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Abstract 

Analysis of Nucleosome Isolation and Recovery: From In Silico 
Invitrosomes to In Vivo Nucleosomes 

Collin Brendan Skousen 
Department of Microbiology and Molecular Biology, BYU 

Master of Science 

There are a vast number of factors that influence nucleosome formation, and 
consequently gene regulation.  These factors include histone modifications, nucleotide 
composition, transcriptional region elements, and specific nucleotide motifs, among 
others.  Although the amount we know now is limited, we are creating new techniques 
and discoveries to assist us in continued understanding of chromatin.  To make a 
significant contribution to the field of chromatin, I conducted two hypothesis driven sets 
of experiments that address the topic of chromatin structure.  First, I created a 
technique for tissue specific nucleosome isolation with the goal of observing the effect 
of single nucleotide polymorphisms (SNPs) on nucleosome formation.  Second, I created 
and tested a method to recover lost in vitro nucleosome reconstitution data, which can 
improve this type of data, commonly used for observing nucleosome positioning.  The 
first experiment needs a more specific antibody to complete the last step and function 
as designed.  The second experiment shows that our nucleosome recovery method, 
when applied conservatively, can recover 90% of the lost nucleosome data. 

Keywords: nucleosomes, tissue specific nucleosome isolation, in vitro nucleosome reconstitution
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Chapter 1. Background 

Adenine, Thymine, Guanine and Cystosine make up the composition of the most basic 

part of life, DNA.  Strung together, these bases become instructions for the cell in its protein 

making process.  The human genome contains three billion of these bases, each paired with its 

complement, and organized into chromosomes [1].  Aside from gamete cells, every cell contains 

two copies of the genome, for a total of 12 billion nucleotides.  With each base pair at 0.34 

nanometers long, six billion base pairs adds up to two meters of DNA when placed end to end!  

An estimate of 37.2 trillion cells are in the human body, equating to ~75 trillion meters of DNA 

within a human body [18].  How can we relate this into terms we can better understand?  The 

earth has a circumference of 40 million meters [2].  DNA from a single human can stretch and 

wrap around the earth almost 1.9 million times!  It seems implausible that such a large amount 

of important biological information can be contained within such a small container.  How does 

two meters of DNA fit into a cell’s nucleus, which only has a diameter of five micrometers? [3] 

We look into a class of proteins called histones for the answer.  Histones were discovered 

in 1884 by Albrecht Kossel, and later defined as DNA compaction proteins by Roger Kornberg in 

1974 [4].  There are four types of core histones that when two each of the H2A, H2B, H3 and H4 

histone proteins combine create an octamer of histone proteins.  The octamer takes on a globular 

or wheel like structure, which is perfect for DNA compaction.  DNA has a negative charge, and is 

attracted to the histones, which are positively charged.  Grooves along the octamer give the DNA 

an optimal fit as 147 bp wraps 1.7 times around the histone octamer [5-7].  The whole unit of 

DNA wrapped around a histone octamer is called a nucleosome.  A final histone protein, H1, acts 
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as a linker, and wraps up the additional DNA and increases the compaction between nucleosomes 

[8]. 

 Recent studies have shown that there are many factors that contribute to octamer 

affinity.  A recent paper by Voulouev et al. looks at the DNA composition of bound octamers [30].  

Using high throughput sequencing, they looked at almost 1.3 billion reads of nucleosome 

positions and found similarities between octamer binding regions.  While looking at nucleosomes 

in vivo, they observed that nucleosomes prefer to sit in close relation to the next nucleosome.  

They documented that at certain locations, a new nucleosome read would start every 193 bp, 

creating periodicity, or a phasing of nucleosomes.  This is important when looking at key 

transcription landmarks.  Polymerase and other proteins and enzymes bind to important sites in 

the genome, then position and phase nucleosomes extending out around them [25].  Without 

these factors, nucleosome positioning due to phasing is non-existent.  Within the same study, 

the In vitro nucleosome data showed no phasing positioning whatsoever. 

 Another interesting experiment from Valouev et al. looks at histone repelling and 

attracting elements [30].  They found that histones prefer binding to high G/C content, and shy 

away from A/T content.  This creates the theory of container sites, where a G/C-rich region is 

flanked by an A/T-rich region.  The repelling elements funnel the histone octamer onto the 

favorable binding site, and create a well-established location for nucleosome formation.  With a 

well-established formation site, important binding sites are kept open for polymerase and 

transcription factors [23,24]. 
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 Compaction of nucleosomes into higher order structures regulates protein synthesis and 

creates what we know as chromosomes.  The first level of compaction starts with the “beads on 

a string” 10 nm formation where nucleosomes bind to DNA.  After clumping together, a larger 30 

nm fiber is created.  This structure has been a topic of debate for many years, as crystal structure 

images show the impossibility of the 30 nm fiber and it has never been directly observed.  Many 

other structures have been seen, from clutches of nucleosomes to Magnesium-dependent 

nucleosome globs with sizes ranging from 50 nm – 1000 nm [5].  These structures undergo a final 

level of compaction to create the chromosome structures seen in cells [8].  Nucleosome 

compaction can be alternatively changed through histone modifications.  Attaching different 

molecules to histones, from methyl groups to glucose molecules, modifies their binding 

capabilities and preferences [45]. 

 There are a vast number of factors that influence nucleosome formation, and 

consequently gene regulation.  Although the amount we know now is limited, we are creating 

new techniques and discoveries to assist us in continued understanding of chromatin.  To make 

a significant contribution to the field of chromatin, I conducted two hypothesis driven sets of 

experiments that address the topic of chromatin structure: 1) I created a technique for tissue 

specific nucleosome isolation and 2) I tested the validity of in vitro nucleosome reconstitution 

techniques commonly used for observing nucleosome positioning. 
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Chapter 2. Tissue Specific Nucleosome Isolation 

2.1 Introduction 

Red blood cells are the only cells within our bodies without a nucleus [15].  Every other 

somatic cell contains all the genetic information needed to create any protein that every other 

cell is capable of producing.  Why then are only select proteins created from specific cell types?  

Why do some cells, like cardiac cells, look different than others, like neurons?  Transcription 

factors and regulators play the largest role, but a unique part of differential gene expression 

stems from nucleosome occupancy and histone modification.  Histone octamers wrap up the 

DNA in different patterns depending on cell type and tissue, and change as the organism ages 

or experiences environmental stimuli.  This creates open transcription for important genes and 

transcriptional inaccessibility for non-important genes.  These same genes may be necessary in 

other types of cells, and in those cells, differential nucleosome occupancy will keep them 

transcriptionally active.  An example of this is of the genes encoding myosin.  Myosin is a motor 

protein that helps with muscle contraction.  It is present in vast quantities in muscle tissues, but 

almost non-existent in other tissue types.  Through various factors, these genes are bound 

tightly by nucleosomes in tissues that do not need muscle contraction, but kept open and highly 

active in muscle tissues [16]. 

If we look at nucleosome occupancy across all tissues in an organism using pan-cellular 

bulk analysis, the nucleosome positions look uniform when mapped together.  However, a 2012 

study on human tissue culture lines, nucleosome occupancy analysis reveals differing 

underlying nucleosome patterns.  Kundaje et al. created a Clustered AGgretation Tool (CAGT), 

which attempts unsupervised pattern discovery on nucleosome positioning [17].  It takes into 
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account “inherent heterogeneity in signal magnitude, shape, and implicit strand orientation of 

chromatin marks” to separate the uniform nucleosome occupancy shape into smaller groups of 

distinct patterns.  Why is this important to experimental design in nucleosome research?  A 

complex tool was used to separate nucleosome occupancy patterns from a uniform pattern in 

only one type of tissue culture cells.  There are about 200 cell types in humans, all with 

different gene expression and varying nucleosome occupancy patterns [18].  Even smaller 

organisms, like C. elegans, which has 20 cell types (Sulston), are difficult to use in this manner 

because of the inability to separate cell types [19].  At only 1 mm long, it is impossible to 

manually isolate certain cell types from C. elegans with enough material for experimentation.  

Instead of increasing the computational complexity of the CAGT, we have created a Chromatin 

Immunoprecipitation (ChIP) protocol to isolate tissue specific nucleosomes.  Using an antibody 

specific to Green Fluorescent Protein (GFP) attached to the H2B histone protein, we can pull 

down nucleosomes harboring GFP-labeled histones from organisms that are uniquely modified 

to express GFP in only one specific cell type (CGC).  After the pull down of the nucleosomes, it is 

possible to sequence the attached DNA and use CAGT to analyze the nucleosome occupancy of 

that tissue type. 

2.2 Materials and Methods 

Worm Growth 

The AZ212 strain of C. elegans was used for the immunoprecipitation protocol.  This 

strain of worms expresses GFP in the gonadal tissue.  As the worms hatch and age, GFP labeling 

can be seen in the embryo, but subsequently goes away and does not return until the young 
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adult stage [20].  To compensate for age variation, we synchronized the age of the worms and 

only used young adults for the pull-down DNA.  Mixed-stage worms were grown on rich 

nematode growth media (RNGM) and washed off using a non-tris buffer, M9(5g NaCl; 3g 

KH2PO4; 6g Na2HPO4; up to 1L in H2O; Autoclave; 1ml of MgSO4).  Bleach was used to kill all 

living worms, leaving only eggs from gravid adults.  These eggs were then plated to hatch and 

grow starting at the same life stage.  This process was done multiple times, consecutively, to 

closely synchronize the ages.  The worms were flash frozen in M9 buffer using liquid nitrogen 

and left at -80o until needed. 

Figure 2.1 Workflow for Immunoprecipitation of Tissue Specific Nucleosomes. The C. elegans are first 
crushed using Liquid Nitrogen, then undergo an MNase digestion.  The nucleosomes are conjugated with 
an anti-GFP antibody and isolated with magnetic Thermo Fisher Dynabeads.  The nucleosomes undergo 
another MNase digestion followed by a protease digestion to digest the histone proteins.  
Phenol/Chloroform and Chloroform are used to extract the naked DNA and ethanol is used to 
precipitate it out of solution.  The Sample is run on a 2% agarose gel and the mononucleosome band is 
cut out for High Throughput Sequencing. 
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Digestion and pull down 

The frozen AZ212 worms were placed in liquid nitrogen and crushed into a fine powder 

using a mortar and pestle.  The powder was added to 1mL 1x Reaction Buffer (100mM Hepes 

pH 7.4; 50mM MgCl2; 50mM CaCl2).  Micrococcal nuclease, resuspended at 150 U/uL, was 

added for a final concentration of 0.75 U/uL, followed by incubation at 16o for 12 min to digest 

DNA down to nucleosome cores.  The digestion was halted by the addition of 50 uL EGTA 

(0.5M).  Rabbit anti-GFP antibody was added to the sample and incubated overnight to ensure 

antibody binding.  After antibody incubation, Thermo Fisher Dynabeads (30mg/ml) were added 

to sample and incubated together for one hour.  In the sample, the Dynabeads attached to the 

antibody, which attached to the nucleosomes.  A strong magnet (Neodymium 140 lb pull force) 

was used to pull down the beads (along with the string of GFP-harboring nucleosomes 

attached) and wash them three times using LiCl (0.8M).  Reaction Buffer was added along with 

micrococcal nuclease in conditions seen above to digest the nucleosomes a second time.  The 

reaction was halted with EGTA and washed again with LiCl.  The beads were pulled down with a 

magnet, and resuspended in 400 uL Worm Lysis Buffer (0.1M Tris HCl pH 8.5, 0.1M NaCl, 1% 

SDS) along with 4 uL proteinase K (20 ug/mL).  The solution was incubated at 65 o for 2 hours to 

digest the histone cores, leaving naked DNA.  The DNA was extracted using a standard 

phenol/chloroform, chloroform extraction and precipitated using ethanol.  The DNA was 

resuspended in TE Buffer (composition).  The resulting sample was visualized on a 2% agarose 

gel using ethidium bromide. 
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2.3 Results and Discussion 

The current protocol is close to completion.  There is still some work to be done for 

antibody specification, however.  The immunoprecipitation protocol is successful, but the 

antibody is not as specific as desired (Figure 2.2).  Both samples, those with GFP, and those 

without, have proteins pulled down by the GFP-antibody.  The only sample that should pull 

down any protein should be the sample with GFP-expressing histone proteins (AZ212 strain).  

Limiting the immunoprecipitation to only pull down the desired proteins should be the last step 

in developing an immunoprecipitation protocol for tissue specific histones. 

 

Figure 2.2 Gel Image of DNA extract from Immunoprecipitation Protocol.  Lane 1: 150 bp Ladder Lane 2: 
N2 wild-type (no expressed GFP) C. Elegans with anti-GFP antibody, normal protocol Lane 3: AZ212 C. 
elegans with anti-GFP antibody, normal protocol.  Lane 2 worms do not express GFP, and thus should 
have no DNA extract with this protocol.  Only Lane 3, with GFP expressing C. elegans should have any 
DNA extract 

It is proven that the non-specific binding can be inhibited through different blockers.  

There are different types of blockers used in immunoprecipitation to inhibit the antibody 

binding to non-specified proteins including detergent blockers (Tween-20, Triton X-100, etc.), 
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protein blockers (Bovine serum albumin, casein, etc.), and polymer based blockers 

(Polyethylene glycol, Polyvinyl alcohol, etc.) [21,22].  By adding one of these blockers, the 

antibody should be inhibited from non-specific binding, and only pull out GFP-labeled histones.  

The protocol should be complete once the blocker can be used for better antibody binding. 

2.4 Future Directions 

This protocol can be used for many different applications.  The first planned application 

of this technology is for research into single nucleotide polymorphisms (SNPs) and their effect 

on histone placement.  There are two strains of C. elegans, Bristol and Hawaiian, which have 

~100,000 SNP differences between them.  Our lab has stable mutant lines, both Bristol and 

Hawaiian, which express GFP on the histone H2B subunit, exclusively in gonadal tissue.  The 

immunoprecipitation protocol could be used on both strains to look at histone placement 

between the two.  This will look at nucleosome placement only in the gonad for both strains.  

Without this protocol, the data would become messy with nucleosomes from many different 

tissue types and occupancy profiles.  If there is any difference in histone occupancy rates, it can 

be attributed to SNPs.  Other applications of this technology may include investigation into 

differences in histone occupancy between same-organism tissues or investigation into gene 

silencing. 

  



10 

Chapter 3. Efficient Recovery of Lost Invitrosomes Through Comparative Defined-End Analysis 

3.1 Introduction 

Access to the nucleotide sequence by trans-acting factors is primarily determined by 

nucleosome positions within the immediate chromatin architecture. Several things can direct 

and regulate nucleosome positions, including the underlying nucleotide sequence itself [23,24].  

Whole-genome approaches, looking at nucleosome formation and positioning, have shown that 

DNA sequences with high affinity for nucleosome formation often contain dinucleotide motifs 

with a 10-11 base pair (bp) periodic repetition that can have a significant influence on the 

rotational setting and positioning of nucleosomes [25-27].  It is thought that this periodicity 

helps to form and stabilize a favorable conformation of DNA around the histone octamer core 

by minimizing the energetic costs of bending the DNA to form nucleosomes [28].  Additionally, 

more recent studies have shown that high G/C-content DNA fragments are also favorable to 

nucleosome formation while homopolymeric runs of A’s and T’s and high A/T content in general 

are recalcitrant to nucleosome formation and are often found in the linker region between 

well-positioned nucleosomes [29,30].   

A commonly used method for determining high-nucleosome-affinity DNA sequences is 

through the use of in vitro nucleosome reconstitutions.  Whole-genome applications of this 

method begin with isolation of naked genomic DNA followed by generation of smaller DNA 

fragments primarily through sonic sheering or restriction enzyme digestion of the high-

molecular-weight DNA.  Recombinant or isolated histone octamers and DNA fragments are 

then added together in high-salt solution in a stoichiometric ratio such that on average a single 
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nucleosome will form on each individual DNA fragment.  The salts in the solution are then 

dialyzed away, allowing the formation of nucleosomes [31,32]. Nucleosome positions from the 

in vitro reconstituted assemblies can be compared to their in vivo genomic equivalents, 

allowing for the identification of high-nucleosome-affinity sequences determined exclusively by 

intrinsic DNA sequences.  The assemblies can also determine the amount of in vivo remodeling 

that occurs within individual cell or tissue types.  Such an approach was used by Locke et al. to 

demonstrate the extent of nucleosome remodeling that occurs in vivo to the C. elegans genome 

[24]. 

 While in vitro nucleosome reconstitutions provide valuable information, the 

technique contains at least one inherent bias that must be overcome to fully use the derived 

data.  It has been demonstrated that DNA-fragment ends can influence nucleosome formation, 

encouraging end-proximal nucleosome formation relative to the remainder of the DNA 

fragment [33,34].  This preference is termed fragment-end bias and can introduce a major 

hurdle when attempting to identify high-nucleosome-affinity DNA sequences. Because of this 

major bias, in any in vitro nucleosome reconstitution experiment, it becomes impossible to 

determine if in vitro nucleosome (invitrosome) [35] formation was due to fragment-end bias or 

an actual affinity for the underlying nucleotide sequence.   

It is thought that this end bias can be overcome by using sonication to generate the 

needed DNA fragments.  In theory, if DNA fragmentation by sonication were random and 

invitrosome sequencing were sufficiently deep, the bias from fragment-end affinity would be 

eliminated.  Sonication would produce random fragment ends in excess across the entire 
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sample, and sufficient deep sequencing of invitrosomes would create a uniform background 

coverage of end-biased nucleosome reads (Figure 3.1).  True positive enrichment on 

invitrosomes due to high-nucleosome-affinity DNA sequences would be seen above this 

uniform background (Figure 3.1 A).  If sequencing depth were not sufficient, end-biased 

nucleosome reads would not provide a uniform background that could be subtracted out, and 

end-biased reads could produce false positive peaks or hide true peaks (Figure 3.1 B).  

Additionally, recent papers have revealed that sonication produces DNA breaks preferably at 

AT-rich regions and specific di- and tetra-nucleotide sequences [38].  This can create a 

fragmentation bias, meaning sonication may not be the solution to the fragment-end-bias 

dilemma.  
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Figure 3.1 Effect of end bias on detection of nucleosome positioning and occupancy. Both A and B depict 
the same hypothetical genomic locus (black line) where random, unbiased DNA fragments (blue lines) 
are reconstituted into invitrosomes that either have end-bias (red ovals) or are unbiased/formed due to 
DNA sequence affinity (green ovals). The total occupancy and inferred positioning of nucleosomes are 
depicted by the red bars over the genomic locus (end-biased invitrosomes), the green bars over the 
locus (unbiased invitrosomes), or the grey bars, a combination of the red and green bars (all 
invitrosomes; both end-biased and unbiased combined). A is an example of random shearing and 
sufficiently deep coverage resulting in relatively uniform end-biased-nucleosome coverage (red bar). 
Much of the pattern from the green bars, representing invitrosome formation due to sequence affinity, 
can still be detected above the background in the total invitrosome data (grey bars). B is the same as 
figure A except with half of the reads removed, resulting in non-uniform coverage of the end-biased-
nucleosome (red bars). The combination of end-biased and unbiased invitrosome coverage results in the 
obfuscation of some of the green pattern (arrow) and conflation of end-biased (arrow head) and 
sequence-positioned invitrosome occupancy.  In both A and B, “random” DNA fragments are depicted 
by a uniform size for simplicity and end-bias is only show on one fragment end. 
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One option to overcome this hurdle is to discard nucleosome positions that fall near 

DNA fragment ends. This is only possible if the ends of the DNA fragments used in the 

reconstitution experiments are known.  In this case, the amount of data discarded is normally a 

significant portion of the potentially meaningful data. This presents a major limitation to 

nucleosome reconstitution, as it requires an excessive amount of time and materials and 

sequencing to generate enough usable data once end-proximal nucleosome positions are 

discarded. Such an approach to overcome potential end-bias was used by Locke et al. in their 

analysis [24].   

In the following study we present a novel approach for addressing fragment-end bias 

that eliminates the need to discard large portions of the data produced in these types of 

experiments.  We apply our approach to the Locke et al. data set and show that we can recover 

up to 90.8% of the discarded data. 

3.2 Approach 

Currently using conventional approaches, two classes of DNA loci are typically excluded 

from invitrosome analyses or have invitrosomes discarded in order to eliminate potential end 

bias. When DNA-fragment ends are defined, 1) any invitrosome found to map within a defined 

number of nucleotides from a fragment end is classified as suspect of fragment-end bias and is 

discarded.  2) DNA fragments digested to sizes too small for reconstitution (<147 bp) are lost 

from invitrosome analyses. 

Both of these classes of excluded loci can potentially be recovered and analyzed by 

performing nucleosome reconstitutions on two DNA samples digested by two different 
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restriction endonucleases. Our approach is such that each individually-digested DNA sample is 

used for separate nucleosome reconstitutions.  Invitrosome positions from the two 

experiments are identified by mapping sequenced mononucleosome core DNAs back to the 

original source of DNA. For each individual reconstitution experiment, invitrosomes that may 

suffer from end-effect bias can be identified by defining a specific number of bases from 

restriction-enzyme cut sites as “too close” to the end of the DNA fragment (the suspect range). 

Invitrosomes that map within suspect-range regions are considered theoretically subject to 

fragment-end bias and so are defined as “suspect” nucleosomes. Invitrosomes that do not fall 

within the suspect-range regions are assumed to not be affected by fragment-end bias and are 

classified as “passed” nucleosomes. 
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Figure 3.2 Recovery of lost or suspect invitrosomes. A, a genomic locus (black bar) with Rsa I (R) or Hinc 
II (H) restriction sites depicted in red and blue respectively. B, Hinc II-digested DNA fragments (blue) 
harboring theoretical invitrosomes (grey ovals). C, Rsa I-digested DNA fragments (red) harboring 
theoretical invitrosomes (grey ovals). D, table summarizing the status of each theoretical invitrosome 
after comparative defined-end analysis, and the contribution of the Hinc II and Rsa I experiments to the 
final status.  Each invitrosome is declared as passed, suspect, lost or recovered based on the combined 
results of both invitrosome sets. 
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The restriction sites of the two restriction endonucleases used will usually not be near 

one another on the DNA. Therefore, invitrosomes from one experiment that are defined as 

suspect and normally would be discarded (due to proximity to a fragment end) can be 

recovered if the same locus is found to be occupied by a passed invitrosome in the second 

experiment. This is demonstrated in Figure 3.2 with the example invitrosomes in position 3 and 

position 4. In contrast, invitrosomes in position 2 remain in doubt as this position is near a 

fragment end in both experiments and both invitrosomes are suspect. 

Additionally, the positions where DNA fragments were generated that were too small to 

participate in reconstitution can be recovered.  As the likelihood of this happening with both 

endonuclease digestions is small; a position lost in one experiment can be recovered if in the 

second experiment the fragment is of sufficient size to form a “passed” invitrosome (e.g. Figure 

3.2 position 1). 

 In order to validate our approach, we have applied our recovery methods to the 

invitrosome datasets generated using the Caenorhabditis elegans genome described in Locke et 

al.  The suspect range used by Locke et al was 200 bp, which is very large considering the Rsa I 

enzyme creates fragments at an average of ~490bp.  Using the same strict suspect range of 200 

bp from DNA-fragment ends used in the Locke analysis, we find that we can recover the vast 

majority of suspect, discarded invitrosome positions.  As the suspect range is decreased, the 

recovery rate increases proportionately (Tables A.1/A,2). Percent recovery is also dependent on 

the number of total invitrosome position generated in both datasets. These results show that 
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our method is capable of preventing the massive loss of data by which current nucleosome 

reconstitution studies are limited.  

3.3 Materials and Methods 

Mapping and preprocessing of reads 

The 9.5 million Rsa I and 5.3 million Hinc II raw 36-bp read libraries (up to 147 bp reads 

are practical) used in the Locke analysis were mapped to the WS190 version of the C. elegans 

genome using Bowtie (version 1.1.2) [44]. Parameters were set so that a maximum of one 

mismatch per read was allowed and the best match position was used. Unnecessary columns 

were suppressed to output only later used data, while all other parameters were set to default. 

871,964 and 509,696 reads were eliminated from the Rsa I and the Hinc II libraries respectively 

at this point because they failed to map back to the template, had more than one maximal 

alignment of equal score or failed to meet the required stringency. The reads were then 

separated into individual data structures for each chromosome.  This separation helped to keep 

the data structures small and speed up the processing time. 

Defining Suspect regions 

The first step in our recovery approach is the generation of a suspect-range size based 

as a user-defined variable. To generate a suspect-range region, the exact genomic positions of 

the restriction-enzyme-digested fragment starts and ends are required. We were able to define 

fragment starts and ends by use the fragment-end tables generated by Locke et al. and 

available at http://nucleosome.rutgers.edu/nucenergen/celegansnuc/xfer [24]. These tables 

http://nucleosome.rutgers.edu/nucenergen/celegansnuc/xfer


19 
 

contain the start, end and fragment size of all hypothetical fragments generated across all 

chromosomes by both the Rsa I and Hinc II restriction endonucleases. However, the 

palindromic cuts sites are not included in the provided start/end positions. The size of the 

suspect range is determined by the number of bases from each fragment end that should be 

considered to be subject to fragment-end bias. In the Locke analysis this was defined to be 200 

bp from a fragment end and 200 bp from the fragment start, for a total exclusion of 400 bps per 

restriction fragment. For the purpose of assessing our approach, we defined multiple suspect 

ranges beginning at a minimum suspect range of a single bp and increasing to 5 bp, 11 bp (one 

helical turn of DNA), and then by increments of 11 bp until a maximum suspect range of 200 bp 

was reached. Each nucleosome read was converted into a genomic position and the center of 

the nucleosome (dyad) position was saved.  To generate each genomic suspect-range region, 

each dyad position had 73 bases added or subtracted to simulate ends, and then the defined 

number of base pairs added or subtracted to find the suspect region. The sets of positions 

found in the data structures define all possible suspect ranges and allowed us to separate 

suspect reads from the remainder of the fragments.  

Defining Suspects and Passed nucleosomes 

The second step in our approach is to define suspect and passed nucleosomes using the 

suspect-range regions defined in the previous step. All Rsa I- and Hinc II-invitrosome reads post 

processing were compared to and defined by their location relative to the suspect-range 

regions. The reads were classified as either suspect or passed. If a read was found to begin 

within the suspect-range region, it was classified as a suspect invitrosome. The sense of the 
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read was taken into account when this comparison was made as described above. All 

invitrosomes that do not receive this classification are considered passed because they did not 

fall within the suspect-range region. Underdigested invitrosome reads were also classified and 

separated at this point.  Once defined, the three classifications were separated into six separate 

data structures: Hinc II-suspect invitrosomes, Hinc II-passed invitrosomes, Hinc II-InnerCutSite 

(underdigested reads), Rsa I-suspect invitrosomes, Rsa I-passed invitrosomes, and Rsa I-

InnerCutSite. 

Recovery of suspect nucleosomes 

The final step in our approach is recovery of suspect invitrosomes by comparison to the 

alternate experiment's set of passed invitrosomes. Suspect-Rsa I invitrosomes were compared 

to passed-Hinc II invitrosomes and InnerCutSite-Hinc II invitrosomes, while suspect-Hinc II 

invitrosomes were compared to passed-Rsa I invitrosomes and InnerCutSite-Rsa I invitrosomes. 

Suspect invitrosomes that sit at the same position as passed invitrosomes or InnerCutSite 

invitrosomes in the alternate fragment set were classified as recovered. Those that do not 

receive this new classification were considered biased invitrosomes. The final result was a set of 

recovered, biased and InnerCutSite invitrosomes for each fragment set. The custom Java scripts 

used in these analyses are available upon request. 
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3.4 Results 

Discarded Invitrosomes 

The Locke et al. datasets we use in our analysis were derived from invitrosomes formed 

on C. elegans genomic DNA.  In their analysis, two separate invitrosome data sets were made 

by reconstituting invitrosomes on C. elegans genomic DNA that had been digested with either 

Rsa I (a blunt, four-cutter) or with Hinc II (a blunt, five-cutter).  Invitrosome-core DNA was 

isolated using micrococcal nuclease (MNase) to ensure unwrapped DNA was digested and then 

sequenced on the Illumina platform. The resulting Rsa I-reconstitution experiment produced a 

total of 9.5 million raw sequencing reads, while the resulting Hinc II-reconstitution experiment 

produced a total of 5.3 million raw sequencing reads.  To control for invitrosomes positioned 

due to end effects, Locke et al. defined a 200-bp suspect range from each restriction enzyme 

cut site.  In the C. elegans genome, Rsa I cuts on average once per 490 bp, and Hinc II cuts on 

average once every 2109 bp [24] Use of their 200-bp suspect range resulted in excluding 87.7% 

of the bps in the C. elegans genome for the Rsa I dataset and 19.0% of genomic bps for the Hinc 

II dataset [24], an alarmingly large portion of the genome. 

 We hypothesized that we could recover a significant portion of invitrosome positions 

lost to the Locke analysis by applying our recovery approach.  Thus we used the 9.5 million Rsa I 

raw sequencing reads and the 5.3 million Hinc II raw sequencing reads from Locke et al. in our 

analysis. 
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Pre-processing of reads 

Because we were using raw reads, it was necessary to eliminate poor-quality reads and 

reads that mapped to multiple loci before our approach could be applied.  The raw reads were 

mapped back to the WS190 version of the C. elegans genome using Bowtie. Parameters were 

set to only use reads with very high alignment scores (maximum of one mismatch).  A number 

of reads from both data sets mapped to multiple sites within the genome. As our approach 

assumes one position per read, these multiple alignments were processed so only the match 

with the highest alignment score was retained.  Using these parameters, a total of 8.6 million 

(90.8%) of the original Rsa I-generated sequence reads mapped back to the genome, while a 

total of 4.8 million (90.5%) of the original Hinc II sequence reads mapped to the genome (Figure 

3.3).  

Application of Recovery Approach 

Our recovery approach is composed of three steps. 1) a suspect range is generated as a 

user-defined variable, 2) invitrosomes are mapped and declared either passed or suspect, and 

3) suspect invitrosomes are recovered by comparison to the alternate experiment’s set of

passed invitrosomes. 

In applying the first step, generation of suspect-range regions is dependent on knowing 

precise fragment ends produced by restriction enzyme digestion. Because two different 

restriction endonucleases are used, the loci that fall into the suspect-range regions will be 

different for the two experiments and will depend on the restriction enzyme used to prepare 

the template DNA for reconstitution. In applying this step, we used the fragment-end list 
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generated by Locke et al., which defines the beginning and end of DNA fragments based on the 

presence of either a Rsa I or a Hinc II cut site. This list shows all hypothetical fragments 

generated across all chromosomes by digestion with these enzymes [24]. In the Locke analysis 

the suspect range was defined as 200 bp in either direction from a restriction digest site, for a 

total range of 400 bps per DNA fragment. We used a 200-bp suspect range to match the results 

of the Locke analysis. To generate each suspect-range region, the genomic position of each 

DNA-fragment start or DNA-fragment end (excluding the palindromic restriction enzyme cut 

site) had the suspect range-defined number of base pairs added to or subtracted from it 

respectively, producing suspect-range-defined starts or ends.  This resulted in unique sets of 

suspect-range regions for each restriction enzyme.  

We applied the second step of our approach by first mapping all the invitrosome 

sequence reads from both experiments to the WS190 version of the C. elegans genome.  After 

mapping the sequence reads, each read was extended out to 147 bp to represent the entire 

footprint of the invitrosome from which it was derived, and the direct center, or dyad position, 

was recorded to produce sets of both Hinc II-invitrosome dyads and Rsa I-invitrosome dyads.  

During analysis, the dyad positions (exact center of the 147 bp nucleosome) were pushed out 

73 bp in both directions to produce start and end positions for both sets and were then 

compared to their respective suspect-range regions.  Depending on where each invitrosome fell 

relative to the suspect-range regions (within the suspect range or outside of the suspect range), 

it was defined as either “suspect” or “passed” respectively.  Any invitrosome with a start that 

fell into suspect-range start region or any invitrosome with an end that fell into a suspect-range 

end region was defined as suspect. Passed invitrosome positions were separated from suspect 
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invitrosome positionsc and kept as good data for each experiment.  Underdigested fragments 

which had invitrosome reads which tiled over cut sites were also considered passed but kept 

separate for statistical purposes (InnerCutSite).  For each experiment the suspect-range size 

was kept the same between the Rsa I and the Hinc II datasets. This resulted in six invitrosome 

sets from the two experiments: passed-Rsa I invitrosomes, suspect-Rsa I invitrosomes, 

InnerCutSite-Rsa I invitrosomes, passed-Hinc II invitrosomes, suspect-Hinc II invitrosomes, and 

InnerCutSite-Hinc II invitrosomes. 

The final step was to recover suspect invitrosomes from one experiment and reclassify 

them as free of end-effect bias through comparison with passed invitrosome reads from the 

alternate experiment.   

Suspect-Rsa I invitrosomes were compared to passed-Hinc II invitrosomes and 

InnerCutSite-Hinc II invitrosomes, while suspect-Hinc II invitrosomes were compared to passed-

RsaI invitrosomes and InnerCutSite-Rsa I invitrosomes. Suspect invitrosomes that sit at the 

same position as passed invitrosomes in the alternative fragment set were now reclassified as 

“recovered” invitrosomes. Those that did not receive this new classification are considered to 

be potentially affected by end bias and were reclassified as “biased” invitrosomes. The final 

result is a set of recovered and biased invitrosomes for each fragment set. The results 

generated by step two and this step were eight unique output files: passed-Rsa I invitrosomes, 

InnerCutSite-Rsa I invitrosomes, recovered-Rsa I invitrosomes, biased-Rsa I invitrosomes, 

passed-Hinc II invitrosomes, InnerCutSite-Hinc II invitrosomes, recovered-Hinc II invitrosomes, 

and biased-Hinc II invitrosomes (Tables A.1/A.2). The complete workflow is shown in Figure 3.3.  
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Recovery of Rsa I and Hinc II Invitrosomes 

The mapped Rsa I dataset contained a total of 8,617,075 invitrosomes (Table A.1 and 

Figure 3.3). Using our 200-bp suspect range; 5,015,478 or 58.2% of the mapped Rsa I 

invitrosomes were declared suspect (Figure 3.3). Without our recovery method these suspect 

invitrosomes would be lost to further analysis. This is substantially lower than the number 

excluded from the Locke et al. analysis, but still a very large portion of the data.  The possible 

reasons for this discrepancy will be discussed below (see Discussion). 

 In order to recover suspect-Rsa I invitrosomes we compared these invitrosomes to the 

passed-Hinc II invitrosomes that were analyzed at the Hinc II 200-bp suspect range.  As 

described above, any suspect-Rsa I invitrosome that shared the same position with a passed-

Hinc II invitrosome was assumed to be an invitrosome that formed at that particular locus due 

to preferable DNA sequence rather than end-position bias and was declared recovered. This 

comparison resulted in 2,492,674 (49.7%) of the suspect-Rsa I invitrosomes being reclassified as 

recovered through comparison, and 514,960 (10.3%) invitrosomes being reclassified as 

underdigested recovered (InnerCutSite).  Thus using our recovery method we recovered 60.0% 

of the suspect-Rsa I invitrosomes resulting in a total of 6,609,231 passed- or recovered-Rsa I 

invitrosomes, or 76.7% of the original invitrosome set.  This left 2,007,844 suspect invitrosomes 

that were reclassified as biased and unusable, 23.3% of the original Rsa I invitrosome set, 

instead of the 58.2% that would be unusable without our recovery procedure (Figure 3.3). 

 The same analysis was performed on the 4,848,298 mapped Hinc II invitrosomes, with 

recovery analysis being performed with the passed-Rsa I invitrosomes that were analyzed at 
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the Rsa I 200-bp suspect range.  At the suspect range of 200 bp; 902,261 or 18.6% of the Hinc II 

invitrosomes were declared suspect (Figure 3.3).  Using the passed-Rsa I invitrosomes, 386,545 

suspect-Hinc II invitrosomes were recovered through comparison and 514,960 suspect-Hinc II 

invitrosomes were recovered through underdigested recovery.  The remaining 476,550 (52.8%) 

suspect-Hinc II invitrosomes were labeled as biased. Thus we recovered 42.8% of the suspect-

Hinc II invitrosomes through comparison and 4.3% of the suspect-Hinc II invitrosomes through 

underdigested recovery, for a total of 47.1% of the biased reads recovered.  A total of 

4,371,748 (90.2%) passed- or recovered-Hinc II invitrosomes, of the original invitrosome set 

(Figure 3.3) were usable after our recovery approach. The remaining 476,550 biased 

invitrosomes represent 9.8% of the original Hinc II invitrosome set that was still unusable 

(Figure 3.3).  Despite the more modest size of this recovery, it still represents a substantial 

improvement over the 18.6% that would be unusable without our recovery procedure. 
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Figure 3.3 Invitrosome recovery by comparative defined-end analysis. The workflow for the recovery of 
invitrosomes with raw reads (dark grey circle) being mapped (light grey circle), and then declared passed 
(blue circle) or suspect (orange circle).  Suspect invitrosomes are then declared recovered (yellow circle), 
InnerCut (white circle) or biased (dark read circle) using the passed invitrosomes from the alternative 
experiment. The total of useable invitrosomes (green circle) is the sum of the passed, recovered and 
InnerCut invitrosomes. Left, workflow applied to the Rsa I invitrosomes (light red background), and 
Right, workflow being applied to the Hinc II invitrosomes (light blue background).  In both panels the size 
of the circles is proportional to the total number of invitrosomes at each step and the percent in each 
circle is the percent relative to the total number of mapped invitrosomes. 
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Varying the suspect range length 

We wanted to test the effect of varying lengths of suspect ranges on the number of 

invitrosomes declared suspect and recovered by our approach.  To this end, we applied 19 

more suspect ranges beginning with 1 bp, 5 bp, 11 bp (one helical turn of DNA) and then 

increasing by 11 bp until reaching 187 bp.  We compared the results of applying these 

additional 19 suspect ranges to the results from our maximum 200-bp suspect range. As 

expected, with decreased suspect range we see a decrease in the number of suspect 

invitrosomes.  Specifically, we see the number of suspect invitrosomes decrease in relation to 

the length of the suspect range, and the lowest suspect range of a single base pair resulting in a 

low of only 737,064 (8.6%) of the Rsa I and 70,425 (1.5%) of the Hinc II invitrosomes being 

declared suspect respectively (Tables A.1 & A.2).  It is interesting to note that for Rsa I 

invitrosomes, at the larger suspect ranges (≥154 bp) we observed that the number of suspect 

invitrosomes is actually greater than the passed invitrosomes. This is not the case for the Hinc II 

invitrosomes.  All of these trends are demonstrated in Tables A.1 & A.2. 

One suspect range is of particular interest.  The 11-bp suspect range represents one full 

turn of the DNA helix.  If invitrosomes were to be affected by end bias, but still try and retain a 

preferential rotational setting, it might be predicted that they would form between 1-11 bp 

from the end of the DNA fragment as this would cover all potential rotational settings.  Previous 

studies have demonstrated that virtually all end-effect nucleosome positioning results in 

invitrosomes within about ±10 bp of the fragment end [34].  At the 11-bp suspect range 
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1,235,064 (14.3%) of Rsa I invitrosomes are suspect and 124,076 (2.6%) of Hinc II invitrosomes 

are suspect (Tables A.1 & A.2).  At this same level, 999,958 (80.9%) of the suspect-Rsa I are 

recovered, with 484,998 saved through comparison and 514,960 saved through underdigested 

comparison (Table A.1).  105,377 (84.9%) of suspect-Hinc II invitrosomes are recovered, with 

66,211 through comparison and 39,166 through underdigested comparison (Table A.2). 

 Having applied our approach, we find that a substantial number of suspect invitrosomes 

can be recovered within the Rsa I invitrosome set no matter what size the suspect range is. 

Within the maximum 200-bp suspect range we find that our approach is able to recover 60.0% 

or 3,007,634 of the suspect-Rsa I invitrosomes. However, with the smaller 11-bp suspect range, 

we are able to recover 80.9% or 999,958 of the suspect-Rsa I invitrosomes. 

It should be noted that in the Locke analysis a 11-bp window was used when mapping 

the invitrosomes back to the genome. In all our previously described analyses we have used this 

same 11-bp allowance when recovering suspect invitrosomes.  That is to say, we reclassified a 

suspect invitrosome as recovered if the footprint of the suspect invitrosome overlapped with 

the footprint of a passed invitrosome from the alternative invitrosome set, effectively mapping 

within 11 bp (one helical turn). When this allowance is removed and an exact overlap is 

required, all previous described trends remain the same. The observable difference in actual 

recovery rates decrease by  14.8% to 21.7% for the Rsa I analyses and 13.1% to 15.4% for the 

Hinc II analyses across all suspect ranges, with the exception of the 1-bp suspect ranges where 

the decrease is 9.9% and 8.9% for Rsa I and Hinc II invitrosomes respectively (Table A.3). 
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3.5 Discussion 

Our findings can be summarized in the statement of a few observed trends. First, 

recovery is most efficient when the suspect range is minimized. However, even when a very 

large suspect range is set (e.g. 200 bp), recovery is still significant. Of the two datasets, the Rsa I 

dataset achieves the greatest amount of recovery, but this is as expected since it contained the 

larger number of suspect nucleosomes to begin with and included the largest portion of the 

genome within the suspect-range region. The Hinc II dataset, in contrast, had a much lower 

recovery rate, but also far fewer suspect invitrosomes. When the stringency of recovery was 

increased (i.e., when a perfect alignment was required for a suspect invitrosome to become a 

passed invitrosome), all observed trends in suspect nucleosome definition and recovery rate 

remain the same for both fragment sets.  

As noted above, 5,015,478 or 58.2% of the Rsa I invitrosomes were declared suspect in 

our analysis at the 200-bp suspect range used by Locke et al., which is substantially lower than 

the number excluded due to suspected end bias from the Locke et al. analysis itself.  Since at a 

suspect range of 200 bp, 87.7% of the genome falls into a suspect-range region due to its 

proximity to an Rsa I restriction site, it might be expected that at least 87.7% of the invitrosome 

reads would be declared suspect even ignoring any expected increase due to end bias. This 

assumes that invitrosomes are reconstituted evenly over the entire genome, which is 

supported by data from the Locke analysis [24].  Thus there are two possible explanations for 

the difference between our number of suspect invitrosomes and the Locke analysis.   

First, in the Locke analysis, the even distribution of invitrosomes across the genome is 
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demonstrated with invitrosome data that has already excluded suspect invitrosomes and 

genomic regions close to fragment ends.  It is possible that invitrosomes are actually 

disproportionately found on the middle of DNA fragments (fragment-middle bias) as compared 

to ends of DNA fragments, and the Locke analysis does not see this because of the exclusion of 

genomic regions near DNA-fragment ends.  This would explain why our analysis results in fewer 

suspect invitrosomes than would be expected.  This explanation seems unlikely due to results 

of other genome-wide in vitro nucleosome experiments where fragment ends are not 

considered or excluded yet this proposed fragment-middle bias has not been observed [8]. 

Despite this lack of support, the idea of fragment-middle bias is nonetheless an intriguing 

possibility in light of the differential in vivo nucleosome coverage over different parts of C. 

elegans chromosomes as shown by the Locke analysis itself [24]. 

The second, and more likely, explanation is that the methods of declaring suspect 

invitrosomes were different between our analysis and the Locke analysis.  In the Locke analysis 

they removed any invitrosomes that fell into the filtered regions of the genome (87.7% and 19% 

of the genome for Rsa I- and Hinc II-digested genomes respectively) [24].  In our analysis, we 

declared invitrosome reads “suspect” if their starts fell within the start-suspect-range region of 

the genome or their ends fell within the end-suspect-range region.  The Locke analysis filter 

would also remove invitrosomes which formed on DNA fragments that were underdigested and 

actually contained an Rsa I or Hinc II cut site within the nucleosome; whereas our analysis, 

because it compares the ends of the nucleosomes to restriction cut sites, would keep such 

reads (our InnerCutSite invitrosomes).  For Rsa I-digested genomic fragments that were used 

for invitrosome formation, Locke et al. reported that the theoretical average size of an Rsa I 
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fragment should be 490 bp but the observed average size was ~850 bp [24].  This 

underdigestion would actually provide a significant number of genomic fragments that had 

intact Rsa I restriction sites that could form invitrosomes and produce invitrosomes harboring 

Rsa I sites.  These Rsa I-harboring invitrosomes would be declared passed in our analysis as 

described above but would be excluded from the Locke analysis.  Thus, because of these 

differences in defining suspect invitrosomes we find a significantly smaller percent of suspect-

Rsa I invitrosomes compared to the Locke analysis.  This subtle difference in declaring suspect 

invitrosomes between our method and that of the Locke analysis actually results in an extra 

29.5% of the invitrosomes being usable data by itself ( 87.7% - 58.2% = 29.5%).  This suggests 

that rather than being an undesirable experimental foible, underdigestion in comparative 

defined-end invitrosome reconstitutions experiments might actually be an optimal part of the 

procedure by creating more usable reads that span over normal cut sites. 

This work represents a unique method of recovering in vitro nucleosome-reconstitution 

data lost to end bias. The Locke et al. data analyzed in this study were the first genome-wide 

invitrosome datasets with clearly defined ends of genomic-DNA fragments used for in vitro 

nucleosome reconstitution. Having fragment-end data allows detection of invitrosomes at DNA-

fragment ends and thus throws these data into suspicion because of potential end bias; but at 

the same time, this same information allows for very significant recovery of these data using 

our novel recovery method.  Since one of the major goals of in vitro nucleosome reconstitution 

experiments is to define the sequence preferences intrinsic to DNA and histone octamer 

interactions, it is imperative that results be free of potential end biases that could easily be 

interpreted as bona fide sequence preferences.  Thus our method of using defined-end DNA 
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fragments on genome-wide analyses coupled with recovery of lost suspect data is one method 

that could rectify these problems and be used to better define the fundamental sequence 

preferences that influence nucleosome formation both in vitro and in vivo. 

3.6 Future Directions 

We have prepared this work for publication and a complete manuscript has been written.  This 

work is the first of its kind and represents a unique method of recovering in vitro nucleosome 

reconstitution data.  The data utilized in this study was the first to generate genome-wide 

invitrosome datasets with clearly defined fragment ends.  While having defined ends does 

introduce known bias, this same information allows for very significant recovery of these types 

of datasets.  We plan to submit this publication to a yet undecided journal by December 1st, 

2016 and believe it will be a new standard for genome-wide invitrosome analysis. 
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Appendix A. Supplemental Tables and Figures 

Table A 1 Rsa I-Invitrosome reads mapped, passed, suspect and recovered 

Table A 2Hinc II-Invitrosome reads mapped, passed, suspect and recovered 

For Tables A.1 and A.2: Each percent is relative to the number of reads mapped except for Rec/suspect 

Usable Data: passed + recovered + InnerCut 

Range Tota l  # Passed % Suspect % InnerCut % Rec %
% Rec + 

InnerCut
Biased %

Usable 
Data

Rec/ 
suspect

1 8617075 7880011 91.4% 737064 8.6% 514960 5.98% 150947 1.8% 7.7% 71157 0.8% 99.2% 90.3%
5 8617075 7661723 88.9% 955352 11.1% 514960 5.98% 299089 3.5% 9.4% 141303 1.6% 98.4% 85.2%

11 8617075 7382011 85.7% 1235064 14.3% 514960 5.98% 484998 5.6% 11.6% 235106 2.7% 97.3% 81.0%
22 8617075 7000636 81.2% 1616439 18.8% 514960 5.98% 731608 8.5% 14.5% 369871 4.3% 95.7% 77.1%
33 8617075 6681192 77.5% 1935883 22.5% 514960 5.98% 933195 10.8% 16.8% 487728 5.7% 94.3% 74.8%
44 8617075 6389867 74.2% 2227208 25.8% 514960 5.98% 1111242 12.9% 18.9% 601006 7.0% 93.0% 73.0%
55 8617075 6119893 71.0% 2497182 29.0% 514960 5.98% 1271443 14.8% 20.7% 710779 8.2% 91.8% 71.5%
66 8617075 5865791 68.1% 2751284 31.9% 514960 5.98% 1418355 16.5% 22.4% 817969 9.5% 90.5% 70.3%
77 8617075 5628494 65.3% 2988581 34.7% 514960 5.98% 1551328 18.0% 24.0% 922293 10.7% 89.3% 69.1%
88 8617075 5400078 62.7% 3216997 37.3% 514960 5.98% 1675494 19.4% 25.4% 1026543 11.9% 88.1% 68.1%
99 8617075 5182750 60.1% 3434325 39.9% 514960 5.98% 1790331 20.8% 26.8% 1129034 13.1% 86.9% 67.1%

110 8617075 4972656 57.7% 3644419 42.3% 514960 5.98% 1899669 22.0% 28.0% 1229790 14.3% 85.7% 66.3%
121 8617075 4777977 55.4% 3839098 44.6% 514960 5.98% 1992602 23.1% 29.1% 1331536 15.5% 84.5% 65.3%
132 8617075 4591099 53.3% 4025976 46.7% 514960 5.98% 2081004 24.1% 30.1% 1430012 16.6% 83.4% 64.5%
143 8617075 4413970 51.2% 4203105 48.8% 514960 5.98% 2162445 25.1% 31.1% 1525700 17.7% 82.3% 63.7%
154 8617075 4243382 49.2% 4373693 50.8% 514960 5.98% 2238928 26.0% 32.0% 1619805 18.8% 81.2% 63.0%
165 8617075 4078640 47.3% 4538435 52.7% 514960 5.98% 2309095 26.8% 32.8% 1714380 19.9% 80.1% 62.2%
176 8617075 3921969 45.5% 4695106 54.5% 514960 5.98% 2371337 27.5% 33.5% 1808809 21.0% 79.0% 61.5%
187 8617075 3770628 43.8% 4846447 56.2% 514960 5.98% 2430618 28.2% 34.2% 1900869 22.1% 77.9% 60.8%
200 8617075 3601597 41.8% 5015478 58.2% 514960 5.98% 2492674 28.9% 34.9% 2007844 23.3% 76.7% 60.0%

Range Tota l  # Passed % Suspect % InnerCut % Rec %
% Rec + 

InnerCut
Biased %

Usable 
Data

Rec/ 
suspect

1 4848298 4777873 98.5% 70425 1.5% 39166 0.81% 24779 0.5% 1.3% 6480 0.1% 99.9% 90.8%
5 4848298 4754403 98.1% 93895 1.9% 39166 0.81% 42988 0.9% 1.7% 11741 0.2% 99.8% 87.5%

11 4848298 4724222 97.4% 124076 2.6% 39166 0.81% 66211 1.4% 2.2% 18699 0.4% 99.6% 84.9%
22 4848298 4670935 96.3% 177363 3.7% 39166 0.81% 105115 2.2% 3.0% 33082 0.7% 99.3% 81.3%
33 4848298 4619141 95.3% 229157 4.7% 39166 0.81% 140071 2.9% 3.7% 49920 1.0% 99.0% 78.2%
44 4848298 4568470 94.2% 279828 5.8% 39166 0.81% 171767 3.5% 4.4% 68895 1.4% 98.6% 75.4%
55 4848298 4521215 93.3% 327083 6.7% 39166 0.81% 197859 4.1% 4.9% 90058 1.9% 98.1% 72.5%
66 4848298 4474781 92.3% 373517 7.7% 39166 0.81% 222031 4.6% 5.4% 112320 2.3% 97.7% 69.9%
77 4848298 4428752 91.3% 419546 8.7% 39166 0.81% 244167 5.0% 5.8% 136213 2.8% 97.2% 67.5%
88 4848298 4383876 90.4% 464422 9.6% 39166 0.81% 265002 5.5% 6.3% 160254 3.3% 96.7% 65.5%
99 4848298 4339733 89.5% 508565 10.5% 39166 0.81% 282679 5.8% 6.6% 186720 3.9% 96.1% 63.3%

110 4848298 4296274 88.6% 552024 11.4% 39166 0.81% 297918 6.1% 7.0% 214940 4.4% 95.6% 61.1%
121 4848298 4252225 87.7% 596073 12.3% 39166 0.81% 313097 6.5% 7.3% 243810 5.0% 95.0% 59.1%
132 4848298 4208768 86.8% 639530 13.2% 39166 0.81% 327116 6.7% 7.6% 273248 5.6% 94.4% 57.3%
143 4848298 4165363 85.9% 682935 14.1% 39166 0.81% 341094 7.0% 7.8% 302675 6.2% 93.8% 55.7%
154 4848298 4121924 85.0% 726374 15.0% 39166 0.81% 352796 7.3% 8.1% 334412 6.9% 93.1% 54.0%
165 4848298 4078775 84.1% 769523 15.9% 39166 0.81% 363022 7.5% 8.3% 367335 7.6% 92.4% 52.3%
176 4848298 4035732 83.2% 812566 16.8% 39166 0.81% 371340 7.7% 8.5% 402060 8.3% 91.7% 50.5%
187 4848298 3995010 82.4% 853288 17.6% 39166 0.81% 378522 7.8% 8.6% 435600 9.0% 91.0% 49.0%
200 4848298 3946037 81.4% 902261 18.6% 39166 0.81% 386545 8.0% 8.8% 476550 9.8% 90.2% 47.2%
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Table A 3Effect of imperfect versus exact match on invitrosome recovery 

Range Rsa I ∆ 11-bp (-) perfect Hinc II ∆ 11-bp (-) perfect 
1 9.9% 8.9% 
5 14.8% 13.1% 

11 18.3% 15.7% 
22 20.7% 18.1% 
33 21.8% 18.9% 
44 22.4% 19.2% 
55 22.7% 19.2% 
66 22.9% 19.0% 
77 23.0% 18.7% 
88 23.0% 18.6% 
99 23.0% 18.6% 

110 22.9% 18.1% 
121 22.8% 17.8% 
132 22.6% 17.4% 
143 22.5% 17.1% 
154 22.4% 16.8% 
165 22.2% 16.5% 
176 22.0% 16.0% 
187 21.9% 15.7% 
200 21.7% 15.4% 
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Figure A.1 Code for java program “Application.java” written by Jordon Ritchie and Collin Skousen 

Application.java: 

package com.rescue; 

import com.rescue.dao.SaveBowtieReads; 
import com.rescue.dto.BowtieOutput; 
import com.rescue.dto.SavedReads; 
import com.rescue.dto.SeparatedCutSites; 
import org.apache.commons.cli.*; 
import org.slf4j.Logger; 
import org.slf4j.LoggerFactory; 

import java.io.*; 
import java.util.*; 
import java.util.stream.Collectors; 
import java.util.stream.IntStream; 
/** 
* Created by Jordon on 5/28/2016.
*/

public class Application {
 private static long start; 
 private static long end; 
 private static final Logger LOG = LoggerFactory.getLogger(Application.class); 
 private static final Map<String, String> CHROM; 
 static 
 { 

  CHROM = new HashMap<>(); 
  CHROM.put("CHROMOSOME_I", "chr1"); 
  CHROM.put("CHROMOSOME_II", "chr2"); 
  CHROM.put("CHROMOSOME_III", "chr3"); 
  CHROM.put("CHROMOSOME_IV", "chr4"); 
  CHROM.put("CHROMOSOME_V","chr5"); 
  CHROM.put("CHROMOSOME_X", "chrX"); 
  CHROM.put("CHROMOSOME_MtDNA", "chrM"); 

 } 
 private static Options options; 
 private static File hincBowtieProcessedReads; 
 private static File rsaBowtieProcessedReads; 
 private static Integer endOfReadsBuffer; 
 private static Integer mismatchesAllowed; 
 private static File hincCutSitesFh; 
 private static File rsaCutSitesFh; 
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    public static Integer marginOfError; 
 
    private static List<String> hincBowtieFh; 
    private static List<String> rsaBowtieFh; 
    private static BowtieOutput hincBowtieOutput; 
    private static BowtieOutput rsaBowtieOutput; 
 
    private static Map<String, Set<Integer>> hincCutSites; 
    private static Map<String, Set<Integer>> rsaCutSites; 
 
    private static SeparatedCutSites hinc; 
    private static SeparatedCutSites rsa; 
 
    private static Map<String, List<Integer>> hincSaved; 
    private static Map<String, List<Integer>> rsaSaved; 
 
    public static void rescue(){ 
        start = System.nanoTime(); 
        hincBowtieOutput = Application.processBowtie(hincBowtieFh); 
        rsaBowtieOutput = Application.processBowtie(rsaBowtieFh); 
 
        try { 
            hincCutSites = Application.extractCutSites(hincCutSitesFh); 
            rsaCutSites = Application.extractCutSites(rsaCutSitesFh); 
        } catch (IOException e) { 
            LOG.error("Failed to parse cut site files"); 
            e.printStackTrace(); 
        } 
        hinc = Application.separateReads(hincBowtieOutput, hincCutSites); 
        rsa = Application.separateReads(rsaBowtieOutput, rsaCutSites); 
 
        hincSaved = Application.saveReads(hinc, rsa); 
        rsaSaved = Application.saveReads(rsa, hinc); 
        end = System.nanoTime(); 
        LOG.info("Time (seconds): " + (end - start) / 1.0e9); 
    } 
 
    private static BowtieOutput processBowtie(List<String> fh) { 
        Map<String, List<Integer>> alignedReadsChrPos = new HashMap<>(); 
        Map<Integer, String> alignedReads = new HashMap<>(); 
        Set<String> failedAlignmentCounts = new HashSet<>(); 
 
        for (Map.Entry<String, String> c : CHROM.entrySet()){ 
            alignedReadsChrPos.put(c.getValue(), new ArrayList<>()); 
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        } 
 
        for(String r : fh) { 
            String[] output = r.split("\\t"); 
            if(output[0].equals("")) { 
                failedAlignmentCounts.add(r); 
            } else { 
                if (output[0].equals("-")) { 
                    Integer dyadPosition = Integer.parseInt(output[2]) - 37; 
                    alignedReadsChrPos.get(CHROM.get(output[1])).add(dyadPosition); //this is a 
reverse read 
                    alignedReads.put(dyadPosition, output[3]); //right now we are using the bowtie 
read output. 
                } 
                else if (output[0].equals("+")) { 
                    Integer dyadPosition = Integer.parseInt(output[2]) + 74; 
                    alignedReadsChrPos.get(CHROM.get(output[1])).add(dyadPosition); //this is a 
forward read 
                    alignedReads.put(dyadPosition, output[3]); //right now we are using the bowtie 
read output. 
                }else{ 
                    LOG.info("Mystery entry: " + output.length + " " + output[0]); 
                } 
            } 
        } 
 
        LOG.info("Process Bowtie size: " + Application.validate(alignedReadsChrPos)); 
 
        return new BowtieOutput(failedAlignmentCounts, alignedReads, alignedReadsChrPos); 
    } 
 
    public static Map<String, Set<Integer>> extractCutSites(File fh) throws IOException { 
        LOG.debug("EXTRACT CUTS SITES"); 
        String line; 
        String chr = ""; 
        Map<String, Set<Integer>> cutSites = new HashMap<>(); 
        for (Map.Entry<String, String> c : CHROM.entrySet()){ 
            cutSites.put(c.getValue(), new HashSet<>()); 
        } 
        BufferedReader br = new BufferedReader(new FileReader(fh)); 
        while((line = br.readLine()) != null){ 
            if (line.startsWith(">")){ 
                chr = line.substring(1); 
                LOG.debug("CHROM: " + chr); 
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 }else{ 
  String[] sites = line.split("\\s+"); 
  cutSites.get(chr).add(Integer.parseInt(sites[1])); 
  LOG.debug("SITE: " + sites[1]); 

      } 
  } 
  return cutSites; 

 } 

    public static SeparatedCutSites separateReads(BowtieOutput bowtieOutput, Map<String, 
Set<Integer>> cutSites) { 

  Map<String, List<Integer>> with = new HashMap<>(); 
  Map<String, List<Integer>> withOut = new HashMap<>(); 
  Map<String, List<Integer>> innerCutSiteRange = new HashMap<>(); 

  for (Map.Entry<String, String> c : CHROM.entrySet()){ 
 innerCutSiteRange.put(c.getValue(), new ArrayList<>()); 
 with.put(c.getValue(), new ArrayList<>()); 
 withOut.put(c.getValue(), new ArrayList<>()); 

  } 

        for (Map.Entry<String, List<Integer>> read : 
bowtieOutput.getAlignedReadsChrPos().entrySet()){ 

 for(Integer j : read.getValue()) { 
  Set<Integer> range1Cuts = IntStream.rangeClosed(j + 74, j + 74 + endOfReadsBuffer) 
        .boxed().collect(Collectors.toSet()); //gets positive cuts 

  Set<Integer> negativeCuts = IntStream.rangeClosed(j - 73 - endOfReadsBuffer, j - 73) 
        .boxed().collect(Collectors.toSet()); 

  range1Cuts.addAll(negativeCuts); 

  Set<Integer> range2Cuts = IntStream.rangeClosed(j - 72, j + 73) 
   .boxed().collect(Collectors.toSet()); 

  Boolean found1 = Boolean.FALSE; 
  Boolean found2 = Boolean.FALSE; 
  for (Integer i : range1Cuts) { 

 if (cutSites.get(read.getKey()).contains(i)) { 
   found1 = Boolean.TRUE; 

 } 
  } 
  for (Integer k : range2Cuts) { 

 if (cutSites.get(read.getKey()).contains(k)) { 
   found2 = Boolean.TRUE; 



44 
 

                    } 
                } 
 
                if (found1 == Boolean.TRUE && found2 == Boolean.FALSE) { 
                    with.get(read.getKey()).add(j); 
                } else if (found2 == Boolean.TRUE){ 
                    innerCutSiteRange.get(read.getKey()).add(j); 
                } 
                else { 
                    withOut.get(read.getKey()).add(j); 
                } 
            } 
        } 
        SeparatedCutSites separatedCutSites = new SeparatedCutSites(with, withOut, 
innerCutSiteRange); 
        Application.removeSavedReads(separatedCutSites, innerCutSiteRange); 
        LOG.info("Separate Reads size: " + (Application.validate(with) + 
Application.validate(withOut) + Application.validate(innerCutSiteRange))); 
        return separatedCutSites; 
    } 
 
    public static Map<String, List<Integer>> saveReads(SeparatedCutSites withSites, 
SeparatedCutSites withOutSites){ 
 
        //original 
//        SavedReads traditionalSave = save(withSites.getWith(), withOutSites.getWithOut()); 
//        Application.removeSavedReads(withSites, traditionalSave.getToRemove()); 
//        SavedReads innerSave = save(withSites.getWith(), withOutSites.getInnerCutSiteRange()); 
//        Application.removeSavedReads(withSites, innerSave.getToRemove()); 
 
        //multithreaded 
        SaveBowtieReads saveBowtieReadsTraditional = new SaveBowtieReads(); 
        SavedReads traditionalSave = saveBowtieReadsTraditional.saveReads(withSites.getWith(), 
withOutSites.getWithOut()); 
        Application.removeSavedReads(withSites, traditionalSave.getToRemove()); 
 
        SaveBowtieReads saveBowtieReadsInner = new SaveBowtieReads(); 
        SavedReads innerSave = saveBowtieReadsInner.saveReads(withSites.getWith(), 
withOutSites.getInnerCutSiteRange()); 
        Application.removeSavedReads(withSites, innerSave.getToRemove()); 
 
 
        for(Map.Entry<String, List<Integer>> entry : traditionalSave.getSaved().entrySet()){ 
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traditionalSave.getSaved().get(entry.getKey()).addAll(innerSave.getSaved().get(entry.getKey())); 
        } 
 
 
        LOG.info("Saved Reads size: " + (Application.validate(withSites.getWith()) + 
                Application.validate(withSites.getWithOut()) + 
                Application.validate(traditionalSave.getSaved()) + 
                Application.validate(withSites.getInnerCutSiteRange()))); 
        return traditionalSave.getSaved(); 
    } 
 
//    public static SavedReads save(Map<String, List<Integer>> withSites, Map<String, 
List<Integer>> withOutSites){ 
//        Map<String, List<Integer>> saved = new HashMap<>(); 
//        Map<String, List<Integer>> toRemove = new HashMap<>(); 
// 
//        for (Map.Entry<String, String> c : CHROM.entrySet()){ 
//            saved.put(c.getValue(), new ArrayList<>()); 
//            toRemove.put(c.getValue(), new ArrayList<>()); 
//        } 
// 
//        for (Map.Entry<String, List<Integer>> withSite : withSites.entrySet()) { 
//            for (Integer dyad : withSite.getValue()) { 
//                Set<Integer> allPossible = IntStream.rangeClosed(dyad - marginOfError, dyad + 
marginOfError) 
//                        .boxed().collect(Collectors.toSet()); 
// 
//                for (Integer i : allPossible){ 
//                    if(withOutSites.get(withSite.getKey()).contains(i)){ 
//                        saved.get(withSite.getKey()).add(dyad); 
//                        toRemove.get(withSite.getKey()).add(dyad); 
//                        break; 
//                    } 
//                } 
//            } 
//        } 
//        return new SavedReads(saved, toRemove); 
//    } 
 
    public static void main(String[] args) { 
 
        options = new Options(); 
        options.addOption("hr", true, "path to hinc reads file"); 
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        options.addOption("rr", true, "path to rsa reads file"); 
        options.addOption("e",  true, "length of extra bases on end of Reads"); 
//        options.addOption("mm", true, "number of mismatches allowed"); 
        options.addOption("hc", true, "cut sites for hincII"); 
        options.addOption("rc", true, "cut sites for rsaI"); 
        options.addOption("ma", true, "margin of error for with and without cut sites 
comparison"); 
 
 
        CommandLineParser parser = new DefaultParser(); 
        try { 
            CommandLine cmd = parser.parse(options, args); 
 
            if(cmd.hasOption("h")){ 
                printHelp(); 
            } 
 
            hincBowtieProcessedReads = new File(cmd.getOptionValue("hr")); 
            rsaBowtieProcessedReads = new File(cmd.getOptionValue("rr")); 
            endOfReadsBuffer = Integer.parseInt(cmd.getOptionValue("e")); 
            hincCutSitesFh = new File(cmd.getOptionValue("hc")); 
            rsaCutSitesFh = new File(cmd.getOptionValue("rc")); 
            marginOfError = Integer.parseInt(cmd.getOptionValue("ma")); 
 
            String hincLine; 
            hincBowtieFh = new ArrayList<>(); 
            BufferedReader hincBr = new BufferedReader(new 
FileReader(hincBowtieProcessedReads)); 
            while((hincLine = hincBr.readLine()) != null){ 
                hincBowtieFh.add(hincLine); 
            } 
            LOG.info("hinc :" + hincBowtieFh.size()); 
            String rsaLine; 
            rsaBowtieFh = new ArrayList<>(); 
            BufferedReader rsaBr = new BufferedReader(new 
FileReader(rsaBowtieProcessedReads)); 
            while((rsaLine = rsaBr.readLine()) != null){ 
                rsaBowtieFh.add(rsaLine); 
            } 
            LOG.info("rsa :" + rsaBowtieFh.size()); 
 
            Application.rescue(); 
 
            Map<String, Map<String, List<Integer>>> dataToWrite = new HashMap<>(); 



47 
 

            dataToWrite.put("readsWithHincCutSites", hinc.getWith()); 
            dataToWrite.put("readsWithRsaCutSites", rsa.getWith()); 
            dataToWrite.put("readsWithoutHincCutSites", hinc.getWithOut()); 
            dataToWrite.put("readsWithoutRsaCutSites", rsa.getWithOut()); 
            dataToWrite.put("savedHincReads", hincSaved); 
            dataToWrite.put("savedRsaReads", rsaSaved); 
            dataToWrite.put("innerCutSiteRangeHinc", hinc.getInnerCutSiteRange()); 
            dataToWrite.put("innerCutSiteRangeRsa", rsa.getInnerCutSiteRange()); 
            Application.writeFiles(dataToWrite); 
 
            Integer total = 0; 
            System.out.println(); 
            LOG.info("readsWithHincCutSites "); 
            for(Map.Entry<String, List<Integer>> entry : hinc.getWith().entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("readsWithRsaCutSites "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : rsa.getWith().entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("readsWithoutHincCutSites "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : hinc.getWithOut().entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("readsWithoutRsaCutSites "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : rsa.getWithOut().entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
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            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("savedHincReads "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : hincSaved.entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("savedRsaReads "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : rsaSaved.entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("innerCutSiteRangeHinc "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : hinc.getInnerCutSiteRange().entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
            System.out.println(); 
            LOG.info("innerCutSiteRangeRsa "); 
            total = 0; 
            for(Map.Entry<String, List<Integer>> entry : rsa.getInnerCutSiteRange().entrySet()){ 
                LOG.info("\t" + entry.getKey() + " " + entry.getValue().size()); 
                total += entry.getValue().size(); 
            } 
            LOG.info("\ttotal " + total); 
 
 
        } catch (ParseException e) { 
            LOG.error("Failed to parse command line arguments: " + e.getMessage()); 
            printHelp(); 
        } catch (Exception e) { 
            e.printStackTrace(); 



49 
 

        } 
    } 
 
    private static void writeFiles(Map<String, Map<String, List<Integer>>> dataToWrite) { 
        for (Map.Entry<String, Map<String, List<Integer>>> dataSet : dataToWrite.entrySet()){ 
//            File dir = new File("..\\data\\output\\" + endOfReadsBuffer); 
//            if(!dir.exists()){ 
//                Boolean mkdir = dir.mkdir(); 
//            } 
            File file = new File(endOfReadsBuffer + dataSet.getKey() + ".txt"); 
            try { 
                BufferedWriter bw = new BufferedWriter(new FileWriter(file)); 
                for (Map.Entry<String, List<Integer>> data : dataSet.getValue().entrySet()){ 
                    for(Integer i : data.getValue()) { 
                        bw.write(data.getKey() + "\t" + i + "\n"); 
                    } 
                } 
                bw.close(); 
            } catch (IOException e) { 
                LOG.error("Could not create output file for " + dataSet.getKey()); 
                e.printStackTrace(); 
            } 
        } 
    } 
 
    private static void printHelp() { 
        HelpFormatter formatter = new HelpFormatter(); 
        formatter.printHelp("Main", options); 
        System.exit(0); 
    } 
 
    private static Integer validate(Map<String, List<Integer>> data){ 
        Integer size = 0; 
        for (Map.Entry<String, List<Integer>> entry : data.entrySet()){ 
            size += entry.getValue().size(); 
        } 
        return size; 
    } 
 
    private static void removeSavedReads(SeparatedCutSites removeFrom, Map<String, 
List<Integer>> toRemove){ 
        for (Map.Entry<String, List<Integer>> r : toRemove.entrySet()){ 
//            LOG.info(r.getKey() + "-before: " + removeFrom.getWith().get(r.getKey()).size()); 
            List<Integer> remove = new ArrayList<>(); 
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            for (Integer i : r.getValue()) { 
                remove.add(i); 
            } 
            removeFrom.getWith().get(r.getKey()).removeAll(remove); 
//            LOG.info(r.getKey() + "-after: " + removeFrom.getWith().get(r.getKey()).size()); 
        } 
    } 
} 
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