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ABSTRACT 

Lineations and Structural Mapping of Io’s Paterae and Mountains: 
Implications for Internal Stresses 

Alexandra Anne Ahern 
Department of Geological Sciences, BYU 

Master of Science 

Io, the most volcanically active body in the solar system, also has some of the tallest and 
steepest mountains. The mountains seem to be tectonic in origin, yet the methods of their formation 
have not been decisively constrained and their associations with volcanic paterae are yet unclear. 
We have compiled global spatial statistics on mountain dimensions and orientations, lineations 
attributed to structures, straight patera margins, and patera dimensions in order to better define 
their genetic relationships and the mechanisms forming each type of feature. Additionally, we have 
produced 4 regional structural maps of mountain complexes and have proposed tectonic histories. 

Global statistics show that paterae and mountains and their associated lineations are more 
common at low latitudes and that lineations attributed to tectonics have preferred azimuths of 45° 
and 135°, whereas straight patera margins and azimuths appear more random. Additionally, 
tectonic lineations tend to cluster to those of similar types and are smaller when closer together. 
Mountains in general on Io are isolated, varied in size and shape, and have no significant 
geographic patterns in those variations. These results may indicate that global-scale processes are 
involved in forming Io’s tectonic structures, but that the diversity of mountain characteristics and 
the collapse of paterae adjacent to mountain complexes may be more regionally controlled.  

Mapping of the Hi’iaka, Shamshu, Tohil, and Zal regions has shown that Io’s mountains 
reside in large, faulted-bounded crustal blocks, which have undergone modification through local 
responses of subsurface structures. Strike-slip motion along reactivated faults has led to the 
formation of both transpressional and transtensional features, creating tall peaks and low basins, 
some of which are now occupied by paterae. Subsurface structures play a large role in Io’s 
mountain diversity.  

Based on interpretation of statistical results and on our localized mapping, we propose that 
Io’s mountains result from a combination of crustal stresses involving both global and local-scale 
processes. Multiple faults and fractures in a variety of orientations formed in Io’s lithosphere, 
created over billions of years by stresses imposed by volcanic loading and tidal flexing. These 
faults have been progressively buried over time under multiple layers of volcanic material. Stresses 
continuing from loading and tidal massaging sometimes occur at oblique angles to pre-existing 
faults, reactivating them as reverse, normal, or strike-slip faults. Because of this, large, cohesive 
fault-bounded blocks have undergone both transpressional and transtensional modification. 
Further degradation of mountains has also occurred from extensive mass wasting, gravitational 
collapse, and erosion by sublimation and sapping of sulfur-rich layers within the crust.  

This model of fault-bounded blocks being modified by continual stresses and local 
structural response accounts for the variation and patterns of mountain sizes, shapes, and 



orientations, along with their isolation and interactions with other features. It presents an 
explanation for the influence of global and regional tectonics and a more detailed account of the 
formation of some of Io’s remarkable mountains.  

Keywords: Io, tectonics, volcanism, orogenesis, surfaces (satellites) 
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1. Introduction

From our earliest observations, Jupiter’s moon Io has been an anomalous and dynamic 

world (Morabito et al., 1979; Smith et al., 1979; Strom et al., 1979; Anderson et al., 1996; 

McEwen et al., 1998; Cruikshank and Nelson, 2007; Perry et al., 2007; Spencer et al., 2007). Its 

surface is a colorful mosaic of active volcanic and tectonic features, created over time from the 

vast stores of internal heat available within the moon (Peale et al., 1979). This heat is generated 

by intense daily tidal massaging from Jupiter, a result of the Laplace resonance between the 

Galilean satellites that causes Io’s orbital eccentricity to be non-zero (Peale et al., 1979; Yoder et 

al., 1979; Schubert et al., 1981, Segatz et al., 1988). Io’s tidal heat is released through rapid 

resurfacing (Johnson et al., 1979; Blaney et al., 1995) and crustal overturn (Schenk and Bulmer, 

1998; Schenk et al., 2001; Turtle et al., 2001; Jaeger et al., 2003). The average heat flow at the 

surface of Io is ~20-30 times that of Earth (O’Reilly and Davies, 1981; Veeder et al., 1994; 

Turcotte and Schubert, 2002; Veeder et al., 2004; Veeder et al., 2009; Veeder et al., 2011) and 

the average resurfacing rate is ~1-10 cm/year (Johnson et al., 1979; McEwen et al., 1989; 

Geissler et al., 1999). Io has no visible impact craters, supporting the idea that its surface is only 

a few million years old (McEwen et al., 1989; Geissler et al., 1999; McEwen et al., 2000). Its 

density (3.57 g/cm3) and its tall, steep topography suggest that the moon as a whole is primarily 

composed of silicates (McEwen et al., 1989; Carr et al., 1998; Geissler et al., 1999), but 

chalcophile elements, sulfur allotropes, and fresh mafic lavas give Io’s surface its distinctive red, 

black, and yellow surface colors (Sagan, 1979; Carr et al., 1998; Geissler et al., 1999; Kargel et 

al., 1999). Many of these have been erupted from plumes and fissures, or onto patera floors (Carr 

et al., 1998; Geissler et al., 1999; Lopes-Gautier et al., 1999; Davies et al., 2001; Radebaugh et 

al., 2001).  
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Paterae, defined on Io as volcano-tectonic depressions, are some of the moon’s most 

ubiquitous surface features, resembling terrestrial calderas and often having active lava flows on 

their floors (Carr et al., 1998; Radebaugh et al., 2001). Io also boasts some of the tallest and 

steepest mountains in the solar system (Schenk et al., 2001; Turtle et al., 2001; Jaeger et al., 

2003; Turtle et al., 2007), supported by a crust composed of interlayered mafic silicates and 

sulfur compounds (McEwen et al., 1998; Schenk and Bulmer, 1998). Their structures are 

complex and variable and are absolutely key to our understanding of crustal processes on Io 

(Carr et al., 1998; Schenk and Bulmer, 1998; Schenk et al., 2001; Turtle et al., 2001; Jaeger et 

al., 2003; Turtle et al., 2007). 

It is likely that Io’s continual supply of internal heat and resultant volcanism play a role 

in its crustal evolution and deformation (Schenk and Bulmer 1998; Schenk et al., 2001; Jaeger et 

al., 2003). However, it has been unclear whether crustal stresses and modifications are generated 

on global or regional scales. Paterae and mountains are globally distributed and are among Io’s 

most distinguishable volcanic and tectonic features (Carr et al., 1998; Radebaugh et al., 2001; 

Schenk et al., 2001; Jaeger et al., 2003). As such, they provide valuable insight into recent or 

current volcanic and tectonic processes operating within Io’s crust (Jaeger et al., 2003). The 

relationships of these two features to each other, as well as the processes forming them, are still 

not well understood (Radebaugh et al. 2001; Jaeger et al., 2003). In this study, the mountains and 

paterae of Io have been examined at global and local scales to begin to determine the relative 

influences of global and regional stress fields and possible tectonic links between these two 

classes of features. 
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2. Background

Mountains 

Despite Io’s persistent volcanic activity, its ~135 reported mountains (Turtle et al., 2001; 

Turtle et al., 2007) are, with very few exceptions, classified as tectonic rather than volcanic in 

origin (Schaber, 1982; Nash et al., 1986; Carr et al., 1998; Schenk et al., 2001; Turtle et al. 

2001). They lack distinguishable vents, calderas, or flows coming from their summits (Turtle et 

al., 2001) and are blocky and steep-sided, rather than conical. Ionian mountains have been 

defined by Schenk et al. (2001) as features of positive relief and measureable size higher than 1 

km, not solely created by erosional processes. Schenk et al. (2001) measured the average 

mountain height to be 6.3 km, with Io’s highest peak, Boösaule Montes (Fig. 1a), rising 17.5±3 

km above the surface. They also measured the average length and width of mountains to be 158 

km and 80 km, respectively, and the average area to be ~12,080 km2. Mountains comprise 3% of 

Io’s total surface area (Schenk et al., 2001).  

The Voyager 1 and 2 spacecraft first observed Io’s mountains up close, imaging the 

moon as a whole at ~0.5-20 km/pixel and its sub-Jovian hemisphere and south pole at < 0.5 

km/pixel (Smith et al., 1979). Initial studies from Voyager images suggested that the mountains, 

several taller than Everest, were evenly distributed in both latitude and longitude and were 

tectonically-modified crustal blocks, rather than volcanoes, as was predicted (Smith et al., 1979; 

Carr et al., 1998). There was no pattern or alignment of mountains to suggest that a global 

tectonic regime, such as terrestrial plate tectonics, could be responsible for them (McEwen et al., 

1989; Schenk et al., 2001; Turtle et al., 2007). The Solid State Imaging (SSI) camera aboard 

Galileo also imaged Io’s surface from 1996-2002, making the mountains one of its main targets 

(McEwen et al., 2000). SSI data showed that mountains and paterae were often adjacent to one 
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another and many interpreted this to indicate that they could be genetically related (Radebaugh et 

al., 2001; Jaeger et al., 2003; Radebaugh 2005). Higher-resolution imaging by SSI also showed 

the diversity of Io’s mountain morphologies, along with smaller-scale tectonic and mass wasting 

features (McEwen et al., 2000). 

Figure 1: Examples of mountain diversity on Io. (a) Boösaule Montes, South (10°S, 271°W) has been designated as 
the type example of a massif and was measured at 17.3 ±3 km (Schenk et al., 2001), making it the tallest mountain 
on Io. Its summit is rugged and complicated and a cross sectional view asymmetrical. Voyager image (1.3 km/pixel).  
(b) Mongibello Mons (22°N, 67°W) stands at a height of 8.5 km. Its clear linear rises and planar sides have 
designated it as a ridge (Schenk et al., 2001). Galileo image (0.3-3.8 km/pixel). (c) Ethiopia Planum (44°S, 27°W, 
purple arrow) and Pan Mensa (49°S, 33°W, red arrow) are both examples of a mesa and plateau, respectively. 
Ethiopia Planum is defined by its smooth, flat, elevated plain and Pan Mensa is also elevated but has a more rugged, 
striated flat surface. Voyager image (1.2 km/pixel). (d) Hi’iaka Montes (3.5°S, 79.5°W) contains several examples. 
Its lineated plateaus are indicated by the orange and yellow arrows, while its steep, linear ridges on the north end are 
marked by the blue arrow. Additionally, the green arrow shows Hi’iaka Montes (west), which is dominated a single 
sharp point and thus is interpreted as a peak. Galileo image (250 m/pixel). North in all images is up. All of the scale 
bars represent 50 km. 
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The morphologies of mountains on Io vary greatly (Fig. 1). The majority appear as 

isolated islands that climb suddenly and steeply out of the surrounding smooth, volcanic plains. 

Others have scalloped margins eroded from possible sapping of sulfur-rich crustal layers or are 

surrounded by debris aprons. Many bounding scarps can be interpreted as either tectonic, 

erosional, or a result of gravitational collapse (Schenk et al., 2001). Io’s mountains possess 

lineations, striations, and troughs that could have been created by arching or detachment during 

uplift or by mass movement (McEwen, 1985; Carr et al., 1998; Schenk et al., 2001). Carr et al. 

(1998) and Schenk et al. (2001) compiled global catalogs of mountains from Voyager and 

Galileo data. They identified mountains through low-illumination-angle terminator images, 

twilight observations, limb profiles and stereo images, which in total cover 95% of Io’s surface. 

Schenk et al. (2001) then divided Io’s mountains into 5 categories based on summit 

morphologies (Fig. 1): mesas, plateaus (Fig. 1c, 1d), peaks (Fig. 1d), ridges (Fig. 1b, 1d), and 

massifs (Fig. 1a). Some mountains received two morphological assignments if their summits 

represented multiple categories. These characterizations were only made for areas with coverage 

of <200 m/pixel, but have nevertheless been helpful in aiding our understanding of the diversity 

of mountain morphology on Io.  

Mountain distributions and their relationships to volcanic centers have long been 

discussed. Carr et al., (1998) did not find a correlation between mountains and volcanic hot 

spots. However, Schenk and Hargitai (1998) reported a longitudinal anticorrelation between 

mountains and volcanic centers, results since validated in other research (McKinnon et al., 2001; 

Schenk et al., 2001; Kirchoff et al., 2009; Kirchoff et al., 2011). Mountains seem to be slightly 

more densely clustered at lower latitudes (Schenk et al., 2001) and show two broad 

concentrations around 65°W and 265°W, roughly antipodal from one another (McEwen and 
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Soderblom, 1983; Schenk et al., 2001; Kirchoff et al., 2003; Kirchoff and McKinnon, 2005). 

These concentrations are 90° offset from two clusters of volcanic centers reported by Radebaugh 

et al. (2001) and Schenk et al. (2001). The global anticorrelation between mountains and 

volcanic centers may suggest that heat flow in the crust is higher in the areas where volcanic 

centers are concentrated (Radebaugh et al. 2001), while 90° from those areas there exists colder, 

thicker, and more brittle crust more suitable for the formation of mountains through tilted crustal 

blocks (Schenk and Bulmer, 1998; Schenk et al., 2001; Turtle et al., 2001; Jaeger et al., 2003; 

Kirchoff et al., 2009). 

A number of possible formation mechanisms for Io’s mountains have been discussed (Carr 

et al., 1998; Schenk and Bulmer, 1998; Schenk et al., 2001; Jaeger et al., 2003; Turtle et al., 2001; 

Turtle et al., 2007). McEwen et al. (1985) postulated early on that Io’s crust was experiencing 

basin-and-range style extension, with high heat flow below a thin lithosphere, magmatism, and 

topographic swelling. Keszthelyi et al. (1999) proposed that the lithosphere of Io is negatively 

buoyant on a dense, partially molten upper mantle and that mountains are crustal blocks associated 

with remixing of the lithosphere into the mantle. Others have linked tidal massaging to the 

formation of tectonic features. Bart et al. (2004) concluded that fields of ridges are directly linked 

to crustal stresses predicted for tidal flexing, suggesting that a global input of tidal stresses may be 

overprinting local stress fields. This model is challenged by the fact that many tectonic features on 

Io suggest longer-lived processes than the diurnally changing tidal stress fields, unless given 

fractures undergo diurnal reactivation and continued slip. Non-synchronous rotation would bring 

additional and differential stresses to Io’s crust because the sub-Jovian side would continue to 

rotate while Io’s tidal bulge faced Jupiter (Bart et al., 2004). The ephemeral nature of crustal stress 

due solely to tidal massaging would be unlikely to form mountains directly without the input of 
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stresses from longer-lived processes. Still others have proposed that local convective upwelling, 

due to global tidal heating, may be generating asthenospheric diapirs that rise and dome the 

surface, creating local horizontal compressive stresses sufficient for mountain formation (Jaeger 

et al., 2003). This process may be similar to those forming the chaos terrains of Europa (McKinnon 

et al., 2001). However, the resurfacing rate on Io seems uniform over appropriate timescales, and 

the chaos model would suggest that resurfacing rates would fluctuate both temporally and spatially 

(Jaeger et al., 2003).  

One of the most widely accepted models for mountain formation on Io, and the one that 

forms the groundwork for this study, was put forth by Schenk and Bulmer (1998). They linked 

horizontal shortening in the crust to vertical compressive stress generated by constant volcanic 

resurfacing. In essence, they suggested that Io was building successive global crustal shells of 

volcanic materials and shortening its radius each time a new shell loaded the surface. Then, as 

horizontal compressive stresses became high enough to exceed the compressive strength of rock 

in the lithosphere, mountain blocks popped up along high-angle reverse faults (Schenk and Bulmer 

1998; Turtle et al., 2007). In some areas, crustal anisotropy, localized fracturing, or nearby volcanic 

activity could have triggered failure (Schenk and Bulmer, 1998). This model has joined volcanism 

and tectonism in a way that gives Io its own, unique form of tectonics. It further emphasizes the 

need to understand the relationship of the mountains and nearby volcanic features both structurally 

and genetically. Exploration into these topics may yield greater insight into crustal properties and 

subsurface structure and mechanics, which would shed light on Io’s formation and evolution.  

Paterae 

Features classified as volcanic centers on Io include single vents, fracture vents, flow 

fields, shield volcanoes, and paterae (Schenk et al., 2001; Williams and Howell, 2007; Kirchoff 
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et al., 2011). Of all of the features classified as volcanic centers, the majority are paterae, 

numbering over 400 (Radebaugh et al., 2001; Barth and Radebaugh, 2010; Williams et al., 

2012). Often compared to terrestrial calderas, these depressions are attributed to collapse into a 

partially drained magma chamber or into voids left by the sublimation of layers of sulfur frosts 

within the crust (Radebaugh et al., 2001; Keszthelyi et al., 2004). Paterae have steep walls and 

flat floors that are often covered or partially covered by relatively young lava flow deposits 

(Radebaugh et al. 2001; Williams et al., 2012). The average patera effective diameter (diameter 

of a circle having the same area as the patera) from a database of 417 paterae is 41 km 

(Radebaugh et al. 2001).  

Hamilton et al. (2013) reported that paterae tend to be uniformly distributed where active 

volcanism is driving hotspots apart, except in the more northern regions where they are randomly 

distributed. Paterae are found slightly more frequently between 25°S and 25°N latitude and 

cluster around 330°W and 150°W longitude (Radebaugh et al., 2001), as do the total volcanic 

centers (Lopes-Gautier et al. 1999). These longitudinal clusters are 30-60° offset from predicted 

locations of maximum surface heat flux along Io’s tidal axes, suggesting that Io may be rotating 

slightly faster than its synchronous rotational speed (Radebaugh et al., 2001) or that magma is 

able to travel laterally by way of local subsurface structures (Hamilton et al. 2013). Volcanic 

centers, including paterae, are longitudinally anti-correlated with mountains (Schenk et al., 2001; 

Jaeger et al., 2003; Kirchoff et al., 2011; Hamilton 2013), which Kirchoff et al. (2013) have said 

indicates independent formation processes between the two types of features. However, 13% of 

paterae are adjacent to at least one mountain, while 42% of mountains have at least one adjacent 

patera (Radebaugh et al., 2001; Jaeger et al., 2003). Kirchoff et al. (2013) have also noted 
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positive correlations between mountains and volcanic center distributions. This may imply that 

there are structural links between some mountains and their adjacent paterae.  

Paterae are not always round or sub-round, as is often the case with terrestrial calderas. 

Instead, many have straight, sharp portions to their margins (Radebaugh et al. 2001). It is 

possible that the straight edges of paterae indicate tectonic elements in their formation or genetic 

relationships to adjacent mountains, but this is yet unclear. It is also possible that the amount of 

patera floor coverage by lava could indicate the presence of subsurface structures acting as 

magma conduits in areas of current or recent tectonic activity.  

In this study, we investigate possible relationships between mountains and paterae by 

looking at spatial relationships between them and the structural features that may be related to 

their formations. We look at the relationships between mountains and paterae, specifically, 

where previous statistical analyses between paterae and mountains have included all volcanic 

centers (Carr et al., 1998; Kirchoff et al., 2011; Hamilton et al., 2013; Kirchoff et al., 2013). 

Additionally, paterae with possible structural influence are identified and their relationships to 

mountains are characterized to determine the extent of tectonic controls on their collapse. This 

study should shed light on the processes forming mountains and paterae on Io, the way the crust 

has been modified by tectonic activity, and possible stress inputs to Io’s crust. 

3. Global Spatial Statistics

Methods 

In order to investigate the extent, effects, and sources of stress in Io’s crust, we have 

performed spatial analyses on its mountains, structural lineations, and paterae. Specifically, we 
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looked at lineations associated with each feature, feature sizes, and feature locations. We mapped 

all lineations and features for this spatial study (Fig. 2, Fig. 3) in ArcGIS using the Io merged, 

north pole, and south pole mosaics as base maps under the Io 2000 Geographic Coordinate 

System and North Pole and South Pole projections (Williams et al., 2012). These mosaics 

combine Galileo color data with the high-resolution monochrome mosaic of both Voyager 

Imaging Science Subsystem (ISS) and Galileo SSI monochrome images. The merged mosaic is a 

simple cylindrical map projection centered on 0° longitude. The global resolution ranges from 1-

10 km/pixel on or near the equator and up to 10 km/pixel in the low-resolution longitudinal band 

near 50° W, and there is no coverage within 5 degrees of the north pole (NASA Planetary 

Photojournal, 2007; Williams et al., 2012). Although there are select locations of Io imaged at 

higher resolutions, we mapped lineations and features for our statistics on the merged mosaic for 

global continuity. 

We identified and measured lineations across the surface of Io and divided these into two 

categories—structural lineations and patera edge lineations, examples of which are given in Fig. 

2. Structural lineations refer to any features interpreted as faults, fractures, or folds—thus

Figure 2: Examples of lineations identified in this study. (a) Structural (green) and patera edge (red) lineations traced 
over an image of the region surrounding Amirani (~25°N, 114°W) taken from the merged mosaic. (b) Straight 
margin of Tupan Patera (18.5°S, 141°W), type example of a patera edge lineation for this study.   
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features that have formed as a result of tectonism. Patera edge lineations are defined as straight 

margins of paterae and were considered alongside, but separate from, structural lineations 

because of their possible tectonic origins (Fig. 2b). The azimuths and lengths of all identified 

lineations were calculated in ArcGIS using the COGO Toolbox (Fig. 3). In addition to lineations, 

we measured the long axes of paterae and calculated their azimuths and lengths in ArcGIS. We 

also measured lengths, widths, and areas in ArcGIS of 82 mountains using polygonal shapefiles 

to calculate areas. Of Io’s ~135 mountains (Turtle et al., 2007), we were only able to discern 82 

well enough to find boundaries between them and the surrounding plains at the resolutions of the 

global mosaic. However, this method may lead to greater refinement of mountain dimensions in 

the future. We updated the previous catalog of paterae by Barth et al. (2010) by using high 

resolution images to find additional paterae and reclassify paterae that were previously labeled as 

mountains. Paterae in the current updated catalog number 473 in total across the surface of Io. 

With this data, we first tested our measurements for distributional patterns by looking at 

the clustering of lineations and lineation characteristics (length and azimuth) in 16 sectors of 

equal area across Io. Then, global distributional patterns were explored for mountain sizes, patera 

sizes, and patera floor lava coverage measured previously by Barth et al. (2010). 

It is visually apparent that some features are clustered at various locations and scales 

(Fig. 3). We tested for spatial randomness—whether our data points were in fact clustered, or 

were random or uniform—using the G and K functions. The G function is a nearest neighbor 

distance function that quantifies spatial interaction between features. It gives the proportion of 

the number of data points in the set of distances up to a given cutoff, r, to the total number of 

points expected under complete spatial randomness (CSR). To achieve bounds for CSR, a series 

of runs through the function are made with parameters randomized. We performed 100 runs 
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through both the G and K functions to determine the range in which we would reasonably expect 

our data to plot under CSR. For a clustered pattern, features or measurements would be closer to 

each other than expected from CSR and therefore plot above CSR. For a uniform pattern, they 

would be farther apart than expected and plot below CSR (Zhukov, 2010). The K function is also 

a distance function between features but looks beyond nearest neighbors. It shows interactions 

between points by looking at the cumulative number of features around all others within a certain 

radius, r. Like the G function, the K function is compared to a predicted range of CSR (Funk, 

2011). In most of the analyses we used great circle distances of latitude and longitude points but 

calculated the G and K functions using simple Euclidean distances. 

Figure 3: Global lineations. (a) Structural lineations (green) and patera edge (red) lineations traced on the merged 
mosaic image as interpreted in this study. (b) Lineations traced on the north pole mosaic as interpreted in this study. 
(c) Lineations on the south pole mosaic as interpreted in this study. Blue shaded regions indicate areas of lower 
resolution. 
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Additionally, we looked at conditional marked moments of length and azimuth 

measurements, or the conditional mean and variance of the lengths and azimuths of linear 

measurements at distances r away from other lineations. These tests are used to indicate whether 

similar length or azimuth values tend to cluster. We did this by fixing measurement locations and 

varying lengths and azimuths randomly for 100 scenarios. This provides an average, with some 

variation for randomness, that the lengths and azimuths of our data are measured against in order 

to detect patterns at great circle distances in 50 km intervals away from each feature. The number 

and character of each feature is analyzed along each given great circle, rather than in a 

summative area covered by all previous great circles. If points plot within the bounds of variance 

around the mean, then we can conclude that there is no pattern, but rather that lengths and 

azimuths vary randomly with location. If they plot above or below the bounds we generated, then 

some locational pattern exists for the lengths or azimuths of our lineations. 

Lastly, we used a nonparametric circular-linear correlation to correlate the azimuths and 

lengths of linear features since azimuth is an angular measure and length is linear. To do this, 

each azimuth value was converted to a ranked circular variable, βi, by: 

𝛽𝑖 =
2𝜋(𝑟𝑖)
𝑛

where n is the total number of pairs of azimuths and lengths and ri is the corresponding circular 

rank of the azimuth measurements. We then calculated Tc and Ts: 

𝑇𝑐 =∑𝑥𝑖cos(𝛽𝑖

𝑛

𝑖=1

) 

𝑇𝑠 =∑𝑥𝑖sin(𝛽𝑖

𝑛

𝑖=1

) 
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where xi is the rank of the length measurements. Finally, we calculated the correlation 

coefficient, R, given by:  

𝑅 =
24(𝑇𝑐2 + 𝑇𝑠2)
𝑛2(𝑛 + 1) ~𝜒2𝑎𝑠𝑛 →∞ 

using the values we obtained for Tc and Ts above. To scale to traditional R-values between 0 and 

1, transformations were performed for when n is even and odd, respectively, given by:  

𝑎𝑛 =
1

1 + 5𝑐𝑜𝑡2 (𝜋𝑛) + 4𝑐𝑜𝑡2 (𝜋𝑛)

and 

𝑎𝑛 =
2𝑠𝑖𝑛4 (𝜋𝑛)

(1 + 𝑐𝑜𝑠 (𝜋𝑛))
3

We used values obtained for an to calculate a scaled correlation, given by: 

𝐷𝑛 = 𝑎𝑛(𝑇𝑐2 + 𝑇𝑠2) 

as given by Tu (2015). 

The last step in our spatial statistics was to test the relationships between straight patera 

margins and mountain locations to determine if they could be genetically related. We used three 

different tests—the Equality Function, an independence test, and a random labeling test. The 

Equality Function measures how similar events are at different distances. Values greater than 1 

indicate that there is some kind of relationship; that is, features that are closer together tend to be 

of a similar type. The independence test looks at whether the individual point location-

determining processes are independent of one another, assuming a null hypothesis that the two 

processes, and therefore features, are spatially independent of each other. Finally, a random 
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labeling test compares the locations of data points of the same type with random reassigned 

locations. Predicted bounds were again generated for these tests using 100 scenarios in which 

parameters determining location designations were randomly varied. These help us to understand 

the interaction of mountains with each other and with paterae that may be exhibiting tectonic 

influence. 

The spatial statistics and feature identifications conducted in this study build on geologic 

mapping and measurements made on the Io ArcGIS Project by Williams et al. (2012), a lineation 

study by Radebaugh et al. (2011), mountain spatial measurements by Schenk et al. (2001), a 

comprehensive patera study by Radebaugh et al. (2001), and spatial analyses of mountains and 

volcanic features conducted by Kirchoff et al. (2009), Kirchoff et al. (2011), and Hamilton et al. 

(2013). Areas of low resolution may affect the confidence level of some of the statistical results 

presented, and those are identified and accounted for. Nevertheless, Io has sufficient image 

coverage currently such that our results are still statistically significant. Given higher resolution 

images of low resolution areas, it is expected that the amount of uncertainty surrounding our 

results would decrease. 

Results 

Structural Lineations. 

There are 353 features identified as structural lineations located on the surface of Io (Fig. 

4). The lengths and azimuths of the structural lineations are shown in 16 sectors of equal area in 

Fig. 5. 

Most structural lineations occur between 60° S and 30° N latitude, and those between 15° 

S and 0° are shorter than at other latitudes (Fig. 5). It is possible that identification of lineations 

as a whole, and discernment between small lineations, is facilitated by the higher resolutions 
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available in the lower latitudes, but with the amount of available coverage of Io’s surface these 

patterns can still be said to exist, especially locally. There does not seem to be a statistically 

significant latitudinal pattern of azimuths of structural lineations (Fig. 5), which characteristic 

would be least likely to be affected by gaps in resolution. The highest frequency of structural 

lineations longitudinally occurs between 180° W and 240° W. Lengths and azimuths do not 

appear to show longitudinal patterns, except for a cluster of lineations with azimuths oriented at 

roughly 130° between 300° W and 330° W.  

The patterns visible in Fig. 4 reveal that structural lineations exhibit clustering by 

location, and we have confirmed this statistically through the G and K functions (Fig. 6). In both 

cases, the observed values, or those we have measured for our lineations, far exceed the 

predicted bounds of CSR as shown by the gray bands. This indicates strong clustering of 

identified linear structures. 

Figure 4: Structural lineation traces. Latitude and longitude locations and approximate orientations of all structural 
lineations identified in this study. Blue shaded regions indicate areas of lower resolution. 
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Figure 5: Structural lineation lengths and azimuths by sector. Longitude is measured in °W. 

Figure 6: Comparison of G (a) and K (b) functions with structural lineation data. The predicted bounds of CSR of 
both functions are represented by gray shading, with the average predicted values for each function represented in 
the middle of those bounds by the red dashed line. Observed values for structural lineations are shown by the black 
line. Both functions indicate strong clustering of structural lineations. 
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Figure 7: Conditional marked moments of structural lineations. (a) shows the conditional mean, with global average 
and its bounds indicated by the dashed blue line and the gray band, respectively. The red line indicates the values for 
the structural lineations in this study. (b) shows the conditional variance, with global average and its bounds 
indicated by the dashed blue line and the gray band, respectively. The red line indicates the values for the structural 
lineations in this study. 

Figure 8: Rose diagram of structural lineation azimuths. 
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We then looked at conditional marked moments for the lengths of the structural lineations 

to see how far trends in the lineations propagate. The average length of structural lineations 

globally is ~130 km. Fig. 7a shows that lineations having neighbors within 500 km are much 

shorter than the global average, with mean lengths of 90-120 km. Those having neighbors within 

2000 km are still shorter than the average, but not as short as those with very close neighbors. 

Once lineations are more than 3000 km apart, they tend to be longer than the global average 

lineation length. The maximum distance between any features on Io is half of the moon’s 

perimeter, or 5722 km. Conclusions drawn about lineations at distances of 3000 km to 5722 km 

apart may not be as useful statistically, given that the low resolution areas will be encountered at 

some point measuring away from all lineations.  Nevertheless, results from lineations of close 

neighbors are valid. The variations between lineation lengths, shown in Fig. 7b, have a similar 

pattern. Lineations with closer neighbors tend to have a smaller variance, and are therefore more 

similar in length, than lineations with neighbors farther away.  

The azimuths of all structural lineations prefer orientations at 45° and 135° (Fig. 8). This 

suggests that a global stress field may play a role in the formation of structural features on Io. 

The 90° offset between orientation peaks may suggest one overall stress regime (with petals 

perpendicular to the directions of σ1 and σ2) or two different stress regimes occurring at different 

times from one another (with petals both indicating the direction of σ1 for each stress regime). 

Variation in the azimuth angles of the structures may also be controlled by local subsurface 

structures, crustal anisotropies, or local volcanic activity. 

Lengths and azimuths of the structural lineations do not appear to be related. From our 

calculations, we obtained a p-value for our null hypothesis of no relationship of 0.764, 

suggesting that the null hypothesis is valid and that there is no relationship between the lengths 
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and azimuths of structural lineations. This means that there is not likely one major stress regime 

responsible for creating the largest structural features globally on Io. Instead, orientations and 

lengths of tectonic features as a whole may be more complicated—they may controlled by 

multiple large-scale stress regimes and by local subsurface structure or crustal anisotropies. 

Patera Edge Lineations. 

We measured 306 patera edge lineations and analyzed them in the same way that we did 

structural lineations. 193 paterae, or 41% of the total paterae identified, have at least one straight 

margin (Fig. 9). Paterae with straight margins occur most frequently in the equatorial region, as 

do paterae themselves (Radebaugh et al., 2001). Longitudinally, straight patera margins occur 

most commonly between 180° W and 90° W and between 300° W and 0°. It is still possible to 

see large paterae even in low-resolution regions, and many paterae in these regions seem to have 

more rounded edges.    

Figure 9: Patera edge lineation traces. Latitude and longitude locations and approximate orientations of all straight 
patera margins identified in this study. Blue shaded regions indicate areas of lower resolution. 
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Again, the global view of patera edge lineation seems to show clustering (Fig. 9), and 

again, this is confirmed by comparison with the G and K functions. Our results indicate strong 

clustering of straight patera margins (Fig. 10). Patera edge lineations have smaller average 

lengths than structural lineations overall; nevertheless, like the structural lineations, they are 

shorter than the average length in lower latitudes. This was verified by observing trends in the 16 

sectors, as was done for structural lineations. Additionally, patera edge lengths are also shorter 

than the global average when they have neighboring patera edges within 2000 km (Fig. 11a). The 

variance, however, is not statistically different from what we would expect if there were no 

relationship between the locations of lineations and length (Fig. 11b). 

Figure 10: Comparison of G (a) and K (b) functions with patera edge lineation data. The predicted bounds of both 
functions are represented by gray shading, with the average predicted values for each function represented in the 
middle of those bounds by the red dashed line. Observed values for structural lineations are shown by the black line. 
Both functions indicate strong clustering of patera edge lineations. 
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Figure 11: Conditional marked moments of patera edge lineations. (a) shows the conditional mean, with global 
average and its bounds indicated by the dashed blue line and the gray band, respectively. The red line indicates the 
values for the patera edge lineations in this study. (b) shows the conditional variance, with global average and its 
bounds indicated by the dashed blue line and the gray band, respectively. The red line indicates the values for the 
patera edge lineations in this study. 

Figure 12: Rose diagram of patera edge lineation azimuths. 
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Compared to structural lineations, patera edge azimuths have no significant preferred 

orientations (Fig. 12). This could indicate that collapse within paterae along straight margins 

may not be caused by a global tectonic regime, but rather is governed by localized stresses or 

local subsurface structures. 

There also seems to be no relationship between the location of a patera edge lineation and 

its azimuth. However, using the same nonparametric circular-linear correlation between length 

and azimuth, we obtained a p-value of 0.052. This suggests that we cannot reject the null 

hypothesis of no relationship between the lengths and orientations of straight patera edges, but 

with the small and inconclusive p-value, further investigation into the possibility of a relationship 

may be necessary.   

Mountain Spatial Statistics. 

The 82 mountains that were measured in this study do not possess an obvious distribution 

pattern, but mountain widths and areas are smaller at low latitude regions (15°S to 15° N) and 

poleward of 60° S (Fig. 13). There seem to be no patterns in mountain lengths, widths, or areas 

by longitude. There also does not appear to be any statistically meaningful patterns relating the 

distance between mountains and their lengths, widths, or areas. In sum, mountains are isolated, 

varied in size and shape and have no significant geographic patterns in those variations. This 

may mean that some type of global stress regime causes mountain formation, but that response to 

global stresses varies due to local subsurface features. These statistics are limited by gaps in 

resolution that have prevented us from decisively identifying or constraining the dimensions of 

the remaining ~53 mountains as identified by Schenk et al. (2001) and Jaeger et al. (2003).  
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Patera Spatial Statistics. 

Our results support the findings of Radebaugh et al. (2001) that the majority of paterae 

are found at low latitudes (with 56% between 30°S and 30°N) when considered in equal areas. 

Although they occur more frequently, paterae in this latitudinal band seem to be smaller than the 

global average (Fig. 14).  

We also observed a slight clustering of paterae around 330°W and 150°W close to Io’s 

sub-Jovian and anti-Jovian faces, as also seen by Radebaugh et al. (2001). Others have noted 

concentrations of general volcanic centers in these areas as well, offset 90° from maximum 

mountain concentrations (Schenk and Hargitai, 1998; Lopes et al., 2001; McKinnon et al., 2001; 

Schenk et al., 2001; Kirchoff et al., 2011; Hamilton et al., 2013). There does not seem to be a 

longitudinal pattern of patera sizes (perimeters or areas) based on variations between sizes in 

Figure 13: Mountain size statistics by sector. Longitude is measured in °W. 
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each of the 16 sectors. However, between 260°W and 0° more paterae occur that have 50% or 

100% floor coverage by young, still dark lava (Fig. 15). This may coincide with more active 

regions of volcanism possibly associated with tidal stresses (Ross et al., 1990; Segatz et al., 

1998; Tackley et al., 2001) or with subsurface structures allowing magma to migrate to the 

surface more easily in some regions than in others. Paterae with significant floor coverage do not 

seem to follow the same patterns as general hotspots across Io. Lateral movement of magma 

along subsurface structures could cause lavas to erupt onto patera floors that are not necessarily 

located along the same trends as hotspots, even though this magma is sourced from the same 

locations as that erupting at hotspots.  

Patera separation distances were also evaluated with the G function, and they plot within 

the predicted region, indicating there is no significant clustering. We also looked at conditional 

marked moments for patera perimeters and areas. Paterae with close neighbors (up to 1000 km 

apart) have smaller perimeters than the global average, but larger variances than we would 

Figure 14: Patera size statistics by sector. Longitude is measured in °W. 
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expect, especially with paterae 500 km apart or closer (Fig. 16). In higher latitudes, paterae tend 

to be larger in area, but spaced farther apart. 

Figure 15: Smoothed view of percent fill of patera floors by location. The symbols x, *, and □ represent the locations 
of paterae with 0, 50, and 100% floor coverage, respectively.   

Figure 16: Conditional marked moments of patera perimeters. (a) shows the conditional mean, with global average 
and its bounds indicated by the dashed blue line and the grey band, respectively. The red line indicates the values for 
the patera perimeters in this study. (b) shows the conditional variance, with global average and its bounds indicated 
by the dashed blue line and the grey band, respectively. The red line indicates the values for the patera perimeters in 
this study. 
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We used pairwise Wilcoxon tests (Lowry, 2015) to look for any patterns between patera 

size and amount of floor coverage. Paterae that exhibit 100% floor coverage are significantly 

smaller in size, while paterae with floors that are either 50% or 0% covered have larger areas 

(Table 1). Whether this is a result of smaller paterae being easier to fill with less lava, or an 

indication that areas with smaller paterae are more active, is not clear at this point.  

Table 1. Statistics for Patera Fill Percentage Compared with Patera Size. 

Patera Perimeter 
Fill % Mean Std. Dev. Min Q1 Median Q3 Max 

0 229.90 147.40 30.00 130.00 188.00 290.00 962.00 
50 250.60 176.40 57.00 141.50 209.00 297.50 1349.00 
100 171.70 119.30 25.00 95.00 151.90 218.00 705.00 

Patera Area 
Fill % Mean Std. Dev. Min Q1 Median Q3 Max 

0 4604.00 6392.90 66.68 1038.00 2408.00 5276.00 48660.00 
50 5521.00 8565.80 216.70 1136.00 2621.00 5770.00 54260.00 
100 2847.00 4604.00 45.08 568.50 1512.00 3127.00 33600.00 

Patera Edge Lineations and Mountains. 

We tested the relationships between the locations of straight patera margins and 

mountains with three different tests—the Equality Function, an independence test, and a random 

labeling test (Fig. 17). Fig. 17a shows the results of the equality function analysis. A value of 1 

suggests there is no relationship between the location and type of feature. The values of the 

equality function are greater than 1, so statistically, features closer to each other tend to be of 

similar types. In other words, mountains are generally closer to each other than to straight patera 

margins. The same is true for straight patera edges, but this data may also be biased by the fact 

that many paterae have more than one straight edge to their margins. The independence test 
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looked at whether processes determining the locations of mountains and straight patera edges 

were similar or not (Fig. 17b). Since the mountain and patera edge locations, paired and plugged 

into the independence function, plot within the predicted range, we can assume that the null 

hypothesis of independence in what determines the locations of mountains and straight patera 

margins is valid. However, it is likely that different, yet still related, geological processes may be 

governing how and where these features form and their relationships to one another. The random 

labeling test yielded a similar result to that from the equality function (Fig. 17c). 

It appears that observed locations of mountains and patera edge lineations are 

significantly different than they would be from random assignment individually and that features 

close to each other tend to be of the same type. Therefore, paterae with straight edges are often 

closer to other paterae with straight edges, rather than to mountains. This may be due to the 

nature of having many more paterae than mountains on Io’s surface. It seems that mountains and 

Figure 17: Relationships between mountains and patera edge lineations as revealed by (a) equality function, (b) 
independence test, and (c) random labelling test. Predicted average values are shown as the red dashed line and 
predicted bounds are represented by gray bands. Black lines indicate results from this study. 

28



29

paterae may be related in some cases, but we cannot conclude that mountains and paterae that 

appear structurally controlled will always be found in close association. There may be processes 

independent of mountains causing paterae to collapse along straight, sharp margins. For a better 

understanding of mountain-patera interaction, we wanted to get a closer look at processes driving 

the formation of these two features. 

4. Structural Mapping

Methods 

High-resolution images from the Galileo spacecraft were used to identify and interpret 

structures and to construct structural maps for 4 regions: Hi’iaka Montes, Shamshu Mons, Tohil 

Mons, and Zal Montes. These locations were selected based on the resolution of the images, the 

tectonic complexity, and the potential for insight into crustal deformation patterns and stress 

input. This work uses similar conventions to, and builds upon, geomorphic mapping by Bunte et 

al. (2008), Bunte et al. (2010), and Williams et al. (2004). The base images of the maps were 

projected orthographically to eliminate distortions using both ArcGIS and the USGS Map 

Projection on the Web (POW) (Hare et al., 2013). We then identified important tectonic or 

topographic features seen in these images and classified them as reverse faults, normal faults, 

grabens, strike-slip faults, mass wasting or landslide scarps, and erosional scarps. Our 

interpretations of the types of structural features were based on shadow observations, sense of 

displacement of features, scarp shape and morphology, and terrestrial tectonic analogs. Then, 

cross sections were generated for each area with as little vertical exaggeration as possible while 

preserving sufficient topographic detail. The cross sections consider the lithospheric thickness, or 

rather, the thickness of the uppermost brittle layer of Io, to be about 30 km based on previous 

studies (Keszthelyi and McEwen, 1997; Jaeger et al., 2003, Leone et al., 2011; Jozwiak, 2014).  
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Results 

Structure of Hi’iaka Montes.

The Hi’iaka region displays the results of many of the important tectonic processes 

shaping Io’s crust (Fig. 18). High-angle reverse faults on the western and eastern sides of the 

Hi’iaka Montes complex bound a large crustal block containing the two mountains. Specifically, 

this type of block may be similar to those bounded by high-angle reverse faults that cut the deep 

basement observed in Wyoming’s Laramide structures (Dickinson and Snyder, 1978), indicating 

the possibility of a thick-skinned compressional tectonic regime on Io. The sub-parallel features 

on the top of the Hi’iaka plateaus are tens of meters deep and tens of meters across (Bunte et al., 

2010) and were likely created in response to the uplift of the mountains as grabens formed from 

extension above the neutral surface of the fold. Alternatively, it is possible that these features are 

small-wavelength folds with orientations reflecting the orientation of σ1, although the rigid 

properties of the upper crust may prohibit formation of such small-scale folds. 

Shortening of the crust in this area oblique to the bounding reverse faults has produced a 

dextral strike-slip fault running between the two mountains, breaking apart the larger crustal 

block. This is based on interpretations made by Jaeger et al. (2003) and Bunte et al. (2010) and 

by further identification of features associated with a strike-slip system in this study.  The 

northern arm of North Hi’iaka Mons has accommodated the oblique strike-slip motion through 

restraining bends, which have built up the ridges that make up the highest elevations in the area, 

up to 11 km (Schenk et al., 2001). The transpressional features in this area are similar to the 

transpressional ridges running through Damascus and Palmyra, Syria formed along a restraining 

bend in the Dead Sea Fault (Mann, 2007), and the way transpression is accommodated mostly by 

vertical displacement is similar to structures adjacent to the San Andreas Fault zone near San 
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Bernardino, California (Spotila et al., 1998). The restraining bends on North Hi’iaka Mons have 

also bent the localized extensional features on the top of the plateau, suggesting that the grabens 

formed either just before or simultaneously with strike-slip movement.  

On the southern edge of South Hi’iaka Mons, a very different response seems to be 

occurring than is happening in the north. Instead of transpressional features building up tall 

peaks, normal faults and extensional collapse have shaped the south edge of South Hi’iaka Mons. 

A large valley separates the northern, cohesive part of the mountain from the collapsing side on 

its southern end. Extensional faults and gravitational failures parallel to the southern arm of 

South Hi’iaka Mons indicate that the main processes in this area are rifting and collapse. The 

apparent difference between the northern edge of North Hi’iaka Mons and the southern side of 

South Hi’iaka Mons may be due to crustal anisotropy or differential rate of movement along the 

faults in the area. South Hi’iaka Mons has possibly not met resistance in the crust either by 

composition or buried structures.  It also could be moving more rapidly south than other parts of 

the complex along the main strike-slip fault running through the middle of the larger block. 

Younger volcanic layers cover many of the important structures or crustal block boundaries in 

the region surrounding the Hi’iaka mountains (Fig. 18b), due to Io’s constant and rapid 

resurfacing. Therefore, it is not entirely clear how the Hi’iaka block is interacting with other 

large blocks around it or the precise locations of some faults. We can only draw conclusions 

from those structures and related features that are currently visible. 

In addition to producing transpressional features, this regime has also opened 

transtensional basins on the eastern side of North Hi’iaka Mons and the western side of South 

Hi’iaka Mons. An active patera has formed in the northeastern basin, possibly facilitated by the 

rifting that occurred as a result of strike-slip movement on the bounding faults.  
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In the southwestern basin, there is a small peak, West Hi’iaka Mons (Fig. 18). It may 

have separated from southern Hi’iaka Montes in a similar fashion to Madagascar as it broke off 

from the northward-moving Indian plate and was isolated in the ocean basin just east of Africa. 

This small “island” could have rifted from either the southern margin of North Hi’iaka Mons or 

the northern side of the arm of South Hi’iaka Mons and was left as South Hi’iaka Mons 

continued to move away from North Hi’iaka Mons. The surrounding plains appear smooth, 

indicative of deposition or infilling of volcanic materials, which again could have been facilitated 

by subsurface structures or the opening of the basin and thinning of the crust. Additionally, it 

appears that a normal fault exists on the southern side of the “island”, further emphasizing an 

extensional input to its tectonic history.  

In the northeastern basin, minor shortening apparently occurred at one time, as indicated 

by long arcuate scarps that we relate to reverse faults in Fig. 18. They must have formed after or 

during strike-slip motion because they are overprinted on the basin-filling deposits. 

It is unclear whether there is a significant relationship between South Hi’iaka Mons and 

Shamshu Mons, which lies just southeast of the southeastern corner of South Hi’iaka Mons and 

is shown in detail in Fig. 19. Although the southern arm of South Hi’iaka Mons is parallel to the 

long axis of Shamshu, they are separated by ~70 km and the features on each mountain do not 

seem to indicate that they are in tectonic “communication.” The plain between the two may 

contain a buried major reverse fault, separating the Hi’iaka block and the Shamshu block and 

keeping the two mountains from interacting directly with one another. Consequently, it is 

unlikely that the Hi’iaka Montes complex is in any way directly causing the uplift of Shamshu 

Mons.  
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In short, the tectonic history of the Hi’iaka region appears to be to be governed by largely 

buried, pre-existing faults in the deeper crust that were reactivated obliquely by continued 

shortening of the crust. It seems most likely that North and South Hi’iaka Mons are part of a 

large, coherent crustal block that has been uplifted and modified by shortening of the crust, with 

maximum stresses at oblique angles to faults previously formed and then buried by the volcanic 

deposits. Loading by volcanics and subsequent horizontal shortening of the crust was a 

hypothesis first presented by Schenk and Bulmer (1998) in their discussion of the Euboea 

Montes area. The idea of strike-slip modification in the Hi’iaka area was discussed by Bunte et 

al. (2010) in their geomorphic mapping. We build upon both of these concepts by combining 

them—shortening of the crust with maximum stress oblique to pre-existing basement faults has 

produced strike-slip motion and its associated features in this area. We have identified important 

features in this area in enough detail to suggest both an origin and a context for them. 

Structure of Shamshu Mons and Patera. 

The Shamshu region is located just southeast of the Hi’iaka region. Shamshu Mons is 

about 180 km long and stands 3 km above the surrounding smooth plains. We have interpreted 

Figure 18: Hi’iaka Region (3.5°S, 79.5°W). (a)  Reprojected Galileo image (~250 m/pixel) of the Hi’iaka Montes 
complex with structural interpretations. Image was obtained during the I25 flyby on November 26, 1999. 
Illumination from the left (west). The red arrows indicate proposed orientations of principal horizontal stresses, σ1 
(previous page). (b) Cross section from A to A’ (a) across North Hi’iaka Mons and Hi’iaka Patera. Fresher 
eruptions on the patera floor are black, with older flows indicated by gray. Major mountain bounding faults are 
interpreted to have oblique slip with strike-slip and reverse movement. The vertical axis is unscaled but vertical 
exaggeration is about 2x. 
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the arcuate features on its northwest and southeast sides as reverse faults. Shamshu is steeper on 

the northwest side, and its southeast side has a gentler slope, due to the asymmetrical nature of 

the underlying fold and associated thrust faults or from differential movement along its faults. 

The southeast flank is also marked by gravitational slumps whose headwalls are approximately 

parallel to the crest of the massif.  The NE-trending valley that runs through Shamshu Mons 

parallel to its long axis is likely a graben formed from localized extension above the neutral 

surface at the axis of the asymmetric fold. Additionally, the floor of the graben in Shamshu Mons 

is smooth and at the same elevation as the surrounding plains, suggesting that it may have been 

resurfaced recently; dark flow lobes extend from the rim of Perun Patera northward and fill the 

graben. Shamshu Mons gives way to a plateau on its southeastern side. A fault appears to 

terminate the plateau and separate it from the smooth plains containing Shamshu Patera. Its 

arcuate shape and similarity to the margins of Shamshu suggest that it is a late reverse fault that 

cut lava flows on the plain, and then the scarp was partially buried by more volcanism.  

Shamshu Patera is likely bounded by randomly oriented collapse margins. They do not 

show conclusive evidence that they are tectonic in nature, given that they do not continue beyond 

the margins of the patera. The patera as a whole was probably larger in the past than it is 

currently. The arcuate features just northwest of “South Shamshu Mons” (Bunte et al., 2010), the 

mountain in the southeast corner of the image (Fig. 19), may be remnants of the patera’s edges at 

one point in its history. They could have become less defined by sapping or erosion, collapse and 

mass wasting, or by infill of the patera when it may have been more active and before activity 

shifted to the east. 
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Figure 19: Shamshu Mons and Patera (9.0°S, 68.0°W). (a) Reprojected mosaic of Galileo images (~345 
m/pixel) of the Shamshu region and structural interpretations. Image was obtained during the I27 flyby on 
February 22, 2000. The red arrows indicate proposed orientations of principal horizontal stresses, σ1 (left). 
(b) Cross section from B to B’(right) as indicated on (a). The dashed gray line represents the behavior of 
crustal layers in the subsurface. The vertical axis is unscaled but vertical exaggeration is about 2x. 
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We interpret the faults bounding the mountain to the northeast, “North Shamshu Mons” 

(Bunte et al., 2010), as reverse faults. Shamshu Patera has incised the side of North Shamshu 

Mons adjacent to it, suggesting it is younger than the mountain. The top surface of North 

Shamshu Mons is lineated, probably fractured due to localized extension from folding and uplift. 

South Shamshu Mons, in the southeast corner of the image, is also heavily lineated. It too could 

be bounded by thrust faults, or by a normal fault on the side facing Shamshu Mons, but these 

may have lost surface expression due to fracturing, mass wasting, or the previous boundaries of 

Shamshu Patera. Without full context from above, we cannot tell the orientations of the long 

axes of North and South Shamshu Mons and therefore cannot say whether they could have 

previously combined with Shamshu Mons to make one large mountain as suggested by Bunte et 

al. (2010), or if they were formed independently in separate fault-bounded blocks under similar 

or multiple stress regimes. From what the images reveal, the long axis of North Shamshu Mons 

is perpendicular to Shamshu Mons and therefore may not have been formed under the same 

stress regime. The extensional fault on the southeast plateau adjacent to Shamshu Mons and the 

smooth plains between Shamshu Mons and South Shamshu Mons may indicate rifting and 

subsequent volcanism has occurred between them. Unfortunately, subsurface structures are 

covered by multiple layers of volcanic material, obscuring a more complete interpretation of the 

tectonic history of the Shamshu region.  

Structure of Tohil Mons. 

The Tohil region is a site of active volcanic, tectonic, and degradational processes. Tohil 

Mons, the main feature in the image (Fig. 20), is 350 km long and about 5.4 km high (Schenk et 

al., 2001). It likely sits on its own fault-bounded crustal block, although the complete extent of 

the block is unclear, as the plains surrounding the mountain complex have been resurfaced by 
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volcanism. The mountain seems to be bounded by reverse faults, with a strike-slip fault running 

down its long axis (Fig. 20).  

Like Hi’iaka, Tohil Mons was probably built and modified by shortening and strike-slip 

motion in a large, crustal block. Maximum horizontal stress was likely oblique to pre-existing 

NW-trending basement faults and block-bounding faults, which induced strike-slip movement on 

what was probably a near-vertical fault. Graben-like features on the elongated plateaus of Tohil 

may be like those on the plateaus of the Hi’iaka mountains, formed by extension above a neutral 

surface in a large fold or through gravitational slip. This may also be how the extensional faults 

and grabens formed on the failing northeast lobe of Tohil Mons. The margins of Tohil have been 

eroded, possibly through SO2 sapping, far more than those at Hi’iaka seem to have been. The 

major faults bounding the Tohil block have likely been buried or obscured by erosional scarps, 

landslide material, or volcanic cover. 

Radegast Patera seems to have formed in a transtensional basin that opened as a result of 

dextral motion along the NW-trending strike-slip fault, similar to the way in which the basin 

formed that contains Hi’iaka Patera. The sense of downward motion along the oblique-slip fault 

seems to be to the northwest of the landslide “crater” and to the southeast of the landslide 

“crater”. Instead of being attributed to a multiple fault system, this difference in motion could 

result from a difference in topographic level between the two halves, in which the northeast side 

is higher. The northeast portion seems to be experiencing greater gravitational degradation by 

landsliding than anywhere else along the fault, further supporting the idea that this part of the 

mountain is higher or steeper than other locations. 
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Figure 20: Tohil Region (28°S, 161°W). (a) Galileo image mosaic (~327 m/pixel) of Tohil Mons, overlain by 
structural interpretations. Images were obtained in October 2001. Illumination from the upper right (northeast). The 
red arrows indicate proposed orientations of principal horizontal stresses, σ1 (above). (b) Cross section from C to C’ 
(below) as indicated in (a) across Tohil Mons. No vertical axis is specified but vertical exaggeration is about 5x.   
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The central “crater” of Tohil Mons is the result of a large slump, whose material has both 

collected in the floor and been consumed by the formation of Radegast Patera. Further landslides 

extend to the northeast, probably onto the floor of Tohil Patera. On the western side of the 

depression, large amounts of slumped material have created large lobes and a ridge-forming 

scarp extending from the scarp crater wall to the southwest. The west-trending ridge may be 

made of more resistant material or could simply be the scar from the large landslides. It is 

possible that the ridge is a resistant dike, as it is in line with Radegast Patera and the fissure 

eruptions actively occurring on the floor of Tohil Patera when the image was taken, but no other 

features indicate that Tohil Mons is volcanically built or fed. It seems more plausible that the 

summit “crater” is a result of mass wasting, since it is surrounded by slumped material. 

A large-offset, steep, normal fault appears to have formed the northwest margin of Tohil, 

aligned with Wabasso Patera, possibly feeding magmatism to that area. It is unclear how 

extension is consistent with the other observed structures in the region if there is one major stress 

field unless this fault marks an extensional basin within the northern block that is not visible in 

this image. Therefore, multiple stress fields may have been in effect at different times, where 

extension was preceded by shortening and dextral motion within the block. The block may also 

be responding to deeper, pre-existing structures or crustal differences that are not visible at the 

surface. This could mean that extension could be so localized that it is only happening in that 

area. 

Structure of Zal Montes.

Even visually, the two mountains of the Zal region are very different from each other 

(Fig. 21). North Zal Mons is a nearly flat, smooth plateau, with straight margins that, although 

scalloped by erosion, are still quite linear. The plateau is ~250 km long and stands about ~2 km 

40



41

above the surrounding plains (Schenk et al., 2001). South Zal Mons, however, has more arcuate 

boundaries and a lineated, rugged top surface with a narrow ridge crest towards its southern end. 

It is 7.4 km in height (Schenk et al., 2001). In addition to morphological differences, the long 

axes of these two mountains are roughly perpendicular to one another. These contrasting features 

and orientations argue that each part formed at different times under different stress regimes or 

that they formed independently of one another. It is unclear whether the mountains exist on one 

large crustal block or two separate blocks. The evidence for either scenario is buried below the 

surface. 

North Zal Mons does not seem to have experienced the same styles of crustal 

deformation as those experienced at South Zal Mons or, for that matter, the other mountains 

described above. North Zal Mons has been fractured on its southern side, but this is likely due to 

extension and gravitational slumping in concert with larger-scale extensional faults that bound its 

southern side. In fact, we have interpreted all of the major boundaries of North Zal Mons as 

normal faults, due to both their straight natures and to the fact that we see no evidence of crustal 

shortening on the plateau. There may be later minor reverse faulting south of North Zal Mons as 

evidenced by faint, arcuate features in the plain to the south, but these do not seem to interact 

with or cause any deformation to North Zal Mons itself. North Zal Mons may be a remnant of 

older, more resistant crust that has been separated from its surroundings, not by uplift, but rather 

by the plains around it sliding away as a result of extension. This seems the most likely 

possibility given the morphology and geometry of North Zal Mons and the tectonically-formed 

lineations on and around it. 
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Figure 21: Zal Region (33.7°N, 81.9°W). Reprojected Galileo images (~260 m/pixel) of the Zal Montes complex, 
with structural interpretations. Images were obtained November 26, 1999 and February 22, 2000. Illumination from 
the left (west). 
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South Zal Mons, however, shows evidence of horizontal shortening as it has built up 

steep, tall sides along fairly arcuate boundaries. We interpret these as high-angle reverse faults 

such as those seen elsewhere on Io. The basin on the west of South Zal Mons that causes its 

asymmetrical shape may not have always existed. Rather, it is possible that the ridge on the north 

of South Zal Mons is a right-lateral strike slip fault that has moved the two halves of the 

mountain apart to form the basin. As this space opened, blocks on South Zal Mons’ steep 

western side slumped towards the west. The strike-slip motion that has moved the eastern half of 

South Zal Mons to the south may be the cause of the rather abrupt western face adjacent to the 

transtensional basin.  

The volcanic activity in the area is structurally controlled. Fresh flows on the floor of Zal 

Patera line up with the bounding normal faults of North Zal Mons. Additionally, Rustam Patera 

lies along a block-bounding oblique reverse fault that may have opened the basin it currently 

resides in on the western side of South Zal Mons. This further shows how fractures and faults in 

Io’s crust serve as magma conduits. 

Although Bunte et al. (2008) proposed that the two mountains of Zal were once joined 

together and subsequently separated through strike-slip motion and rifting, we do not see 

geomorphic or tectonic evidence that conclusively supports the hypothesis that they were once a 

single structure. There appears to have been little to no crustal shortening to the north, given the 

margins of North Zal Mons. However, South Zal Mons is an entirely different and complex 

structure that was involved in significant crustal shortening. On the undistorted, reprojected 

images used in this study, the different parts of the block that were joined together by Bunte et al. 

(2008) no longer appear to fit. Instead, we propose that North and South Zal Montes never were 

one mountain but rather that they formed independently. They may be separated by block-
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bounding faults buried beneath Zal Patera. Nonetheless, this area is challenging to understand; 

the visible structures can be interpreted in multiple ways, and much of the possibly telling 

structural features are buried under smooth volcanic plains. We present an alternative hypothesis, 

yet recognize that there are strengths and weaknesses to any model since data for the Zal region 

is limited. 

5. Discussion

We propose that Io’s mountains result from multiple stress inputs through global and 

local-scale processes. Over time, relatively uniform resurfacing by volcanism could generate 

compressive vertical stress on the crust sufficient to produce local uplift of large, coherent crustal 

blocks bounded by deep-rooted, high-angle reverse faults, as proposed by Schenk and Bulmer 

(1998). These may be similar to basement-cored, thick-skinned contractional features found on 

Earth, such as the Laramide-style mountains of Wyoming, USA (Fig. 22; Wise, 1963). Although 

resurfacing is likely the main player in global crustal stress, it is also possible that variable 

stresses produced by tidal massaging are a factor. The preferred orientations of structural 

lineations observed in this study at 45° and 135° show that horizontal shortening of the crust is 

occurring in addition to vertical stresses being imposed by global loading and contraction. 

Lateral compression of Io’s crust may be a result of diurnal tidal stress fields. The fact that the 

greatest concentrations of structure orientations are 90° apart from each other could indicate one 

maximum stress direction, σ1, and one direction of least stress, σ3. However, the two preferred 

orientations could also indicate two different global stress fields occurring at different times, 

with both orientations indicating a different σ1. Stresses from tidal forces vary diurnally as well 

as on larger timescales due to slightly non-synchronous rotation of Io. Additionally, stresses vary 

by location on its surface. In equatorial regions, predicted maximum stresses are virtually equal 
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in both the north-south and east-west directions and these stresses become increasingly oblique 

towards the poles. Stresses also vary depending on longitude as the tidal bulge both stretches 

toward Jupiter and relaxes throughout an Io day while lagging slightly behind the rotation rate of 

the moon as a whole (Bart et al., 2004). It is very likely that the observed orientations of 

structural features at 45° and 135° are a product of tidal stresses—both from the constant 

massaging of the moon and the variation in those stresses imposed by orbital properties and by 

location on its surface. Although global contraction by volcanic loading is causing shortening 

throughout Io’s crust through vertical stresses, overprinting by stresses induced by tidal forces 

may be governing the orientations of many structural lineations by lateral horizontal crustal 

shortening.  

Figure 22: Generalized block diagram of the formation and evolution of many of Io’s mountains, based on 
Laramide-style basement-cored uplifts seen throughout Wyoming. The red arrows indicate theoretical orientations 
of principal horizontal stresses, σ1. Modified from Wise (1963). 
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While the cause of mountain formation may be more global in nature, the details of 

mountain formation and evolution and patera collapse are determined by pre-existing structures 

in the crust. Throughout geologic time and through consistent global stress by volcanic loading 

(Schenk and Bulmer, 1998) and tidal flexing (Bart et al., 2004), fractures and faults built up in 

the crust and were subsequently buried under successive episodes of volcanism. Then, as stresses 

continued, basement faults were reactivated, many by stresses oblique to those that originally 

formed the faults. This produced oblique strike-slip motion and initiated formation of 

transtensional and transpressional features along these faults. Transtensional basins opened to 

allow for thinning of the crust and possible patera formation or magma migration along 

structures. Crustal blocks continued to move in various directions depending on the orientations 

of maximum horizontal stress and orientations of basement faults. This explains the seemingly 

random orientations, locations, shapes, and sizes of mountains on Io. Some mountains gently 

arch while others are more polygonal and straight. At least a few are bounded by faults with 

dominantly normal offsets; others by broadly arcuate, high-angle reverse faults. Mountains on Io 

represent a combined effect of global and regional tectonic processes, and it is necessary to 

account for the input of both. Fig. 22 and Fig. 23 display some of the most important processes 

in building and modifying some of these mountains. All mountains, however, can claim 

modification by sapping of volatiles in the crust and by mass wasting and gravitational collapse 

of over-steepened slopes. These local-scale processes can be seen virtually everywhere a feature 

of topographic relief appears on Io’s surface.  

Deformation on Io is likely thick-skinned rather than thin-skinned because of the nature 

of Io’s crust and structures contained within it. Since Io’s crust is most likely basaltic, it is more 

likely to experience brittle, rather than ductile, deformation. Sulfur-rich layers interbedded within 
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mafic volcanics could provide zones of weakness, but overall, Io’s crust is considered to be 

composed of basalts, or possibly ultramafics (McEwen et al., 1989; Carr et al., 1998; Geissler et 

al., 1999; McEwen et al. 1998; McEwen et al., 2000; Radebaugh et al. 2004). Therefore, we 

would expect Io’s crust to be broken into large, coherent blocks with deep, high-angle reverse 

faults such as those in the Laramide-formed mountains of the western United States (Fig. 22; 

Brewer et al., 1982).  

We can assume that tidal forces and volcanic loading on the crust have been at work for millions 

of years, and therefore have been responsible for some or all of the deformat ion of Io’s crust. It 

would follow that there would be many faults and fractures in the subsurface, obscured to our 

view today, but that would be continuing to affect surface topography. Stresses on the crust 

would exploit and reactivate these structures to continue deformation. The Laramide Orogeny 

and its associated thick-skinned tectonic regime resulted from shallow subduction causing stress 

to accumulate in the base of the crust (Brewer et al., 1982). Similar stresses may be generated on 

Figure 23: Generalized block diagram of the basement fault model presented in this study. From global stress inputs 
such as tidal forces and volcanic loading, oblique stresses to pre-existing basement faults create transtensional 
openings, transpressional folding, and reverse and normal faulting. Crustal blocks move in various directions 
depending on the direction of maximum stress and the orientations of basement faults. Paterae are able to form along 
structural features, such as in transtensional basins, and subsurface faults can act as magma conduits to facilitate 
eruptions onto patera floors. 
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Io, not from subduction of tectonic plates, but rather from convective upwelling of partially 

melted materials, from deep, internal stresses from tidal massaging, or from consistent burial and 

shortening of the global radius by volcanic loading. However these stresses are generated, all 

would result in the thick-skinned style of crustal deformation (Schenk and Bulmer, 1998; Schenk 

et al., 2001; Jaeger et al., 2003; Bart et al., 2004). 

6. Conclusion

Io has some of the tallest and steepest mountains in the solar system and they are uniquely 

shaped and formed. Tectonics operating on Io, a body with a continuous source of stress and 

internal heat are automatically quite different from those creating Earth’s mountains and 

volcanoes. It seems that Io’s mountains form as islands amidst smooth, continually resurfacing 

plains, and are remnants of older, highly fractured crust uplifted and modified by both global and 

local tectonic processes. Although there are still fundamental questions to be answered about 

crustal properties and mechanics on Io, this model begins to address them. Io’s crust is probably 

broken into relatively large blocks, bounded by reverse faults, indicating that crustal response is 

more brittle than ductile in nature. This supports the idea that Io’s crust is mostly basaltic. 

However, zones of weakness that allow the crust to rupture may mark regions of sulfur 

concentration that have accumulated from past plume eruptions.  

Movement of crustal blocks in relation to each other may be governed by zones of partial 

melt that are fairly shallow, or this movement may instead be governed purely by the stresses 

imposed on a brittle crust by tidal massaging and volcanic loading. We do not know the exact 

nature of subsurface structures, but based on features visible at the surface, it seems that Io’s crust 

is very much fractured and faulted. The morphology of and statistical results describing 

topographic features suggest that the mountains on Io have been formed under multiple stress 
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regimes. We can assume that stress regimes have been varying throughout Io’s existence and this 

has left the crust broken up in many orientations. To more fully understand Io’s complex tectonic 

systems would require detailed interpretation of both large and small-scale faults, fractures, and 

other structural features across Io, though very few regions have been imaged at high enough 

resolution. While low image resolution obscures some of these features, it is Io’s intense 

resurfacing (~ 1 cm/year) (Johnson et al., 1979) that covers many telling structural features.  

Io’s lithospheric characteristics, such as its thickness, thermal gradient, depth of recycling, 

and density differences, are at best speculative currently. Therefore, it is unclear whether 

delamination of the lithosphere and its associated vertical stresses would be a factor in the creation 

of Io’s mountains. It can still be concluded that tidal stresses and global contraction by loading 

have played a role in deformation of Io’s crust into coherent crustal blocks. We can also say that 

the lithosphere is sufficiently thick to support mountains up to 17-18 km in elevation (Schenk et 

al., 2001), given the unique compositional and buoyancy constraints of Io’s lithosphere.  

A greater understanding of Ionian tectonics and lithospheric properties is key to our 

knowledge of the workings of tectonics on other bodies in the solar system. A world of extremes, 

Io provides insight into tectonic features on other planets and moons since it has so many available 

for study. The way volcanic and tectonic processes interact on Io serves as a starting point for other 

tidally heated bodies of the outer solar system. While many of the icy moons of the outer solar 

system are receiving current attention for their possibilities of harboring life, Io also has a wealth 

of information to offer as one of the extreme bodies of the solar system and as a potential model 

for early Earth conditions when it was still hot and before the onset of plate tectonics. 
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