 

 

 

Figure 2-51. ESI TOF spectrum for doubly PEGylated WW variant 16p/26p. Expected [M+4H]4+/4 = 1098.3163 Da. 
Observed [M+4H]4+/4 = 1098.3315 Da. 

 

 

Figure 2-52. ESI-TOF spectrum for WW variant 19/26p. Expected [M+3H]3+/3 = 1400.7123 Da. Observed 
[M+3H]3+/3 = 1400.7028 Da. 
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Figure 2-53. ESI TOF spectrum for WW variant 19p/26p. Expected [M+3H]3+/3 = 1464.0858 Da. Observed 
[M+3H]3+/3 = 1464.0839 Da. 

 

Figure 2-54. ESI TOF spectrum for WW variant 16/19. Expected [M+3H]3+/3 = 1346.3424 Da. Observed 
[M+3H]3+/3 = 1346.3268 Da. 

 

 

Figure 2-55. ESI-TOF spectrum for WW variant 16p/19. Expected [M+3H]3+/3 = 1409.7159 Da. Observed [M+3H]-
3+/3 = 1409.7032 Da. 
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Figure 2-56. ESI-TOF spectrum for WW variant 16/19p. Expected [M+3H]3+/3 = 1409.7159 Da. Observed [M+3H]-
3+/3 = 1409.7253 Da. 

 

 

Figure 2-57. ESI TOF spectrum for doubly PEGylated WW variant 16p/19p. Expected [M+3H]3+/3 = 1473.0894 Da. 
Observed [M+3H]3+/3 = 1473.1093 Da. 

 

 

Figure 2-58. ESI-TOF spectrum for WW variant 26p/29. Expected [M+3H]3+/3 = 1396.0404 Da. Observed [M+3H]-
3+/3 = 1396.0446 Da. 
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Figure 2-59. ESI TOF spectrum for doubly PEGylated WW variant 26p/29p. Expected [M+4H]4+/4 = 1094.8124Da. 
Observed [M+4H]4+/4 = 1094.8096. 

 

 

 

Figure 2-60. ESI TOF spectra for WW variant 16p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide units. 
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Figure 2-61. ESI TOF spectra for WW variant 18p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide unit 

x  

 

Figure 2-62. ESI TOF spectra for WW variant 19p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide units. 
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Figure 2-63. ESI TOF spectra for WW variant 26p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide units. 

 

 

Figure 2-64. ESI TOF spectra for WW variant 27p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide units. 
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Figure 2-65. ESI TOF spectra for WW variant 28p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide units. 

 

 

Figure 2-64. ESI TOF spectra for WW variant 29p45, which contains a polydisperse PEG oligomer with an average 
of ~45 ethylene oxide units. 
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2.4.5 Analytical HPLC data 

HPLC traces for proteinsWW, 14, 14p, 16, 16p,16-Y23F, 16p-Y23F, 16-32A, 16p-

32A,17, 17p, 18, 18p, 19, 19p,D-19,D-19p, 19-32A, 19p-32A, 23, 23p,26p,WW-T29A, 26p-

T29A,27, 27p, 28, 28p, 29, 29p,29-S32A, 29p-S32A,30p, 32, 32p,32-Y23F, 32p-Y23F,16/26p, 

16p/26p, 19/26p, 19p/26p, 16/19, 16/19p, 16p/19, 16p/19p, 26p/29, 26p/29p, 16p45, 18p45, 

19p45, 26p45, 27p45, 28p45, and 29p45are shown in Figures2-65 through 2-118. 

 

 

Figure 2-65. Analytical HPLC Data for parent protein WW. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration 

 

Figure 2-66. Analytical HPLC Data for WW variant 14. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 
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Figure 2-67. Analytical HPLC Data for WW variant 14p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-68. Analytical HPLC Data for WW variant 16. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-69. Analytical HPLC Data for WW variant 16p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 
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Figure 2-70.  Analytical HPLC Data for WW variant 16-Y23F. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 

Figure 2-71. Analytical HPLC Data for WW variant 16p-Y23F. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 

Figure 2-72. Analytical HPLC Data for WW variant 16-S32A. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 2-73. Analytical HPLC Data for WW variant 16p-S32A. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 

Figure 2-74. Analytical HPLC Data for WW variant 17. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-40% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 30 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration 

 

Figure 2-75. Analytical HPLC Data for WW variant 17p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 
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Figure 2-76Analytical HPLC Data for WW variant 18. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

 

Figure 2-77. Analytical HPLC Data for WW variant 18p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-78. Analytical HPLC Data for WW variant 19. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-40% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 30 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 
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Figure 2-79.Analytical HPLC Data for WW variant 19p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-40% B (A=H9XO, 0.1% TFA; B= MeCN, 0.1% TFA) over 30 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. This run was terminated early at 50 min. 

 

 

Figure 2-80. Analytical HPLC Data for WW variant D-19. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 

Figure 2-81. Analytical HPLC Data for WW variant D-19p. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 2-82.Analytical HPLC Data for WW variant 19-S32A. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient intended to run from 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% 
TFA) over 50 minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) 

with a flow rate of 1 mL/min.  This run was terminated several minutes after the desired peak eluted. 

 

Figure 2-83. Analytical HPLC Data for WW variant 19p-S32A. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min 

. 

 

Figure 2-84. Analytical HPLC Data for WW variant 23. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 
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Figure 2-85. Analytical HPLC Data for WW variant 23p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-86. Analytical HPLC Data for WW variant 26p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-87. Analytical HPLC Data for WW variant WW-T29A. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 2-88. Analytical HPLC Data for WW variant 26p-T29A. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 

 

Figure 2-89.Analytical HPLC Data for WW variant 27. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-90. Analytical HPLC Data for WW variant 27p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 
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Figure 2-91. Analytical HPLC Data for WW variant 28. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. 

 

Figure 2-92.Analytical HPLC Data for WW variant 28p. Protein solution was injected onto a C18 analytical column 
and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 

followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 
mL/min. This run was terminated early at 50 min. 

 
Figure 2-93. Analytical HPLC Data for WW variant 29. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. This run was terminated early at ~62 min. 
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Figure 2-94.Analytical HPLC Data for WW variant 29p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min.  This run was terminated early at ~61 min. 

 
Figure 2-95. Analytical HPLC Data for WW variant 29-S32A. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min.  This run was terminated prematurely at 60 min. 

 
Figure 2-96. Analytical HPLC Data for WW variant 29p-S32A. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 2-97. Analytical HPLC Data for WW variant 30p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min.  

 
Figure 2-98. Analytical HPLC Data for WW variant 32. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 2-99.Analytical HPLC Data for WW variant 32p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 
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Figure 2-100.Analytical HPLC Data for WW variant 32-Y23F. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. This run was terminated prematurely at 51 min 

 
Figure 2-101.Analytical HPLC Data for WW variant 32p-Y23F. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 2-102. Analytical HPLC Data for Pin WW domain protein 16/26p. Protein solution was injected onto a C18 
analytical column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 
50 minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow 

rate of 1 ml/min. 
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Figure 2-103.Analytical HPLC Data for WW variant 16p/26p. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-40% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 30 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 2-104. Analytical HPLC Data for WW variant 19/26p. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 
Figure 2-105. Analytical HPLC Data for WW variant 19p/26p. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-40% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 30 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 2-106. Analytical HPLC Data WW variant 16/19. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-40% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 30 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 2-107. Analytical HPLC Data for WW variant 16p/19. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 
Figure 2-108.Analytical HPLC Data for WW variant 16/19p. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 
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Figure 2-109.Analytical HPLC Data doubly PEGylated WW variant 16p/19p. Protein solution was injected onto a 
C18 analytical column and eluted using a linear gradient of 10-40% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) 
over 30 minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a 

flow rate of 1 mL/min. 

 
Figure 2-110.Analytical HPLC Data for WW variant 26p/29. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. Analysis was truncated after 66 minutes (during column re-equilibration). 

 
Figure 2-111. Analytical HPLC Data doubly PEGylated WW variant 26p/29p. Protein solution was injected onto a 
C18 analytical column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) 
over 50 minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a 

flow rate of 1 ml/min. 



98 

 
Figure 2-112. Analytical HPLC Data for WW variant 16p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 

 
Figure 2-113.Analytical HPLC Data for WW variant 18p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 
Figure 2-114. Analytical HPLC Data for WW variant 19p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 
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Figure 2-115. Analytical HPLC Data for WW variant 26p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 

 

 
Figure 2-116.Analytical HPLC Data for WW variant 27p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 

 
Figure 2-117.Analytical HPLC Data for WW variant 28p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 
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Figure 2-118.Analytical HPLC Data for WW variant 29p45. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10-minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 ml/min. 

 

 

2.4.6 Organic Synthesis 

2.4.7 Fmoc-D-Asn(PEG)-OtBu 

Fmoc-D-Asn(PEG)-OtBu was synthesized following a procedure analogous to that of 

Herzner and Kunz57: to a solution of (R)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-

(tert-butoxy)-4-oxobutanoic acid (Fmoc-D-Asp-OtBu, 1.0g, 2.430 mmol) in dry 

dichloromethane (50 mL) was added isobutyl (2-isobutoxy)-1,2-dihydroquinoline-1-carboxylate 

(IIDQ, 1.1g, 3.645 mmol), and the resulting mixture was stirred for 15 min at room temperature 

under an argon atmosphere. Then, 2-(2-(2-methoxyethoxy)ethoxy)ethanamine (0.5g, 2.430 mmol) 

was added, and stirring was continues for 24h. The reaction was then quenched with brine (50 

mL) and washed with water (50 mL), and the organic extracts were dried with MgSO4, filtered 

through celite, and concentrated by rotary evaporation to afford a yellow oil. The desired product 

was purified by flash chromatography over silica gel using ethyl acetate/hexanes (3:7 for ~1000 

mL), followed by acetic acid (~2000 mL) then acetic acid/ethyl acetate (1:99 for ~1000 mL, 1:9 
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for ~2500 mL) as eluents. The product was concentrated via rotary evaporation (chloroform and 

benzene were employed to remove residual ethyl acetate and acetic acid) and dried in vacuo to 

give a thick oily solid (0.90 g, 1.6 mmol, 67% yield). Rf = 0.15 (1:100 acetic acid/ethyl acetate). 

 1H NMR (500 MHz, CDCl3): δ 7.75(2H, d, J = 7.5 Hz, Fmoc aryl C-H); 7.62 (2H, t, J = 

6.25 Hz, Fmoc aryl C-H);7.39 (2H, t, J = 7.5 Hz, Fmoc aryl C-H); 7.30 (2H, t, J = 7.5Hz, Fmoc 

aryl C-H); 6.83 (1H, broad s, -CONH-CH2-CH2-O-); 6.24 (1H, d, J = 8.5 Hz, -CONH-

CαH(COOH)-);4.50 (1H, broad s, -CONHCαH(COOH)-CβH2-);4.40 (1H, dd, J = 10.5 Hz, 7.0 

Hz, Fmoc Ar2CH-CH(a)H(b)-O-);4.30 (H, apparent t, Fmoc Ar2CH-CH(a)H(b)-O-);4.23 (1H, t, J = 

7.0 Hz, Fmoc Ar2CH-CH2-O-);3.51-3.67 (14H, m, -CONH-CH2-CH2-O-CH2-CH2-O-CH2-CH2-

O--CH2-CH2-O-); 3.45 (2H, m, -CONH-CH2-CH2-O-);3.36 (3H, s, -O-CH3);2.85-2.92 (1H, m, -

CαH(COOH)-Cβ(Ha)Hb-CONH-); 2.72 (1H, dd, J = 15.5 Hz, 4.0 Hz, -CαH(COOH)-

Cβ(Ha)Hb-CONH); 1.47 (9H, s, -O-C-(CH3)3. 2.89, 2.97, 8.03 (dimethyl formamide 

contamination), 2.08 (ethyl acetate contamination), 7.36 (benzene). The full 1H NMR spectrum 

for Fmoc-D-Asn(PEG)-OtBu is shown in Figure 2-119. 
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Figure 2-119.1H NMR spectrum for Fmoc-D-Asn(PEG)-OtBu. 

 

 

13C NMR (126 MHz, CDCl3): δ 170.21 (-NH-CαH(COOH)-CβH2- and/or -CβH2-CONH-

CH2-);144.00, 141.25 (Fmoc aryl ipso C’s);128.30, 127.64, 127.05,125.12, 119.89 (Fmoc Ar C-

H); 82.14 (-O-C(CH3)3);71.74, 70.33, 70.28, 70.06, 69.75 (-CH2-O-CH2-CH2-O-CH2-CH2-O-

CH2-CH2-O-); 67.10 (Fmoc Ar2CH-CH2-O-); 58.91 (-O-CH3); 51.52 (-NH-CαH(COOH)-CβH2-

); 47.15 (Fmoc Ar2CH-CH2-O-); 39.28 (CONH-CH2-CH2-O-); 37.79 (-CαH(COOH)-CβH2-

CONH-); 27.90 (-O-C(CH3)3). 21.18 (ethyl acetate). The full 13C NMR spectrum for Fmoc-D-

Asn(PEG)-OtBu is shown in Figure 2-120. 
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Figure 2-120. 13C NMR spectrum for Fmoc-D-Asn(PEG)-OtBu. 

 

 

Assignments of the 1H and 1C NMRs for the Fmoc-D-Asn(PEG)-OtBu were made by 

analogy with published spectral data for related compounds,58,59 and with the assistance of a 2D 

HSQC experiment (Figure 2-121), using the one-bond C-H correlations shown in Table 2-9. 
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Figure 2-121. 2D HSQC spectrum of Fmoc-D-Asn(PEG)-OtBu. 

 

Table 2-9.One-Bond C-H correlations identified from HSQC data for Fmoc-D-Asn-PEG-OtBu. 

1H δ 1C δ Assignment 

7.75 
7.61 
7.31 
7.30 

120.1 

125.3 

127.8 

127.2 

Fmoc aryl C-H 

Fmoc aryl C-H 

Fmoc aryl C-H 

Fmoc aryl C-H 

4.50 51.52 -CONHCαH(COOH)-CβH2- 

4.40, 4.29 
4.22 

3.51-3.67 
 

3.43 
3.35 

2.88, 2.72 
1.47 

67.22 

47.20 

69.10-72.70 

 

39.48 

59.24 

37.81 

28.05 

Fmoc Ar2CH-CH(a)H(b)-O 

Fmoc Ar2CH-CH2-O- 

CH2-O-CH2-CH2-O-CH2-CH2-O--CH2-
CH2-O- 

CONH-CH2-CH2-O 

-O-CH3 

-CαH(COOH)-CβH2- 

-C(CH3)3 

 

High-resolution electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) 

is shown in Figure 2-122. 
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Figure 2-122.ESI-TOF MS data for Fmoc-D-Asn(PEG)-OtBu. Calculated m/z for C32H44N2O9 (M+H+) is 601.31, 
found 601.30. 

 

2.4.8 Fmoc-D-Asn(PEG4)-OH 

To a solution of TFA (95% in water, 50ml) was added 0.89g Fmoc-D-Asn(PEG4)-OtBu, 

and the solution was stirred for 4 h under an argon atmosphere. The product was concentrated by 

rotary evaporation, and used without further purification. 

1H NMR (500 MHz, CDCl3): δ 7.75(2H, d, J = 7.5 Hz, Fmoc aryl C-H);7.60 (2H, t, J = 

8.75 Hz, Fmoc aryl C-H); 7.39 (2H, t, J = 7.5 Hz, Fmoc aryl C-H); 7.30 (2H, t, J = 7.5Hz, Fmoc 

aryl C-H); 6.23 (1H, apparent d, -CONH-CαH(COOH)-, or -CONH-CH2-CH2-O-); 4.56 (1H, 

broad s, -CONHCαH(COOH)-CβH2-); 4.39 (1H, apparent t, Fmoc Ar2CH-CH(a)H(b)-O-); 4.31 

(H, apparent t, Fmoc Ar2CH-CH(a)H(b)-O-); 4.21 (1H, t, J = 5.5 Hz, Fmoc Ar2CH-CH2-O-); 

3.51-3.70 (14H, m, -CONH-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O--CH2-CH2-O-); 3.45 (2H, m, 

-CONH-CH2-CH2-O-); 3.32 (3H, s, -O-CH3); 2.94 (1H, apparent d, -CαH(COOH)-Cβ(Ha)Hb-

CONH-); 2.73 (1H, dd, J = 15.5 Hz, 7.5 Hz, -CαH(COOH)-Cβ(Ha)Hb-CONH).5.59, 1.25 (t-

butyl alcohol contamination). The full1H NMR spectrum for Fmoc-D-Asn(PEG4)-OH is shown 

in Figure 2-123. 
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Figure 2-123.1H NMR spectrum of Fmoc-D-Asn(PEG4)-OH. 

 

 
13C NMR (126 MHz, CDCl3): δ 172.22, 171.43 (-NH-CαH(COOH)-CβH2-, -CβH2-

CONH-CH2-); 155.95 (Fmoc-O-CONH-); 143.90, 143.72, 141.26, 141.23 (Fmoc aryl ipso C’s); 

127.71, 127.10, 125.24,125.16, 119.95 (Fmoc Ar C-H); 71.75, 70.60, 70.37, 70.24, 69.98 (-CH2-

O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-); 67.23 (Fmoc Ar2CH-CH2-O-); 58.86 (-O-CH3); 

50.73 (-NH-CαH(COOH)-CβH2-); 47.04 (Fmoc Ar2CH-CH2-O-); 39.72 (CONH-CH2-CH2-O-); 

37.79 (-CαH(COOH)-CβH2-CONH-), 53.44 t-butyl alcohol contamination. The full 13C NMR 

spectrum for Fmoc-D-Asn(PEG4)-OH is shown in Figure 2-124. 
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Figure 2-124.13C NMR spectrum of Fmoc-D-Asn(PEG4)-OtBu. 

 

 

Assignments of the 1H and 13C NMR spectra for the Fmoc-D-Asn(PEG)-OH were made 

by analogy with published spectral data for related compounds, 58,59 and with the assistance of a 

2D HSQC experiment (Figure 2-125), using the one-bond C-H correlations shown in Table 2-10.  
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Figure 2-125.2D HSQC spectrum of Fmoc-D-Asn(PEG)-OH. 

 

 

Table 2-10. One-Bond C-H correlations identified from HSQC experiment on Fmoc-D-Asn(PEG)-OH 

1H δ 1C δ Assignment 

7.75 
7.60 
7.39 
7.30 

119.95 

125.16 

127.71 

127.10 

Fmoc aryl C-H 

Fmoc aryl C-H 

Fmoc aryl C-H 

Fmoc aryl C-H 

4.56 50.73 -NH-CαH(COOH)-CβH2- 

4.39, 4.31 67.23 Fmoc Ar2CH-CH(a)H(b)-O- 

4.21 47.04  Fmoc Ar2CH-CH2- 

3.50-3.70 
3.45 

71.75, 70.60, 70.37, 70.24, 69.98 

39.72 

-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O- 

CONH-CH2-CH2-O- 

3.32 58.86 O-CH3 

2.94, 2.73 37.79 CαH(COOH)CβH2-CONH- 
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High-resolution electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) 

is shown in Figure 2-126. 

 
Figure 2-126.ESI-TOF MS data for (Fmoc-D-Asn(PEG)-OH) 2. Calculated m/z for C28H36N2O9 (M+H+) 545.25, 

found 545.28. 

 

2.4.9 Analysis of Folding Thermodynamic and Kinetics of WW Variants 

2.4.10 Circular Dichroism Spectroscopy 

Measurements were made with an Aviv 420 Circular Dichroism Spectropolarimeter, 

using quartz cuvettes with a path length of 0.1 cm. Protein solutions were prepared in 20 mM 

sodium phosphate buffer, pH 7, and protein concentrations were determined spectroscopically 

based on tyrosine and tryptophan absorbance at 280 nm in 6 M guanidine hydrochloride + 20 

mM sodium phosphate (εTrp = 5690 M-1cm-1, εTyr = 1280 M-1cm-1).60  CD spectra of 50 or 100 

μM solutions were obtained from 340 to 200 nm at 25ºC and in some cases at 1°C or 2°C. 

Variable temperature CD data were obtained at least in triplicate for 50 or 100 μM solutions of 

WW, 14, 14p, 16, 16p, 16-Y23F, 16p-Y23F, 16-32A, 16p-32A, 17, 17p, 18, 18p, 19, 19p, D-19, 
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D-19p, 19-32A, 19p-32A, 23, 23p, 26p, WW-T29A, 26p-T29A, 27, 27p, 28, 28p, 29, 29p, 29-

S32A, 29p-S32A, 30p, 32, 32p, 32-Y23F, 32p-Y23F, 16/26p, 16p/26p, 19/26p, 19p/26p, 16/19, 

16/19p, 16p/19, 16p/19p, 26p/29, 26p/29p, 16p45, 18p45, 19p45, 26p45, 27p45, 28p45, and 

29p45 in 20 mM sodium phosphate (pH 7) by monitoring molar ellipticity at 227 nm from 1 to 

95°C at 2 °C intervals, with 120 s equilibration time between data points and 30 s averaging 

times. 

2.4.11 Laser Temperature Jump Experiments 

PEGylated peptides 14p, 17p, 18p, 19p,26p, and 30p as well as corresponding non-

PEGylated peptides 14, 17, 18, 19, 26, and 30 (100 μM in 20 mM sodium phosphate, pH 7) were 

also subjected to a rapid laser-induced temperature jump of ~10-11 °C using a nanosecond laser 

temperature jump apparatus as described previously,3,61-63 at each of several temperatures.  

Following each temperature jump, the approach of the protein to equilibrium at the new 

temperature (i.e. relaxation) was monitored using the fluorescence decay of a Trp residue in the 

protein as a probe. 

 Each relaxation trace shown below represents the average of as many as 60 replicate 

temperature-jump experiments, and was obtained by fitting the shape f of each fluorescence 

decay at time t to a linear combination of the fluorescence decay shapes before f1 and after f2 the 

temperature jump: 

 
Equation 1 

where a1(t) and a2(t) are the coefficients of the linear combination describing the relative 

contributions of f1and f2 to the shape of the fluorescence decay at time t. The relaxation of the 
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protein to equilibrium following the laser-induced temperature jump can then be represented as 

χ1(t): 

 
Equation 2 

which is plotted as a function of time for each protein at several temperatures.  

2.4.12 Global Fitting of Variable Temperature CD Data 

For 16, 16p,16-Y23F, 16p-Y23F, 16-32A, 16p-32A,D-19,D-19p, 19-32A, 19p-32A, 23, 

23p,WW-T29A, 26p-T29A,27, 27p, 28, 28p, 29, 29p,29-S32A, 29p-S32A,32, 32p,32-Y23F, 

32p-Y23F,16/26p, 16p/26p, 19/26p, 19p/26p, 16/19, 16/19p, 16p/19, 16p/19p, 26p/29, 26p/29p, 

16p45, 18p45, 19p45, 26p45, 27p45, 28p45, and 29p45,data from the three (or more) replicate 

variable temperature CD experiments on each protein were fit to the following model for two-

state thermally induced unfolding transitions: 

 

Equation 3 

where T is temperature in Kelvin, D0 is the y-intercept and D1 is the slope of the post-transition 

baseline; N0 is the y-intercept and N1 is the slope of the pre-transition baseline; and Kf is the 

temperature-dependent folding equilibrium constant. Kf is related to the temperature-dependent 

free energy of folding ΔGf(T) according to the following equation: 

 
Equation 4 
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where R is the universal gas constant (0.0019872 kcal/mol/K). ΔGf(T) was fit to the following 
equation: 

∆Gf =
∆H(Tm) ∙ (Tm − T)

Tm
+ ∆Cp ∙ (T − Tm − T ∙ ln �

T
Tm
�) 

Equation 5 

where the fit parameters are Tm(the midpoint of the unfolding transition; the temperature at 

which ΔGf= 0); ΔH(Tm), the change in enthalpy upon folding at Tm; and ΔCp, the change in heat 

capacity upon folding.  The parameters for equations 3-5 were used to calculate the values of the 

folding free energy ΔGf for WW variants in the main text and in tables below.  

2.4.13 Global Fitting of Variable Temperature CD and Laser Temperature Jump 

Experiments 

For proteins WW, 14, 14p, 17, 17p, 18, 18p, 19, 19p, 26p, and 30p, data from variable 

temperature CD and laser temperature jump experiments were fit globally to the equations 

indicated below, to generate internally consistent temperature-dependent estimates of the folding 

free energy ΔGf, the folding and unfolding activation energies (ΔG‡
f and ΔG‡

u, respectively), and 

folding and unfolding rates (kf and ku, respectively).  As before, variable temperature CD data 

were fit to the following equation: 

 

Equation 6 

where T is temperature in Kelvin, D0 is the y-intercept and D1 is the slope of the post-transition 

baseline; N0 is the y-intercept and N1 is the slope of the pre-transition baseline; and Kf is the 

temperature-dependent folding equilibrium constant. 
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Relaxation data from temperature jump experiments were simultaneously fit to the 

following equations: 

𝑥𝑥1 =  𝐴𝐴0 ∙ 𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑘𝑘𝑓𝑓�1 + 𝑘𝑘𝑓𝑓�

𝐾𝐾𝑓𝑓
∙ 𝑡𝑡� + 𝑦𝑦0 

Equation 7 

where t is time, A0 is the initial value of x1 at t = 0, y0 is the value of c1 at t = ∞, and kf is the 

folding rate.  Each relaxation trace derived from several replicated temperature jump 

experiments had distinct A0 and y0 values.  In contrast, temperature-dependent Kf(see equations 

8 and 9) and kf(see equation 10) were constrained to be the same across all variable temperature 

CD and temperature jump experiments for a given protein. 

Equilibrium folding constant Kf was defined by the following equations: 

 
Equation 8 

∆Gf =
∆H(Tm) ∙ (Tm − T)

Tm
+ ∆Cp ∙ (T − Tm − T ∙ ln �

T
Tm
�) 

Equation 9 

where R is the universal gas constant (0.0019872 kcal/mol/K), ΔGfis the folding free energy, Tm 

is the midpoint of the variable temperature thermal unfolding transition (i.e., the temperature at 

which ΔGf= 0), ΔH(Tm) is the change in enthalpy upon folding at Tm, and ΔCp is the change in 

heat capacity upon folding. 
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Folding rate kf was defined by the following Kramers64-66 model equation: 

 
Equation 10 

in which ΔG‡
f(T), the folding activation energy is represented as a second order Taylor series 

expansion about Tm, and ΔG†
0, ΔG†

1, ΔG†
2, and Tm are parameters of the fit (Tm is constrained to 

be the same in equations 10 and 11).  The pre-exponential term in Equation 10 represents the 

viscosity-corrected frequency ν of the characteristic diffusional folding motion at the barrier67,68 

(at 59 °C, ν = 5 × 105 s-1).17  η(59 °C) is the solvent viscosity at 59 °C and η(T) is the solvent 

viscosity at temperature T, both calculated with equation 11: 

 
Equation 11 

where A = 2.41 × 105 Pa·s, B = 247.8 K, and C = 140 K.69 

The parameters for equations 6–11 were used to calculate the values of the folding free 

energy ΔGf, folding rate kf and unfolding rate ku (ku = kf / Kf) for proteins WW, 14, 14p, 17, 17p, 

18, 18p, 19, 19p, 26p, and 30pthat are presented in Table 2-3.  

2.4.14 Plots of CD Spectra, Variable Temperature CD Data, and Temperature Jump 

Kinetic Data 

CD spectra, variable temperature CD data, and temperature jump kinetic data for proteins 

WW, 14, 14p, 17, 17p, 18, 18p, 19, 19p, 26p, 30pare shown in Figures 2-127 through 2-132, 

along with the parameters of equations 6-11 that were used to generate the global fits for each 

compound.  The standard error for each fitted parameter is also shown. 
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Similarly, CD spectra and variable temperature CD data for 16, 16p,16-Y23F, 16p-Y23F, 

16-32A, 16p-32A,D-19,D-19p, 19-32A, 19p-32A, 23, 23p,WW-T29A, 26p-T29A,27, 27p, 28, 

28p, 29, 29p,29-S32A, 29p-S32A,32, 32p,32-Y23F, 32p-Y23F,16/26p, 16p/26p, 19/26p, 

19p/26p, 16/19, 16/19p, 16p/19, 16p/19p, 26p/29, 26p/29p, 16p45, 18p45, 19p45, 26p45, 

27p45, 28p45, and 29p45, along with data for 19 and 19p in the presence of various amounts of 

D2O, are shown in Figures 2-127 through 2-157, along with the parameters of equations 3–5 that 

were used to generate global fits for each compound.  The standard error for each fitted 

parameter is also shown.   
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Figure 2-127. CD spectra (lines, top right), variable temperature CD data (circles, top left) and laser temperature 
jump relaxation data (lines, bottom) for 100 µM solutions of proteins 14 (black) and 14p (red) in 20 mM sodium 

phosphate, pH 7. Grey lines show the global fit of the kinetic data for each compound to equations 6–11. 
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Figure 2-128.CD spectra (lines, top right), variable temperature CD data (circles, top left) and laser temperature 
jump relaxation data (lines, bottom) for 100 µM solutions of proteins 17 (black) and 17p (red) in 20 mM sodium 

phosphate, pH 7. Grey lines show the global fit of the kinetic data for each compound to equations 6–11. 
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Figure 2-129.CD spectra (lines, top right), variable temperature CD data (circles, top left) and laser temperature 
jump relaxation data (lines, bottom) for 100 µM solutions of proteins 18 (black) and 18p (red) in 20 mM sodium 

phosphate, pH 7. Grey lines show the global fit of the kinetic data for each compound to equations 6–11. 
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Figure 2-130. CD spectra (lines, top right), variable temperature CD data (circles, top left) and laser temperature 
jump relaxation data (lines, bottom) for 100 µM solutions of proteins 19 (black) and 19p (red) in 20 mM sodium 

phosphate, pH 7. Grey lines show the global fit of the kinetic data for each compound to equations 6–11. 
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Figure 2-131.CD spectra (lines, top right), variable temperature CD data (circles, top left) and laser temperature 

jump relaxation data (lines, bottom) for 100 µM solutions of proteins WW (black) and 26p (red) in 20 mM sodium 
phosphate, pH 7. Grey lines show the global fit of the kinetic data for each compound to equations 6–11. 
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Figure 2-132. CD spectra (lines, top right), variable temperature CD data (circles, top left) and laser temperature 

jump relaxation data (lines, bottom) for 100 µM solutions of proteins WW (black) and 30p (red) in 20 mM sodium 
phosphate, pH 7. Grey lines show the global fit of the kinetic data for each compound to equations 6–11. 
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Figure 2-133.  CD spectra (50 µM) and variable temperature CD data (100 µM) for WW variants 16 (black) and 16p 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard 

errors. 

 

 
Figure 2-134.CD spectra (100 µM) and variable temperature CD data (100 µM) for WW variants 16-Y23F (black) 

and 16p-Y23F (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, 
along with standard errors. 
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Figure 2-135. Figure S128. CD spectra (100 µM) and variable temperature CD data (100 µM) for WW variants 16-
S32A (black) and 16p-S32A (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in 

the table, along with standard errors. 

 

 
Figure 2-136.Variable temperature CD data (100 µM) for WW variants D-19 (black) and D-19p (red) in 20 mM 

sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 
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Figure 2-137.Variable temperature CD data (100 µM) for WW variants 19-S32A (black) and 19p-S32A (red) in 20 

mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 

 

 

 
Figure 2-138.CD spectra and variable temperature CD data for 100 µM solutions of WW variants 23 (black) and 
23p (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with 

standard errors. 
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Figure 2-139.CD spectra and variable temperature CD data for 100 µM solutions of WW variants WW-T29A (black) 

and 26p-T29A (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, 
along with standard errors. 

 

 

 
Figure 2-140.CD spectra and variable temperature CD data for 50 µM solutions of WW variants 27 (black) and 27p 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard 

errors. 
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Figure 2-141.CD spectra and variable temperature CD data for 50 µM solutions of WW variants 28 (black) and 28p 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard 

errors. 

 

 

 
Figure 2-142.CD spectra (50 µM) and variable temperature CD data (100 µM) for WW variants 29 (black) and 29p 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard 

errors. 
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Figure 2-143.CD spectra (100 µM) and variable temperature CD data (100 µM) for WW variants 29-S32A (black) 

and 29p-S32A (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, 
along with standard errors. 

 

 

 
Figure 2-144.CD spectra and variable temperature CD data for 100 µM solutions of WW variants 32 (black) and 
32p (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with 

standard errors. 
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Figure 2-145. CD spectra (100 µM) and variable temperature CD data (100 µM) for WW variants 32-Y23F (black) 

and 32p-Y23F (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, 
along with standard errors. 

 

 

 

Figure 2-146.Variable temperature CD data for 100 µM solutions of WW variants 16, 16/26p, 16p, and 16p/26p in 
20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 
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Figure 2-147.Variable temperature CD data for 100 µM solutions of WW variants 19, 19/26p, 19p, 19p/26p in 20 
mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 

 

 

 
Figure 2-148.Variable temperature CD data for 100 µM solutions of WW variants 16/19, 16/19p, 16p/19, and 
16p/19p in 20 mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with 

standard errors. 
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Figure 2-149. Variable temperature CD data for 100 µM solutions of WW variants 29, 26p/29, 29p, 26p/29p in 20 

mM sodium phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 

 

 

 
Figure 2-150.Variable temperature CD data for 50 µM solutions of WW variants 16 and 16p45 in 20 mM sodium 

phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 
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Figure 2-151. Variable temperature CD data for 50 µM solutions of WW variants 18 and 18p45 in 20 mM sodium 

phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 

 

 

 
Figure 2-152.Variable temperature CD data for 50 µM solutions of WW variants 19 and 19p45 in 20 mM sodium 
phosphate, pH 7. Fit parameters from equations S3–S5 appear in the table, along with standard errors. Data for 50 

µM 19 are from ref 25.  Data for 50 µM 19p45 are from ref 25.  These data were refit using equations 3-5 according to 
the methods described above. 
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Figure 2-153.Variable temperature CD data for 100 µM solutions of WW variants 26 and 26p45 in 20 mM sodium 

phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 

 

 

 
Figure 2-154.Variable temperature CD data for 50 µM solutions of WW variants 27 and 27p45 in 20 mM sodium 

phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 
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Figure 2-155.Variable temperature CD data for 50 µM solutions of WW variants 28 and 28p45 in 20 mM sodium 

phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 

 

 

 
Figure 2-156.Variable temperature CD data for 50 µM solutions of WW variants 29 and 29p45 in 20 mM sodium 

phosphate, pH 7. Fit parameters from equations 3–5 appear in the table, along with standard errors. 
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Figure 2-157. Variable temperature CD data for 100 µM solutions of WW variants 19 and 19p in 20 mM sodium 
phosphate, pH 7, in the presence of increasing amounts of D2O. Fit parameters from equations 3–5 appear in the 

table, along with standard errors. 

 

2.4.15 Proteoylysis 

50 μM protein solutions in 20 mM sodium phosphate buffer (pH7) were incubated at 

ambient temperature with 5μg/mL pronase or with 10 μg/mL proteinase K respectively for up to 
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10 hours. At each of the several time points, the proteolysis reaction was quenched by adding 

310 μL of aqueous trifluoroacetic acid (1% v/v) to 150 uL of the reaction mixture.  The 

quenched mixture was then analyzed in triplicate by reverse phase HPLC analytical column, 

monitored by a UV-Vis detector at 220 nm. The degradation of the proteins was assessed using 

the integrated HPLC peak area to account for how much of the full-length protein remained at 

each time point. The protein half-lives were calculated by fitting the integrated peak areas as a 

function of time to a monoexponential decay equation:  

Area(t) = A0 • exp [-t/τ], 

Equation 12 

where t is time in minutes, A0 is a constant corresponding to relative integrated peak area at t = 0, 

and τ is the decay time, which is related to the protein half-life t1/2  (t1/2 = τ ln 2).  Decay traces 

for proteins WW, 14, 14p, 16, 16p, 17, 17p, 18, 18p, 19, 19p, 20, 20p, 21, 21p, 23, 23p, 26p, 27, 

27p, 28, 28p, 29, 29p, 30p, 32, 32p, 16p/26p, 19p/26p, 26p/29p, 16/19, and 16p/19p, 16p45, 

19p45, 26p45, 28p45, 29p45 are shown in Figures 2-158 through 2-174. 
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Figure 2-158.  Proteolysis of 16 or 16p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 
(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 16p and 16 are 

shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 
lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-

lives. 
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Figure 2-159. Proteolysis of 17 or 17p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 
Pronase (5 mg/mL) as monitored by HPLC. Data points for 17p and 17 are shown as red and black circles, 

respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the data to a 
monoexponential decay function, which was used to calculate the indicated half-lives. 
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Figure 2-160. Proteolysis of 18 or 18p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 

(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 18p and 18 are 
shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 

lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-
lives. 
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Figure 2-161.Proteolysis of 19 or 19p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 
(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 19p and 19 are 

shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 
lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-

lives. 
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Figure 2-162.Proteolysis of 23 or 23p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 
(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 23p and 23 are 

shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 
lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-

lives. 
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Figure 2-163. Proteolysis of WW or 26p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) 
by (A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 26p and WW 
are shown as red and black circles, respectively, and each represents the average of three replicate experiments. 

Solid lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated 
half-lives. 
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Figure 2-164. Proteolysis of 27 or 27p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 

(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 27p and 27 are 
shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 

lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-
lives. 
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Figure 2-165. Proteolysis of 28 or 28p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 

(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 28p and 28 are 
shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 

lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-
lives. 
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Figure 2-166. Proteolysis of 29 or 29p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) by 

(A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 29p and 29 are 
shown as red and black circles, respectively, and each represents the average of three replicate experiments. Solid 

lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated half-
lives. 
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Figure 2-167.Proteolysis of 19 or 19p/26p (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) 
by (A) proteinase K (10 mg/mL) or (B) Pronase (5 mg/mL) as monitored by HPLC. Data points for 19p/26p and 19 

are shown as red and black circles, respectively, and each represents the average of three replicate experiments. 
Solid lines represent fits of the data to a monoexponential decay function, which was used to calculate the indicated 

half-lives. 
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Figure 2-168. Proteolysis of 26/29 and 26p/29p (50 µM protein concentration in 20 mM sodium phosphate buffer, 

pH 7) by  Pronase (5 mg/mL) as monitored by HPLC. Data points for 26p/29p and 26/29 are shown as red and black 
circles, respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the 

data to a monoexponential decay function, which was used to calculate the indicated half-lives. 

 

 
Figure 2-169.Proteolysis of 16/19 and 16p/19p (50 µM protein concentration in 20 mM sodium phosphate buffer, 

pH 7) by Pronase (5 mg/mL) as monitored by HPLC. Data points for 16p/19p and 16/19 are shown as red and black 
circles, respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the 

data to a monoexponential decay function, which was used to calculate the indicated half-lives. 
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Figure 2-170.Proteolysis of 16 and 16p45 (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) 

by Pronase (5 mg/mL) as monitored by HPLC. Data points for 16p45 and 16 are shown as red and black circles, 
respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the data to a 

monoexponential decay function, which was used to calculate the indicated half-lives. 

 

 

 
Figure 2-171.Proteolysis of 19 and 19p45 (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) 

by Pronase (5 mg/mL) as monitored by HPLC. Data points for 19p45 and 19 are shown as red and black circles, 
respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the data to a 

monoexponential decay function, which was used to calculate the indicated half-lives. 
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Figure 2-172. Proteolysis of WW and 26p45 (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 

7) by Pronase (5 mg/mL) as monitored by HPLC. Data points for 26p45 and WW are shown as red and black circles, 
respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the data to a 

monoexponential decay function, which was used to calculate the indicated half-lives. 

 

 

 

Figure 2-173. Proteolysis of 28 and 28p45 (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) 
by Pronase (5 mg/mL) as monitored by HPLC. Data points for 28p45 and 28 are shown as red and black circles, 

respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the data to a 
monoexponential decay function, which was used to calculate the indicated half-lives. 
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Figure 2-174.Proteolysis of 29 and 29p45 (50 µM protein concentration in 20 mM sodium phosphate buffer, pH 7) 

by Pronase (5 mg/mL) as monitored by HPLC. Data points for 29p45 and 29 are shown as red and black circles, 
respectively, and each represents the average of three replicate experiments. Solid lines represent fits of the data to a 

monoexponential decay function, which was used to calculate the indicated half-lives. 

 

2.4.16 Synthesis, Characterization, and Thermodynamic Analysis of a PEGylated Src SH3 

Variant 

Protein SH3 T20N is a variant of the chicken Src SH3 domain (hereafter called SH3) in 

which Thr20 has been replaced by Asn. PEGylated protein SH3 T20NPEG is a variant of SH3 

in which Thr20 has been replaced by AsnPEG4. The sequences of these proteins are shown 

below: 

 

The bold underlined N in SH3 T20NPEG represents AsnPEG4.  These SH3 domain 

variants were synthesized as C-terminal amides by microwave-assisted solid-phase peptide 

synthesis, using a standard Fmoc Nα protection strategy as described above. Amino acids were 

activated by 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU, 
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purchased from Advanced ChemTech) and N-hydroxybenzotriazole hydrate (HOBt, purchased 

from Advanced ChemTech). Rink Amide MBHA resin LL, Fmoc-protected psuedoproline 

dipeptides (incorporated at the positions highlighted above in bold blue font; used to facilitate 

successful synthesis of this lengthy peptide), and Fmoc-protected α-amino acids with acid-labile 

side-chain protecting groups were purchased from EMD Biosciences, except for Fmoc-

Asn(PEG4)-OH (N2-fluorenylmethyoxycarbonyl-N4-[11-methoxy-3,6,9-trioxaundecyl]-L-

asparagine), which was synthesized as described previously.24 

The Rink Amide MBHA LL resin has a nominal loading capacity of 0.38 mmol/g.  We 

found that our synthetic efforts were more successful when we reduced the loading capacity of 

the resin prior to synthesis.  To do this, we coupled a mixture of Fmoc-protected serine (the C-

terminal residue of SH3 T20N and SH3 T20NPEG) and Boc-protected valine to the free amino 

groups on the resin. We reasoned that this approach would reduce the loading capacity of the 

resin by a factor of two because Boc is stable to peptide coupling and piperidine-mediated Fmoc 

deprotection conditions.  Spectroscopic characterization of the amount of dibenzofulvene 

released upon the Fmoc deprotection of a defined amount of this modified resin indicated that its 

loading capacity was 0.16 mmol/g.   

We aliquotted reduced-capacity modified resin into two fritted polypropylene syringes 

(one for each of the SH3 variants described above; 134 mg per syringe, 22 μmol at ~0.16 mmol/g 

resin loading) and allowed the resin to swell first in CH2Cl2, and then in dimethylformamide 

(DMF). Solvent was then drained from the resin using a vacuum manifold. A general synthetic 

procedure follows: 

To remove the Fmoc protecting group on a resin-linked amino acid, 1.1 ml of 20% 

piperidine in DMF was added to the resin, and the resulting mixture was allowed to sit at room 
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temperature for 1 minute. The deprotection solution was then drained from the resin with a 

vacuum manifold. Then, an additional 1.1 mL of 20% piperidine in DMF was added to the resin, 

and the reaction vessel was placed in the microwave. The temperature was ramped from rt to 

80°C over the course of 2 minutes, and held at 80°C for 2 minutes. The deprotection solution 

was drained from the resin using a vacuum manifold, and the resin was rinsed five times with 

DMF. After incorporation of Asp41 we used 5% piperazine 0.1M HOBT in DMF for each 

subsequent deprotection reaction to prevent piperidine-mediated aspartimide formation.   

For coupling of an activated amino acid to an amino group on resin, we prepared a stock 

coupling solution of 100 mL NMP, 3.17 g HBTU (0.01 mol, 0.1 M) and 1.53 g HOBt (0.01 mol, 

0.1 M) for a final concentration of 0.1 M HBTU and 0.1 M HOBt. The desired Fmoc-protected 

amino acid (110 μmol, 5 eq) was dissolved by vortexing in 1.1 mL coupling solution. To the 

dissolved amino acid solution was added 37 μL DIEA (10eq). [Only 3 eq were used during the 

coupling of Fmoc-Asn(PEG)-OH monomer, and the required amounts of HBTU, HOBt, and 

DIEA were adjusted accordingly.] The resulting mixture was vortexed briefly and allowed to 

react for at least 1 min. The activated amino acid solution was then added to the resin, and the 

reaction vessel was placed in the microwave. The temperature was ramped from rt to 70°C over 

2 minutes, and held at 70°C for 10 minutes. Following the coupling reaction, the activated amino 

acid solution was drained from the resin with a vacuum manifold, and the resin was subsequently 

rinsed five times with DMF. The cycles of deprotection and coupling were alternately repeated 

to give the desired full-length protein. 

Acid-labile side-chain protecting groups were globally removed and proteins were 

cleaved from the resin by stirring the resin for ~4h in a solution of phenol (0.125 g), water (125 

μL), thioanisole (125 μL), ethanedithiol 62.5 μL) and triisopropylsilane (25 μL) in trifluoroacetic 
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acid (TFA, 2 mL). Following the cleavage reaction, the TFA solution was drained from the resin, 

the resin was rinsed with additional TFA. Proteins were precipitated from the concentrated TFA 

solution by addition of diethyl ether (~40 mL). Following centrifugation, the ether was decanted, 

and the pellet was dissolved in ~40mL 1:1 H2O/MeCN, frozen and lyophilized to remove 

volatile impurities. The resulting powder was stored at -20°C until purification. 

Immediately prior to purification, the crude protein was dissolved in 1:1 H2O/MeCN. 

Proteins were purified by preparative reverse-phase HPLC on a C18 column using a linear 

gradient of water in acetonitrile with 0.1% v/v TFA (Figure 2-175 through 2-176). Proteins were 

then re-purified by semi-preparative reverse-phase HPLC on a C18 column using a linear 

gradient of water in acetonitrile with 0.1% v/v TFA (Figure 2-177 through 2-178). HPLC 

fractions containing the desired protein product were pooled, frozen, and lyophilized. Protein 

purity was assessed by analytical HPLC (Figures 2-179 through 2-180), and proteins were 

identified by electrospray ionization time of flight mass spectrometry (ESI-TOF, Figures 2-181 

through 2-182). 

 

 

Figure 2-175.  Preparative reverse-phase HPLC purification data for SH3 T20N. Protein solution was injected onto 
a C18 preparative column and eluted using a linear gradient of 25-45% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% 
TFA) over 25 minutes, followed by a 5 minute rinse (95% B), and a 10 minute column re-equilibration (25% B) 

with a flow rate of 10 mL/min. 
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Figure 2-176.Preparative reverse-phase HPLC purification data for SH3 T20NPEG. Protein solution was injected 

onto a C18 preparative column and eluted using a linear gradient of 25-45% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% 
TFA) over 25 minutes, followed by a 5 minute rinse (95% B), and a 10 minute column re-equilibration (25% B) 

with a flow rate of 10 mL/min. 

 

 
Figure 2-177. Semi-preparative reverse-phase HPLC repurification data for SH3 T20N. Protein solution was 

injected onto a C18 semi-preparative column and eluted using a linear gradient of 23-43% B (A=H2O, 0.1% TFA; 
B= MeCN, 0.1% TFA) over 22 minutes, followed by a 7 minute rinse (95% B), and a 6 minute column re-

equilibration (23% B) with a flow rate of 6 mL/min. 
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Figure 2-178.Semi-preparative reverse phase HPLC repurification data for SH3 T20NPEG. Protein solution was 
injected onto a C18 semi-preparative column and eluted using a linear gradient of 23-43% B (A=H2O, 0.1% TFA; 

B= MeCN, 0.1% TFA) over 22 minutes, followed by a 7 minute rinse (95% B), and a 6 minute column re-
equilibration (23% B) with a flow rate of 6 mL/min. 

 

 

 

 
Figure 2-179.Analytical HPLC data for SH3 T20N. Protein solution was injected onto a C18 analytical column and 
eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, followed 

by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 mL/min. 
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Figure 2-180.Analytical HPLC data for SH3 T20NPEG. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 

 

 
Figure 2-181. ESI TOF MS data for SH3 T20N. Expected [M+4H+]/4 = 1603.046 Da. Observed [M+4H+]/4 = 

1603.058 Da. 
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Figure 2-182.ESI TOF MS data for SH3 T20NPEG. Expected [M+5H+]/5 = 1320.663 Da. Observed [M+5H+]/5 = 

1320.660 Da. 

 

We made measurements on SH3 T20N and SH3 T20NPEG with an Aviv 420 Circular 

Dichroism Spectropolarimeter, using quartz cuvettes with a path length of 0.1 cm. 50 µM protein 

solutions were prepared in 20 mM sodium phosphate buffer, pH 7, and protein concentrations 

were determined spectroscopically based on tyrosine and tryptophan absorbance at 280 nm in 6 

M guanidine hydrochloride + 20 mM sodium phosphate (εTrp = 5690 M-1cm-1, εTyr = 1280 M-

1cm-1).60  CD spectra of were obtained from 340 to 200 nm at 25ºC (Figure 2-183). Variable 

temperature CD data were obtained in triplicate for 50 μM solutions of SH3 T20N and SH3 

T20NPEG20 mM sodium phosphate (pH 7) by monitoring molar ellipticity at 222 nm from 1 to 

95°C at 2 °C intervals, with 120 s equilibration time between data points and 30 s averaging 

times. 

Data from the three replicate variable temperature CD experiments on each protein 

(Figure 2-183) were fit to the following model for two-state thermally induced unfolding 

transitions: 
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[θ] =
D0 + Kf(N0 + N1 ∙ T)

1 + Kf
 

Equation 13 

where T is temperature in Kelvin, D0 is the y-intercept of the horizontal post-transition baseline; 

N0 is the y-intercept and N1 is the slope of the pre-transition baseline (which was held at N1 = 0 

for SH3 T20N); and Kf is the temperature-dependent folding equilibrium constant. Kf is related 

to the temperature-dependent free energy of folding ΔGf(T) according to the following equation: 

 
Equation 14 

where R is the universal gas constant (0.0019872 kcal/mol/K). ΔGf(T) was fit to the following 

equation: 

∆Gf =
∆H(Tm) ∙ (Tm − T)

Tm
 

Equation 15 

where the fit parameters are Tm(the midpoint of the unfolding transition; the temperature at 

which ΔGf= 0); and ΔH(Tm), the change in enthalpy upon folding at Tm.  This equation is derived 

from equation 5 above, with ΔCp (the change in heat capacity upon folding) is held equal to 0 

kcal mol-1 K-1; in preliminary fitting efforts of the data for SH3 T20N and SH3 T20NPEG to 

equation 5, we found that the fit was over parameterized, with high-error near-zero values for 

ΔCp.  Therefore, we eliminated the heat capacity term, and used equation 15 to fit the data for 

SH3 T20N and SH3 T20NPEG.The parameters for equations 13-15 (Figure 2-183) were used to 

calculate the values of the folding free energy ΔGf. 
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Figure 2-183.CD spectra (50 µM) and variable temperature CD data (50 µM) for SH3 T20N (black) and SH3 
T20NPEG (red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S12–S14 appear in the table, 

along with standard errors. 
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3 CONJUGATION STRATEGY STRONGLY IMPACTS THE 

CONFORMATIONAL STABILITY OF A PEG-PROTEIN CONJUGATE 

3.1 Introduction 

Increasing protein conformational stability is a useful method1 for enhancing the 

pharmacokinetic properties of proteins because unfolded or misfolded proteins can aggregate,2 

experience proteolytic degradation,3 and be recognized by antibodies more readily4 than are 

highly stable folded proteins. We recently found that protein PEGylation imparts enhanced 

resistance to proteolysis when PEG increases protein conformational stability.1,5 We have also 

developed a predictive structure-based method for identifying such locations within two model 

proteins: the WW domain of the human protein Pin 1 and the Src SH3 domain.5 We generated 

the required PEG-protein conjugates for these preliminary studies by attaching a short PEG 

oligomer to the side-chain amide nitrogen of an Fmoc-protected Asn residue, which was 

incorporated at desired positions within WW or SH3 via solid-phase peptide synthesis.  

Our long-term goal is to identify and evaluate stabilizing PEGylation sites within larger and 

more therapeutically relevant proteins using this method. However, its reliance on Asn-

PEGylation presents a major logistical challenge: Asn-PEG is not genetically encodable. Asn-

PEGylated peptides and proteins can be prepared via solid-phase peptide synthesis5 and/or native 

chemical ligation,6 but not via biological expression. An attractive potential alternative to Asn-
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PEGylation is to incorporate PEG site-specifically7 via chemoselective reactions8 with 

genetically encodable amino acids. For example, Cys thiols can be selectively modified by 

conjugate addition with maleimide-based PEG reagents, among other approaches.9 Similarly, 

unnatural azide- or alkyne-bearing amino acids like azidohomoalanine10 (Aha) or 

propargyloxyphenylalanine11 (PrF) can be incorporated into expressed proteins,12,13 which can 

then be modified selectively with the appropriate alkyne- or azide-functionalized PEG via the 

copper-catalyzed azide-alkyne cycloaddition (CuAAC).14-16 In addition, transglutaminase 

enzymes can modify the amide nitrogen of a Gln side-chain with PEG, albeit without complete 

site-specificity.17 However, the Cys-PEG thioether and the PrF- and Aha-PEG triazole linkers 

(Figure 3-1) differ substantially from the Asn-PEG amide linker used in our previous studies; 

and though Gln-PEG more closely resembles Asn-PEG, it places the pendant PEG further from 

the peptide backbone than does Asn-PEG. Our structure-based method for selecting PEGylation5 

sites relies on assumptions about the orientation of the PEGylated side chain relative to nearby 

OH groups; we wondered whether substantial changes to linker structure would alter the ability 

of PEG to enhance protein conformational stability.  

3.2 Results and Discussion 

We investigated the impact of linker structure on PEG-based protein stabilization by 

comparing the impact of Cys-, Aha-, PrF-, and Gln-PEGylation relative to Asn-PEGylation at a 

previously characterized stabilizing position within WW. To this end, we used solid-phase 

synthesis to prepare proteins 2, 3, 4, and 5, in which Cys, PrF, Aha, and Gln occupy position 19 

of WW, respectively (Figure 1). We then prepared four Cys-PEGylated counterparts of protein 2: 

(1) protein 2p-1, in which a four-unit PEG is directly attached to the Cys thiol; (2) protein 2p-2, 

in which PEG is attached to the imide nitrogen of the α-alkylthiosuccinimide linker obtained by 
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conjugate addition of a PEG-maleimide to the Cys thiol; (3) protein 2p-3, which differs from 2p-

2 in that the PEG is connected to the amide nitrogen of a more flexible α-alkylthioacetamide 

linker (we note that 2p-3 is a mixture of epimers at the α-carbon of position 19 as a result of the 

conjugation reaction; see the supporting information for details); and (4) protein 2p-4, which 

differs from 2p-2 in that the PEG is connected to the imide nitrogen of the α-

alkylthiosuccinimide via a three-carbon linker. In addition, we modified the azide of the Aha side 

chain in 3 with a PEG alkyne via CuAAC to give Aha-PEGylated protein 3p. Similarly, we 

modified the alkyne of the PrF side chain in 4 with a PEG azide to give PrF-PEGylated protein 

4p. We prepared Gln-PEGylated protein 5p by incorporating the appropriate PEG-linked Gln 

monomer during solid-phase synthesis. 
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Figure 3-1. Amino acid sequences of PEGylated and non-PEGylated WW variants with side-chain structures at 
position 19 as indicated. 

 

We used variable temperature circular dichroism (CD) to assess the stability of PEGylated 

variants 2p-1, 2p-2, 2p-3, 2p-4, 3p, 4p, and 5p relative to their non-PEGylated counterparts. 

Importantly, non-PEGylated 2, 3, 4, and 5 are relatively similar in stability to Asn-containing 1 

(Table 1), indicating that changing Asn to Cys, Aha, PrF, or Gln at position 19 does not 

dramatically perturb WW stability. As described previously5 Asn-PEGylation at position 19 

increases WW stability by -0.74 ± 0.02 kcal mol-1 (compare 1p vs. 1 in Table 3-1). In contrast, 

2p-1 and 2p-2 are only slightly more stable than 2, whereas 2p-3 and 2p-4 are each slightly less 

stable than 2. The Aha-PEG triazole and Gln-PEG amide linkers in 3p and 5p provide nearly 
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identical PEG-based stabilization (-0.36 ± 0.01 kcal/mol for 3p vs. -0.37 ± 0.01 kcal/mol for 5p; 

Table 1), consistent with their similar lengths and with previous observations that peptide bonds 

can be replaced by triazoles without dramatic disruptions to protein structure.14,18 In contrast, 

PrF-PEGylation does not substantially change WW stability (compare 4p vs. 4 in Table 3-1). 

These observations suggest that the stabilizing impact of Asn-PEGylation is highly sensitive to 

the structure of the PEG-protein linker.  Cys-PEGylated 2p-1, 2p-2, 2p-3, and 2p-4, and PrF-

PEGylated 4p apparently fail to recapitulate some essential structural feature of the Asn-

PEGylated 1p, whereas Aha-PEGylation (as in 3p) and Gln-PEGylation (as in 5p) more closely 

mimic the stabilizing effect of Asn-PEGylation. 

Gln-PEG differs from Asn-PEG by the addition of a single methylene group between the 

amide linker and the peptide backbone; this subtle structural difference decreases the amount of 

PEG-based stabilization in 5p by 0.37 ± 0.02 kcal/mol relative to 1p. Previous work suggests 

that Asn-PEGylation stabilizes the folded conformation of 1p by entropically favorable local 

desolvation of nearby amino acids on the protein surface. The longer Gln side chain may not 

place PEG close enough to the protein surface for optimal desolvation, leading ultimately to 

diminished PEG-based stabilization. Distance from the backbone might also explain why 

triazole-containing Aha-PEG and its isostere Gln-PEG provide similar amounts of PEG-based 

stabilization relative to each other, but inferior amounts of stabilization relative to the shorter 

Asn-PEG. To test this hypothesis, we replaced Aha in 3 with propargylglycine (PrG) to give 

protein 6; we then prepared PEGylated 6p by modifying the acetylene in 6 with a PEG-azide via 

CuAAC (Figure 3-1). A PrG-linked PEG should be one methylene unit closer to the protein 

backbone than an Aha-linked PEG and should therefore more closely resemble the Asn-linked 

PEG of 1p.  
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Table 3-1. Impact of Linker Structure on PEG-based Stabilization of WW 

Protein Tm (°C) ∆Gf (kcal/mol) ∆∆Gf (kcal/mol) 

1 55.9 ± 0.2 0.38 ± 0.02 --- 

1p 63.8 ± 0.1 -0.36 ± 0.01 -0.74 ± 0.02 

1-nbp 68.1 ± 0.1 -0.81 ± 0.02 -1.19 ± 0.02 

1-cbp 67.3 ± 0.3 -0.75 ± 0.04 -1.13 ± 0.04 

m1 60.7 ± 0.1 -0.06 ± 0.01 --- 

m1p 63.7 ± 0.2 -0.36 ± 0.01 -0.30 ± 0.01 

2 55.6 ± 0.4 0.42 ± 0.02 --- 

2p-1 56.8 ± 0.2 0.26 ± 0.01 -0.16 ± 0.02 

2p-2 56.3 ± 0.2 0.34 ± 0.01 -0.08 ± 0.02 

2p-3 54.9 ± 0.2 0.43 ± 0.01 0.01 ± 0.02 

2p-4 53.1 ± 0.4 0.67 ± 0.02 0.24 ± 0.02 

3 54.0 ± 0.2 0.55 ± 0.01 --- 

3p 57.7 ± 0.2 0.18 ± 0.01 -0.36 ± 0.01 

4 52.3 ± 0.3 0.68 ± 0.02 --- 

4p 53.7 ± 0.2 0.64 ± 0.02 -0.04 ± 0.02 

5 54.2 ± 0.2 0.48 ± 0.01 --- 

5p 58.7 ± 0.2 0.11 ± 0.01 -0.37 ± 0.01 

6 52.6 ± 0.3 0.73 ± 0.03 --- 

6p 58.6 ± 0.1 0.14 ± 0.01 -0.59 ± 0.03 

 

Consistent with this hypothesis, we observed that PrG-PEGylation increases the stability of 6p 

by -0.59 ± 0.03 kcal/mol relative to 6, a larger increment than observed previously for Aha-

PEGylation. However, PrG-PEGylation is unlikely to be a useful alternative to Asn-PEGylation: 

it is not as stabilizing as Asn-PEGylation and is also not genetically encodable. 

Having demonstrated the importance of linker distance from the peptide backbone, we 

wanted to understand the additional structural features that make Asn-PEG more stabilizing than 

the other linkers investigated here. Unlike its inferior isostere PrG-PEG, Asn-PEG contains a 

secondary amide group; we wondered whether hydrogen bonding by the amide proton plays an 

important role in PEG-based stabilization. Attempts to address this question via amide-to-ester 

Melting temperatures and folding free energies, are given ± standard error at 50 µM protein concentration in 20 
mM aqueous sodium phosphate, pH 7 at 333.15K. 
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mutation19,20 were unsuccessful due to the instability of the resulting ester protein-PEG linkage. 

Accordingly, we used an alternative approach, preparing protein m1, in which N-methyl Asn 

occupies position 19, along with its PEGylated counterpart m1p, in which the methylated Asn 

nitrogen is also attached to a four-unit PEG (Figure 1). NMR analysis indicates that the Fmoc-

protected N-methyl N-PEGylated Asn monomer used to prepare protein m1p exists as a mixture 

of E and Z amide stereoisomers; and we expect the same to be true within protein m1p.  

Nevertheless, variable temperature CD data for m1p can be fit to a simple two-state folding 

model without evidence of heterogeneity, suggesting that the E and Z amide stereoisomers of 

m1p must have closely similar folding free energies.  

Interestingly, N-methylation of Asn itself increases WW stability by -0.45 ± 0.02 kcal/mol 

(Figure 3-2; compare m1 vs. 1 in Table 3-1).  This result is in agreement with our previous 

observations that appending even a single ethylene oxide unit to Asn19 in WW can provide 

substantial stabilization,1 and highlights the impact of changes to side-chain structure very close 

to the peptide backbone on protein conformational stability.  Further elongation from the methyl 

group in m1 to the four-unit PEG in 1p provides an additional -0.30 ± 0.01 kcal/mol of stability.  

Subsequent N-methylation of the Asn-PEG amide nitrogen in 1p gives protein m1p (Tm 
 = 63.7 ± 

0.2 °C), which is indistinguishable from 1p (Tm = 63.8 ± 0.1 °C) in terms of stability.  This result 

indicates that the Asn-PEG amide proton in 1p is not an essential feature of stabilizing PEG-

protein linkers.  Elongating the N-methyl group of m1p to a second four-unit PEG results in N-

branched bis-PEGylated variant 1-nbp (Figure 3-1, Table 3-1), which is -1.19 ± 0.02 kcal/mol 

more stable than non-PEGylated 1 and -0.45 ± 0.02 kcal/mol more stable than mono-PEGylated 

1p. The difference in stability between 1-nbp and 1p cannot be attributed solely to the fact that 

1-nbp contains four more ethylene oxide units than 1p: branched 1-nbp is also more stable than 
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a previously characterized derivative of 1p that has eight ethylene oxide units instead of four.21 

This observation highlights the possibility that branched PEGs may be more effective at 

increasing protein stability than linear PEGs of similar molecular weight. 

 

Figure 3-17. Folding free energies of WW variants in which Asn, N-Methyl-Asn, or their PEGylated derivatives 
occupy position 19. 

 

We wondered whether the favorable impact of branching on PEG-based stabilization 

depends on the location of the branch point at the amide nitrogen of Asn or whether a different 

branch point might provide similar levels of stabilization.  Accordingly, we prepared protein 1-

cbp (Figure 3-1) in which the branch point is located at the first carbon of the appended PEG 

chain; the resulting linkage is a secondary amide (as in 1p) and not a tertiary amide (as in 1-nbp 

and m1p).  C-branched bis-PEGylated protein 1-cbp is only marginally less stable than 1-nbp 

(Figure 3-2, Table 3-1), and is -0.38 ± 0.04 kcal/mol more stable than mono-PEGylated 1p, 

suggesting that PEG-branching can provide substantial stabilization independent of the identity 

(N vs. C) or geometry (trigonal planar vs. tetrahedral) of the branch point. 
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3.3 Conclusion 

The picture that emerges from these data is that the identity of the PEG-protein linker is a 

critical determinant of PEG-based stabilization within WW.  In particular, linkers that provide 

the largest PEG-based increases in stability have rigid planar functional groups (amides as in 1p, 

1-nbp, 1-cbp, and 5p; triazoles as in 3p and 6p) relatively close to the peptide backbone, but do 

not absolutely require the presence of an amide proton.  The substantially larger PEG-based 

stabilization observed for PrG-PEGylation relative to Aha-PEGylation and for Asn-PEGylation 

relative to Gln-PEGylation demonstrates that moving this rigid planar functional group even one 

atom further from the peptide backbone can prevent the pendant PEG from providing optimal 

stabilization. Despite their inferiority in this regard, Gln-PEG and Aha-PEG can be installed 

chemoselectively on encoded side-chains unlike their more stabilizing truncated counterparts 

Asn-PEG and PrG-PEG; the use of Gln-PEG or Aha-PEG as encodable alternatives to Asn-

PEGylation therefore merits further investigation.  Additionally, the superiority of branched vs. 

linear Asn-PEGs suggest important additional applications for branched PEGs in protein 

stabilization. In the short term, applying our predictive guidelines for Asn-PEGylation to larger 

therapeutic proteins may require a fragment condensation/ligation approach and/or the 

development of new chemoselective reactions that target Asn side chains. Alternatively, it will 

be interesting to see whether the rules developed previously for identifying stabilizing Asn-

PEGylation sites are also useful for identifying stabilizing Aha- or Gln-PEGylation sites. More 

broadly, our results suggest that efforts to generate optimally stable PEG-protein conjugates must 

consider conjugation chemistry as an important variable. 
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3.4 Supporting Information 

3.4.1 WW Variant Synthesis 

Proteins 1-nbp, 1-cbp, m1, m1p, 2, 2p-1, 3, 4, 5, 6, and 6p were synthesized as 

C-terminal acids, by microwave-assisted solid-phase peptide synthesis, using a standard Fmoc 

Nα protection strategy as described previously.22,23 Amino acids were activated by 

2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU, purchased 

from Advanced ChemTech) and N-hydroxybenzotriazole hydrate (HOBt, purchased from 

Advanced ChemTech). Fmoc-Gly-loaded Novasyn Wang resin and all Fmoc-protected α-amino 

acids with acid-labile side-chain protecting groups were purchased from EMD Biosciences or 

Advanced ChemTech except for previously synthesized N-[(9H-Fluoren-9-ylmethoxy)-O-2-

propyn-1yl-L-Tyrosine24 (used in the synthesis of 4), along with new compounds Fmoc-L-

Cys(PEG4)-OH  [16-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2,5,8,11-tetraoxa-14-

thiaheptadecan-17-oic acid, (S1), used in the synthesis of 2p-1];   Fmoc-Methyl-L-Asn-OH [N2-

(((9H-fluoren-9-yl)methoxy)carbonyl)-N4-methylasparagine, (S3), used in the synthesis of m1];  

Fmoc-L-GlnPEG4-OH [18-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-15-oxo-2,5,8,11-

tetraoxa-14-azanonadecan-19-oic acid, (S5), used in the synthesis of 6p]; Fmoc-Methyl-L-

AsnPEG4-OH [(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-14-methyl-15-oxo-2,5,8,11-

tetraoxa-14-azaoctadecan-18-oic acid, (S7), used in the synthesis of m1p]; Fmoc-L-

Asn(PEG4)2-OH [(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-13-(2,5,8,11-

tetraoxadodecyl)-15-oxo-2,5,8,11-tetraoxa-14-azaoctadecan-18-oic acid, (S9), used in the 

synthesis of 1-cbp]; Fmoc-L-Asn(PEG)2-OH [(S)-17-((((9H-fluoren-9-

yl)methoxy)carbonyl)amino)-15-oxo-14-(2,5,8,11-tetraoxatridecan-13-yl)-2,5,8,11-tetraoxa-14-
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azaoctadecan-18-oic acid, (S14), used in the synthesis of 1-nbp], each of which were each 

synthesized as described below.  

WW variants were synthesized on a 25 μmol scale. A general protocol for manual solid-

phase peptide synthesis follows: Fmoc-Gly-loaded NovaSyn Wang resin (69.4 mg, 25 μmol at 

0.38 mmol/g resin loading) was  

aliquotted into a fritted polypropylene syringe and allowed to swell first in CH2Cl2, and then in 

dimethylformamide (DMF). Solvent was drained from the resin using a vacuum manifold.  

To remove the Fmoc protecting group on the resin-linked amino acid, 1.25 ml of 20% 

piperidine in DMF was added to the resin, and the resulting mixture was allowed to sit at room 

temperature for 1 minute. The deprotection solution was then drained from the resin with a 

vacuum manifold. Then, an additional 1.25 mL of 20% piperidine in DMF was added to the resin, 

and the reaction vessel was placed in the microwave. The temperature was ramped from rt to 

80°C over the course of 2 minutes, and held at 80°C for 2 minutes. The deprotection solution 

was drained from the resin using a vacuum manifold, and the resin was rinsed five times with 

DMF.   

For coupling of an activated amino acid, we prepared a stock coupling solution of 100 

mL NMP, 3.17 g HBTU (0.01 mol, 0.1 M) and 1.53 g HOBt (0.01 mol, 0.1 M) for a final 

concentration of 0.1 M HBTU and 0.1 M HOBt. The desired Fmoc-protected amino acid (125 

μmol, 5 eq) was dissolved by vortexing in 1.25 mL coupling solution (125 μmol, 5 eq HBTU; 

125 μmol, 5 eq HOBt). To the dissolved amino acid solution was added 44 μL DIEA (250μmol, 

10eq). [Only 3 eq were used during the coupling of Fmoc-L-Cys(PEG4)-OH (S1), Fmoc-methyl-

L-Asn-OH (S3), Fmoc-L-GlnPEG4-OH (S5), Fmoc-methyl-L-AsnPEG4-OH (S7), Fmoc-L-
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(AsnPEG4)2-OH (S9), and Fmoc-L-Asn(PEG4)2-OH (S14) monomers, and the required amounts 

of HBTU, HOBt, and DIEA were adjusted accordingly.] The resulting mixture was vortexed 

briefly and allowed to react for at least 1 min. The activated amino acid solution was then added 

to the resin, and the reaction vessel was placed in the microwave. The temperature was ramped 

from rt to 70°C over 2 minutes, and held at 70°C for 4 minutes. Following the coupling reaction, 

the activated amino acid solution was drained from the resin with a vacuum manifold, and the 

resin was subsequently rinsed five times with DMF. The cycles of deprotection and coupling 

were alternately repeated to give the desired full-length protein.  

Acid-labile side-chain protecting groups were globally removed and proteins were 

cleaved from the resin by stirring the resin for ~4h in a solution of phenol (0.125 g), water (125 

μL), thioanisole (125 μL), ethanedithiol 62.5 μL) and triisopropylsilane (25 μL) in trifluoroacetic 

acid (TFA, 2 mL). Following the cleavage reaction, the TFA solution was drained from the resin, 

the resin was rinsed with additional TFA. Proteins were precipitated from the concentrated TFA 

solution by addition of diethyl ether (~40 mL). Following centrifugation, the ether was decanted, 

and the pellet was dissolved in ~40mL 1:1 H2O/MeCN, frozen and lyophilized to remove 

volatile impurities. The resulting powder was stored at -20°C until purification. 

3.4.2 Protein Side-chain Functionalization 

3.4.3 Preparation of proteins 3p, 4p, and 5p 

PEGylated protein 3p was prepared from proteins 3 and known PEG-alkyne 2,5,8,11-

tetraoxatetradec-13-yne25 via the copper(I) catalyzed azide-alkyne cycloaddition reaction. 

Protein 3p was prepared by dissolving 2,5,8,11-tetraoxatetradec-13-yne (12.6 mg, 62.5µmol), 
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copper (I) iodide (12.0 mg, 62.5 µmol) and sodium ascorbate (12.3 mg, 62.5 µmol) in 2 mL 20% 

piperdine in DMF (v/v), and stirring the resulting solution with protected resin bound protein 3 

(12.5 µmol scale) overnight. The resin was then washed with DMF, followed by 

dichloromethane. Protein 3p was globally deprotected and cleaved from resin as described above, 

and purified by reverse-phase HPLC as described below.  

PEGylated proteins 4p and 5p were prepared from proteins 4 and 5, respectively, along 

with commercially available PEG-azide 13-azido-2,5,8,11-tetraoxatridecane via the copper(I) 

catalyzed azide-alkyne cycloaddition reaction. Proteins 4p and 5p were prepared by dissolving 

13-azido-2,5,8,11-tetraoxatridecane (14.5 mg, 62.5µmol), copper (I) iodide (12.0 mg, 62.5 µmol) 

and sodium ascorbate (12.3 mg, 62.5 µmol) in 2mL 20% piperdine in DMF (v/v), and stirring the 

resulting solution with protected resin bound protein 4 and 5 (12.5 µmol), respectively, 

overnight. The resin was then washed with DMF, followed by dichloromethane. Proteins 4p and 

5p were globally deprotected and cleaved from resin as described above, and purified by reverse-

phase HPLC as described below. 

3.4.4 Preparation of proteins 2p-2, 2p-3, and 2p-4 

PEGylated protein 2p-2 was prepared from fully deprotected protein 2 and PEG4-

maleimide S12 [i.e., 1-(2,5,8,11-tetraoxatridecan-13-yl)-1H-pyrrole-2,5-dione; synthesized as 

described below] via conjugate addition. Protein 2 (0.3 µmol) and sodium acetate (0.246 mg, 3 

µmol) were dissolved in 2 mL of methanol. PEG4-maleimide S12 (1.07 mg, 3 µmol) was added 

to the methanol solution and stirred at room temperature for 1.5 hours open to air. Protein 2p-2 

was purified by reverse-phase HPLC as described below. 
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PEGylated protein 2p-3 was prepared from fully deprotected WW variant dehydroWW and 

2-mercaptoacetamidePEG4 S11 [i.e., 2-mercapto-N-(2,5,8,11-tetraoxatridecan-13-yl)acetamide; 

synthesized as described below] via conjugate addition. WW variant dehydroWW was prepared 

by adding a solution of known 2,5-dibromohexanediamide26 (16.8 mg in 128 µL DMF) to a 

solution of fully deprotected protein 2 (2 mL of a 564.5 µM solution in 12.5 mM sodium 

phosphate buffer, pH 8).  The resulting mixture was then allowed to stir at room temperature for 

30 minutes, at 37 °C for 1 hour, and again at room temperature overnight.  This process converts 

the Cys at position 19 of 2 into a dehydroalanine residue. WW variant dehydroWW was 

purified by reverse-phase HPLC as described below. The dehydroalanine residue of 

dehydroWW was then functionalized with 2-mercaptoacetamidePEG4 S11 via conjugate 

addition by dissolving 2 mg of dehydroWW and 80 mg of S11 in 1 mL of 25 mM sodium 

phosphate buffer (pH 8).  The resulting mixture was stirred at room temperature for 24 hours and 

purified by reverse-phase HPLC as described below to give protein 2p-3. It is important to note 

that functionalizing dehydroWW with 2-mercaptoacetamidePEG4  results in an diastereomeric 

mixture of peptides, each containing one of two possible Cys-functionalized epimers at position 

19. This explains why there are two peaks in the analytical HPLC trace for protein 2p-3 in Figure 

S25. Nevertheless, variable temperature CD data for 2p-3 (see below) can be fit to a simple two-

state folding model without evidence of heterogeneity, suggesting that the epimers of 2p-3 must 

have closely similar folding free energies.  

PEGylated protein 2p-4 was prepared from fully deprotected protein 2 and commercially 

available m-dPEG®4-MAL (Quanta Biodesign) via conjugate addition. Protein 2 (~2 mg) and 

sodium acetate (0.4 mg, 5 µmol) were dissolved in 1 mL of methanol.  m-dPEG®4-MAL (1.8 
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mg, 5µmol) was added to the methanol solution and stirred at room temperature for 2 hours open 

to air. Protein 2p-4 was purified by reverse-phase HPLC as described below.  

3.4.5 WW Variant Purification and Characterization 

Immediately prior to purification, the crude protein was dissolved in 1:1 H2O/MeCN. 

Proteins were purified by preparative reverse-phase HPLC on a C18 column using a linear 

gradient of water in acetonitrile with 0.1% v/v TFA. HPLC fractions containing the desired 

protein product were pooled, frozen, and lyophilized. Proteins were identified by electrospray 

ionization time of flight mass spectrometry (ESI-TOF, spectra appear below in Figures 3-3 

through 3-20), and purity was analyzed by Analytical HPLC (Figures 3-21 through 3-38). 

3.4.6 ESI-TOF data 

ESI-TOF for proteins 1-nbp, 1-cbp, m1, m1p, 2, 2p-1, 2p-2, 2p-3, 2p-4, 3, 3p, 4, 4p, 5, 

5p, 6, 6p, and dehydroWW are shown in Figures 3-3 through 3-20. 
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Figure 3-3. ESI TOF spectrum for WW variant 1-nbp 

 
Figure 3-4. ESI TOF spectrum for WW variant 1-cbp 

  

 
Figure 3-5. ESI TOF spectrum for WW variant m1. 
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Figure 3-6. ESI TOF spectrum for WW variant m1p 

 

 
Figure 3-7. ESI TOF spectrum for WW variant 2 

 
Figure 3-8. ESI TOF spectrum for WW variant 2p-1 
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Figure 3-9. ESI TOF spectrum for WW variant 2p-2 

 
Figure 3-10. ESI TOF spectrum for WW variant 2p-3 
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Figure 3-11. ESI TOF spectrum for WW variant 2p-4 

 
Figure 3-12. ESI TOF spectrum for WW variant 3 

 
Figure 3-13. ESI TOF spectrum for WW variant 3p 

 

 



184 

 
Figure 3-14. ESI TOF spectrum for WW variant 4 

 
Figure 3-15. ESI TOF spectrum for WW variant 4p 

 
Figure 3-16. ESI TOF spectrum for WW variant 5 
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Figure 3-17. ESI TOF spectrum for WW variant 5p 

 
Figure 3-18. ESI TOF spectrum for WW variant 6 

 

 
Figure 3-19. ESI TOF spectrum for WW variant 6p 
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Figure 3-20. ESI TOF spectrum for WW variant dehydroWW 

 

3.4.7 Analytical HPLC data 

HPLC traces for proteins 1-nbp, 1-cbp, m1, m1p, 2, 2p-1, 2p-2, 2p-3, 2p-4, 3, 3p, 4, 4p, 5, 5p, 

6, 6p, and dehydroWW are shown in Figures 3-21 through 3-38. 

 

 

Figure 3-21. Analytical HPLC Data for WW variant 1-nbp. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 3-22. Analytical HPLC Data for WW variant 1-cbp. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 3-23. Analytical HPLC Data for WW variant m1. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-24. Analytical HPLC Data for WW variant m1p. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 3-25. Analytical HPLC Data for WW variant 2. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-26. Analytical HPLC Data for WW variant 2p-1. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min.  

 

Figure 3-27. Analytical HPLC Data for WW variant 2p-2. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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 Figure 3-28. Analytical HPLC Data for WW variant 2p-3. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. It is important to note that the functionalizing dehydroWW with 2-mercaptoacetamidePEG4  results in 

a diastereomeric mixture, each peptide containing one of two possible Cys-functionalized epimers at position 19. 
This explains why there are two peaks in the analytical HPLC trace. 

 

 
Figure 3-29. Analytical HPLC Data for WW variant 2p-4. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 3-30. Analytical HPLC Data for WW variant 3. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 

 
Figure 3-31. Analytical HPLC Data for WW variant 3p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-32. Analytical HPLC Data for WW variant 4. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 
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Figure 3-33. Analytical HPLC Data for WW variant 4p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-34. Analytical HPLC Data for WW variant 5. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-35. Analytical HPLC Data for WW variant 5p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 
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Figure 3-36. Analytical HPLC Data for WW variant 6. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-37. Analytical HPLC Data for WW variant 6p. Protein solution was injected onto a C18 analytical column 

and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 minutes, 
followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate of 1 

mL/min. 

 
Figure 3-38. Analytical HPLC Data for WW variant dehydroWW. Protein solution was injected onto a C18 

analytical column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 
50 minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow 

rate of 1 mL/min. 
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3.4.8 Organic Synthesis 

3.4.9 Fmoc-L-Cys(PEG4)-OH (S1) 

 
To a suspension of Fmoc-l-Cys-OH (200.0 mg, 0.582 mmol) in CH2Cl2 (50 mL) was 

added commercially available 13-bromo-2,5,8,11-tetraoxatridecane (700mg, 2.59mmol). The 

reaction mixture was stirred at 25 °C for 24 hours, and the solvent was removed under reduced 

pressure. The crude product was then dissolved in acetonitrile and purified via semi-preparative 

reverse-phase HPLC to yield 20 mg (6.4% yield) of S1. A representative chromatogram from 

semi-preparative HPLC purification of Fmoc-L-Cys(PEG4)-OH is shown in Figure 3-39. 

 

 
Figure 3-39. Semi-prep reverse-phase HPLC purification of  Fmoc-L-Cys(PEG4)-OH. Fmoc-L-Cys(PEG)-OH was 

injected onto a C18 semi-prep column and eluted using a linear gradient of 40-62% B (A=H2O, 0.1% TFA; B= 
MeCN, 0.1% TFA) over 10 minutes, followed by a 5 minute rinse (95% B), and a 50 minute column re-equilibration 

(40% B) with a flow rate of 1 mL/min. 

 

High-resolution electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) data for 

Fmoc-L-Cys(PEG4)-OH are shown in Figure 3-40. 
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Figure 3-40. ESI-TOF MS data for Fmoc-L-Cys(PEG4)-OH. Calculated m/z for C27H39N2O8S (M+NH4

+) is 551.24, 
found 551.2424. 

 

1H NMR (500 MHz, DMSO): δ 12.88 (1H, broad s, (COOH) δ 7.89 (2H, d, J = 7.78 Hz, 

Fmoc aryl C-H); 7.73 (2H, d, J = 7.16 Hz, Fmoc aryl C-H); 7.41 (2H, t, J = 7.30 Hz, Fmoc aryl 

C-H); 7.32 (2H, t, J = 7.41Hz, Fmoc aryl C-H); 4.25-4.21 (1H, m, -CONHCαH(COOH)-CβH2-);  

4.32-4.28 (2H, m, Fmoc Ar2CH-CH(a)H(b)-O-);  4.15-4.11 (1H, m, Fmoc Ar2CH-CH2-O-); 3.55-

3.39 (14H, m, -S-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O--CH2-CH2-O-); 3.21 (3H, s, -O-CH3); 

2.98 (1H, dd, J = 13.72 Hz, 4.39 Hz, -CαH(COOH)-Cβ(Ha)Hb-S-); 2.79-2.74 (1H, m, -

CαH(COOH)-Cβ(Ha)(Hb)-S-);  2.68 (2H, t, J = 6.88 -S-CH2-CH2-O-). The full 1H NMR 

spectrum for Fmoc-L-Cys(PEG4)-OH is shown in Figure 3-41. 
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Figure 3-41. 1H NMR spectrum of Fmoc-L-Cys(PEG4)-OH. 

 
13C NMR (126 MHz, CDCl3): δ 172.78 (-NH-CαH(COOH)-CβH2-); 156.48 (Fmoc-O-

CONH-); 144.25, 141.17 (Fmoc aryl ipso C’s); 128.10, 127.54, 125.77, 125.74, 120.58 (Fmoc 

Ar C-H); 71.71, 70.65, 70.25, 70.20, 70.18, 69.98 (-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-

O-); 66.197 (Fmoc Ar2CH-CH2-O-); 58.49 (-O-CH3); 47.06 (-NH-CαH(COOH); 33.61 (-

CαH(COOH)-CβH2-S-); 54.69 (Fmoc Ar2CH-CH2-O-); 31.53 (S-CH2-CH2-O-); The full 13C 

NMR spectrum for Fmoc-L-Cys(PEG4)-OH is shown in Figure 3-42.  
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Figure 3-42. 13C NMR spectrum for Fmoc-L-Cys(PEG4)-OH. 

 

Assignments of the 1H and 1C NMRs for the Fmoc-L-Cys(PEG4)-OH were with the 

assistance of a 2D HSQC experiment (Figure 3-43), using the one-bond C-H correlations shown 

in Table 3-2. 
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Figure 3-43. 2D HSQC spectrum of Fmoc-L-Cys(PEG4)-OH. 

 

Table 3-2. One-Bond C-H correlations identified from HSQC data for Fmoc-L-Cys(PEG4)-OH. 
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3.4.10 Fmoc-Methyl-L-Asn-OtBu (S2) 

 
To a solution of (S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-

oxobutanoic acid (Fmoc-L-Asp-OtBu, 1.0g, 2.4 mmol) in NMP (15 mL) was added 2-(6-Chloro-

1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU, 1.5g, 

3.6mmol), N-hydroxybenzotriazole hydrate (HOBt, 0.55g, 3.6mmol), and N,N-

Diisopropylethylamine (DIEA, 1.27mL, 7.29mmol), and the resulting mixture was stirred for 15 

min at room temperature. Then, Methylamine hydrochloride (0.18g, 2.7mmol) was added, and 

the resulting mixture was stirred at room temperature for 24 hours. To the reaction mixture was 

first added saturated sodium bicarbonate (100mL) and then saturated Brine (100 mL) was added 

to the reaction/bicarbonate mixture and extracted three times with ethyl acetate (100 mL).  The 

combined ethyl acetate extracts were  dried over MgSO4, and concentrated by rotary evaporation 

to afford an oil. Fmoc-Methyl-L-Asn-OtBu [tert-butyl N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-

N4-methyl-L-asparaginat] was purified by flash chromatography over silica in ethyl 

acetate/hexanes. The product was concentrated via rotary evaporation (followed by rewashing 

with saturated bicarbonate three times, and saturated brine three times, and co-evaporation three 

times with benzene (200mL) to remove residual NMP) and dried in vacuo to give a thick oily 

solid (98.0% yield). 

1H NMR (500 MHz, CDCl3): δ 7.78(2H, d, J = 7.6 Hz, Fmoc aryl C-H); 7.61 (2H, m, Fmoc aryl 

C-H); 7.41 (2H, t, J = 7.2 Hz, Fmoc aryl C-H); 7.32 (2H, t, J = 7.2Hz, Fmoc aryl C-H); 6.09 (1H, 

d, amide); 5.73 (1H, s, amide); 4.47 (1H, m, -CONHCαH(COOtBu)-CβH2-); 4.40, 4.34 (2H, dd,  
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Fmoc Ar2CH-CH(a)H(b)-O-); 4.23 (1 H, t, J = 7.0 Hz, Fmoc Ar2CH-CH2-O-);   2.89 (1H, dd, J = 

15.3 Hz, 3.4 Hz,-CαH(COOH)-Cβ(Ha)Hb-CONHCH3); 2.72 (1H, dd, J = 15.1 Hz, 2.9 Hz, -

CαH(COOH)-Cβ(Ha)Hb-CONHCH3); 2.80 (3H, d, J = 3.6 Hz, -NH-CH3); 1.49 (9H, s, -O-C-

(CH3)3. The full 1H NMR spectrum for Fmoc-Methyl-L-Asn-OtBu is shown in Figure 3-44 

 

 

Figure 3-44. 1H NMR spectrum for Fmoc-Methyl-L-Asn-OtBu. 

 
13C NMR (126 MHz, CDCl3): δ 170.39, 170.04 (-NH-CαH(COOtBu)-CβH2- and -CβH2-CON-

CH2-); 156.23 (Fmoc-O-CONH-); 143.92, 143.78, 141.28,  (Fmoc aryl ipso C’s); 127.71, 127.07, 

125.22, 119.98,  (Fmoc aryl C-H); 82.42 (-O-C(CH3)3);  67.12 (Fmoc Ar2CH-CH2-O-);  26.28 (-

NH-CH3); 51.47 (-NH-CαH(COOtBu)-CβH2-); 47.12 (Fmoc Ar2CH-CH2-O-); 37.97 (-
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CαH(COOH)-CβH2-CONHCH3-); 27.91 (-O-C(CH3)3). The full 13C NMR spectrum for Fmoc-

Methyl-L-Asn-OtBu is shown in Figure 3-45  

 
Figure 3-45. 13C NMR spectrum for Fmoc-Methyl-L-Asn-OtBu. 

 

Assignments of the 1H and 1C NMRs for the Fmoc-Methyl-L-Asp-OtBu were made by analogy 

with published spectral data for related compounds, and with the assistance of a 2D HSQC 

experiment Figure 3-46, using the one-bond C-H correlations shown in Table 3-3. 
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Figure 3-46. 2D HSQC spectrum of Fmoc-Methyl-L-Asn-OtBu. 

 

Table 3-3. One-Bond C-H correlations identified from HSQC data for Fmoc-Methyl-L-Asn-OtBu. 
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High-resolution ESI-TOF MS data for Fmoc-Methyl-L-Asn-OtBu are shown in Figure 3-47. 

 

 
Figure 3-47. ESI-TOF MS data for Fmoc-Methyl-L-Asn-OtBu. Calculated m/z for C24H29N2O5 (M+H+) is 425.21, 

found 425.2096 

 

3.4.11 Fmoc-Methyl-L-Asn-OH (S3) 

 
To a solution of TFA (95% in water, 50ml) was added 1.01 g Fmoc-Methyl-L-Asn-OtBu 

and the solution was stirred for 4 h under an argon atmosphere. The product Fmoc-Methyl-L-

Asn-OH [N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N4-methylasparagine, S3] was concentrated 

by rotary evaporation, and used without further purification. 
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Figure 3-48. 1H NMR spectrum for Fmoc-Methyl-L-Asn-OH. 

 
1H NMR (500 MHz, CD3OD): δ 7.79(2H, d, J = 7.8 Hz, Fmoc aryl C-H); 7.66 (2H, m, Fmoc 

aryl C-H); 7.40 (2H, t, J = 7.5 Hz, Fmoc aryl C-H); 7.32 (2H, t, J = 7.5 Hz, Fmoc aryl C-H); 

4.47 (1H, dd, J = 5.4 Hz, 12.7 Hz, -CONHCαH(COOtBu)-CβH2-); 4.36 (2H, m,  Fmoc Ar2CH-

CH(a)H(b)-O-); 4.23 (1 H, t, Fmoc Ar2CH-CH2-O-);   2.79 (1H, dd, J = 15.1 Hz, 5.0 Hz,-

CαH(COOH)-Cβ(Ha)Hb-CONHCH3); 2.69 (1H, dd, J = 15.1 Hz, 7.6 Hz, -CαH(COOH)-

Cβ(Ha)Hb-CONHCH3); 2.80 (3H, s, -NH-CH3). The full 1H NMR spectrum for Fmoc-Methyl-L-

Asn-OH is shown in Figure 3-48.  
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Figure 3-49. 13C NMR spectrum for Fmoc-Methyl-L-Asn-OH. 

 

13C NMR (126 MHz, CDCl3): δ 173.20, 171.44 (-NH-CαH(COOtBu)-CβH2- and -CβH2-CON-

CH2-); 156.93 (Fmoc-O-CONH-); 143.85, 143.80, 141.15,  (Fmoc aryl ipso C’s); 127.41, 127.37, 

126.75, 124.86, 119.51 (Fmoc aryl C-H);  66.72 (Fmoc Ar2CH-CH2-O-);  24.99 (-NH-CH3); 

50.86 (-NH-CαH(COOH)-CβH2-); 46.90 (Fmoc Ar2CH-CH2-O-); 37.06 (-CαH(COOH)-CβH2-

CONHCH3-). The full 13C NMR spectrum for Fmoc-Methyl-L-Asn-OH is shown in Figure 3-49. 

Assignments of the 1H and 1C NMRs for the Fmoc-Methyl-L-Asn-OH were made by 

analogy with published spectral data for related compounds, and with the assistance of a 2D 

HSQC experiment Figure 3-50, using the one-bond C-H correlations shown in Table 3-4.  



205 

 

Figure 3-50. 2D HSQC spectrum of Fmoc-Methyl-L-Asn-OH. 
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Table 3-4. One-Bond C-H correlations identified from HSQC data for Fmoc-Methyl-L-Asn-OH. 

 

 

 

High-resolution ESI-TOF MS data for Fmoc-Methyl-L-Asn-OH are shown in Figure 3-51 

 

 

Figure 3-51. ESI-TOF MS data for Fmoc-Methyl-L-Asn-OH. Calculated m/z for C20H21N2O5 (M+H+) is 369.15, 
found 369.1416 
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3.4.12 Fmoc-L-Glu-OtBu (S4) 

 
To a solution of (S)-4-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(tert-butoxy)-5-

oxopentanoic acid (Fmoc-L-Glu-OtBu, 1.0g, 2.35 mmol) in NMP (15 mL) was added 2-(6-

Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU, 1.45g, 

3.52mmol), N-hydroxybenzotriazole hydrate (HOBt, 0.539g, 3.52mmol), and N,N-

Diisopropylethylamine (DIEA, 1.22mL, 7.05mmol), and the resulting mixture was stirred for 15 

min at room temperature. Then, 2,5,8,11-tetraoxatridecan-13-amine (0.54g, 2.59mmol) was 

added, and the resulting mixture was stirred at room temperature for 24 hours. To the reaction 

mixture was first added saturated sodium bicarbonate (100mL) and then saturated Brine (100 mL) 

was added to the reaction/bicarbonate mixture and extracted three times with ethyl acetate (100 

mL).  The combined ethyl acetate extracts were  dried over MgSO4, and concentrated by rotary 

evaporation to afford an oil. Fmoc-L-GlnPEG4-OtBu tert-butyl (S)-18-((((9H-fluoren-9-

yl)methoxy)carbonyl)amino)-15-oxo-2,5,8,11-tetraoxa-14-azanonadecan-19-oate was purified by 

flash chromatography over silica in ethyl acetate/hexanes. The product was concentrated via 

rotary evaporation (followed by rewashing with saturated bicarbonate three times, and saturated 

brine three times, and co-evaporation three times with benzene (200mL) to remove residual 

NMP) and dried in vacuo to give a thick oily solid (81% yield). 

1H NMR (500 MHz, CDCl3): δ 7.75(2H, d, J = 7.6 Hz, Fmoc aryl C-H); 7.60 (2H, t, Fmoc aryl 

C-H); 7.38 (2H, t, J = 7.5 Hz, Fmoc aryl C-H); 7.30 (2H, t, J = 7.5 Hz, Fmoc aryl C-H); 6.46 

(1H, s, amide); 5.87 (1H, d, J = 8.23 Hz, amide); 4.43 (2H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.23 
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(2H, m, -CONHCαH(COOtBu)-CβH2-, and Fmoc Ar2CH-CH2-O-); 3.59-3.45 (16H, m, -

CONH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-);  3.32 (3H, s, -O-CH3)   2.28-1.97 

(4H, m, -CαH(COOH)-CβH2-CγH2-CONHCH2-); 1.46 (9H, s, -O-C-(CH3)3. The full 1H NMR 

spectrum for Fmoc-L-GlnPEG4-OtBu is shown in Figure 3-18. 

 

Figure 3-18. 1H NMR spectrum for Fmoc-L-GlnPEG4-OtBu. 

 

13C NMR (75.4 MHz, CDCl3): δ 172.13, 171.24 (-NH-CαH(COOtBu)-CβH2- and -CβH2-CON-

CH2-); 156.30 (Fmoc-O-CONH-); 143.97, 143.77, 141.30, 141.26 (Fmoc aryl ipso C’s); 128.32, 

127.79, 127.07, 125.15, 125.12, 119.96 (Fmoc aryl C-H); 82.18 (-O-C(CH3)3); 71.83-69.72 and 

39.342 (-NH-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-); 66.79 (Fmoc Ar2CH-CH2-
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O-);  58.93, (-O-CH3); 54.18 (-NH-CαH(COOtBu)-CβH2-); 47.18 (Fmoc Ar2CH-CH2-O-); 32.44 

and 28.50 (-CαH(COOH)-CβH2-CγH2-CONHCH2-); The full 13C NMR spectrum for Fmoc-L-

GlnPEG4-OtBu is shown in Figure 3-19. 

 

 

 

 

Figure 3-19. 13C NMR spectrum for Fmoc-L-GlnPEG4-OtBu. 
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Assignments of the 1H and 1C NMRs for the Fmoc-L-GlnPEG4-OtBu were made by analogy with 

published spectral data for related compounds, and with the assistance of a 2D HSQC 

experiment Figure 3-20, using the one-bond C-H correlations shown in Table 3-4 

 

Figure 3-20. 2D HSQC spectrum of Fmoc-L-GlnPEG4-OtBu. 
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Table 3-4. One-Bond C-H correlations identified from HSQC data for Fmoc-L-GlnPEG4-OtBu. 

 

 

 

High-resolution ESI-TOF MS data for Fmoc-L-GlnPEG4-OtBu are shown in Figure 3-21.  

 
Figure 3-21. ESI-TOF MS data for Fmoc-L-GlnPEG4-OtBu. Calculated m/z for C33H50N3O9 (M+NH4

+) is 632.35, 
found 632.3553 
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3.4.13 Fmoc-L-GlnPEG4-OH (S5) 

 
To a solution of TFA (95% in water, 50ml) was added 1.17 g Fmoc-L-GlnPEG4-OtBu 

(S4), and the solution was stirred for 4 h under an argon atmosphere. The product Fmoc-L-

GlnPEG4-OH [18-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-15-oxo-2,5,8,11-tetraoxa-14-

azanonadecan-19-oic acid, S5] was concentrated by rotary evaporation, and used without further 

purification. 

1H NMR (500 MHz, CDCl3):δ 11.01 (1H, broad s, (COOH); δ 7.77(2H, d, J = 7.4 Hz, Fmoc aryl 

C-H); 7.61 (2H, d, J = 7.2 Hz, Fmoc aryl C-H); 7.42 (2H, t, J = 7.4 Hz, Fmoc aryl C-H); 7.33 

(2H, t, J = 7.4 Hz, Fmoc aryl C-H); 6.07 (1H, d, amide); 4.45 (2H, m,  Fmoc Ar2CH-CH(a)H(b)-

O-); 4.40 (1H, m, -CONHCαH(COOH); and 4.23 (1H, dd, Fmoc Ar2CH-CH2-O-); 3.63-3.42 

(16H, m, -CONH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-);  3.38 (3H, s, -O-CH3)   

2.46 (2H, t, J = 6.9 Hz, -CαH(COOH)-CβH2-CγH2-CONHCH2-); 2.27-2.14 (2H, m, -

CαH(COOH)-CβH2-CγH2-CONHCH2-) . The full 1H NMR spectrum for Fmoc-L-GlnPEG4-OH 

is shown in Figure 3-22. 
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Figure 3-22. 1H NMR spectrum for Fmoc-L-GlnPEG4-OH. 

 

 
13C NMR (75.4 MHz, CDCl3): δ 174.86, 174.27, 159.54, 158.88, 158.55 (-NH-CαH(COOtBu)-

CβH2- and -CβH2-CON-CH2-); 156.84 (Fmoc-O-CONH-); 143.62, 143.49, 141.32, 141.28 

(Fmoc aryl ipso C’s); 127.81, 127.15, 125.04, 120.00, (Fmoc aryl C-H);  71.53-68.95 and 39.83 

(-NH-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-); 67.41 (Fmoc Ar2CH-CH2-O-);  

58.62, (-O-CH3); 53.11 (-NH-CαH(COOtBu)-CβH2-); 46.98 (Fmoc Ar2CH-CH2-O-); 31.91 (-

CαH(COOH)-CβH2-CγH2-CONHCH2-); 28.39 (-CαH(COOH)-CβH2-CγH2-CONHCH2-) The 

full 13C NMR spectrum for Fmoc-L-GlnPEG4-OH is shown in Figure 3-23. 
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Figure 3-23. 13C NMR spectrum for Fmoc-L-GlnPEG4-OH. 

 

Assignments of the 1H and 1C NMRs for the Fmoc-L-GlnPEG4-OtBu were made by analogy 

with published spectral data for related compounds, and with the assistance of a 2D HSQC 

experiment Figure 3-24, using the one-bond C-H correlations shown in Table 3-5.  
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Figure 3-24. 2D HSQC spectrum of Fmoc-L-GlnPEG4-OH. 
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Table 3-5. One-Bond C-H correlations identified from HSQC data for Fmoc-L-GlnPEG4-OH. 

 

 

High-resolution ESI-TOF MS data for Fmoc-L-GlnPEG4-OH are shown in Figure 3-25. 

 
Figure 3-25. ESI-TOF MS data for Fmoc-L-GlnPEG4-OH. Calculated m/z for C29H42N3O9 (M+NH4

+) is 576.29, 
found 576.2896 
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3.4.14 Fmoc-Methyl-L-AsnPEG4-OtBu  (S6) 

 
To a solution of (S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-

oxobutanoic acid (Fmoc-L-Asp-OtBu, 1.0g, 2.4 mmol) in NMP (15 mL) was added 2-(6-Chloro-

1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU, 1.5g, 

3.6mmol), N-hydroxybenzotriazole hydrate (HOBt, 0.55g, 3.6mmol), and N,N-

Diisopropylethylamine (DIEA, 1.27mL, 7.29mmol), and the resulting mixture was stirred for 15 

min at room temperature. Then, previously synthesized N-methyl-2,5,8,11-tetraoxatridecan-13-

amine27 (0.59g, 2.7mmol) was added, and the resulting mixture was stirred at room temperature 

for 24 hours. To the reaction mixture was added saturated sodium bicarbonate (100mL) and then 

saturated Brine (100 mL) and extracted three times with ethyl acetate (100 mL each).  The 

combined ethyl acetate extracts were  dried over MgSO4, and concentrated by rotary evaporation 

to afford an oil. Fmoc-Methyl-L-AsnPEG4-OtBu [tert-butyl (S)-17-((((9H-fluoren-9-

yl)methoxy)carbonyl)amino)-14-methyl-15-oxo-2,5,8,11-tetraoxa-14-azaoctadecan-18-oate] was 

purified by flash chromatography over silica in ethyl acetate/hexanes. The product was 

concentrated via rotary evaporation (followed by rewashing with saturated bicarbonate three 

times, and saturated brine three times, and co-evaporation three times with benzene (200mL) to 

remove residual NMP) and dried in vacuo to give a thick oily solid (49.5% yield). 

1H NMR (500 MHz, CDCl3): δ 7.77(2H, d, J = 7.6 Hz, Fmoc aryl C-H); 7.66 (2H, m, Fmoc aryl 

C-H); 7.41 (2H, t, J = 7.4 Hz, Fmoc aryl C-H); 7.33 (2H, t, J = 7.4Hz, Fmoc aryl C-H); 6.16 (1H, 

d, amide);  4.56 (1H, m, -CONHCαH(COOtBu)-CβH2-); 4.47 (1H, m,  Fmoc Ar2CH-CH(a)H(b)-
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O-);  4.29 (1H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.25 (1 H, m, J = 7.0 Hz, Fmoc Ar2CH-CH2-O-); 

3.64-3.48 (16H, m, -CONH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-); 3.38 (3H, s, -

O-CH3) 3.20-3.11 (1H, m, -CαH(COOH)-Cβ(Ha)Hb-CONHCH3); 2.87-2.74 (1H, m,  -

CαH(COOH)-Cβ(Ha)Hb-CONHCH3); 3.06 (1.5H, s, -NH-CH3 Cis or trans amide); 2.97 (1.5H, s, 

-NH-CH3 Cis or trans amide) 1.47 (9H, s, -O-C-(CH3)3. The full 1H NMR spectrum for Fmoc-

Methyl-L-AsnPEG4-OtBu  is shown in Figure 3-26. 

 

 

Figure 3-26. 1H NMR spectrum for Fmoc-Methyl-L-AsnPEG4-OtBu. 

 
13C NMR (126 MHz, CDCl3): δ 170.61, 170.40, 170.35, 170.31, (-NH-CαH(COOtBu)-CβH2- 

and -CβH2-CON-CH2-); 156.37 (Fmoc-O-CONH-); 144.06, 144.04, 143.87, 143.85, 141.28, 

141.27, 141.25  (Fmoc aryl ipso C’s); 128.34, 127.66, 127.07, 127.04, 125.33, 125.30, 125.21, 
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119.94  (Fmoc aryl C-H); 81.83, 81.763 (-O-C(CH3)3); 71.91-68.75 and 49.66, 47.79 (-NH-CH2-

CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-) 67.05 (Fmoc Ar2CH-CH2-O-);  36.91, 33.83 (-

NH-CH3); 59.03, (-O-CH3) 51.30, 51.12 (-NH-CαH(COOtBu)-CβH2-); 47.17 (Fmoc Ar2CH-

CH2-O-); 35.94, 35.50 (-CαH(COOH)-CβH2-CONHCH3-); 27.93, 27.91 (-O-C(CH3)3). The full 

13C NMR spectrum for Fmoc-Methyl-L-AsnPEG4-OtBu is shown in Figure 3-27.  

 

Figure 3-27. 13C NMR spectrum for Fmoc-Methyl-L-AspPEG4-OtBu. 

 

Assignments of the 1H and 1C NMRs for the Fmoc-Methyl-L-AsnPEG4-OtBu were made by 

analogy with published spectral data for related compounds, and with the assistance of a 2D 

HSQC experiment Figure 3-28, using the one-bond C-H correlations shown in Table 3-6 
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Figure 3-28. 2D HSQC spectrum of Fmoc-Methyl-L-AsnPEG4-OtBu. 
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Table 3-6. One-Bond C-H correlations identified from HSQC data for Fmoc-Methyl-L-AsnPEG4-OtBu. 

 

 

High-resolution ESI-TOF MS data for Fmoc-Methyl-L-AsnPEG4-OtBu are shown in Figure 3-29.  

 
Figure 3-29. ESI-TOF MS data for Fmoc-Methyl-L-AspPEG4-OtBu. Calculated m/z for C33H50N3O9 (M+NH4

+) is 
632.35, found 632.3648 
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3.4.15 Fmoc-Methyl-L-AsnPEG4-OH (S7) 

 
To a solution of TFA (95% in water, 50ml) was added 0.74 g Fmoc-Methyl-L-AsnPEG4-

OtBu (S6), and the solution was stirred for 4 h under an argon atmosphere. The product Fmoc-

Methyl-L-AsnPEG4-OH [(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-14-methyl-15-

oxo-2,5,8,11-tetraoxa-14-azaoctadecan-18-oic acid, S7] was concentrated by rotary evaporation, 

and used without further purification. 

 

1H NMR (500 MHz, CDCl3): δ 10.39 (1H, broad s, (COOH); 7.77 (2H, d, J = 7.5 Hz, Fmoc aryl 

C-H); 7.64 (2H, m, Fmoc aryl C-H); 7.42 (2H, t, J = 7.2 Hz, Fmoc aryl C-H); 7.33 (2H, m, Fmoc 

aryl C-H); 6.57 (1H, d, amide); 4.71 (1H, broad s,-CONHCαH(COOtBu)-CβH2-); 4.48 (1H, m,  

Fmoc Ar2CH-CH(a)H(b)-O-);  4.38 (1H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.24 (1 H, dd,  Fmoc 

Ar2CH-CH2-O-); 3.65-3.63 (16H, m, -CONH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-

CH2-O-); 3.42 (3H, s, -O-CH3) 3.25-2.873 (2H, m, -CαH(COOH)-Cβ(Ha)Hb-CONHCH3);  3.09 

(1.5H, s, -NH-CH3 Cis or trans amide); 2.99 (1.5H, s, -NH-CH3 Cis or trans amide). The full 1H 

NMR spectrum for Fmoc-Methyl-L-AsnPEG4-OH is shown in Figure 3-30.  



223 

 

Figure 3-30. 1H NMR spectrum for Fmoc-Methyl-L-AsnPEG4-OH. 

 
13C NMR (126 MHz, CDCl3): δ 174.55, 174.22, 172.38, 171.87 (-NH-CαH(COOtBu)-CβH2- and 

-CβH2-CON-CH2-); 156.99, 156.84 (Fmoc-O-CONH-); 143.68, 143.62, 143.47, 143.45, 141.27  

(Fmoc aryl ipso C’s); 127.82, 127.81, 127.15, 127.12, 125.270, 125.19, 125.17, 125.14, 120.00  

(Fmoc aryl C-H);  71.50-69.60 and 67.76, 67.68 (-NH-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-

CH2-CH2-O-) 67.80 (Fmoc Ar2CH-CH2-O-);  36.84, 34.17 (-NH-CH3); 58.63, (-O-CH3) 50.46, 

50.27 (-NH-CαH(COOtBu)-CβH2-); 48.05 (Fmoc Ar2CH-CH2-O-); 35.85, 35.97 (-

CαH(COOH)-CβH2-CONHCH3-). The full 13C NMR spectrum for Fmoc-Methyl-L-AsnPEG4-

OH is shown in Figure 3-31. 
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Figure 3-31. 13C NMR spectrum for Fmoc-Methyl-L-AsnPEG4-OH. 

 

Assignments of the 1H and 1C NMRs for the Fmoc-Methyl-L-AsnPEG4-OH were made by 

analogy with published spectral data for related compounds, and with the assistance of a 2D 

HSQC experiment Figure 3-32, using the one-bond C-H correlations shown in Table 3-7. 
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Figure 3-32. 2D HSQC spectrum of Fmoc-Methyl-L-AsnPEG4-OH. 
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Table 3-7. One-Bond C-H correlations identified from HSQC data for Fmoc-Methyl-L-AsnPEG4-OH. 

 

 

High-resolution ESI-TOF MS data for Fmoc-Methyl-L-AsnPEG4-OH are shown in Figure 3-33. 

 

Figure 3-33. ESI-TOF MS data for Fmoc-Methyl-L-AsnPEG4-OH. Calculated m/z for C29H42N3O9 (M+NH4
+) is 

576.29, found 576.2862 
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3.4.16 Fmoc-L-Asn(PEG4)2-OtBu (S8) 

 
To a solution of (S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-

oxobutanoic acid (Fmoc-L-Asp-OtBu, 0.62g, 1.5 mmol) in NMP (15 mL) was added 2-(6-

Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU, 0.93g, 

2.26 mmol), N-hydroxybenzotriazole hydrate (HOBt, 0.35g, 2.26 mmol), and N,N-

Diisopropylethylamine (DIEA, 0.78 mL, 4.5 mmol), and the resulting mixture was stirred for 15 

min at room temperature. Then, 2,5,8,11,15,18,21,24-octaoxapentacosan-13-amine28 (0.63g, 

1.65mmol) was added, and the resulting mixture was stirred at room temperature for 24 hours. 

To the reaction mixture was first added saturated sodium bicarbonate (100mL) and then 

saturated Brine (100 mL) was added to the reaction/bicarbonate mixture and extracted three 

times with ethyl acetate (100 mL).  The combined ethyl acetate extracts were  dried over MgSO4, 

and concentrated by rotary evaporation to afford an oil. Fmoc-L-Asn(PEG4)2-OtBu [tert-butyl 

(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-13-(2,5,8,11-tetraoxadodecyl)-15-oxo-

2,5,8,11-tetraoxa-14-azaoctadecan-18-oate was purified by flash chromatography over silica in 

ethyl acetate/hexanes. The product was concentrated via rotary evaporation (followed by 

rewashing with saturated bicarbonate three times, and saturated brine three times, and co-

evaporation three times with benzene (200mL) to remove residual NMP) and dried in vacuo to 

give a thick oily solid. 

1H NMR (300 MHz, CDCl3): δ 7.73(2H, d, J = 7.4 Hz, Fmoc aryl C-H); 7.60 (2H, m, Fmoc aryl 

C-H); 7.38 (2H, t, Fmoc aryl C-H); 7.29 (2H, t, Fmoc aryl C-H); 6.68 (1H, d, amide); 6.26 (1H, 
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d, amide);  4.49-4.43 (1H, m, -CONHCαH(COOtBu)-CβH2-); 4.40-4.36 (1H, m,  Fmoc Ar2CH-

CH(a)H(b)-O-);  4.30-4.24 (1H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.21 (2 H, m, Fmoc Ar2CH-CH2-

O- and -CONH-CH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2; 3.59-3.48 (32H, m, -

CONH-CH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2; 3.32 (6H, s, -O-CH3) 2.88-

2.80 (1H, dd, -CαH(COOH)-Cβ(Ha)Hb-CONHCH3); 2.70-2.64 (1H, dd,  -CαH(COOH)-

Cβ(Ha)Hb-CONHCH3);  1.44 (9H, s, -O-C-(CH3)3. The full 1H NMR spectrum for c is shown in 

Figure 3-34.  

 

Figure 3-34. 1H NMR spectrum for Fmoc-L-Asn(PEG4)2-OtBu. 

 
13C NMR (126 MHz, CDCl3): δ 170.22, 169.77 (-NH-CαH(COOtBu)-CβH2- and -CβH2-CON-

CH2-); 156.99, 156.84 (Fmoc-O-CONH-); 143.98, 143.83, 141.208  (Fmoc aryl ipso C’s); 
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127.66, 127.07, 125.25, 125.17, 119.90  (Fmoc aryl C-H);  71.85-69.27 (-NH-CH-(CH2-CH2-O-

CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2 66.96 (Fmoc Ar2CH-CH2-O-);  58.93, (-O-CH3); 51.45 

(-NH-CαH(COOtBu)-CβH2-); 47.11, 48.67 (Fmoc Ar2CH-CH2-O- and -CONH-CH-(CH2-CH2-

O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2); 37.65 (-CαH(COOtBu)-CβH2-CONHCH-); 27.92 (-

O-C(CH3)3). The full 13C NMR spectrum for Fmoc-L-Asn(PEG4)2-OtBu is shown in Figure 3-35. 

 
Figure 3-35. 13C NMR spectrum for Fmoc-L-Asn(PEG4)2-OtBu 

 

Assignments of the 1H and 1C NMRs for the Fmoc-L-Asn(PEG4)2-OtBu were made by analogy 

with published spectral data for related compounds, and with the assistance of a 2D HSQC 

experiment Figure 3-36, using the one-bond C-H correlations shown in Table 3-8 
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Figure 3-36. 2D HSQC spectrum of Fmoc-L-Asn(PEG4)2-OtBu. 
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Table 3-8. One-Bond C-H correlations identified from HSQC data for Fmoc-L-Asn(PEG4)2-OtBu. 

 
 

High-resolution ESI-TOF MS data for Fmoc-L-Asn(PEG4)2-OtBu are shown in Figure 3-37 

 
Figure 3-37. ESI-TOF MS data for Fmoc-L-Asn(PEG4)2-OtBu. Calculated m/z for  C40H64N3O13 (M+NH4

+) is 
794.44, found 794.4526. 
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3.4.17 Fmoc-L-Asn(cPEG4)2-OH (S9) 

 
 

To a solution of TFA (95% in water, 50ml) was added Fmoc-L-Asn(cPEG4)2-OtBu (S8), 

and the solution was stirred for 4 h under an argon atmosphere. The product Fmoc-L-

Asn(cPEG4)2-OH [(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-13-(2,5,8,11-

tetraoxadodecyl)-15-oxo-2,5,8,11-tetraoxa-14-azaoctadecan-18-oic acid, S9] was concentrated 

by rotary evaporation, and used without further purification. 

1H NMR (500 MHz, CDCl3): δ  10.91 (1H, s, (COOH); 7.76(2H, d, J = 7.5 Hz, Fmoc aryl C-H); 

7.62 (2H, t, J = 6.76  Fmoc aryl C-H); 7.40 (2H, t, J = 7.4 Hz, Fmoc aryl C-H); 7.32 (2H, t, J = 

7.3Hz, Fmoc aryl C-H); 6.34 (1H, d, amide); 6.99 (1H, d, amide);  4.63 (1H, m, -

CONHCαH(COOtBu)-CβH2-); 4.47 (2H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.25-4.20 (2H, m,  

Fmoc Ar2CH-CH(a)H(b)-O- and -CONH-CH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-

)2 );   3.63-3.53 (32H, m, -CONH-CH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2);  

3.37 and 3.36 (3H, s, -O-CH3); 2.95-2.76 (2H, m, -CαH(COOH)-Cβ(Ha)Hb-CON-); . The full 

1H NMR spectrum for Fmoc-L-Asn(PEG4)2-OH is shown in Figure 3-38. 
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Figure 3-38. 1H NMR spectrum for Fmoc-L-Asn(PEG4)2-OH 

13C NMR (126 MHz, CDCl3): δ 172.35, 171.32 (-NH-CαH(COOtBu)-CβH2- and -CβH2-CON-

CH2-); 159.14, 158.81, 156.22 (Fmoc-O-CONH-); 143.83, 143.71, 141.32, 141.25  (Fmoc aryl 

ipso C’s); 127.72, 127.118, 125.22, 125.17, 119.94  (Fmoc aryl C-H);  71.75-69.55 (-NH-CH-

(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2 67.29 (Fmoc Ar2CH-CH2-O-);  58.84, 

58.82 (-O-CH3); 50.99 (-NH-CαH(COOtBu)-CβH2-); 47.11, 49.17 (Fmoc Ar2CH-CH2-O- and -

CONH-CH-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2); 38.04 (-CαH(COOtBu)-

CβH2-CONHCH-). The full 13C NMR spectrum for Fmoc-L-Asn(PEG4)2-OH is shown in Figure 

3-39. 
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Figure 3-39. 13C NMR spectrum for Fmoc-L-Asn(PEG4)2-OH. 

 

Assignments of the 1H and 1C NMRs for the Fmoc-L-Asn(PEG4)2-OH were made by analogy 

with published spectral data for related compounds, and with the assistance of a 2D HSQC 

experiment Figure 3-40, using the one-bond C-H correlations shown in Table 3-9. 
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Figure 3-40. 2D HSQC spectrum of Fmoc-L-Asn(PEG4)2-OH. 
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Table 3-9. One-Bond C-H correlations identified from HSQC data for Fmoc-L-Asn(PEG4)2-OH. 

 

 

High-resolution ESI-TOF MS data for Fmoc-L-Asn(PEG4)2-OH are shown in Figure 3-41. 

 
Figure 3-41. ESI-TOF MS data for Fmoc-L-Asn(PEG4)2-OH. Calculated m/z for  C36H56N3O13 (M+NH4

+) is 738.38, 
found 738.3740 
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3.4.18 2-(tritylthio)acetamidePEG4 (S10) 

 
To a solution of known 2-(Tritylmercapto)acetic acid29 (1.70g, 5.09 mmol) in NMP (30mL) was 

added 2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate 

(HCTU, 3.16g, 7.64mmol), N-hydroxybenzotriazole hydrate (HOBt, 1.16g, 7.64mmol), and N,N-

diisopropylethylamine (DIEA, 2.21mL, 12.72mmol), and the resulting mixture was stirred for 15 

min at room temperature. Then, 2,5,8,11-tetraoxatridecan-13-amine (1.58g, 7.64mmol) was 

added and the reaction was stirred at room temperature for 24 hours. The reaction mixture was 

then washed with saturated sodium bicarbonate (100 mL) and extracted three times with ethyl 

acetate (100 mL).  The combined ethyl acetate extracts were washed three times with brine 

(100mL), dried over MgSO4, and concentrated by rotary evaporation to afford an oil. The desired 

product was purified by flash chromatography over silica gel using ethyl acetate/hexanes. The 

desired product (S10) was concentrated via rotary evaporation and dried in vacuo.   

1H NMR (500 MHz, CDCl3): δ 7.37 (6H, d, J = 7.7 Hz, Trt aryl C-H), 7.23 (6H, t, J = 7.5 

Hz, Trt aryl C-H); 7.16 (3H, t, J = 7.1 Hz, Trt aryl C-H); 6.48 (1H, broad s, -S-CH2CONH-CH2-); 

3.54-3.45 (12H, m, -CONH-CH2-CH2O-CH2-CH2-O-CH2-CH2-O--CH2-CH2-O-); 3.35 (2H, t, J 

= 5.10, -CONH-CH2-CH2O-); 3.28 (3H, s, -O-CH3); 3.14 (2H, m, -CONH-CH2-CH2O-); 3.01 

(2H, s, -S-CH2CONH-CH2-). The full 1H NMR spectrum for 2-(tritylthio)acetamidePEG4 

appears in Figure 3-42. 
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Figure 3-42. 1H NMR spectrum of 2-(tritylthio)acetamidePEG4 

13C NMR (126 MHz, CDCl3): δ 168.06 (-S-CH2CONH-CH2-); 144.03 (Trt aryl ipso C); 

128.10, 128.02, 126.97 (Trt aryl C); 71.83, 70.53, 70.48, 70.46, 70.41 70.19 (-O-CH2-CH2-O-

CH2-CH2-O-CH2-CH2-O-); 69.35 (-CONH-CH2-CH2O-); 58.95 (-O-CH3); 39.40 (-CONH-CH2-

CH2O-); 36.06 (-S-CH2CONH-CH2-). The full 13C NMR spectrum for 2-

(tritylthio)acetamidePEG4 appears in Figure 3-43. 
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Figure 3-43. 13C NMR spectrum of 2-(tritylthio)acetamidePEG4. 

 

Assignments of the 1H and 13C NMR spectra for the 2-(tritylthio)acetamidePEG4 were made 

with the assistance of a 2D HSQC experiment Figure 3-44, using the one-bond C-H correlations 

shown in Table 3-10. 
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Figure 3-44. 2D HSQC spectrum of 2-(tritylthio)acetamidePEG4. 

 

 

Table 3-10. One-Bond C-H correlations identified from HSQC experiment of 2-(tritylthio)acetamidePEG4. 
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High-resolution ESI-TOF MS data for 2-(tritylthio)acetamidePEG4 (S10) are shown in Figure 3-

45. 

 

Figure 3-45. ESI-TOF MS data for 2-(tritylthio) acetamidePEG4. Calculated m/z for C30H38NO5S (M+H+)  524.25, 
found 524.24 

 

3.4.19 2-mercaptoPEG4acetamide (S11) 

 
To a solution of TFA (25mL) was added triisopropylsilane (100µL) and 2-

(tritylthio)acetamidePEG4 (S10) (80mg, 0.28mmol) and the solution was stirred for 2 h under an 

argon atmosphere. The product was concentrated by rotary evaporation, dissolved in H2O and 

purified by RP-HPLC (Figure 3-46). Pooled fractions containing the desired product were flash-

frozen over acetone/dry ice; solvent was removed via lyophilization.  
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Figure 3-46. Preparative reverse-phase HPLC purification of  2-mercaptoPEG4acetamide. 2-

mercaptoPEG4acetamide was injected onto a C18 preparative column and eluted using a linear gradient of 0-30% B 
(A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 22 minutes, followed by a 5 minute rinse (95% B), and a 6 minute 

column re-equilibration (0% B) with a flow rate of 15 mL/min. 

 
1H NMR (500 MHz, CDCl3): δ 7.35 (1H, s, -S-CH2CONH-CH2-); 3.66-3.54 (14H, m, -

CONH-CH2-CH2O-CH2-CH2-O-CH2-CH2-O--CH2-CH2-O- and -CONH-CH2-CH2O-); 3.49 (2H, 

m, -CONH-CH2-CH2O-); 3.37 (3H, s, -O-CH3); 3.23 (2H, d, J= 8.46, -S-CH2CONH-CH2-); 2.01 

(1H, t, J= 8.76, HS-CH2CONH-). The full 1H NMR spectrum for 2-mercaptoPEG4acetamide 

appears in Figure 3-47. 
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Figure 3-47. 1H NMR spectrum of 2-mercaptoPEG4acetamide S11 

13C NMR (126 MHz, CDCl3): δ 169.92 (-S-CH2CONH-CH2-); 71.80, 70.44, 70.37, 70.31, 

70.26 70.18, 70.05, 69.68 (-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-); 69.68 (-CONH-CH2-

CH2O-); 59.00 (-O-CH3); 39.65 (-CONH-CH2-CH2O-); 28.19 (-S-CH2CONH-CH2-). The full 

13C NMR spectrum for 2-mercaptoPEG4acetamide appears in Figure 3-48. 
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Figure 3-48. 13C NMR spectrum of 2-mercaptoPEG4acetamide S11 

 

Assignments of the 1H and 13C NMR spectra for the 2-mercaptoPEG4acetamide were 

made with the assistance of a 2D HSQC experiment Figure 3-49, using the one-bond C-H 

correlations shown in Table 3-11. 



245 

 
Figure 3-49. 2D HSQC spectrum of 2-mercaptoPEG4acetamide S11 

 

 

 

Table 3-11. One-Bond C-H correlations identified from HSQC experiment for 2-mercaptoPEG4acetamide. 
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High-resolution ESI-TOF MS data for 2-mercaptoPEG4acetamide are shown in Figure 3-50. 

 

Figure 3-50. ESI-TOF MS data for Error! Reference source not found. Calculated m/z for C11H24NO5S (M+H+) 
282.14, found 282.13 

 

3.4.20 4PEG-maleimide (S12) 

 
Commercially available 4PEG-amine (100mg, 0.48mmol) was dissolved in a saturated solution 

of NaHCO3 at 0 °C. N-methoxy-carbonyl maleimide (74.8mg, 0.48mmol) was added slowly. 

The mixture reacted for 45 minutes at 0 °C and then for an additional 45 minutes at room 

temperature. The product was extracted from the aqueous mixture with CH2Cl2 (2 X 15 mL), and 

the organic layer was dried over Na2SO4 and concentrated in vacuo. The desired product (S12) 

was purified by flash chromatography over silica gel (10% MeOH/DCM).  

1H NMR (300 MHz, CDCl3): δ 6.71 (2H, s, alkene H’s); 3.74 (2H, m, -N-CH2-CH2O-); 

3.67-3.53 (14H, m, -N-CH2-CH2O-CH2-CH2-O-CH2-CH2-O--CH2-CH2-O-); 3.39 (3H, s, -O-

CH3). The full 1H NMR spectrum for 4PEG-maleimide appears in Figure 3-51. 
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Figure 3-51. 1H NMR spectrum of 4PEG-maleimide. 

 

 
13C NMR (75.4 MHz, CDCl3): δ 170.68 (carbonyl C’s); 134.16 (alkene C’s); 71.93, 

70.60, 70.58, 70.54, 70.51, 70.02, 67.84 (-N-CH2-CH2O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-

); 59.04 (3H, s, -O-CH3); 37.12 (-N-CH2-CH2O-). The full 13C NMR spectrum for 4PEG-

maleimide appears in Figure 3-52. 
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Figure 3-52. 13C NMR spectrum of 4PEG-maleimide 

 

Assignments of the 1H and 13C NMR spectra for the 4PEG-maleimide were made with 

the assistance of a 2D HSQC experiment Figure 3-53, using the one-bond C-H correlations 

shown in Table 3-12. One-Bond C-H correlations identified from HSQC experiment for 4PEG-

maleimide. 
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Figure 3-53. 2D HSQC spectrum of 4PEG-maleimide. 

 

 

 

Table 3-12. One-Bond C-H correlations identified from HSQC experiment for 4PEG-maleimide. 
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High-resolution ESI-TOF MS data for 4PEG-maleimide are shown in Figure 3-54. 

 

Figure 3-54. ESI-TOF MS data for 4PEG-maleimide. Calculated m/z for C13H22NO6 (M+H+)  288.14, found 288.14 

 

3.4.21 Fmoc-L-Asn(PEG4)2-OtBu (S13) 

 
 

To a solution of commercially available (S)-3-((((9H-fluoren-9-

yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanoic acid (Fmoc-L-Asp-OtBu, 0.5139g, 

1.25 mmol) in NMP (50 mL) was added 2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-

tetramethylaminium hexafluorophosphate (HCTU, 0.775g, 1.875mmol), N-hydroxybenzotriazole 

hydrate (HOBt, 0.287g, 1.875mmol), and N,N-Diisopropylethylamine (DIEA, 0.652mL, 

3.75mmol), and the resulting mixture was stirred for 15 min at room temperature. Then, 

commercially available di-(2,5,8,11-tetraoxatridecan-13-yl)-amine (0.5g, 1.26mmol) was added, 

and the resulting mixture was stirred at room temperature for 24 hours. The reaction mixture was 
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then washed with saturated sodium bicarbonate (100 mL) and extracted three times with ethyl 

acetate (100 mL).  The combined ethyl acetate extracts were washed three times with brine 

(100mL), dried over MgSO4, and concentrated by rotary evaporation to afford an oil.  Fmoc-L-

Asp(PEG4)2-OtBu (tert-butyl [(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-15-oxo-14-

(2,5,8,11-tetraoxatridecan-13-yl)-2,5,8,11-tetraoxa-14-azaoctadecan-18-oate], S13) was purified 

by flash chromatography over silica in ethyl acetate/hexanes. The product was concentrated via 

rotary evaporation and dried in vacuo to give a thick oily solid. 

1H NMR (500 MHz, CDCl3): δ 7.72 (2H, d, J = 7.5 Hz, Fmoc aryl C-H); 7.57 (2H, m,  

Fmoc aryl C-H); 7.34 (2H, t, J = 7.4 Hz, Fmoc aryl C-H); 7.26 (2H, t, J = 7.5Hz, Fmoc aryl C-

H); 6.169 (1H, d, -CONH-CαH(COOtBu)-);  4.51 (1H, m, -CONHCαH(COOtBu)-CβH2-); 4.45 

(2H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.18 (1H, t, J = 6.945,  Fmoc Ar2CH-CH(a)H(b)-O-);   3.58-

3.33 (32H, m, -CON-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2);  3.31 (3H, s, -O-

CH3a); 3.30 (3H, s, -O-CH3b); 3.14 (1H, dd, -CαH(COOH)-Cβ(Ha)Hb-CON-); 2.82 (1H, dd,  -

CαH(COOH)-Cβ(Ha)Hb-CON-); 1.40 (9H, s, -O-C-(CH3)3. Peaks at 1.96, 2.31, 2.78 correspond 

to residual NMP. The full 1H NMR spectrum for Fmoc-L-Asn(PEG4)2-OtBu is shown in Figure 

3-55. 
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Figure 3-55. 1H NMR spectrum for Fmoc-L-Asn(PEG4)2-OtBu. 

13C NMR (126 MHz, CDCl3): δ 171.20, 170.36 (-NH-CαH(COOtBu)-CβH2- and -CβH2-CON-

CH2-); 156.34 (Fmoc-O-CONH-); 143.94, 143.78, 141.23, 141.22 (Fmoc aryl ipso C’s); 127.65, 

127.10, 127.03, 125.11, 125.02, 119.92, 119.91 (Fmoc aryl C-H); 81.68 (-O-C(CH3)3); 71.84-

46.19 (-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-); 66.68 (Fmoc Ar2CH-CH2-O-);  58.94, 

58.91 (-O-CH3); 51.21 (-NH-CαH(COOtBu)-CβH2-); 47.12 (Fmoc Ar2CH-CH2-O-); 35.65 (-

CαH(COOH)-CβH2-COO-); 27.90 (-O-C(CH3)3). The full 13C NMR spectrum for Fmoc-L-

Asn(PEG4)2-OtBu is shown in Figure 3-56 
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Figure 3-56. 13C NMR spectrum for Fmoc-L-Asn(PEG4)2-OtBu. 

 

Assignments of the 1H and 1C NMR spectra for the Fmoc-L-Asn(PEG4)2-OtBu were with the 

assistance of a 2D HSQC experiment Figure 3-57, using the one-bond C-H correlations shown in 

Table 3-13. 
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Figure 3-57. 2D HSQC spectrum of Fmoc-L-Asn(PEG4)2-OtBu. 

 

Table 3-13. One-Bond C-H correlations identified from HSQC data for Fmoc-L-Asn(PEG4)2-OtBu. 
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High-resolution ESI-TOF MS data for Fmoc-L-Asn(PEG4)2-OtBu are shown in Figure 3-58. 

 

Figure 3-58.  ESI-TOF MS data for Fmoc-L-Asn(PEG4)2-OtBu. Calculated m/z for C41H66N3O13 (M+NH4
+) is 

808.46, found 808.458 

 

3.4.22 Fmoc-L-Asn(PEG)2-OH (S14) 

 
To a solution of TFA (95% in water, 50ml) was added Fmoc-L-Asn(PEG)2-OtBu (S13), and the 

solution was stirred for 4 h under an argon atmosphere. The product Fmoc-L-Asn(PEG)2-OH 

[(S)-17-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-15-oxo-14-(2,5,8,11-tetraoxatridecan-13-

yl)-2,5,8,11-tetraoxa-14-azaoctadecan-18-oic acid, S14] was concentrated by rotary evaporation, 

and used without further purification. 

1H NMR (500 MHz, CDCl3): δ  11.43 (1H, s, (COOH); 7.77(2H, d, J = 7.6 Hz, Fmoc 

aryl C-H); 7.63 (2H, t, J = 7.44  Fmoc aryl C-H); 7.40 (2H, t, J = 7.4 Hz, Fmoc aryl C-H); 7.31 
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(2H, t, J = 7.4Hz, Fmoc aryl C-H); 6.37 (1H, broad s, -CONH-CαH(COOtBu)-);  4.64 (1H, 

broad s, -CONHCαH(COOtBu)-CβH2-); 4.43 (1H, m,  Fmoc Ar2CH-CH(a)H(b)-O-); 4.32 (1H, m,  

Fmoc Ar2CH-CH(a)H(b)-O-);  4.23 (1H, t, J = 7.2,  Fmoc Ar2CH-CH(a)H(b)-O-);   3.66-3.50 (32H, 

m, -CON-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-)2);  3.40 (3H, s, -O-CH3); 3.36 

(1H, dd, -CαH(COOH)-Cβ(Ha)Hb-CON-); 2.96 (1H, dd,  -CαH(COOH)-Cβ(Ha)Hb-CON-); 

Peaks at 2.10, 2.60, and 2.92 correspond to residual NMP. The full 1H NMR spectrum for Fmoc-

L-Asn(PEG)2-OH is shown in Figure 3-59. 

 

Figure 3-59. 1H NMR spectrum for  Fmoc-L-Asn(PEG)2-OH. 

 

13C NMR (75.4 MHz, CDCl3): δ 173.00, 172.61 (-NH-CαH(COOtBu)-CβH2- and -CβH2-

CON-CH2-); 156.38 (Fmoc-O-CONH-); 143.86, 143.66, 141.26, 141.25 (Fmoc aryl ipso C’s); 

127.73, 127.12, 127.01, 125.26, 125.17, 119.94 (Fmoc aryl C-H); 71.73-46.32 (-CH2-O-CH2-

CH2-O-CH2-CH2-O-CH2-CH2-O-); 67.34 (Fmoc Ar2CH-CH2-O-);  58.83, 58.77, (-O-CH3); 
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54.47 (-NH-CαH(COOtBu)-CβH2-); 47.03 (Fmoc Ar2CH-CH2-O-); 35.73 (-CαH(COOH)-CβH2-

COO-); The full 13C NMR spectrum for  Fmoc-L-Asn(PEG)2-OH is shown in Figure 3-60. 

 

Figure 3-60. 13C NMR spectrum for  Fmoc-L-Asn(PEG)2-OH 

 

Assignments of the 1H and 1C NMRs for the  Fmoc-L-Asn(PEG)2-OH were made by analogy 

with published spectral data for related compounds, and with the assistance of a 2D HSQC 

experiment Figure 3-61, using the one-bond C-H correlations shown in Table 3-14. 
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Figure 3-61. 2D HSQC spectrum of  Fmoc-L-Asn(PEG)2-OH. 

 

Table 3-14. One-Bond C-H correlations identified from HSQC data for  Fmoc-L-Asn(PEG)2-OH. 
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High-resolution ESI-TOF MS data for Fmoc-L-Asn(PEG)2-OH are shown in Figure 3-62. 

 
Figure 3-62. ESI-TOF MS data for  Fmoc-L-Asn(PEG)2-OH. Calculated m/z for  C37H58N3O13 (M+NH4

+) is 752.40, 
found 752.41 

 

3.4.23 Analysis of WW Variant Folding Thermodynamics 

3.4.24 Circular Dichroism Spectropolarimetry 

Measurements were made with an Aviv 420 Circular Dichroism Spectropolarimeter, 

using quartz cuvettes with a path length of 0.1 cm. Protein solutions were prepared in 20 mM 

sodium phosphate buffer, pH 7, and protein concentrations were determined spectroscopically 

based on tyrosine and tryptophan absorbance at 280 nm in 6 M guanidine hydrochloride + 20 

mM sodium phosphate (εTrp = 5690 M-1cm-1, εTyr = 1280 M-1cm-1).30  CD spectra of 50 μM 

solutions were obtained from 340 to 200 nm at 25ºC and 1°C. Variable temperature CD data 

were obtained in triplicate for 50 μM solutions of: 1-nbp, 1-cbp, 2, 2p-1, 2p-2, 2p-3, 2p-4, 3, 3p, 

4, 4p, 6, 6p, m1, m1p, 5, and 5p, in 20 mM sodium phosphate (pH 7) by monitoring molar 

ellipticity at 227 nm from 1 to 95°C at 2 °C intervals, with 120 s equilibration time between data 

points and 30 s averaging times. 
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3.4.25 Global Fitting of Variable Temperature CD Data 

For 2, 2p-4, 4p, and 5p data from the three replicate variable temperature CD 

experiments on each protein were fit to the following model for two-state thermally induced 

unfolding transitions: 

 , (S1) 

where T is temperature in Kelvin, D0 is the y-intercept and D1 is the slope of the post-transition 

baseline; N0 is the y-intercept and N1 is the slope of the pre-transition baseline; and Kf is the 

temperature-dependent folding equilibrium constant. Kf is related to the temperature-dependent 

free energy of folding ΔGf  (T) according to the following equation: 

 , (S2) 

where R is the universal gas constant (0.0019872 kcal/mol/K). ΔGf(T) was fit to the following 

equation: 

 ∆Gf = ∆H(Tm)∙(Tm−T)
Tm

+ ∆Cp ∙ (T − Tm − T ∙ ln � T
Tm
�) (S3) 

where the fit parameters are Tm (the midpoint of the unfolding transition; the temperature at 

which ΔGf = 0); ΔH(Tm), the change in enthalpy upon folding at Tm; and ΔCp, the change in heat 

capacity upon folding.  The parameters for equations S1-S3 were used to calculate the values of 

the folding free energy ΔGf for WW variants in the main text and in tables below.  

In preliminary fitting efforts of the data for 3, 4, 6, 2p-1, 2p-2, 2p-3, 3p, m1, m1p, 5, 5p, 

1-cbp, and 1-nbp to equation S3, we found that the fits were over parameterized, with high p-

values for the ∆Cp (heat capacity) and D1 (slope of the post-transition baseline) terms. Therefore, 
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we eliminated the heat capacity term for variants 3, 4, and 6 while eliminating both the heat 

capacity and slope of the post-transition baseline terms for variants 2p-1, 2p-2, 2p-3, 3p, m1, 

m1p, 5, 5p, 1-cbp, and 1-nbp. 

3.4.26 Plots of CD Spectra, Variable Temperature CD Data 

 
Figure 3-63. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 1 (black), 1-nbp (red), 
1p (green), and 1-cbp (blue) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the 

table, along with standard errors. 
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Figure 3-64. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants m1 (black) and m1p 

(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with 
standard errors. 

 

 

Figure 3-65. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 2 (black) and 2p-1 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with 

standard errors. 
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Figure 3-66. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 2 (black) and 2p-2 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with 

standard errors. 

 

 

Figure 3-67. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 2 (black) and 2p-3 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with 

standard errors. 
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Figure 3-68. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 2 (black) and 2p-4 
(red) in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with 

standard errors. 

 

 

Figure 3-69. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 3 (black) and 3p (red) 
in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with standard 

errors 
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Figure 3-70. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 4 (black) and 4p (red) 
in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with standard 

errors. 

 

 

Figure 3-71. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 5 (black) and 5p (red) 
in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with standard 

errors. 
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Figure 3-72. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 6 (black) and 6p (red) 
in 20 mM sodium phosphate, pH 7. Fit parameters from equations S1–S3 appear in the table, along with standard 

errors. 
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4 LINKER SCAN 

4.1 Introduction 

In chapter 2 we developed a predictive structure-based method for identifying stabilizing 

PEGylation sites within two model proteins: the WW domain of the human protein Pin 1 and the 

Src SH3 domain. We generated the required PEG-protein conjugates for these studies by 

attaching a short PEG oligomer to the side-chain amide nitrogen of an Fmoc-protected Asn 

residue, which was incorporated at desired positions within WW or SH3 via solid-phase peptide 

synthesis.1 However, Asn-PEG is not genetically encodable, which presents a major challenge 

for incorporating it site-specifically into larger and more therapeutically relevant proteins. 

Chapter 3 explores two genetically encodable alternatives to Asn-PEGylation in the context of 

the WW domain: PEGylation of a propargyloxyphenylalanine residue with a PEG-azide (ie., 

PrF-PEGylation); and PEGylation of an azidohomoalanine residue with a PEG-alkyne (ie., Aha-

PEGylation). We found that neither PrF- nor Aha-PEGylation can stabilize WW as extensively 

as does Asn-PEGylation at position 19. We wondered whether PrF- or Aha-PEGylation would be 

similarly unable to recapitulate the impact of Asn-PEGylation at the other positions within WW 

that we studied in Chapter 2. Answering this question is key to understanding whether we can 

use our structure-based guidelines for identifying stabilizing Asn-PEGylation sites to identify 

stabilizing PrF- or Aha-PEGylation sites.  
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4.2 Results and Discussion 

 To address these questions, we generated proteins in which wild type residues at 

positions 16, 18, 19, 23, 27, 29, and 32 were replaced with PrF or Aha to give proteins 16PrF, 

18PrF, 19PrF, 23PrF, 27PrF, 29PrF, 32PrF, 16Aha, 18Aha, 19Aha, 23Aha, 27Aha, 29Aha, 

and 32Aha.  We then modified the PrF or Aha side-chains with a PEG-azide or PEG-alkyne, 

respectively, via copper-catalyzed azide-alkyne cycloaddition (CuAAC) to give PEGylated 

proteins 16PrFp, 18PrFp, 19PrFp, 23PrFp, 27PrFp, 29PrFp, 32PrFp, 16AhaP, 18AhaP, 

19AhaP, 23AhaP, 27AhaP, 29AhaP, and 32AhaP. We used variable temperature circular 

dichroism (CD) to assess the stability of these PEGylated variants relative to their non-

PEGylated counterparts  

 

Figure 4-1. Sequence and ribbon diagram of WW (PBD ID: 1PIN). Positions where we incorporated N, NP, BP, 
Aha, AhaP, PrF, and PrFp are indicated.  

 

The results of this analysis appear in figure 4-3 and table 4-1. Previous work indicates 

that Asn-PEGylation increases conformational stability at positions 16, 19, 29, and 32; has no 

effect at position 18, and is destabilizing at positions 23 and 27. Similarly, Aha-PEGylation 

moderately increases conformational stability at positions 16 and 19, and has minimal 
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stabilization at position 18, and is destabilizing at positions 23 and 27. However, unlike Asn-

PEGylation, Aha-PEGylation has no effect at position 32. PrF-PEGylation has a substantially 

different impact on WW stability: it is moderately stabilizing at positions 23, 27, 29, and 32 

while having no impact at positions 16, 18, and 19.  

 

Table 4-1. Impact of the protein-PEG linkers on the WW thermodynamic stability at various sites. 

Position PrF vs. PrFp Aha vs. AhaP  N vs. NP    N vs. BP   

 ΔTm ΔΔGf ΔTm ΔΔGf ΔTm ΔΔGf ΔTm ΔΔGf 

16 -0.7 ± 0.5 0.07 ± 0.05 4.1 ± 0.5 -0.39 ± 0.04 10.1 ± 0.3 -0.90 ± 0.03 19.7 ± 0.2 -1.70 ± 0.03 

18 0.7 ± 0.4 -0.06 ± 0.04 1.7 ± 0.4 -0.16 ± 0.04 0.0 ± 0.7 0.00 ± 0.07 0.4 ± 0.3 -0.03 ± 0.02 

19 1.4 ± 0.4 -0.04± 0.02 3.7 ± 0.3 -0.36 ± 0.01 7.9 ± 0.2 -0.74 ± 0.02 12.2 ± 0.2 -1.19 ± 0.02 

23 3.5 ± 0.3 -0.29± 0.02 -2.9 ± 0.5 0.25 ± 0.05 -5.5 ± 1.3 0.40 ± 0.10 NA NA 

27 6.6 ± 0.2 -0.53± 0.02 -6.4 ± 0.3 0.51 ± 0.03 -4.0 ± 0.4 0.38 ± 0.04 -13.5 ± 0.4 1.27 ± 0.05 

29 3.8 ± 0.5 -0.31± 0.04 -5.0 ± 0.6 0.39 ± 0.05 4.1 ± 0.4 -0.36 ± 0.04 8.0 ± 0.4 -0.67 ± 0.03 

32 4.7 ± 0.4 -0.32± 0.03 -0.4 ± 0.06 0.03 ± 0.06 5.3 ± 0.3 -0.45 ± 0.02 9.2 ± 0.4 -0.81 ± 0.04 

 

The data show that our structure-based method for selecting optimal Asn-PEGylation 

sites does not correctly predict all stabilizing and destabilizing sites for PrF- and Aha-

PEGylation. For example: position 27 is destabilizing for both Asn- and Aha-PEGylation by 0.38 

± 0.04 kcal/mol and 0.51 ± 0.03 kcal/mol respectively while significantly stabilizing for PrF-

PEGylation by -0.53 ± 0.02 kcal/mol. In contrast, position 16 is significantly stabilizing for Asn-

PEGylation (-0.90 ± 0.043 kcal/mol) and moderately stabilizing for Aha-PEGylation (-0.39 ± 

0.04 kcal/mol ) while PrF-PEGylation had no effect (0.07 ± 0.05 kcal/mol).  

Observed data are given ± standard error at 50 µM protein concentration in 20 mM sodium phosphate buffer, pH 
7 (except for proteins 16N, 16NP, 16BP, 18N, 18NP, 18BP, 19N, 19NP, 19BP, 23N, 23NP, 23BP, 32N, 32NP, 
and 32BP, which were characterized at 100 µM protein concentration). Observed values of ∆∆Gf were derived 

from variable-temperature CD experiments at the melting temperature of the corresponding non-PEGylated 
protein. 
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We first wondered if PEG-based stabilization or destabilization is a result of how the 

unnatural amino acids PrF and Aha affects the melting temperature of the protein before the 

attachment of PEG.  We wanted to know if stabilizing PEGylation sites are stabilizing because 

the non-PEGylated variant’s melting temperature did not deviate significantly from the parent 

protein’s melting temperature of 58.0 ± 0.07 °C, whereas destabilizing PEGylation sites are 

destabilizing because the non-PEGylated variant’s melting temperature did deviate significantly 

from the parent protein’s melting temperature. (see figure 4-2 and table 4-1). We find some non-

PEGylated variants that have melting temperatures above 58 °C (16PrF, 27Aha, 32PrF, and 

32Aha) and others below 58 °C (16Aha, 18PrF, 18Aha, 19PrF, 19Aha, 23Prf, 23Aha, 27PrF, 

29PrF, and 29Aha). If the hypothesis is correct, then we should only see PEG-based 

stabilization for 16PrF, 27Aha, 32PrF, and 32Aha. Instead of finding PEG-based stabilization 

for all the variants with melting temperatures above 58 °C we find PEG-based stabilization for 

only 32PrFp and PEG-based de-stabilization for proteins 16PrFp, 27AhaP, and 32AhaP. There 

is also PEG-based stabilization and de-stabilization for non-PEGylated variants with melting 

temperatures below 58 °C (see figure 4-2 and table 4-1). This analysis shows that there is no 

correlation between PEG-based stabilization and the stability of the non-PEGylated variant. 

Interestingly, PrF- and Aha-PEGylation seems to have opposite effects at each position. 

In loop 1 (see figure 4-1) of the WW we notice that Aha-PEGylation increases the 

conformational stability while PrF-PEGylation has no effect. In loop two of the WW we see the 

opposite effect; Aha-PEGylation is now significantly destabilizing whereas PrF-PEGylation has 

a stabilizing effect. The data also show that Aha-PEGylation is destabilizing in beta strands 

(positions 23 and 32), whereas PrF-PEGylation is stabilizing.  
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Figure 4-2. Melting temperatures of the WW variants. 

 

A possible explanation for these observations is that the PrF- and Aha-linkers are more 

sensitive to secondary structure than the Asn-linkage. Loop 1 is an unusual type II β-turn within 

a six-residue loop; it is possible that this structural context is ideal for Aha-PEG-based 

stabilization.  In contrast, loop 2 is a type I β-turn that may have structural features that are 

optimal for PrF-PEGylation, but not for Aha-PEGylation. Asn-PEG is tolerated in both loops and 

seems to be less sensitive to secondary structure than PrF- and Aha-PEGylation; however, we do 

not know if branched Asn-PEG will behave similarly to mono Asn-PEG.     

In chapter 3 we demonstrated that by adding an additional four-unit peg chain to the 

amide nitrogen of 19NP increased WW stability by an additional -0.45 ± 0.02 kcal/mol.  The 

resulting variant 19BP (see figure 4-1) is -1.19 ± 0.02 kcal/mol more stable than non-PEGylated 

19N. We also wondered if branched Asn-PEG would stabilize WW at the same positions as non-

branched PEG. To test this hypothesis, we used variable temperature circular dichroism (CD) to 
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assess the stability of the bis-PEGylated variants 16BP, 18BP, 19BP, 23BP, 27BP, 29BP, 32BP, 

16BP, 18BP, 19BP, 23BP, 27BP, 29BP, and 32BP relative to their non-PEGylated counterparts 

(see chapter 2).  

 

 

Figure 4-3. Graphical representation of the thermodynamic data found in table 1. ∆∆Gf data for protein 23BP is not 
available due to the protein’s instability.  

 

 The branched Asn-PEG is stabilizing at the same positions where non-branced Asn-PEG 

was stabilizing, but generally by larger amounts. The same is true for destabilizing positions. For 

example, protein 16BP is -1.70 ± 0.03 kcal/mol more stable than non-PEGylated 16N and -0.80 

± 0.04 kcal/mol more stable than mono-PEGylated 16NP. Similarly, protein 27BP is 1.27 ± 0.05 

kcal/mol less stable than non-PEGylated 27N and 0.89 ± 0.06 kcal/mol less stable than mono-

PEGylated 27NP.  
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4.3 Conclusion 

The goal of this work was to find a genetically encodable linker that would follow the 

same rules that were developed previously for identifying stabilizing Asn-PEGylation sites.  The 

two candidates were propargyloxyphenylalanine (PrF) and azidohomoalanine (Aha). We have 

shown that PrF- and Aha-PEGylation does not follow the same rules that govern Asn-

PEGylation; however, Aha-PEGylation mimics the impact of Asn-PEGylation better than PrF-

PEGylation at positions within the WW studied from chapter two. Aha-PEGylation may mimic 

the effects of Asn-PEGylation better than PrF-PEGylation because Aha-PEG and Asn-PEG are 

isosteres that share unique structural features that are different than PrF-PEG. Another 

explanation for why PrF- and Aha-PEGylation doesn’t follow the same rules as Asn-PEGylation 

may be a result of PrF-PEG and Aha-PEG being more sensitive to local secondary structural 

contexts than Asn-PEG. It is interesting to note that most sites in the WW can become 

substantially stabilized via PEGylation sites when the correct linker is used. This work illustrates 

that the PEG linker is a critical determinant of PEG-based stabilization within WW and may 

explain why we see conflicting reports in the literature about the thermodynamic consequence of 

PEGylated proteins. The branched Asn-PEG scan did however follow the same rules as the 

mono Asn-PEG scan. Using the branched Asn-PEG linker does increase conformational stability 

significantly more than mono Asn-PEG4.  In comparing 19BP (eight ethylene oxide units) to a 

previously2 synthesized variant 19NPEG45 (45 eight ethylene oxide units) we find that the 

branched variant is more effective at increasing the conformational stability than a large linear 

PEG polymer. However, branched Asn-PEGylation still has limited application due to not being 

genetically encodable. Applying our predictive guidelines for branched Asn-PEGylation to larger 

therapeutic proteins may require a fragment condensation/ligation approach.  Alternatively, using 
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our structure-based method for finding optimal PEGylation sites using PrF and Aha linkers only 

works when the structural context of the PEGylation site is accounted for. 

4.4 Supporting Information 

Protein synthesis, purification and characterization including HPLC, ESI-TOF MS, and 

CD spectropolarimetry were performed using identical condition to those reported in Chapter 3.  

 

4.4.1 ESI-TOF 

ESI-TOF spectra for proteins 16Aha, 16AhaP, 18Aha, 18AhaP, 23Aha, 23AhaP, 

27Aha, 27AhaP, 29Aha, 29AhaP, 32Aha, 32AhaP, 16PrF, 16PrFp, 18PrF, 18PrFp, 23PrF, 

23PrFp, 27PrF, 27PrFp, 29PrF, 29PrFp, 32PrF, 32PrFp, 16BP, 18BP, 23BP, 27BP, 29BP, 

and 32BP are shown in Figures 4-4 through 4-33. 

 

 

Figure 4-4. ESI-TOF spectrum for WW variant 16Aha.  
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Figure 4-5. ESI-TOF spectrum for WW variant 16AhaP 

 

 

 
Figure 4-6. ESI-TOF spectrum for WW variant 18Aha. 
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Figure 4-7. ESI-TOF spectrum for WW variant 18AhaP 

 

 
Figure 4-8. ESI-TOF spectrum for WW variant 23Aha. 

 
Figure 4-9. ESI-TOF spectrum for WW variant 23AhaP. 
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Figure 4-10. ESI-TOF spectrum for WW variant 27Aha. 

 

 
Figure 4-11. ESI-TOF spectrum for WW variant 27AhaP. 

 
Figure 4-12. ESI-TOF spectrum for WW variant 29Aha. 
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Figure 4-13. ESI-TOF spectrum for WW variant 29AhaP. 

 

 
Figure 4-14. ESI-TOF spectrum for WW variant 32Aha. 

 
Figure 4-15. ESI-TOF spectrum for WW variant 32AhaP. 
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Figure 4-16. ESI-TOF spectrum for WW variant 16PrF. 

 

 
Figure 4-17. ESI-TOF spectrum for WW variant 16PrFp. 

 
Figure 4-18. ESI-TOF spectrum for WW variant 18PrF. 
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Figure 4-19. ESI-TOF spectrum for WW variant 18PrFp. 

 

 
Figure 4-20. ESI-TOF spectrum for WW variant 23PrF. 

 
Figure 4-21. ESI-TOF spectrum for WW variant 23PrFp. 
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Figure 4-22. ESI-TOF spectrum for WW variant 27PrF. 

 

 
Figure 4-23. ESI-TOF spectrum for WW variant 27PrFp. 
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Figure 4-24. ESI-TOF spectrum for WW variant 29PrF. 

 

 
Figure 4-25. ESI-TOF spectrum for WW variant 29PrFp. 

 

Figure 4-26. ESI-TOF spectrum for WW variant 32PrF. 
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Figure 4-27. ESI-TOF spectrum for WW variant 32PrFp. 

 

 
Figure 4-28. ESI-TOF spectrum for WW variant 16BP. 

 

 
Figure 4-29. ESI-TOF spectrum for WW variant 18BP. 
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Figure 4-30. ESI-TOF spectrum for WW variant 23BP. 

 

 
Figure 4-31. ESI-TOF spectrum for WW variant 27BP. 

 

 
Figure 4-32. ESI-TOF spectrum for WW variant 29BP. 
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Figure 4-33. ESI-TOF spectrum for WW variant 32BP. 

 

4.4.2 HPLC 

HPLC traces for proteins 16Aha, 16AhaP, 18Aha, 18AhaP, 23Aha, 23AhaP, 27Aha, 

27AhaP, 29Aha, 29AhaP, 32Aha, 32AhaP, 16PrF, 16PrFp, 18PrF, 18PrFp, 23PrF, 23PrFp, 

27PrF, 27PrFp, 29PrF, 29PrFp, 32PrF, 32PrFp, 16BP, 18BP, 23BP, 27BP, 29BP, and 32BP 

are shown in Figures 4-34 through 4-63.  

 

Figure 4-34. Analytical HPLC Data for WW variant 16Aha. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 4-35. Analytical HPLC Data for WW variant 16AhaP. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 

Figure 4-36. Analytical HPLC Data for WW variant 18Aha. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 4-37. Analytical HPLC Data for WW variant 18AhaP. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 4-38. Analytical HPLC Data for WW variant 23Aha. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-39. Analytical HPLC Data for WW variant 23AhaP. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-40. Analytical HPLC Data for WW variant 27Aha. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 4-41. Analytical HPLC Data for WW variant 27AhaP. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-42. Analytical HPLC Data for WW variant 29Aha. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-43. Analytical HPLC Data for WW variant 29AhaP. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 4-44. Analytical HPLC Data for WW variant 32Aha. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-45. Analytical HPLC Data for WW variant 32AhaP. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-46. Analytical HPLC Data for WW variant 16PrF. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min 
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Figure 4-47. Analytical HPLC Data for WW variant 16PrFp. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-48. Analytical HPLC Data for WW variant 18PrF. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-49. Analytical HPLC Data for WW variant 18PrFp. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 4-50. Analytical HPLC Data for WW variant 23PrF. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 4-51. Analytical HPLC Data for WW variant 23PrFp. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-52. Analytical HPLC Data for WW variant 27PrF. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 4-53. Analytical HPLC Data for WW variant 27PrFp. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 4-54. Analytical HPLC Data for WW variant 29PrF. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-55. Analytical HPLC Data for WW variant 29PrFp. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 
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Figure 4-56. Analytical HPLC Data for WW variant 32PrF. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-57. Analytical HPLC Data for WW variant 32PrFp. Protein solution was injected onto a C18 analytical 

column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 
minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 

of 1 mL/min. 

 
Figure 4-58. Analytical HPLC Data for WW variant 16BP. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 4-59. Analytical HPLC Data for WW variant 18BP. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 4-60. Analytical HPLC Data for WW variant 23BP. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 4-61. Analytical HPLC Data for WW variant 27BP. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 
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Figure 4-62. Analytical HPLC Data for WW variant 29BP. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

 
Figure 4-63. Analytical HPLC Data for WW variant 32BP. Protein solution was injected onto a C18 analytical 
column and eluted using a linear gradient of 10-60% B (A=H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 

minutes, followed by a 10 minute rinse (95% B), and a 10 minute column re-equilibration (10% B) with a flow rate 
of 1 mL/min. 

4.4.3 CD Spectra and Thermal Denaturation Plots 

CD spectra and thermal denaturation plots for 16Aha, 16AhaP, 18Aha, 18AhaP, 23Aha, 

23AhaP, 27Aha, 27AhaP, 29Aha, 29AhaP, 32Aha, 32AhaP, 16PrF, 16PrFp, 18PrF, 18PrFp, 

23PrF, 23PrFp, 27PrF, 27PrFp, 29PrF, 29PrFp, 32PrF, 32PrFp, 16BP, 18BP, 23BP, 27BP, 

29BP, and 32BP are shown in Figures 4-64 through 4-63.  
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Figure 4-64. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 16Aha (black) and 
16AhaP (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-65. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 18Aha (black) and 
18AhaP (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-66. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 23Aha (black) and 
23AhaP (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-67. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 27Aha (black) and 
27AhaP (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-68. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 29Aha (black) and 
29AhaP (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-69. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 32Aha (black) and 
32AhaP (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-70. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 16PrF (black) and 
16PrFp (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-71. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 18PrF (black) and 
18PrFp (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-72. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 23PrF (black) and 
23PrFp (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-73. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 27PrF (black) and 
27PrFp (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-74. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 29PrF (black) and 
29PrFp (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-75. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 32PrF (black) and 
32PrFp (red) in 20 mM sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-76. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 16BP in 20 mM 

sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-77. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 18BP in 20 mM 

sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-78. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 23BP in 20 mM 

sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-79. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 27BP in 20 mM 

sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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Figure 4-80. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 29BP in 20 mM 

sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 

 
Figure 4-81. CD spectra (50 µM) and variable temperature CD data (50 µM) for WW variants 32BP in 20 mM 

sodium phosphate, pH 7. Fit parameters appear in the table, along with standard errors. 
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