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ABSTRACT

Design and Analysis of Robotically-Controlled
Minimally Invasive Surgical Instruments

Jordan D. Tanner
Department of Mechanical Engineering, BYU

Master of Science

Robot-assisted minimally invasive surgery is used to perform intricate surgical tasks through
small incisions using long, slender instruments. The miniaturization of these instruments is advan-
tageous to both surgeon and patient because smaller instruments reduce trauma to surrounding
tissue, decrease patient recovery times, and can be used in confined spaces otherwise inaccessible
using larger instruments. However, miniaturization of existing designs is limited by friction be-
tween moving parts, the volume occupied by the end effector, and manufacturing and assembly
constraints.

The objective of this work is to develop and analyze concepts that can be used in robot-
assisted needlescopic surgery. The concepts are intended for instrument shafts no larger than 3 mm
in diameter. An ideal concept is one with large ranges of wrist and gripping motion. Concepts
should also minimize friction and swept volume while maintaining a focus on manufacturability
and ease of assembly.

Multiple concepts were generated and evaluated using a tree classification scheme, proof-
of-concept prototypes, and simplified mathematical models. Three unique concepts were further
developed and tested—the Split CORE Grips, the Inverted Flexure Grips, and the Crossed Cylin-
ders Wrist. The two grip concepts are instruments that incorporate one rotational degree of free-
dom and one gripping degree of freedom. The wrist concept incorporates two rotational degrees of
freedom and could be coupled with a single DOF grip mechanism to form a functional instrument.

In addition to concept development, a variety of fabrication techniques were investigated
to better understand the challenges that arise when designing and fabricating devices at the 3 mm
scale. To augment existing techniques, a novel fabrication technique was developed which uses
layers of lithographically patterned carbon nanotube (CNT) composite material to form a 3D part.
This method was used to prototype some of the designs at a 1:1 size scale.

Keywords: minimally invasive surgical instrument, needlescopic surgery, robotics, carbon nan-
otube
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NOMENCLATURE

d f Cable offset distance on Split CORE mechanism
E Modulus of elasticity
F1,F2 Input actuation forces on the Split CORE and Inverted Flexure mechanisms
Fout Output force on Split CORE and Inverted Flexure mechanisms
Fp Preload force applied to actuation forces
θ j Jaw angle of Split CORE mechanism
θr Arc angle that defines the Split CORE base profile
L j Jaw length on the Split CORE and Inverted Flexure mechanisms
r1 Radius of curvature of Split CORE base
σ ′ Von Mises stress
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The intent of this project is to design a multiple-degree-of-freedom surgical instrument for

use in needlescopic (≤ 3 mm diameter) robot-assisted surgery. Current rigid body designs employ

the use of pin joints, pulleys, and fasteners to achieve their intended motion. These designs are

generally 5-12 mm in diameter. However, when scaling these designs to 3 mm, elements such as

pulleys and pin joints become prohibitive due to challenges that arise at this size scale.

Manufacturing and assembly of these designs are perhaps the greatest challenges. Current

designs rely on conventional machining methods (i.e. CNC milling) to produce each part. In a

3 mm design, this would require feature sizes as small as tens of micrometers. This is well beyond

the capabilities of even the best CNC machines. An ideal design would minimize the number of

parts in the assembly while maintaining a relatively simple geometry.

Friction is another challenge facing the design of smaller surgical tools. Friction is present

in all rigid body mechanisms but is generally neglected in many macro-scale applications because

it is small relative to other forces. However, when dealing with designs on the 3 mm scale, the

magnitude of friction forces is comparable to the magnitude of forces used to actuate the mecha-

nism. This becomes a serious problem when trying to precisely control or predict motion due to

stick and slip behavior that occurs.

1.2 Background

Minimally invasive surgery (MIS) is used to perform a variety of complex medical proce-

dures while reducing post-operative pain, scarring, recovery time, and the length of hospital stays.

One particularly significant advance in the field of MIS is the use of robotics to more accurately

and precisely control the instruments used in surgery. Intuitive Surgical Operations, Inc. has be-

1



come a pioneer in this field by developing the da Vinci Surgical System. With nearly 2,800 da Vinci

systems worldwide, surgeons were able to perform over 450,000 robotically-assisted procedures

in 2012 [1]. Fig. 1.1 shows one of the current representative instrument designs.

The design is compact and efficient in providing high dexterity and a large range of motion.

The Endowrist® is capable of producing pitch and yaw motions and the shaft to which it is attached

is able to produce roll motions.

Figure 1.1: 8 mm Endowrist® design by Intuitive Surgical. Image courtesy of Intuitive Surgical,
Inc.

In addition to rotational motion, the instrument can also be moved linearly by pivoting

about the point of incision to produce two directions of lateral motion or by retracting/inserting the

shaft farther to move laterally along the axis of the shaft.

One common type of MIS is laparoscopy, or procedures associated with organs and tissue

located within the abdominal and pelvic regions. Laparoscopy had been used primarily for disease

diagnosis in the early 20th century. However, it gained much wider support from the medical

community in the late 1980’s when German surgeon Erich Mühe successfully performed several

laparoscopic cholecystectomies [2].

While laparoscopy is perhaps the ideal case for MIS because of the relatively large working

space in the abdomen, there are a large number of medical procedures that must be performed in

confined spaces. In many of these cases, MIS is not used because current instruments are too
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Figure 1.2: Topologies that may be accessible through minimally invasive surgery.

large or simply pose too great a risk to patient safety. Small, robust instruments hold the potential

to greatly increase the number of procedures that can be performed using MIS. Figure 1.2 shows

simplified depictions of some working spaces that are currently encountered in MIS (a-c), and other

spaces where MIS could be used given the appropriately sized instruments (d-h). For example,

arthroscopy, or MIS joint repair, is performed in small working spaces with restricted motion of

the end effector. Other procedure sites, such as those performed at the base of the brain, have small

access points in the nose or mouth and therefore require instruments with small cross sections.
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1.3 Thesis Objectives

A variety of minimally invasive surgical instruments have been created to grasp tissue,

excise tumors and cysts, suture openings, lift organs, perform cautery, etc. This research will focus

specifically on an instrument capable of gripping a needle for suturing. However, the resulting

designs will likely be suitable for other functions by making small modifications to the underlying

elements that give the mechanism its function.

The majority of instruments currently available rely on rigid-body construction. Elements

such as pin joints and pulleys offer very predictable motion that is relatively easy to analyze. Un-

fortunately, the scalability of such mechanisms is limited by several factors, particularly when

moving from the current 5 and 8 mm designs to a 3 mm design. Friction between moving compo-

nents in the instrument is among the primary challenges associated with smaller designs. Another

is manufacturing and fabrication feasibility.

Two techniques have been used to address these challenges. One technique is to use com-

pliant mechanism design rather than rigid-body design. Compliant mechanisms provide a way

to mitigate friction and wear by reducing or eliminating parts that move relative to one another.

Additionally, compliant mechanisms generally involve fewer parts than rigid body mechanisms.

By reducing the part count of a particular design, the fabrication time and difficulty will also be

reduced.

The second method involves designs that rely on rolling motion in order to eliminate nearly

all sliding friction. The Compliant Rolling-Contact Element (CORE) is the basis of these designs

[3]. The proposed work accomplishes the following objectives:

1. A survey of prior art regarding wrist and gripper mechanisms.

2. Investigation of suitable materials and fabrication techniques.

3. Development of analytical models for a variety of designs of wrists and grippers. This allows

comparison between the designs for the following attributes:

• Range of motion

• Stiffness and load capacity

• Scalability

4



• Ease of fabrication

4. Prototyping and testing of top performing designs and comparison to the analytical models.

1.4 Thesis Accomplishments

1.4.1 Prior Art Survey

An extensive survey of prior art relating to this project has been performed. The majority of

work published regarding minimally invasive surgical instruments refers to rigid body mechanism

designs. Within the 5-12 mm range are instruments with end effectors that can pivot about two axes

and produce gripping motion. Examples include the Easy Grasp by Wang et al. [4], the surgical

device by Whitman [5], the DragonFlex instrument by Jelinek [6], and the Endowrist® by Intuitive

Surgical, mentioned previously.

There has also been significant work done on wrist and gripper designs for other industries

and applications, but on different size scales. This work has provided a starting point from which to

generate new ideas. For example, the microfabrication industry requires manipulation of extremely

small, sensitive parts. A variety of micro grippers have been developed for this purpose and rely

on compliant motion [7, 8]. Automated automobile manufacturing is another field where part

manipulation is used. This is achieved using robotic wrists with two or more degrees of freedom

to move and assemble parts. Both of these examples are outside of the size range of this project,

but both contain product concepts that have been used to generate new ideas that satisfy the design

constraints of this project.

1.4.2 Materials and Fabrication Techniques

In selecting a good design, part of the product development process involves selecting

suitable materials for the design and also feasible machining and fabrication techniques. Current

designs are produced using a combination of conventional machining (i.e. CNC milling) for some

parts and metal injection molding for others. At the desired size scale, conventional machining

begins to reach its limits in terms of precision and tolerances. This is also true of metal injection

molding because the molds are typically made using conventional machining techniques.
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For this reason, other fabrication techniques have been explored. One such process that

has been demonstrated is the use of photolithography to create thin planar structures that can be

stacked together in such a way that they form a 3D structure. The use of photolithography allows

for extremely high precision and can be used in batch fabrication. Fig. 1.3 shows the Crossed

Cylinders wrist mechanism fabricated from carbon nanotubes using the process described.

Figure 1.3: A mechanism fabricated from carbon nanotubes using a multilayer process to produce
a 3D shape.

1.4.3 Analytical Models

To produce accurate, precise motion using robotic controls, it is necessary to understand the

kinematic behavior of the mechanism. Any coupling that may occur between degrees of freedom

must be understood so that it can be accounted for in the driver controls. Analytical kinematic

models have been created for each of the selected concepts. These models were used in conjunction

with finite element analysis to assess the stress response for the desired motion.

1.4.4 Prototyping and Design Validation

Proof-of-concept prototypes were created for most of the concepts generated in the initial

development stages to demonstrate the functionality of a design and to determine weaknesses that

exist. The designs were screened and compared against the desired functional specifications so
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(a) (b) (c)

Figure 1.4: Depiction of the Inverted Flexure Grips concept (a) and prototypes of the Split CORE
Grips (b), and the Crossed Cylinders Wrist (c) developed for a 3-mm minimally invasive surgical
instrument.

that the best designs could be recognized. At this point, higher fidelity models and prototypes

were created for testing and comparison. The majority of the prototypes were built at a 10:1 scale

of the intended mechanism. Later, 1:1 scale prototypes were built, assembled and tested on actual

robotic instrument shafts.

1.5 Thesis Contributions

The objective of this project was to develop concepts that meet the desired functional re-

quirements of a minimally invasive surgical instrument. Three concepts were ultimately selected

as candidate solutions, the Inverted Flexure Grips, the Split CORE Grips, and the Crossed Cylin-

ders Wrist. Models of these concepts are shown in Fig. 1.4. A novel fabrication technique has

also been developed as a possible method for building these concepts. The outcomes of the work

have been compiled and delivered to Intuitive Surgical, Inc. in a mid-contract and end-of-contract

report, along with a number of intermediate reports.

In addition to fulfillment of the research contract with Intuitive Surgical, Inc. another objec-

tive of this work was to contribute findings and developments to the scientific community through

publications and patent applications. Chapter 5 was accepted and presented at the 3rd Confer-
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ence on Microactuators and Micromechanisms in Timisoara, Romania, 2-4 October, 2014. Chap-

ter 6 has been submitted and is currently under review for the ASME Journal of Mechanisms and

Robotics. Provisional patent applications have also been submitted for both the Split CORE Grips

and the Crossed Cylinder Wrist concepts.
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CHAPTER 2. PRIOR ART

2.1 Introduction

A variety of mechanisms exist that produce grasping and/or wrist motion. The intent of

this chapter is to provide an overview of the literature and prior art available which describes these

mechanisms. The chapter provides ideas that were used to facilitate design activities. Although

the chapter will focus on mechanisms used in laparoscopic surgery, not all the findings reported

here are exclusive to laparoscopy, and some are not used in the medical industry at all.

Following a description of the existing technology, an overview of the concept generation

process is given. This process resulted in a pool of candidate solutions that were classified and

filtered based on their performance characteristics. From this classification and filtering process

we selected three unique designs for further development and analysis.

In an effort to organize the wide array of mechanisms, they are categorized by size and

degrees of freedom of the end effector. Figure 2.1 shows a X-Y coordinate plane subdivided into

four quadrants, used to illustrate this simple classification scheme. Approximate sizes and degrees

of freedom for each quadrant are also shown. The divisions between quadrants are somewhat

arbitrary and, obviously, not to scale; but, these divisions provide a good representation of work

that has been done in the past, where this project fits in relation to other works, and areas of

opportunity that have yet to be explored.

2.2 Prior Art and Literature

2.2.1 Quadrant I

Quadrant I, shown in Figure 2.1, contains designs which are limited in mobility and are

large relative to designs found in the lower quadrants. These designs are simple and generally quite

robust. The majority of these mechanisms are strictly limited to grasping and do not involve any
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Figure 2.1: Quadrants I-IV used to classify and describe grasping and wrist mechanisms based on
size and degrees of freedom.

wrist motion. Because size is not a major design constraint we see a variety of mechanism types

that fit within three subclass—rigid body, partially compliant, and fully compliant mechanisms.

Rigid body mechanisms are those that incorporate rigid (or assumed to be rigid) elements such as

links, pins, pulleys, etc. to achieve motion. In compliant mechanisms, all motion is produced by the

deflection of flexible elements. Lastly, partially compliant mechanisms are simply a combination

of rigid and compliant elements.

Representative examples of rigid body mechanisms are shown in Figure 2.2. Figure 2.2(a)

illustrates a mechanism known as the Laparoscopic Dual Grasper which is actuated by a rod run-

ning along the shaft. The rod opens or closes a pair of jaws which pivot about a common axis and

whose motion is coupled. The next example, Figure 2.2(b), is an electrosurgical instrument used

to seal tissue. It also uses a push/pull rod to actuate the opening and closing of the jaws.

Figure 2.3 illustrates two mechanisms that are partially compliant. The first, Figure 2.3(a),

is a pair of jaws that pivot about a pin joint while the forces required for actuation are transmitted

through flexible members. The intent of this type of design is to mitigate the backlash and the

friction losses associated with transmitting force through a rigid body mechanism [11]. A similar

design described in [12] also applies an actuation force at the outer surface of the jaws, but the jaws

pivot about a living hinge rather than a rigid hinge. The second mechanism, shown in Figure 2.3(b),
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(a) (b)

Figure 2.2: Rigid body grasping mechanisms: (a) The Laparoscopic Dual Grasper [9], (b) An
electrosurgical tissue sealing mechanism [10].

(a) (b)

Figure 2.3: Partially compliant grasper mechanisms: (a) A grasper composed of pivoting jaws
actuated by flexible members [13], (b) Jaws with a common pivot but independent motion caused
by two compliant members joined in series [14].

consists of two jaws that pivot about a pin joint. Two flexure hinges are integrated into the design

of each jaw for the purpose of measuring grasping forces by using the compliance characteristics

of the jaws.
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Figure 2.4: Fully compliant graspers [16, 17].

The final subclass within this category consists of fully compliant mechanisms and can

be represented by the design in Figure 2.4, which consists of a simple set of jaws with a sheath

surrounding them. As the jaws move into or away from the sheath they are forced closed or able

to spring open, respectively. Because of the simplicity of this design, it can be scaled down to

small sizes. The MiniLap instruments by Stryker® (San Jose, CA) rely on a similar design and

are approximately 2.4 mm in diameter [15]. However, as in the previous designs, the MiniLap

instruments only provide grasping motion.

Oftentimes, compliant designs can be inspired by mechanisms found in nature. This con-

cept is used in the designs described in [18–20] which are able to grasp and manipulate small

objects or surfaces. Also, while each of the examples illustrated in the figures thus far are actuated

by rods or cables of some form, there are designs that rely on other forms of actuation. Shape

memory alloys are used to produce motion in some designs, [21–25], and piezoelectric elements

are used in yet other designs [18, 26–29].
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2.2.2 Quadrant II

Categorized in quadrant II are designs that are significantly smaller than those in the first

quadrant but whose mobility is still limited to one or two degrees of freedom. Many, but not

all, designs found in this category must be produced using techniques other than conventional

machining. Some of these designs rely on lithographic patterning, [30–33], and chemical etching

or deep reactive ion etching (DRIE), [34,35], to achieve micron and sub-micron resolution. Others

are fabricated using laser machining or micro-EDM [36].In general, these types of mechanisms

have high accuracy and resolution but produce rather small forces at the grasping tips [37–39].

Two representative examples are those shown in Figure 2.5. The first example, Figure 2.5(a),

is a silicon micro-gripper that is electrothermally actuated to provide the desired motion. It is

approximately 3 mm wide and is capable of grasping objects on the order of 25 µm. The second

example, shown in Figure 2.5(b), is piezoelectrically actuated and has a grasping range of up

to 800 µm. It was designed with the intent of grasping and manipulating fibers in the fiber optics

industry. Both designs rely on thin compliant flexures to achieve the desired grasping and releasing

motion.

Another mechanism defined within this category is the Microrobotic Wrist. This design

is manufactured using deep reactive ion etching (DRIE) and lithography electroplating molding

(LIGA). It provides two degrees of wrist motion, rather than a grasping motion. Figure 2.6 shows

an assembled view of the wrist mechanism. It consists of three compliant legs attached to an end

effector base. Forces are applied independently to the three legs using long, thin push rods and

pulling wires causing the rotation of the end effector base.

2.2.3 Quadrant III

Transitioning from Quadrant II to III involves an increase in degrees of freedom. With

more degrees of freedom, designs begin to combine grasping and wrist motion and, consequently,

become more complex. There already exist several highly dexterous robotic hands that involve

wrist and finger motion such as those described in [41]. However, these are on the scale of a

human hand. As these mechanisms scale to smaller sizes (5-10 mm), many design constraints
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(a) (b)

Figure 2.5: Miniature compliant grasper mechanisms: (a) Silicon micro-gripper controlled by
electrothermal actuation [7], (b) Miniature gripper system with piezoelectric actuation for fiber
optic handling [8].

Figure 2.6: A 2-DoF microwrist employing three compliant legs assembled together [40].
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Figure 2.7: A compliant rolling-contact element (CORE), [3].

arise, the most obvious being simply fitting all the components into a more compact space. The

grasper function and the wrist function must be capable of acting simultaneously without impeding

the motion of the other. In some cases an effort is made to decouple the two functions such as

in [42] and [43]; however, in many designs there is a certain level of coupling, in which case the

kinematics must be understood to accurately produce desired motions.

In general, the mechanisms in this category provide high dexterity within a relatively com-

pact space [44,45]. However, another challenge that is presented when combining multiple degrees

of freedom relates to the working volume of the mechanism. As the wrist rotates from one extreme

position to another, it sweeps the grasping jaws through a volume of space defined by the distance

of the jaws from the center of rotation of the wrist. Ideally, this working volume will be minimized

to provide a surgical instrument that is not only highly dexterous but also capable of operating in

small spaces. One method described in [46] utilizes a compact joint called a compliant rolling-

contact element (CORE) to produce a wrist that occupies little working volume [47]. An image of

the CORE element is shown in Figure 2.7. Another method is to use a ball and socket joint [48].

Representative examples that fit this category are shown in Figures 2.8 and 2.9. The Drag-

onFlex, shown in Figure 2.8, is a mechanism with a series of joints that are held together by cables.

Each joint is associated with one degree of freedom at the end effector. There is an equal num-

ber of joints at the operator end such that for a given movement caused by the operator, the same
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Figure 2.8: The DragonFlex laparoscopic instrument [6].

movement is produced at the corresponding joint at the end effector. Thus, by using cables, pin

joints, and gear teeth at the joints, this fully rigid-body mechanism is able to produce three degrees

of freedom at the end effector [6].

Two mechanisms that are quite similar in function but different in design are the EndoWrist

by Intuitive Surgical® (Sunnyvale, CA) and the grasper based on planetary gear theory described

in [42]. These two designs are shown in Figure 2.9(a) and Figure 2.9(b), respectively. Both designs

are actuated by a number of cables. However, the EndoWrist uses pulleys for wrist and grasper

articulation while the other design uses a set of planetary gears to fully decouple the motion of the

wrist and grasper. Both designs maintain the grasper relatively close to the center of rotation of the

wrist, thus providing a fairly small working volume. In contrast, the DragonFlex jaws, as well as

the mechanism jaws described in [4,5,49–51], are somewhat farther from the rotation of the wrist,

causing them to occupy a larger amount of space for movement.

We see in these examples that the mechanisms all consist of rigid body links and joints. This is

likely because size is not yet so small as to prevent reasonable assembly of the individual compo-

nents.
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(a) (b)

Figure 2.9: Wrist and grasper designs with 3+ degrees of freedom: (a) The EndoWrist by Intu-
itive Surgical (image courtesy of Intuitive Surgical, Inc.), (b) Grasper and wrist with decoupled
motion [42].

2.2.4 Quadrant IV

Finally, in the last quadrant we define designs which are less than 3 mm in diameter and

have three or more degrees of freedom at the end effector. Ultimately, this is also where solu-

tions for this project will be categorized. Throughout the literature review, there were no works

that could appropriately be placed within this category. Many new challenges are present in this

area that are not as pertinent in quadrants I and III. For example, manufacturing techniques used

in the 5-10 mm range are less reliable when dealing with parts smaller than 3 mm. The differ-

ences in manufacturing techniques between quadrants I and II are evidence of this. In addition to

manufacturing, assembly of individual parts must be considered.

Another challenge that must be addressed relates to the effects of scaling, particularly fric-

tion and mechanism stiffness. This is one possible reason that a shift from rigid body to compliant

mechanisms can be seen in the other three areas as designs become smaller.

2.3 Concept Generation

An understanding of existing technologies provided a base of knowledge from which to

develop concepts for a 3 mm instrument. The objective of the concept generation process was to

create an assortment of ideas with sufficient depth and breadth to fill the design space. This resulted

in many unique concepts, each tailored to address the challenges of miniaturization described in

Chapter 1.
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A tree classification scheme was used to sort each of the ideas into groups and subgroups

based on common characteristics. This made it simple to see areas where there was an abundance

of ideas, and other areas where new concepts were lacking. It also led to additional concepts

that consisted of combinations of earlier ideas. The following performance metrics were used to

evaluate each concept and help identify those with the greatest strength and potential:

• Manufacturability

• Minimizing swept volume

• Range of motion (target range of ±90◦)

• Ease of integration into the existing robotic interface

From this process a number of proof-of-concept prototypes were made to further evaluate

the potential candidate solutions using the same metrics mentioned previously. Ultimately, three

concepts were selected for further analysis and testing. These are described in subsequent chapters.

2.4 Conclusion

In summary, there is a wide variety of mechanisms that are capable of producing either

grasping motion or wrist motion, or both. The methods for actuation also vary considerably;

although, because many of them are intended as laparoscopic instruments, they are most commonly

actuated using long thin rods or cables running inside of the instrument shaft.

One trend that can be observed in this report is that as the instruments become smaller, the

designs begin to shift from rigid body mechanisms to compliant mechanisms. This transition may

be attributed to a number of factors that must be addressed. As mentioned previously, in smaller

designs assembly becomes more difficult if there are many parts involved. Compliant mechanisms

typically have significantly fewer parts to assemble. Also, the scaling effects that emerge when

reducing the size of a mechanism increase the relative size of friction, which impedes the motion

of the wrist and grasper. Compliant mechanisms experience less friction than rigid body designs

and therefore have less resistance to motion.
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A shift is also observed in the manufacturing and fabrication methods when decreasing the

size of instruments. Lithographic patterning and etching proves to be a popular technique, likely

because it provides high resolution and can be used with a variety of materials.

Referring to the graph in Figure 2.1 used to classify the literature and prior art, we see that

there is little work done in the area of small, highly dexterous mechanisms (Quadrant IV). With

such an open design space in which to work, there are many challenges that need to be addressed.

Along with those challenges, there are also many opportunities to explore and pursue a variety

of possible solutions. This was demonstrated in the concept generation and evaluation process as

three designs were selected as those considered to offer the greatest potential moving forward.
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CHAPTER 3. DESIGN ANALYSIS OF A SPLIT CORE GRIP MECHANISM

3.1 Introduction

The Split CORE is a derivation of the traditional CORE (Compliant Rolling-Element) Joint

that involves joining two half cylinders with flexures [3]. The Split CORE replaces the half cylin-

ders with truncated joints to reduce the size of the joint. Consequently, this also limits the range

of motion to ±90 degrees which is considered acceptable for many applications. In place of flex-

ures the Split CORE uses the input actuation force to maintain compressive contact between the

different elements. Additionally, the top half of the joint is split in two to create two distinctly

controllable surfaces where individual jaws are mounted. This creates a two-degree-of-freedom

gripping mechanism—one rotational degree of freedom, and another degree of freedom associated

with the opening and closing of the jaws.

Figure 3.1: A 10:1 scaled prototype demonstrating two degrees of freedom.

The curved surfaces of the upper and lower rolling segments consist of two rows of gear

profiles which prevent slip between the two segments and allow precise control of the gripper

locations. The curved surfaces also include non-geared areas which support the compressive loads
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Figure 3.2: CAD model of the Split CORE mechanism showing the gear profiles and flat regions
of the rolling surfaces.

associated with gripper motion and holding the assembly together. There are three distinct non-

geared regions as shown in Fig. 3.2. These regions are included in the design so that all compressive

loads are transferred away from the gear profiles which would otherwise experience higher stresses

because of smaller cross-sections and stress concentrations.

3.2 Design Analysis

This analysis defines both the position of the jaws and the relationship between the input

and output forces of the Split CORE mechanism. The output force is defined as the force acting

orthogonal to the tip of the jaw while the input force is defined as a force at the edge of the top half

of the joint and acts toward the edge of the lower segment. The output force models the reaction

force applied by whatever the mechanism is gripping. The input force is provided by cabling

routed from the mechanism through the tool shaft and to the base housing where the input torque

is provided.
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3.2.1 Model Geometry

The motion of the Split CORE is most easily modeled when compared to the motion of

the traditional CORE joint. The traditional CORE joint is modeled as two half cylinders—a fixed

lower segment and a free upper segment which rolls along the curved surface of the lower segment.

This is shown in Fig. 3.3 by the dashed lines. The proposed design (Split CORE model) is based

on the same principle but uses a smaller portion of the circular arc to reduce the size of the joint,

is shown in Fig. 3.3 by the solid lines. The arcs of both the traditional CORE model and the

Split CORE model have the same radius of curvature, r1, and are concentric. The centers of the

lower and upper segments are labeled as O and A, respectively. Although neither of the centers

physically exist on the Split CORE model they are used as reference points because they simplify

the derivations of equations of motion and force output.

The angle θr is used to describe the size of the arc used in the design. For example, if θr is

equal to 90◦ the result would be equivalent to the traditional CORE joint. If θr is equal to 45◦ the

resulting mechanism would look similar to the one shown by solid lines in Fig. 3.3.

The parameters of interest in this design are the output force at the jaws, Fout , the angle

of the jaws, θ j, and the required input forces, F1 and F2. The principle of virtual work is used to

determine these input forces for any given values of Fout and θ j. The angle used to describe the

point of contact between the upper and lower segments (θc) is also used but can be described as a

function of the jaw angle by the following relation:

θc =
θ j

2
(3.1)

All angles shown in Fig. 3.3 are defined as positive counter-clockwise from the y-axis, and

the origin of the coordinate system is at point O as shown. Another coordinate system, x’-y’, is also

shown. This system will be used along with a rotation matrix to define the location and direction

of the input forces in terms of the x-y coordinate system. The origin of the x’-y’ coordinate system

is point A.

22



Figure 3.3: The geometry and parameters used in deriving the equations of motion and force output
for the Split CORE mechanism.

3.2.2 Input Force and Mechanical Advantage

Two input forces exist in this design, F1 and F2. An assumption can be made regarding the

relationship between these two forces. If the actuating cables attached at the points of F1 and F2

are connected to a common spool then as a force is applied to one cable the force in the opposite

cable goes to zero. For example, under this assumption, if F1 equals 2 N then F2 is zero. In addition

to this assumption Fig. 3.3 shows that for any nonzero value of Fout , F1 will also be nonzero, and

consequently F2 will be zero. This is because F1 is the only force that can balance the system. If

considering the other jaw in the assembly (not shown in Fig. 3.3), for any nonzero value of Fout ,

F2 would be nonzero and F1 would be zero. The derivations that follow apply to the case shown

in Fig. 3.3 where F2 is zero. However, the same approach can be used to consider the case for the

opposite jaw.

The method of virtual work can be used to determine the magnitude of F1 for given values

of Fout and θ j. The first step in calculating the virtual work in the system is choosing a generalized

coordinate. The jaw angle, θ j, is a convenient parameter because it is used to describe the position

of the jaw, and because the expression for F1 will be derived as a function of θ j. Therefore, θ j will

be used as the generalized coordinate. Next, each of the applied forces are written in vector form

in terms of the generalized coordinate. The input force in this model is placed at a distance d f from

the corner of the upper segment and points toward a point a distance d f from the corresponding

corner of the lower segment. This assumption is based on the idea that cables provide the input
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forces and route around the lower geometry before entering the shaft and connecting to the control

interface at the opposite end of the instrument. The reason for placing the input force a distance

from the corner is to increase the moment arm, and consequently the mechanical advantage. This

is particularly important when the point of rolling contact is near corners of the segments (i.e. as

θc approaches θr). However, in this configuration it is also important to address any interference

that may result from placing the forces and cables at these locations. Using this assumption the

directions of the forces are shown in Eqs. 3.2 and 3.3 for Fout and F1, respectively.

Fout = Fout

(
−cosθ j î− sinθ j ĵ

)
(3.2)

F1 = F1

(
sin

θ j

2
î− cos

θ j

2
ĵ
)

(3.3)

Next, position vectors are written from the origin, O, to each of the applied forces. The

vector describing Fout is fairly simple to describe in terms of θ j and is given by Eq. 3.4. The other

vector is more complicated because it lies at some point on the arc determined by θr and that point

sits somewhere in space determined by θ j. To simplify the derivation of the position vector F1,

two vectors can be summed together—one from point O to point A, and the second from point A to

the location of force application. This second vector can be described in the x-y coordinate system

using a rotation matrix. This results in the following equation for the position of F1.

Zout =

[
−2r1 sin

θ j

2
−
(
L j− r1 cosθr

)
sinθ j

]
î+
[

2r1 cos
θ j

2
+
(
L j− r1 cosθr

)
cosθ j

]
ĵ (3.4)

Z1 =−2r1 sin
θ j

2
î+2r1 cos

θ j

2
ĵ+

cosθ j −sinθ j

sinθ j cosθ j


 r1 sinθr î

−r1 cosθr ĵ

 (3.5)

Equation 3.5 can be expanded to its î and ĵ components and then simplified. Doing this

results in Eq. 3.6.

Z1 =

[
−2r1 sin

θ j

2
+ r1 sin

(
θ j +θr

)]
î+
[

2r1 cos
θ j

2
− r1 cos

(
θ j +θr

)]
ĵ (3.6)
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The next step is to determine the virtual displacement of each point of force application by

calculating the partial derivatives of Eqs. 3.4 and 3.6 with respect to the generalized coordinate.

δZout =

{[
−r1 cos

θ j

2
−
(
L j− r1 cosθr

)
cosθ j

]
î+
[
−r1 sin

θ j

2
−
(
L j− r1 cosθr

)
sinθ j

]
ĵ
}

δθ j

(3.7)

δZ1 =

{[
−r1 cos

θ j

2
+ r1 cos

(
θ j +θr

)]
î+
[
−r1 sin

θ j

2
+ r1 sin

(
θ j +θr

)]
ĵ
}

δθ j (3.8)

The virtual work associated with each force is determined by calculating the dot product

of each force vector (Eqs. 3.2 and 3.3) and its respective virtual displacement vector (Eqs. 3.7

and 3.8).

δWout = Fout

(
r1 cos

θ j

2
− r1 cosθr +L j

)
δθ j (3.9)

δW1 =−F1r1 sin
(

θr +
θ j

2

)
δθ j (3.10)

The total virtual work in the system is calculated by summing each component of virtual

work from Eqs. 3.9 and 3.10. For a system in equilibrium, the principle of virtual work states that

the total virtual work is equal to zero. This makes it possible to rearrange the equation to determine

F1 for various values of Fout and θ j.

0 =

[
Fout

(
r1 cos

θ j

2
− r1 cosθr +L j

)
−F1r1 sin

(
θr +

θ j

2

)]
(3.11)

F1 =
Fout

(
cos θ j

2 − cosθr +
L j
r1

)
sin
(

θr +
θ j
2

) (3.12)
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3.2.3 Including a Preload Force

It may be desirable in some cases to apply a certain amount of preload force to the points

of force application (Fig. 3.3). This would reduce any effects of backlash that may occur and

would ensure higher levels of control over the motion of the mechanism. If an equal preload force

is applied to both sides of the mechanism (i.e. equal preload in both actuation cables) then the

changes to the previous derivations are relatively simple. The input force term, F1, in Eq. 3.11

is replaced by (F1 +Fp) where Fp is the preload force. The virtual work derivation would also

include the effects of Fp at the location of F2. Doing his results in a slightly different expression

for F1 given by

F1 =
Fout

(
cos θ j

2 − cosθr +
L j
r1

)
−2Fpr1 cosθr sin θ j

2

sin
(

θr +
θ j
2

) (3.13)

This new expression for F1 which includes a preload force on the system shows two in-

teresting behaviors that occur. First, by including a preload force on both cables, the required

input force is reduced when θ j is between 0 and 90◦, but is increased when θ j is between 0 and

−90◦. Second, for θr = 90◦ the preload force has no effect on the required input force and Eq. 3.13

becomes equivalent to Eq. 3.12.

3.2.4 Example Design

To demonstrate the use of these equations of motion, consider a design where the desired

jaw rotation is ±90◦ with a jaw length of 6.25 mm and a desired output force of 2 N. Assume that

there is not a preload force in the cables. To achieve this motion θr must be at least 45◦. To provide

reasonable structural support at the extremes of motion, we will choose θr = 60◦. In this example,

we will design the instrument to fit within a 3 mm circle so that it can be attached to a 3 mm shaft.

To do this, we can assume that the base of Split CORE joint is square. Therefore, one side of the

square is equal to 2r1 sinθr. The diagonal of the square will be equal to the diameter of the desired

shaft size (3 mm). Using this information r1 is calculated as follows:
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(3 mm)2 = 2(2r1 sinθr)
2 (3.14)

r1 =

√
9

8sin2
θr

(3.15)

r1 = 1.23 mm (3.16)

The distance from the upper segment to the point of force application (d f ) must also be

determined in this design. One option that will be used here is to define this distance as the point

where the force would be applied if θr were equal to 90◦. Doing this gives the design the same

mechanical advantage as a traditional CORE mechanism, but its overall height is reduced because

the actual profile is defined by θr = 60◦. Therefore, calculating d f is done using the following

relation:

d f = r1− r1 sinθr (3.17)

d f = 0.165 mm (3.18)

With these values the input force, F1, can be determined for any jaw rotation using Eq. 3.12.

In this calculation the value of θr = 90◦ will be used because that defines the location of force

input. For other calculations such as segment height and range of motion, θr = 60◦ would be used.

Figure 3.4 shows the required input force for a range of θ j from −90◦ to 90◦. This plot shows that

the required force is symmetric about θ j = 0 and ranges between approximately 12 and 16 N. The

locations of greatest force are at the extremes of motion. This is to be expected because it is where

the moment arm of force application is minimized. A plot of the mechanical advantage, shown in

Fig. 3.5, also illustrates this concept where mechanical advantage is maximum at θ j = 0.

In addition to the force requirements, mechanical advantage also gives some insight into

the control and precision of the instrument. Mechanical advantage can be used to describe the

relationship between input displacement and output displacement. In this particular design, the

input displacement is the amount of motion in the actuation cable. The output displacement cor-
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Figure 3.4: Plot showing the required input force for a Split CORE mechanism with ±90◦ of
rotation and an output force of 2 N.
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Figure 3.5: The mechanical advantage of an example design for a range of rotation angles from
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responds to the displacement of the tip of the jaw where Fout is positioned (see Fig. 3.3). For the

example design given, this means that when θ j = 0 (where M.A. = 0.164) a 1 mm displacement

of the actuation cable would result in an output displacement of approximately 6.10 mm. This is

based on the following relationship:

MA =
input displacement

out put displacement
(3.19)

There are a few different ways to maximize precision and control of the instrument tip.

One way is to increase the mechanical advantage of the system. This can be done by increasing

the radius of curvature in the upper and lower segments (r1). Another way to accomplish improved

control is to reduce the diameter of the spool which is used to actuate the cable. With a smaller

diameter spool, a given rotational input will result in a smaller cable displacement than would

occur with the same rotational input on a larger spool. This method does not change the required

input force (or mechanical advantage) but it does improve the control of the motion at the jaw tip.

3.3 Stress Analysis

The critical stresses experienced by the Split CORE mechanism can be determined using

Hertzian Contact Stress Theory. Contact stress theory is used to model the interfacial stresses be-

tween two mating solids. In the case of two circular surfaces, the area of contact forms a rectangle

of width 2b and length l. The length, l, is simply the total length of the flat regions carrying the

compressive loads (refer to Fig. 3.2). Using the parameters shown in Fig. 3.3 and using the theory

in [52], the half width of the stress area, b, is given by the following equation:

b =

√
4r1F (1−ν2)

πlE
(3.20)

where F is the input force F1 or F2, depending on which case is being considered, ν is Poisson’s

ratio, and E is the modulus of elasticity for the material being used. Equation 3.20 assumes that the

radius of curvature for upper and lower segments are equal and that both are of the same material.

The contact area creates an elliptical pressure distribution with its maximum at the center.

The distribution is shown in Fig. 3.6. The maximum pressure is defined as
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Figure 3.6: Geometry depicting the parameters used to determine the stress states caused by contact
between the upper and lower segments of the Split CORE design.

Pmax =
2F
πbl

(3.21)

Subsequently, the stress states along each of the three axes can be expressed in terms of the

distance away from the point of contact, or the depth into the material. This depth is denoted as y,

as it corresponds to the y axis. These expressions are given by the following three equations.

σx =−Pmax

 1+2
( y

b

)2√
1+
( y

b

)2
−
∣∣∣y
b

∣∣∣
 (3.22)

σy =
−Pmax√
1+
( y

b

)2
(3.23)

σz =−2νPmax

(√
1+
(y

b

)2
+
∣∣∣y
b

∣∣∣) (3.24)

3.3.1 Example Design

The parameters used in the previous example will be used here to determine the stress

states at the contact point of the mechanism. For this design, we will say that the material being

used is titanium (Ti-6Al-4V) with an elastic modulus of 114 GPa, compressive yield strength of

1070 Mpa, and Poisson’s ratio of 0.34. We will also assume that the non-geared portion of the

contact surface (see Fig. 3.2) is one third of the total length of the joint, where the length of the
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Figure 3.7: Plot showing the stress states at the contact point when the example design is in the
vertical position (θ j = 0).

joint is equal to 2r1, or 2.12 mm, so that it fits on a 3 mm instrument shaft. The remaining portion

of the surfaces is comprised of gear teeth which only transmit loads associated with motion. From

this information the length, l, is calculated to be approximately 0.7 mm and the contact width, b is

calculated using Eq. 3.20. These calculations are based on the position at which θ j is zero, which

corresponds to F1 = 12.2 N. However, this same approach can be used to determine the contact

stresses at any angle of rotation.

b =

√
4(0.00123)(12.2)(1−0.342)

π (0.0007)(114×109)
(3.25)

b = 0.015 mm (3.26)

These values are substituted into Eq. 3.21 to calculate the contact pressure which gives a

value of Pmax = 742 MPa. Lastly, these values are substituted into Eqs. 3.22-3.24 to determine

each of the stress states. These stresses are shown in Fig. 3.7. The maximum stress in each of the

three directions occurs at the outer surface where contact is made. The maximum stresses for σx,

σy, and σz at this location are 742 MPa, 742 MPa, and 504 Mpa, respectively. This results in a
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Figure 3.8: 3D printed Split CORE Grips attached to a 3.4 mm diameter instrument shaft. 5 and
8 mm diameter instruments shown for comparison.

maximum Von Mises stress of σ ′ = 638 MPa. The location of the maximum Von Mises stress is

approximately 0.011 mm from the contact surface (z≈ 0.74b). This gives a minimum safety factor

of 1.68.

3.4 Prototyping and Testing

Several prototypes of the Split CORE mechanism were created on a 10:1 scale to test func-

tionality and make design improvements on the Split CORE Grips. Later, prototypes were created

on a 1:1 scale and retrofitted onto da Vinci instrument shafts. The prototype shown in Fig. 3.8 is a

3D-printed polymer model. Another prototype was made using stacked layers of lithographically

patterned carbon nanotube composite material. This fabrication method is discussed further in

Chapter 6.

These prototypes verified the expected performance of the Split CORE Grips, and also

revealed important challenges that should be addressed to improve upon the design.

3.5 Conclusions

The motion of the Split CORE gripper mechanism is straightforward and predictable.

Given a desired rotation angle and output force, the required input forces can be calculated. Also,
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because the jaw segments roll, rather than slide, along the surface of the lower segment the effects

of friction are minimal. The critical stresses in the system are due to compressive contact and

occur at rolling contact between upper and lower segments. These stress can also be predicted for

a particular rotation angle and output force.

There are several advantages to this design including the fact that friction forces are nearly

non-existent and that the system consists of only three parts with relatively simple geometries. The

design includes some functional trade-offs between range of motion, force input requirements and

overall instrument size. This allows the mechanism to be tailored to best address the needs of a

particular situation.
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CHAPTER 4. DESIGN ANALYSIS OF AN INVERTED FLEXURE MECHANISM

4.1 Introduction

The inverted flexure design consists of two jaws, each of which use a single compliant seg-

ment to combine gripping motion and wrist motion. The flexures are “inverted” so that the loads

on the flexure are in tension and bending rather than compression, thus avoiding buckling. Com-

pliant mechanisms offer many advantages compared to a rigid-body mechanism. One advantage

is that there is little friction because there are no mating parts moving relative to one another. In

the inverted flexure design, the two jaw parts will move relative to one another but they do not

necessarily need to be in contact with one another.

Another advantage to using a compliant segment in the inverted flexure design is the reduc-

tion in number of parts. A rigid-body design with similar motion would require additional parts to

create a pin joint where the jaw body can attach. Instead, the flexure takes the place of a pin joint

and can be integrated directly into the jaw body.

Figure 4.1 illustrates the basic geometry of the Inverted Flexure mechanism attached to the

instrument shaft and actuation cables, which are controlled by the robotic controls interface at the

base of the instrument. The derivations for kinematic behavior, mechanical advantage, and stress

are described and are based on this geometry.

4.2 Kinematics

The Inverted Flexure design relies on a thin flexure that is inverted such that it is in tension.

To understand the motion of the flexure, and subsequently the rigid portion of the gripper, the

pseudo-rigid-body model can be used [53]. The thin flexure can be modeled as a small-length

flexural pivot, which means that the motion can be approximated as that of a pin joint with a

torsional spring. The location of the pivot is referred to as the characteristic pivot and is half the
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Figure 4.1: Diagram of the Inverted Flexure design attached to the instrument shaft and actuation
controls (features not to scale).

distance of the flexure length from its fixed point. Figure 4.2 shows the actual model and the

pseudo-rigid-body representation.

The points of force application are illustrated in Fig. 4.2c. In this design, the forces are

applied at the same level as the characteristic pivot (in the undeflected position). Assuming that

the two cables are fixed to the same actuating spool (Fig. 4.1) at the base of the instrument, this

ensures that the cables do not stretch or become slack. However, if the points of force application

are located below the characteristic pivot, the cables will be required to stretch as the mechanism

deflects to positions other than the undeflected position. This would cause stiffening of the flexure

and would increase the required input forces. On the other hand, if the points of force application

are located anywhere above the characteristic pivot, the cables become slack as the mechanism

moves to any position other than the undeflected position. This would result in poor control of the

mechanism.

To ensure a useful wrist and gripper design, the jaws should close flat upon each other

throughout the entire range of motion. In some cases, it may be acceptable and even useful for

the jaw tips to meet slightly ahead of the base of the jaws, as shown in Fig. 4.3. However, it is

undesirable for the base of the jaws to meet prior to the tips meeting. Equations of motion to ensure

that the jaws meet flat along the entire surface are developed here. Once these are developed, small

modifications can be made to allow the second case where the jaw tips come in contact before the

rest of the jaw surface.
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Figure 4.2: Diagrams of the compliant and pseudo-rigid-body models of the Inverted Flexure wrist
and gripper design.

Figure 4.3: (a) Diagram showing P1 and P2 used to ensure that the jaws close flat upon each other.
(b) Depicts the case where the jaws meet first at the tips.
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Three key points are identified in Fig. 4.3—the origin, O, and two points on the jaw surface,

P1 and P2. One method to ensure the desired motion is to constrain these three points to be collinear.

Based on the pseudo-rigid body model, the jaw bodies will pivot about the characteristic pivot,

which is the same location as the origin in Fig. 4.3. Because the two jaw bodies both pivot about

this common point, the requirement of collinearity will ensure that the surfaces of the jaws always

meet.

Vectors from the origin can be used to define points P1 and P2. For the undeflected position,

these vectors are defined as:

P1 = (−x1) î+(y1) ĵ (4.1)

P2 = P1 +
[
−(x2− x1) î+(y2− y1) ĵ

]
(4.2)

= (−x2) î+(y2) ĵ (4.3)

With the assumption of collinearity, P2 can be defined as P1 multiplied by a scalar, c, as in:

P2 = cP1 (4.4)

(−x2) î+(y2) ĵ = c
[
(−x1) î+(y1) ĵ

]
(4.5)

Decomposing Eq. 4.5 into its î and ĵ components yields the following constraints.

−x2 =−cx1 (4.6)

y2 = cy1 (4.7)

Substituting Eq. 4.6 into Eq. 4.7 will yield an equation which, if satisfied, ensures that

the flat faces of the jaws meet flush at any given angle of motion (within the bounds that will be

discussed later). This equation is given as:
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Figure 4.4: Points used to define the geometry of the jaw to ensure proper mating.

x1

y1
=

x2

y2
(4.8)

For the case where it may be desirable to design the jaws to come in contact first at their

tips, a third point, P3, can be defined at some point near P2 but slightly offset from the surface of

the jaw, as in Fig. 4.4. Two more vectors can be used to define this new point—a vector from the

origin to P3 (P3) and a vector from P2 to P3 (P2,3).

For simplicity, P2,3 can be defined orthogonal to P2 as in Eqs. 4.9 and 4.10. Furthermore,

the offset distance, or magnitude of P2,3, can be defined as a fraction of the length of the jaw. For

example, if d jaw is used as a scalar, Eq. 4.11 can be used to determine the offset distance.

P2,3 ⊥ P2 (4.9)

P2 ·P2,3 = 0 (4.10)

‖P2,3‖= d jaw‖P2−P1‖ (4.11)
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To solve for P2,3, Eq. 4.10 can be expanded as shown in Eq. 4.12 where x23 and y23 rep-

resent the î and ĵ components of P2,3, respectively. This provides one equation, but two unknown

values. The expanded form of Eq. 4.11 can serve as a second equation and is shown in Eq. 4.13.

[
(−x2) î+(y2) ĵ

]
·
[
x23î+ y23ĵ

]
= 0 (4.12)

√
(x23)

2 +(y23)
2 = d jaw

√
(x1− x2)

2 +(y2− y1)
2 (4.13)

These two equations can be solved simultaneously for x23 and y23 which results in the

following equations:

x23 =
y2

x1

 d jaw
2(

y2
x1

)2
+1

[
(x1− x2)

2 +(y2− y1)
2
]

1/2

(4.14)

y23 =

 d jaw
2(

y2
x1

)2
+1

[
(x1− x2)

2 +(y2− y1)
2
]

1/2

(4.15)

Once these points are calculated, the jaw can be designed to extend from P1 to P3 rather

than from P1 to P2. The derivation of these equations is based on the assumption that the small

length flexural pivots of the two jaws act purely as a pin joint. While this model is a relatively

good approximation, there will be a small degree of motion that does not follow this behavior.

This will be exhibited by finite element modeling and physical testing of prototypes.

4.2.1 Comparison of PRB and FE models

A comparison between the pseudo-rigid body model and finite element model can be used

to verify the accuracy of kinematic motion predicted by hand calculations. The outline of the

mechanism shown in Fig. 4.5 shows four points on the body of the mechanism: one point at the

bottom of the flexure, one point at each of the input force locations (see Fig. 4.2), and one point

at the tip of the jaw. The plot shown in Fig. 4.5 shows the motion paths that each point follows

as they move from θ = 0 to θ = −45 degrees. The pseudo-rigid-body and finite element models
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Figure 4.5: Points used to trace motion paths predicted by pseudo-rigid-body and finite element
models (left). Motion paths predicted by PRB and FE models for motion from θ = 0 to θ =−45
degrees (right). Reference grid is in millimeters.

agree closely with one another. There is some deviation as θ increases, however the error is

small indicating that modeling the flexure as a small-length flexural pivot is a reliable method for

predicting kinematic behavior.

4.3 Mechanical Advantage

The mechanical advantage in this design is defined as the ratio of the force output, Fout ,

at the jaw tip to the force input at the ends of the input arm. Two input forces are defined—F1

and F2—and they vary in magnitude depending on the desired direction of actuation. However,

an assumption can be made regarding the relationship between F1 and F2. If the actuating cables

attached at the points of F1 and F2 are connected to a common spool, then as a force is applied to

one cable, the force in the opposite cable goes to zero. For example, under this assumption if F1

equals 2 N then F2 is zero. This assumption will be used in the derivation of mechanical advantage.

From this point on, the case where F1 ≥ 0 and F2 = 0 will be used to help illustrate the use of the

derivations. Thus, Fin is equal to F1. However, the derivations are also suited for the case where

F2 ≥ 0 and F1 = 0.
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Mechanical advantage can be calculated using the principle of virtual work. Using this

method will provide an equation for F1 as a function of output force, Fout , and rotation angle, θ .

Once F1 is calculated, the mechanical advantage is given by the ratio of Fout to F1.

The first step in calculating the virtual work in the system is choosing a generalized coor-

dinate. The most convenient variable in this case is the rotation angle, θ . Next, each of the applied

forces are written in vector form. These consist of F1 and Fout . In the derivations that follow,

the rotation angle, θ , is defined to be positive in the counter-clockwise direction and α is used to

denote the jaw angle (see Fig. 4.2c).

F1 =−F1ĵ (4.16)

Fout = Fout

(
−cos(θ +α) î− sin(θ +α) ĵ

)
(4.17)

Next, position vectors are written from the origin to the placement of the applied forces.

Like in Fig. 4.4a, the origin is located at the characteristic pivot which is half the distance of the

flexure length from the fixed point.

Z1 = L1 cos(θ) î+L1 sin(θ) ĵ (4.18)

Zout = (−L2 cosθ −L3 sinθ) î+(−L2 sinθ +L3 cosθ) ĵ (4.19)

The virtual displacement can now be calculated by differentiating the position vectors with

respect to the generalized coordinate.

δZ1 =
(
−L1 sinθ î+L1 cosθ ĵ

)
δθ (4.20)

δZout =
[
(L2 sinθ −L3 cosθ) î+(−L2 cosθ −L3 sinθ) ĵ

]
δθ (4.21)

The virtual work, δW , is calculated by taking the dot product of the force vectors from

Eqs. 4.16 and 4.17 and the virtual displacement vectors from Eqs. 4.20 and 4.21.

δW1 = (−F1L1 cosθ)δθ (4.22)
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δWout = FoutL2 [cos(θ)sin(θ +α)− sin(θ)cos(θ +α)]δθ

+FoutL3 [cos(θ)cos(θ +α)+ sin(θ)sin(θ +α)]δθ

(4.23)

The virtual work due to the compliance of the flexure must also be accounted for. This is

done by first determining the potential energy of the torsional spring that is used in the pseudo-

rigid-body model.

V =
1
2

K (θ −θo)
2 (4.24)

In this equation θo is zero and the torsional spring constant, K, is defined as EI/l. Next,

the virtual work is calculated by differentiating the potential energy with respect to the generalized

coordinate and multiplying by −δθ .

δWspring =−Kθ δθ (4.25)

The total virtual work in the system is calculated by summing each component of virtual

work from Eqs. 4.22, 4.23, and 4.25. Lastly, once the total virtual work is calculated, the principle

of virtual work states that if the system is in equilibrium then the virtual work is equal to zero. This

can be used to determine F1.

δW = (−F1L1 cosθ)δθ +FoutL2 [cos(θ)sin(θ +α)− sin(θ)cos(θ +α)]δθ

+FoutL3 [cos(θ)cos(θ +α)+ sin(θ)sin(θ +α)]δθ − EIθ

l
δθ

= 0

(4.26)

F1 =
Fout (L2 sinα +L3 cosα)− EIθ

l
L1 cosθ

(4.27)

4.3.1 Including a Preload Force

It may be desirable to apply a certain amount of preload force to the points of force ap-

plication (Fig. 4.2c). This would reduce any effects of backlash that may occur and would ensure

higher levels of control over the motion of the mechanism. If an equal preload force is applied
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Table 4.1: Example design parameters

Parameter Value Parameter Value
L1 1.30 mm l 2.00 mm
L2 1.30 mm w 0.50 mm
L3 6.35 mm t 0.080 mm
α 12.5◦

to both sides of the mechanism (i.e. equal preload in both actuation cables) then the changes to

the previous derivations are relatively simple. The input force term, F1, in Eq. 4.26 is replaced by

(F1 +Fp) where Fp is the preload force. The virtual work calculations would also need to account

for the force at the point of F2 where F2 = Fp. This results in a slightly different expression for F1

given by

F1 =
Fout (L2 sinα +L3 cosα)− EIθ

l +(L2−L1)Fp cosθ

L1 cosθ
(4.28)

Further, this new equation for F1 indicates that if L1 and L2 are equal, the preload force

has no effect on required input force or mechanical advantage. In this case, Eqs. 4.27 and 4.28 are

equivalent.

4.3.2 Example Design

The input force can be calculated for a set of desired parameters to illustrate the use of these

equations. In this example the input force values will be calculated for a desired output force of

0.5 N over a range of θ = 0 to θ = 45 degrees. The material used in this example will be metallic

glass because its material properties make it well suited for compliant designs [54]. The modulus

of elasticity, E, is 95 GPa, and the yield strength, Sy, is 1800 MPa.

The parameters associated with jaw geometry are defined in Table 14.1. These parameters

are chosen such that the resulting mechanism would be approximately 3 mm in diameter. Using

these parameters results in a range of values for mechanical advantage that starts at approximately

0.20 and gradually drops to just below 0.15 at 45◦ rotation. Figure 4.6 is a plot of the values of

mechanical advantage for this range of motion.
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Figure 4.6: Mechanical Advantage for a range of 0 to 45 degrees for the sample design described.
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Figure 4.7: Required input force (F1) calculated for a range of output force and rotation angle
values using Eq. 4.27.

The required input force can be calculated for any given values of Fout and θ . Figure 4.7

shows a surface plot of the required input force for a range of output forces from 0 to 2.0 N and a

range of rotation angles from 0 to 45◦.
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4.4 Stress Analysis

The largest stress within the system will occur in the small-length flexural pivot. The

stress in the small-length flexural pivot is a combined result of bending and tension. The finite

element model used to determine kinematic behavior previously can also be used to determine the

magnitude and locations of the maximum stress in the beam. The finite element software package

ANSYS was used to analyze the geometry shown in Fig. 4.5. The model consists of solid elements

(element type SOLID185) and is based on the same dimensions used in the example to calculate

input force (shown in Table 1). The top of the flexure is fixed from any lateral or rotational motion.

To ensure that the output force (Fout) is always orthogonal to the jaw face, it is modeled as a

pressure applied to a finite area at the end of the jaw. Lastly, the input force (F1) is applied to the

point shown in Fig. 4.2. It is calculated using Eq. 4.27 and is applied vertically downward.

4.4.1 Finite Element Analysis Results

As an example, Figure 4.8 shows the distribution of stress in the flexure at θ =−45 degrees

when the output force is 0.3 N. As these results show, the stresses in this particular design are quite

significant. They are slightly beyond the yield strength of the metallic glass (1800 MPa), leaving

no room for a safety factor. Some of the things that can be done to reduce these stresses include

making the flexure thinner and/or longer, selecting a material with a higher strength-to-modulus

ratio, or reducing the length of the jaw which would subsequently reduce the required input forces.

4.5 Conclusion

The Inverted Flexure mechanism relies on the compliance of a thin flexure that is arranged

such that it is always in tension. This arrangement prevents the flexure from buckling and pro-

vides more predictable motion. The pseudo-rigid-body model can be used to predict the kinematic

behavior of the Inverted Flexure mechanism. When modeling the mechanism as a small-length

flexural pivot, the pseudo-rigid-body model agrees closely with the motion predicted by a finite

element model.

The greatest stresses in the mechanism occur in the flexure. These stresses can be ana-

lyzed using finite element modeling where the output force is predetermined and the input force is
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Figure 4.8: Finite element model showing the stresses in the flexure when an output force of 0.3 N
is applied at an angle of 45◦. Units are in MPa.

calculated based on the principle of virtual work. For the example design discussed, the stresses

exceeded the yield strength of the material as motion went beyond 45◦ and force output exceeded

approximately 0.3 N. Because these results are undesirable, two possible strategies could be used

to make use of this design:

1. Recognize that the design has limitations in terms of range of motion and force output and

ensure that it does not exceed these limitations, or

2. redesign the geometry and/or select a different material for the mechanism design.

In case 1 the mechanism could be limited to use in which the needed range of motion is less

than ±45◦. For example, in Chapter 1 several scenarios were described in which a 3 mm surgical

instrument could potentially be employed. Among these, two stand out as scenarios where a small

range of motion might achieve the desired functionality for the types of procedures that would be

performed. In Fig. 4.9(a) the end effector is used at the bottom of a narrow cavity where motion

is limited. In the second scenario, Fig. 4.9(b), the end effector is used at a blockage site within a
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lumen. Thus, the motion in this case is also limited to the area ahead of the instrument and not so

much to the sides.

(a) (b)

Figure 4.9: Scenarios in which a surgical instrument potentially requires a reduced range of motion.

In case 2 there are a number of alterations that can be made to the design, or to the per-

formance requirements of the mechanism to improve design feasibility. For example, the stress in

the flexure can be reduced by making the flexure thinner. This would, in turn, increase the range

of motion that can be achieved. Other ways to reduce the stress include selecting a material with

a higher strength-to-modulus ratio, or by reducing the required output forces of the mechanism.

However, there are also functional trade-offs that are associated with these possible design alter-

ations. For example, while a thinner flexure reduces stress and increases the range of motion, the

manufacturability of the flexure comes into question.

Overall, the design is quite simple with highly predictable motion, but the magnitude of the

stresses is significant in some of the designs variations. Thus, the functional trade-offs should be

considered in light of the desired performance characteristics to determine the ideal design for this

mechanism.
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CHAPTER 5. DESIGN AND FABRICATION OF MILLIMETER-SCALE CROSSED-
CYLINDER WRIST MECHANISM WITH TWO DEGREES OF FREEDOM

This chapter describes the design and fabrication of a 2-DOF wrist mechanism suitable

for fabrication with maximum dimension on the order of 2-4 millimeters. The design is based

on the idea of 2 half-cylinders in contact such that their axes lie orthogonal to each other. In

that way, each cylinder can roll parallel to the other cylinders axis, giving 2 rotational degrees

of freedom. To constrain the cylinders motion, unique gear teeth are designed that allow rolling

motion in either orthogonal direction, but constrain all other motions. Contact can be guaranteed

using a compressive force acting to push the cylinders together. We first demonstrate the design

at centimeter scale using FDM 3D printing. Based on the smooth motion achieved, we fabricate

a wrist with maximum dimension of 3 mm using layered sheets of carbon nanotube composite

material. Each sheet is individually patterned using photolithography.

5.1 Introduction

Wrist mechanisms are commonly used in a wide variety of grasping, cutting, and manip-

ulating operations. They allow control of the angle of a tool with respect to a mounting shaft.

Typically, the wrist mechanism is placed at the end of the shaft, immediately before the tool (such

as a cutter or grasper) to improve the dexterity of the tool. Figure 5.1 shows a surgical tool pro-

duced by Intuitive Surgical, Inc., which uses a 2-degree-of-freedom (2-DOF) wrist to mount the

tool.

Several examples of wrist mechanisms have been presented in the literature. The Dragon-

Flex tool used two sequentially-mounted rotational joints to achieve 2-DOF motion [6]. A similar

wrist mechanism was described by Nai et al. [46]. A design based on planetary gearing, which

decouples wrist and grasper motion, has also been demonstrated [42]. A design has also been

presented in small scale (2.5 mm diameter) using compliant mechanisms and lithographic pat-
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Figure 5.1: A surgical tool from Intuitive Surgical, Inc. mounted on a 2-DOF wrist. The tools shaft
is approximately 8 mm in diameter.

terning [40]. However, the relatively complex design proved difficult to fabricate, and was only

demonstrated in a 2X scale model.

Ideally, a wrist mechanism will allow large rotational motions (as large as ±90◦ is often

desirable). In addition, the mechanism should operate with low swept volume to maximize maneu-

verability of the tool. Low friction and smooth motion are also important. Due to manufacturing

constraints and the increased importance of friction at small scales, it has proven challenging to

produce a wrist design with these characteristics appropriate for wrist size on the order of 2-4 mm.

This paper presents a design for a 2-DOF wrist mechanism capable of being manufactured

with maximum dimensions on the order of 2-4 mm. The mechanism has minimal rubbing parts,

resulting in low friction. We demonstrate fabrication at centimeter scale for testing using FDM

3D printing technology. We further demonstrate fabrication and assembly at the target size (3 mm

diameter) using stacking of sheets of carbon nanotube composite material. Each sheet is litho-

graphically patterned, and then assembled using a simple stacking procedure. The paper discusses

further options for control of the mechanism.

5.2 Mechanism Design

The mechanism design is based on the concept of two cylinders in rolling contact with each

other. A Compliant Rolling Contact Element (CORE) has previously been described [3], [47].
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Figure 5.2: Two positions of a CORE mechanism, consisting of two half cylinders (shown end-on
in this drawing) that can roll on one another. RU and RL are the radii of the two cylinders [3].

The concept of the CORE is shown in Figure 5.2. It uses two half cylinders (shown end-on in

Figure 5.2) with axes aligned parallel to each other. The half cylinders roll on each other to produce

primarily rotational motion, though there is also some translation. One or more thin flexures are

then placed between the half cylinders, as shown, to constrain them from any motion other than

rolling. As a result, the CORE has one degree of freedom.

In contrast to the CORE concept, the crossed-cylinder wrist mechanism is achieved by

rotating one of the cylinders so that the axes of each half cylinder are orthogonal to each other. In

this configuration, a flexure would impede motion in one of the desired directions, so gear teeth

are substituted to prevent torsion and shear. A compressive force between the half-cylinders then

ensures that the two pieces stay in contact with each other. A rendered model of the full mechanism

is shown in Figure 5.3. As with the CORE mechanism, the two half cylinders experience only roll,

and no sliding, with respect to each other. However, because the axes are orthogonal to each other,

each half-cylinder rolls along a straight line on the surface of the other half cylinder, allowing 2

degrees of freedom (roll in either direction).

The gear teeth must be designed to function in two directions of roll. To accomplish this,

each tooth has a cross-section of a rack tooth in the direction of the cylinders axis, and the cross-

section of a normal spur gear tooth in the orthogonal direction, as shown in Figure 5.4. In this way,
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Figure 5.3: By rotating one half cylinder and adding gear teeth, the crossed-cylinder wrist mech-
anism is constrained to 2-DOF.

Gear Tooth Cross
-section in Axial 
Direction

Gear Tooth Cross
-section in Radial
Direction

Involute
Profile

Rack Tooth
Profile

Figure 5.4: The gear teeth are shaped like a rack tooth in the axial direction, but have an involute
spur gear profile in the radial direction.

each gear tooth can fit into a gap on the mating cylinder. By staggering (offsetting) a row of teeth,

the motion is constrained while allowing both cylinders to be identical, reducing the number of

unique parts. By comparison, some previous 3D gear tooth designs have required different tooth

design on each part [55].
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An important difference between the teeth in the crossed-cylinder mechanism and normal

spur gear teeth is the load they are to carry. In normal spur gear teeth, the force always acts along

the line of action, so that the most significant stresses in the tooth are often either shear stresses or

bending stresses [52]. However, in the crossed-cylinder mechanism, the teeth must also support the

compressive force acting to keep the two half cylinders in contact. Such stress could be analyzed

using a finite element model.

5.3 Fabrication

To test the overall motion of the wrist, we fabricated a prototype at a relatively large scale

using FDM 3D printing. The two geared half cylinders are shown separately in Figure 5.5(a). They

are shown in three different positions in Figures 5.5(b)-5.5(d), with an angle of the top surface of

approximately 0◦, 45◦, and 90◦ with respect to the horizontal.

The mechanism shown is designed with a pitch diameter of 3 cm, and 18 teeth per full

circumference (9 teeth per half-circumference). The designed pressure angle is 20◦, and it has 3%

backlash. The addendum and dedendum were made using gear standards, so that the dedendum

is slightly larger than the addendum. The mechanism was tested by placing the half cylinders

together with their axes orthogonal to each other, as shown in Figure 5.5(b), and manually rotating

the top half cylinder with respect to the bottom one. The motion was smooth without identifiable

interference. The mechanism was able to rotate up to ±90◦ in both directions (along the bottom

cylinders axis, and around the bottom cylinders circumference).

Based on the good performance achieved with the large-scale mechanism, we fabricated

a wrist mechanism with maximum dimension (along the diagonal of the half-cylinders square) of

3 mm. The mechanism was fabricated from layers of carbon nanotube composite. The material

consists of sheets of carbon nano-tube forests infiltrated by chemical vapor deposition with car-

bon. Fabrication details for this process are in Toone et al. [56]. Each sheet was lithographically

patterned to produce a half-spur gear with alignment features, as shown in Fig. 5.6b. Thin spacer

layers were also produced to give the right spacing between gear teeth. Because of the resolution

used in the layering process (each tooth was produced using one layer), the sloped sides of the rack

tooth profile were approximated using a rectangular profile. Each half cylinder was then assembled

by stacking several sheets in the correct order on an electrical pin. The layers were held together
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(a) (b)

(c) (d)

Figure 5.5: Photographs of a prototype crossed-cylinders wrist fabricated using 3D printing.

using epoxy spread along the back surface of each half cylinder. Two views of an assembled half

cylinder are shown in Fig. 5.6b and 5.6c, and the full wrist is shown in Fig. 5.6d.

The small-scale mechanism was designed with a pitch diameter of 2.03 mm and 18 teeth

on the full circumference. The pressure angle was 25◦, and the backlash was 5%. These small

differences from the centimeter-scale prototype are not expected to cause significant performance

changes. As with the centimeter-scale prototype, the dedendum of the gear teeth is 1.25 times the

addendum.

The wrist is designed to be actuated by thin cables attached to the top half cylinder. Fig-

ure 5.7 shows the CNT prototype attached to an instrument shaft with cables arranged in a pull-pull
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(a) (b)

(c) (d)

Figure 5.6: Micrographs of a millimeter-scale crossed-cylinder wrist mechanism fabricated by
stacking carbon nanotube composite sheets. (a) A single layer, showing the gear teeth and align-
ment square for insertion of an electrical pin. (b) and (c) An assembled half cylinder. The re-
flections visible at the top of (c) are due to the smoothness of one side of the CNT sheet. (d) An
assembled wrist mechanism, showing crossed cylinders mounted one on the other.

configuration to actuate both degrees of freedom. Further details and assessment of this fabrication

method, including ways to improve stacking resolution and precision, are given in Chapter 6.

5.4 Conclusions

This paper presented a new design for a 2-DOF robotic wrist. The crossed-cylinder wrist

mechanism experiences predominately rolling motion, minimizing friction during operation. It is

also appropriate for manufacturing at small size scales. We have demonstrated a large-scale model

fabricated using FDM 3D printing. The large-scale model validates the smooth motion achievable
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Figure 5.7: Crossed Cylinder wrist mechanism prototyped at 3 mm scale using carbon nanotube
composite material.

using the wrist mechanism. It is capable of rotating ±90◦ in either of two directions (2-DOF). We

have further demonstrated fabrication of the wrist mechanism at millimeter scale, with a maximum

dimension of 3 mm. The small-scale wrist was fabricated by litho-graphically patterning sheets of

carbon nanotube composite material, and then stacking the sheets to form two geared cylinders.

The crossed-cylinder wrist design is expected to be used to improve dexterity and manipulation of

small-scale tools, including cutters, graspers, and other robotic tools.
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CHAPTER 6. FABRICATION PROCESS FOR MILLIMETER-SCALE ROBOTIC
MECHANISMS USING LITHOGRAPHICALLY DEFINED CARBON NANOTUBE COM-
POSITE STRUCTURES

6.1 Introduction

The use of robotic surgical instruments is ideal in minimally invasive surgical procedures

because it allows precise control of the surgical instrument within small, confined areas. There

is a drive to make these surgical instruments ever smaller to make surgery less invasive, improve

patient outcomes [57, 58] and to open doors to procedures that may not be possible with current,

larger instrumentation. However, as the surgical instruments become smaller, they become more

difficult to fabricate.

Conventional machining techniques such as computer numerical control (CNC) milling

or micro-electrical discharge machining (EDM) processes begin to reach their limits at the sub-

millimeter feature size [59]. Even techniques such as metal injection molding, which are generally

capable of producing complex geometries at the macro scale, are less suitable for sub-millimeter

features because the molds themselves are typically produced through conventional machining

techniques.

On the other end of the spectrum, micro and nano fabrication techniques, such as sur-

face and bulk micromachining, are capable of producing extremely small features on the order

of 100 nm [60]. However, these techniques are normally limited to planar geometries, making it

difficult to adapt them to three-dimensional millimeter-scale mechanisms.

In an effort to bridge the gap between micro- and macro-scale mechanisms, several fea-

sible techniques have been proposed as ways to fabricate robotics and other mechanisms on the

millimeter scale. This size scale is commonly referred to as a meso-scale, and contains com-

ponents with feature sizes as small as tens of micrometers, but whose overall dimensions may

be several millimeters or even centimeters. Micromilling and laser ablation are two techniques
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demonstrated in [61]. The micromilling tools used are as small as 200 µm and are able to make

precise cuts. The laser ablation method also achieves very small features but leaves a rougher

surface finish. Solid freeform fabrication techniques are also rapidly emerging as methods for cre-

ating intricate geometries in a variety of engineering materials. Jabbari et al. [62] demonstrate the

use of a sacrificial material to form biomimetic scaffolds using fused deposition modeling. The

concept of layer-by-layer part manufacturing was presented in [63] in which foils were laser cut

and adhered to adjacent layers to form a 3D object. Further development of this process has led to

small part capabilities using photolithographic patterning and deposition [64]. Microfabrica, Inc.

uses a technique in which a series of photo masks are used to define and join layers of a compliant

electrical probe [65,66]. Another form of layered fabrication is used to create an autonomous, self-

assembling robot that begins as a single flat sheet of material [67]. Layered fabrication can also

be combined with subtractive micromachining in a printed circuit microelectrical mechanical sys-

tem (PC-MEMS) process to create complex, three-dimensional mechanisms with sub-millimeter

features, such as the monolithic bee robot [68].

This paper describes the fabrication process of using planar layers of carbon nanotube

(CNT) composite material to form three-dimensional mechanisms and robotic components. The

method is demonstrated through the fabrication of two novel meso-scale mechanisms—one which

shows the design of a two-degree-of-freedom wrist mechanism intended for use in minimally inva-

sive robotic surgical instruments, and another which shows the design of a two-degree-of-freedom

gripping mechanism, also intended for robotic surgical procedures. A comparison is made between

two variations of the first design in which different layer thicknesses are used to demonstrate how

the tolerances of the part can be improved.

6.2 CNT Stacking Technique Overview

The CNT stacking technique consists of four main steps that will be described in further

detail and are illustrated in Fig. 6.3.

• Lithographic patterning and growth of CNT frameworks

• Removal of the individual layers from the silicon substrate

• Stacking and alignment of the CNT composite layers
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Figure 6.1: A CNT composite structure patterned using photolithography. The layer thickness
shown here is approximately 100 µm.

• Bonding the composite layers to form the final 3D component

Carbon nanotube frameworks are lithographically patterned on a silicon wafer. Photolithog-

raphy provides exceptionally good detail and resolution for features as small as tens of nanome-

ters [69, 70]. Once the CNT frameworks are patterned they can be grown to thicknesses anywhere

from 5 µm to approximately 700 µm. Thus, the process combines the micro scale precision of

photolithography with the CNT growth process to produce millimeter-scale structures. Figure 6.1

shows a CNT composite mechanism that was patterned using photolithography.

The fabrication process used to create the CNT frameworks (step 1 in the overall process

introduced here) is described in detail in [56,71]. The initial growth of the CNT framework occurs

on a silicon substrate (see Fig. 6.3(a)). A thin film of iron, generally 4-7 nm thick, is used as a

growth catalyst. The carbon nanotubes grow perpendicularly, away from the substrate, to form a

forest of nanotubes. This forest is fairly porous. The growth is followed by an infiltration process

using chemical vapor deposition to create a CNT composite material. A number of materials can

be used in the infiltration process including nickel, silicon, and carbon, depending on the desired

material properties. Figure 6.2 shows a CNT forest that has been infiltrated with carbon. The

frameworks for the examples presented in this paper are also infiltrated with carbon.
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Figure 6.2: A sample of CNT forest that has been infiltrated with carbon. Because the carbon
nanotubes are coated in carbon, they are more visible at this scale.

Once the framework has been infiltrated it is removed from the silicon wafer and the indi-

vidual patterned layers are stacked to form the 3D assembly (Figs. 6.3(b) and 6.3(c)). To facilitate

the stacking process and ensure proper alignment relative to the other layers, each layer is patterned

with one or more square holes which fit over an alignment pin. This also helps keep them in place

until they can be joined together. After the layers have been stacked to form the 3D structure, the

layers are bonded together (Fig. 6.3(d)).

There are a few possible techniques for bonding the layers to form a single assembled part.

One way is to use an adhesive that can be spread across all layers. This method is demonstrated

in the mechanisms described later. Another method involves further infiltration with carbon using

chemical vapor deposition. Once the layers are stacked together, they can be infiltrated again using

the same infiltration process that was used to create the layers initially, thus bonding the layers to

one another. This process was also tested and successfully demonstrated.
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Silicon Substrate

(a) Step 1: Lithographically pattern and infil-
trate CNT composite layers

(b) Step 2: Separate layers from silicon sub-
strate

(c) Step 3: Stack layers using alignment pins (d) Step 4: Bond layers together and remove
alignment pins

Figure 6.3: The process used to assemble the CNT composite layers after the growth and infiltra-
tion processes

6.3 Mechanism Design

Two mechanism designs are presented that are being developed for use in robotically-

controlled surgical instruments. The first is a 2-DoF wrist mechanism—referred to as the Crossed

Cylinder Wrist—which can be used to articulate a surgical end effector (forceps, cutting tool,

cautery tool, etc.) through a large range of motion while occupying relatively little space. The

second—referred to as the Split CORE Grips—is a mechanism which has two mating grips for

grasping and manipulating objects and can be rotated in one degree of freedom.

Both mechanisms are designed to be attached to the end of an instrument shaft no larger

than 3 mm in diameter. The mechanisms are actuated by cables in a pull-pull configuration. At the

opposite end of the instrument, the cables interface with the robotic controls (see Fig. 6.4). De-
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actuation spools
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    actuation
    cables
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Figure 6.4: Schematic showing the end effector (Split CORE Grips shown here) attached to the end
of the instrument shaft. Cables are set up in a pull-pull configuration and are robotically actuated
at the base of the instrument.

signing a surgical instrument at this size scale requires fine feature resolution because the smallest

features are on the order of tens of micrometers. However, the overall size must be large enough

to serve as an effective surgical tool. For this reason, the CNT stacking technique is considered

a good method to achieve the meso-scale qualities of these designs. Further, by reducing the size

of surgical instruments surgeons are able to perform less invasive procedures that require shorter

recovery times, less pain medications, and less scarring [58].

6.3.1 Crossed Cylinder Wrist

A 2-degree-of-freedom wrist is desirable because it allows a surgical instrument to be pre-

cisely controlled through a wide range of motion. The Crossed Cylinder Wrist is designed to

reduce the number of parts required for wrist-like motion. It is also desirable that the wrist be

compact and occupy a minimal volume as it moves through its extremes of motion. This allows

the instrument to be used in small, confined spaces.

The motion of the Crossed Cylinder Wrist is controlled by gear profiles on two mating

components that are held in compressive contact. The components are shaped as half cylinders

and arranged so that the axis of one component is orthogonal to the axis of the other, as shown in

Fig. 6.5. With one of the components held fixed to the shaft of the surgical instrument, the other

component is able to roll along the surface of the fixed component. It can roll in the direction of
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Figure 6.5: The upper cylinder is able to roll along the axial direction of the lower cylinder. It can
also roll about the axis of the lower cylinder, as shown by the arrows.

the axis of the fixed component (first degree of freedom), and it can also roll around the axis of the

fixed component (second degree of freedom).

The gear teeth are used to prevent sliding motion and to provide torsional and shear sta-

bility. Because the mechanism is designed to roll in two directions, the gear profile in the radial

direction is that of a spur gear, and the profile along the axis of the half cylinder is that of a rack

gear. However, rather than having a continuous spur gear profile along the axial direction, the spur

gear profile is staggered to prevent sliding along the axial direction. By using gear teeth to guide

the mechanism, motion is primarily constrained to rolling with little translation, or sliding, and

the friction associated with motion is minimized. A model of one half cylinder with gear teeth is

shown in Fig. 6.6.

6.3.2 Split CORE Grips

The Split CORE Grips are designed to minimize sliding friction between parts and maintain

a high level of dexterity by providing motion in two degrees of freedom. The concept is inspired by

a Compliant Rolling-Contact Element (CORE) which utilizes curved surfaces to guide the rolling

motion of one component over the surface of the other component. In a traditional CORE joint the
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rack tooth 

spur gear 

staggered 

Figure 6.6: A rendering of a component for the Crossed Cylinder Wrist showing the two different
gear profiles and the staggered tooth configurations to prevent torsion and shear.

Figure 6.7: An illustration showing the similarities and distinctions between the traditional CORE
joint (left) and the split CORE joint used in the gripping mechanism design (right).

motion is constrained by flexures attached to the upper and lower segments [3]. This ensures that

the center of rotation is always at the point of contact between the two segments (see Fig. 6.7).

In contrast to the traditional CORE joint which relies on flexures to guide its motion, the

mechanism described here uses an involute gear profile on the curved surfaces to allow rotation

while preventing slipping motion. The mechanism described thus far consists of only a single
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upper component that moves relative to a lower base. To create a gripping mechanism, the upper

segment can be split into two identical parts that are able to roll along the surface of the base

part independently of one another. Grips are added to each of these upper components creating a

gripping mechanism similar to the one shown in Fig. 6.8.

In this particular instrument design the grips are actuated by small cables that extend along

a narrow shaft. The cables are attached to either side of the individual upper CORE segments,

in a pull-pull configuration. Thus, the cables actuate the grips and the cable tension holds the

assembly together, ensuring that the upper and lower segments are in compressive contact. Because

a gear profile is used to guide the motion, it is important that the mating gear profiles maintain the

proper spacing. Smooth, circular regions whose diameter is equal to the pitch diameter of the gear

profile are included in the design to ensure proper spacing between the components. The circular

regions also act as load-bearing surfaces, sustaining the compressive loads required to keep the

grip components in contact with the base. This prevents the loads from being transmitted to the

gear teeth.

6.4 Fabrication of Robot Components

Stacking layers of planar patterns is used to form 3D objects. The detail and level of

precision of the object depends on how the cross sections of the object change in the direction of

stacking. For example, a simple sphere could be created by stacking a series of different sized

circular layers (see Fig. 6.9). However, the change in diameter from one layer to the next will

produce a corner creating a rough surface on the sphere. The smoothness of the surface can be

improved by decreasing the thickness of each layer so that the change in cross section from one

layer to the next is gradual.

Other objects may be less prone to the effects of layer thickness if the cross section remains

unchanged along the direction of stacking, or if the cross section changes are discrete. For example,

in the Split CORE Grips design, there is an abrupt change in cross section when the smooth,

circular surface transitions to the gear profile. This change in cross section is accommodated by

stacking two layers with the different cross sections without any loss in the original detail of the

part.
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Figure 6.8: A rendering of the base component and the upper grip components of the Split CORE
Grips
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Figure 6.9: A rendering illustrating the effects of layer thickness on part definition. The desired
part geometry (left), the layered assembly using layer thickness of 1 unit (middle), and the layered
assembly using layer thickness of 3 units (right).

6.4.1 Crossed Cylinder Wrist

The direction of stacking for the Crossed Cylinder Wrist is along the respective axes of

the half cylinders. Therefore, the spur gear profile (in the radial direction) is well defined by the

lithographic patterning. However, the rack profile in the opposite direction will be defined by

the thickness of the stacking layers. Thin layers will produce a gradual change in cross section

and a well defined rack profile but will require a large number of layers. In contrast, a coarser

design will require fewer layers in the assembly process but will produce a rough tooth profile. To

show this contrast, two different models were constructed. One model contains 19 layers 110 µm

thick. The results are shown in Figs. 6.10 and 6.11. The other, more detailed model contains

50 layers that are only 40 µm thick. Each individual layer for this model is shown in Fig. 6.12.

After the individual layers were stacked on the alignment pin, cyanoacrylate adhesive was spread

across the flat bottom surface to hold the layers in place. The assembled components are shown in

Figs. 6.13 and 6.14. Figure 6.14 also shows a comparison between the mechanisms with the fine

and coarse layer thickness.

6.4.2 Split CORE Grips

The cross section of the Split CORE Grips is mostly uniform but there are a few key char-

acteristics that must be preserved in the layered assembly to ensure proper behavior. There are

three of the smooth circular regions on the base segment. Each is identical so this portion of the
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Figure 6.10: Optical micrograph of one portion of the Crossed Cylinder Wrist comprised of 19
layers that are 110 µm in thickness

Figure 6.11: Micrograph of the assembled Crossed Cylinder Wrist with a more coarse stacking
assembly (110 µm layer thickness). The upper piece is rotated slightly about the axis of the lower
and rolled slightly forward to demonstrate both directions of motion.
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Figure 6.12: Example of individual CNT layers for the Crossed Cylinder Wrist prior to removing
them from the silicon chip for assembly. Each layer is 40 µm in thickness.

Figure 6.13: One portion of the Crossed Cylinder Wrist layers stacked on the alignment pin. The
full assembly is comprised of 50 layers that are 40 µm in thickness.
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Figure 6.14: A comparison of the two Crossed Cylinder Wrist versions—40 µm (left) and 110 µm
(right) layer thickness—showing how the profile along the direction of stacking improves with
reduced layer thickness.

cross-section can simply be repeated three times in the lithography mask process. Second, the gear

profile must be defined and is also repeated in the base segment. Lastly, a square is included in

each layer so that the layers can be stacked together and aligned on the alignment pin used for

assembly.

The upper segments, which include the grip surfaces, are slightly more complicated. They

also consist of the smooth circular segments and the gear profile. Additionally, the grip must

extend far enough to come in contact with the opposite grip. This portion of the grip creates an

overhang that does not include the lower geared section of the body. Thus, the upper grip portion

of the segment is the only part of the body that is common throughout the entire cross section so

the square alignment hole is placed in this region. A second hole is included in the CORE portion

of the body to more precisely align the gear profiles and smooth circular sections (see Fig. 6.15).

The resulting mechanism is well defined and simple to assemble. The Split CORE Grips

design consists of three unique cross sections—the smooth circular surfaces, the geared portion,

and the overhanging portion of the grips. There is no gradual change between these three cross

sections. This makes the design well suited for the CNT layered assembly technique because the

fidelity of the original design is completely retained. The assembled CNT layers of the base and

two grips are shown in Figs. 6.16 and 6.17. Figure 6.17 shows the Split CORE Grips assembled

atop the base component at the end of the instrument shaft (not shown). There are two actuating
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Figure 6.15: Rendering of the Split CORE Grips divided into the three unique layers and the
square holes used for alignment. The smooth circular section is repeated on either side of the
geared portion.

cables attached to each grip. The cables keep the grips in contact with the base component and

allow the grips to be precisely controlled at any particular angle relative to the base.

6.5 Limitations

While the CNT patterning process uses photolithography to achieve micro-scale precision,

the growth, stacking, and alignment processes introduce a certain amount of inaccuracy in the

desired geometry. During the growth process the CNT frameworks can be grown to thicknesses in

the range of 5 µm to approximately 700 µm. Within this range the desired height can generally

be achieved within ±10%. Thicknesses outside this range can be achieved but challenges begin

to arise that make the process more difficult to accurately control. For thicknesses below 5 µm

the accuracy is much lower because the growth time is much shorter (< 5 sec). Therefore, the
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Figure 6.16: Photograph of the assembled geared portion of the Split CORE Grips (left) and a view
of all the assembled elements (base piece and two grips) of the mechanism (right).

(a) Grips in partially open position (b) Grips in closed position

Figure 6.17: Split CORE Grips assembled onto a surgical instrument shaft. Cables are used to
actuate the grips to a desired angle. Each grip is controlled by two cables.

increased resolution in the direction of stacking that can be gained by using thinner CNT layers is

somewhat offset by the inaccuracies in growth height as it approaches 5 µm.

Another source of error in the growth process arises when the sidewalls begin to slope

inward or outward. This can be caused by a number of factors including iron catalyst thickness

and growth height. Smaller iron layer thickness results in good edge definition but tapered walls,

while larger iron layer thickness results in straighter walls but poorer edge definition [72]. The
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walls in the prototypes presented here generally slope outward and the angle of the walls was

measured to be as high as 5◦. Despite being a relatively small slope, this leads to measurable error,

particularly in thick parts such as the geared portion of the Split CORE Grips. For a 700 µm layer,

the 5◦ angle would lead to a deviation of 61 µm. To reduce error caused by sidewall taper, the iron

catalyst thickness could be increased to 7 or 8 nm and support structures could be added to the

lithography mask as shown in [72].

A third source of error, and perhaps the most significant, comes as a result of the stacking

and alignment process. The square hole in each layer is designed to fit on the alignment pin

but also have some space to allow easier placement on the pin and, eventually, removal from the

pin. However, the slightly over-sized hole allows a small amount of rotation on the pin and leads

to misalignment. Figure 6.13 shows one of the assemblies after stacking but prior to the final

alignment procedure of pushing all of the layers against one side of the pin. While this does

provide fairly good alignment, some parts shift as the assembly is removed from the pin or as

adhesive is applied.

A possible solution to this problem is to design alignment holes with compliant features on

adjacent sides of the square hole. They would be designed to deflect away enough to slide the part

onto the pin but provide enough force to push the part to one corner of the pin once it has been

placed. This would better align each of the layers relative to one another. These features could

be designed into the lithography mask along with the support structures that help promote straight

sidewalls.

6.6 Results and Conclusions

In addition to changes in the CNT composite material, the changes in geometry among the

layers discussed previously are expected to improve the assembly process and minimize error.

This paper introduced a method of creating millimeter-scale robotically-controlled mecha-

nisms using carbon-infiltrated CNT layers. The layers are patterned using photolithography, thus

achieving fine resolution and detail. Two methods were discussed for joining the stacked layers

of CNT composite—a surface bonding method using adhesive, and the formation of carbon bonds

via chemical vapor deposition. Two designs for robotically-controlled surgical instruments were

presented as sample parts that can be created using the patterned layer assembly technique. In
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Crossed Cylinder Wrist, different layer thicknesses were used to demonstrate how reduced layer

thickness can improve the detail and precision of the final assembled structure.

The Split CORE Grips and the Crossed Cylinders Wrist mechanisms were fabricated using

the CNT stacking technique. Cables were attached to the assemblies for actuation (see Fig. 6.17)

to demonstrate the motion of the mechanisms. They were able to be actuated but the compressive

forces holding the parts together caused portions of the CNT material to fracture. In the future,

additional prototypes will be fabricated using CNT material that is infiltrated for shorter times with

carbon (2-4 min) followed by a nickel electroplating process. We anticipate that the new CNT

carbon-nickel composite will provide greater strength and be able to better sustain the compressive

forces required for actuation.

Despite the high resolution achieved through lithographic patterning, there are a number of

challenges that lead to inaccuracies in the final assembly. The sources of these errors are associ-

ated with both the CNT growth process and the geometric design of the individual components.

Solutions to these problems have been proposed for future work.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Conclusions

The three concepts described in Chapters 3, 4, and 5 aim to fill various needs in the devel-

opment of needlescopic surgical instruments. Smooth, wrist-like motion is desired to articulate an

instrument in two directions of rotation. The Crossed Cylinders Wrist concept achieves this behav-

ior while also minimizing the amount of volume the mechanism occupies. Simplified geometry

and reduced part count are also key objectives in order to facilitate manufacturing and assembly on

the millimeter scale. The Inverted Flexure Grips and the Split CORE Grips each provide grip and

rotational motion while offering fairly simple geometries focused on fabrication feasibility. Other

aspects of the three designs were also guided by the need to fulfill key performance objectives.

While none of the three concepts constitute a fully functional end effector comparable to

current 5 and 8 mm designs with wrist and grip motion, they do offer insights into techniques

for achieving such performance. They can, in a sense, be considered building blocks that can be

combined with other concepts to achieve the full desired behavior of a surgical instrument. In

future design iterations, the basis of these concepts can help inspire new designs that also address

challenges of manufacturing, assembly, range of motion, and swept volume.

7.2 Thesis Summary

The intent of this research project was to generate and refine mechanism designs capable

of functioning as surgical instruments on the 3 mm diameter size scale. The following has been

performed in fulfillment of that objective:

• A literature review to assess current and prior work in the field

• Concept generation and analysis of three key concepts (Split CORE, Inverted Flexure, and

Crossed Cylinders Wrist)
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• Prototyping and testing of two of the three concepts to validate and compare results to hand

calculations and finite element analyses

In addition to fulfillment of the research contract with Intuitive Surgical, Inc. another objec-

tive of this work was to contribute findings and developments to the scientific community through

publications and patent applications. Chapter 5 was accepted and presented at the 3rd Conference

on Microactuators and Micromechanisms in Timisoara, Romania, 2-4 October, 2014. Chapter 6

is has been submitted and is currently under review for the ASME Journal of Mechanisms and

Robotics. Provisional patent applications have also been submitted for both the Split CORE Grips

and the Crossed Cylinder Wrist concepts.

7.3 Future Work

The results of this work provide a foundation on which to 1) further test and refine existing

concepts, 2) prototype and test additional concepts, and 3) establish design guidelines for small-

scale instruments.

1. Further testing of existing concepts should include analysis of grip force throughout the

range of motion, understanding of failure modes under various loading conditions, and map-

ping of cable position and velocity to grip position and velocity.

2. Prototyping of additional concepts could include concepts generated previously but not ex-

tensively analyzed or tested, such as the Oriceps mechanism. It may also include new con-

cepts that have not yet been established.

3. Lastly, establishing design guidelines will provide an understanding of the relationships be-

tween key performance characteristics such as the correlation between yield strength and

maximum grip force. These design guidelines would also give insight into instrument per-

formance as a function of overall scale.

Focusing on these three areas will help Intuitive Surgical move closer to its goals of cre-

ating small diameter instruments and enabling new surgical procedures to be performed through

robot-assisted surgery.
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