
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2015-11-01

Deriving System Vulnerabilities Using Log Analytics Deriving System Vulnerabilities Using Log Analytics

Matthew Somers Higbee
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Systems Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Higbee, Matthew Somers, "Deriving System Vulnerabilities Using Log Analytics" (2015). Theses and
Dissertations. 6139.
https://scholarsarchive.byu.edu/etd/6139

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsarchive.byu.edu%2Fetd%2F6139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6139?utm_source=scholarsarchive.byu.edu%2Fetd%2F6139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Deriving System Vulnerabilities

Using Log Analytics

Matthew Somers Higbee

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Dale C. Rowe, Chair
Derek L. Hansen
Joseph J. Ekstrom

School of Technology

Brigham Young University

November 2015

Copyright © 2015 Matthew Somers Higbee

All Rights Reserved

ABSTRACT

Deriving System Vulnerabilities
Using Log Analytics

Matthew Somers Higbee

School of Technology, BYU
Master of Science

System Administrators use many of the same tactics that are implemented by hackers to

validate the security of their systems, such as port scanning and vulnerability scanning. Port
scanning is slow, and can be highly inaccurate. After a scan is complete, the results of the scan
must be cross checked with a vulnerability database to discover if any vulnerabilities are present.

While these techniques are useful, they have severe limitations. System Administrators

have full access to all of their machines. They should not have to rely exclusively on port
scanning them from the outside of their machines to check for vulnerabilities when they have
this level of access. This thesis introduces a novel concept for replacing port scanning with a Log
File Inventory Management System. This system will be able to automatically build an accurate
system inventory using existing log files. This system inventory will then be automatically cross
checked with a database of known vulnerabilities in real-time resulting in faster and more
accurate vulnerability reporting than is found in traditional port scanning methods.

Keywords: log file, agent, syslog, elasticsearch, logstash, kibana, software inventory, inventory
management, vulnerability, port scan

ACKNOWLEDGEMENTS

I would like to thank Dale Rowe, Derek Hansen, and J. Ekstom for their support and for

mentoring me through the research and writing process. A big thanks to the SEA organization for

sharing their data. I would like to express my gratitude towards Lane Broadbent and Hans

Farnback for sharing their expertise of ELK, for helping me overcome some technical problems,

and for being my liaison with SEA. Finally, I would like to thank my wife, Daphne, for always

being there for me, and for encouraging me when things were tough.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

1 Introduction ... 1

 Nature of the Problem .. 1 1.1
 Purpose of the Research ... 2 1.2
 Project Approach .. 2 1.3
 Scope and Limitations .. 3 1.4
 Research Questions and Hypotheses .. 4 1.5
 Definitions .. 4 1.6
 Thesis Outline .. 5 1.7

1.7.1 Chapter 2: Literature review ... 5

1.7.2 Chapter 3: Methodology ... 5

1.7.3 Chapter 4: Framework .. 5

1.7.4 Chapter 5: Results ... 5

1.7.5 Chapter 6: Conclusions and Future Work ... 5

1.7.6 Appendix A. ELK Configuration Files ... 6

1.7.7 Appendix B. MySQL Database Configuration ... 6

1.7.8 Appendix C. Python Scripts .. 6

1.7.9 Appendix D. Comparison for Windows 7 .. 6

2 Literature review.. 7

 Introduction .. 7 2.1
 Vulnerability ... 7 2.2
 Vulnerability Database ... 8 2.3
 Port Scanning ... 9 2.4
 Log Files ... 10 2.5
 Syslog ... 10 2.6

2.6.1 PRI .. 11

2.6.2 Header ... 12

2.6.3 MSG .. 12

2.6.4 Network... 13

v

 Data Mining .. 13 2.7
 Agent Technology .. 14 2.8
 Simple Network Management Protocol ... 14 2.9

 Log File Inventory Management System ... 14 2.10
2.10.1 Configuration Management .. 15

2.10.2 Centralized Log File Correlation .. 15

2.10.3 Log Management for Incident Response .. 16

3 Methodology .. 18

 (R1) Log File Inventory Management System ... 18 3.1
3.1.1 Prototype ... 19

 (R2) Overcoming Challenges of Log File Inventory Management System 21 3.2
 (R3) Log File Key Indicators ... 22 3.3
 (H1) It is Possible to Generate an Accurate System Inventory using Log Files 22 3.4
 (H2) It is Possible to Accurately Detect Vulnerabilities using Log Files 22 3.5
 (H3) Log Files can Enable Faster Vulnerability Alerts than Port Scanning 22 3.6

3.6.1 Data Collection ... 23

4 Framework ... 25

 Centralized Log File Data Collection Server ... 25 4.1
4.1.1 ELK Configuration ... 25

4.1.2 Elasticsearch API .. 27

4.1.3 Python Script ... 27

4.1.4 Vulnerability Database .. 28

4.1.5 MySQL Database .. 32

 Client Side Configurations ... 34 4.2
4.2.1 Windows 7 .. 34

4.2.2 Debian 7 .. 35

4.2.3 Printer .. 35

4.2.4 Firewall ... 36

4.2.5 Switch ... 36

 Problems Encountered with the Implementation ... 37 4.3
4.3.1 Loose Format of the Syslog Protocol .. 37

4.3.2 Syslog Messages without Identifying Information from Network Devices 38

4.3.3 Kibana Reports Duplicate Vulnerabilities when Duplicate Logs Are Sent 38

vi

4.3.4 Kibana is Designed to Show a History instead of the Current State 38

 Testing .. 39 4.4
4.4.1 Summary of Test Results .. 39

4.4.2 Accuracy of Software Inventory ... 41

4.4.3 Speed to Report Vulnerabilities .. 44

4.4.4 Accuracy of Discovered Vulnerabilities ... 47

5 Results ... 50

 Framework Analysis .. 50 5.1
5.1.1 (R1) Comparison of Log File Prototype and Port Scanning 50

5.1.2 Accuracy of Software Inventory ... 51

5.1.3 Speed of Methods ... 51

5.1.4 Accuracy of Reported Vulnerabilities .. 52

5.1.5 Limitations .. 52

 (R2) Challenges in Creating a Log File Inventory Management System 52 5.2
 (R3) Required Key Indicators from Log Files ... 53 5.3
 (H1) It is Possible to Generate an Accurate System Inventory Using Log Files 53 5.4
 (H2) It is Possible to Accurately Detect Vulnerabilities Using Log Files 54 5.5
 (H3) Log Inventory Management System is Faster than Port Scanning 54 5.6
 Research Contributions .. 54 5.7

5.7.1 Automated Log File Inventory Management System ... 54

5.7.2 Standard for Requisite Log Data for Vulnerability Assessment 55

5.7.3 Framework for Data Gathering and Analysis ... 55

6 Conclusions and Future Work ... 56

 Conclusions .. 56 6.1
 Improvements and Recommendations ... 57 6.2
 Future Research .. 58 6.3

6.3.1 Comprehensive Vulnerability Database ... 58

6.3.2 Keep Vulnerability Database up to date ... 59

6.3.3 Rank Discovered Vulnerabilities .. 59

6.3.4 Check for Previously Installed Vulnerabilities ... 59

6.3.5 Better Method for Reporting ... 60

6.3.6 Report Resolved Vulnerabilities ... 60

References ... 61

vii

Appendices .. 63

Appendix A. ELK Configuration Files ... 64

Appendix B. MySQL Database Configuration ... 67

Appendix C. Python Scripts ... 70

Appendix D. Comparison for Windows 7 .. 77

viii

LIST OF TABLES

Table 1: Numeric Codes for Facility Field (RFC 3164) ... 11

Table 2: Numeric Code for Priority Field (RFC 3164): ... 12

Table 3: Python Libraries.. 26

Table 4: Parsed Fields from Syslog .. 27

Table 5: Usage of Proposed Devices .. 32

Table 6: Comparison for Debian 7 .. 42

Table 7: Comparison for Cisco Switch ... 43

Table 8: Comparison of Missing Updates for Windows .. 47

Table 9: Comparison of Discovered Vulnerabilities for Debian .. 48

Table 10: Comparison of Discovered Vulnerabilities for Cisco Switch 49

Table 11: Log File Key Indicators .. 53

ix

LIST OF FIGURES

Figure 1: Architecture for Log File Inventory Management System ... 3

Figure 2: Example of Syslog ... 11

Figure 3: Prototype Flowchart .. 19

Figure 4: Proposed Log File Inventory Management System .. 21

Figure 5: Code Added to sources.list .. 31

Figure 6: Update Package Manager .. 32

Figure 7: Database Schema for System Inventory .. 33

Figure 8: Database Schema for Vulnerabilities .. 34

Figure 9: SEA Network Architecture ... 36

Figure 10: Comparison of Discovered Vulnerabilities ... 40

Figure 11: List Installed updates ... 41

Figure 12: Nmap Scan .. 41

Figure 13: Speed Comparison for Daily Port Scan ... 44

Figure 14: Speed Comparison for Weekly Port Scan ... 45

Figure 15: Speed Comparison for Monthly Port Scan .. 45

1

1 INTRODUCTION

 Nature of the Problem 1.1

Despite having Administrative access to their organization’s machines, many System

Administrators must rely on the same tools and procedures employed by malicious hackers in

order to verify and validate the overall security status of their equipment. A common technique

used to gauge the overall security of any network-connected device is to cross check the results

of a port scan with a vulnerability database. While this technique can be highly effective for

gathering data about a system with the intent to exploit it, the inherent limitations of port

scanning can make it difficult for System Administrators to keep their systems secure.

Port scanning is slow, and can be inaccurate depending on the current state of the device. It

can take several hours to fully scan just a single server. Port scans attempt to fingerprint (or

guess) the services running on each open port along with the Operating System that is running on

the machine. The accuracy of these fingerprints vary, and in some cases the services cannot be

fingerprinted at all. For example, some software packages do not perform network operations,

meaning that they cannot be fingerprinted, yet they are still vulnerable to a local privilege attack.

Administrators often have to manually start the port scanning process, which can result in

infrequent scans that do not follow a set schedule. If a service is temporarily down during the

scan, the results of that scan will not give a fully accurate representation of the system.

2

Another method of defense is for System Administrators to run services on different ports

than normal. This can make it difficult for attackers to know what services are running on which

ports. However, this method can also make it difficult for System Administrators to accurately

gauge their systems through port scanning techniques. Port scanning also uses various techniques

to guess what Operating System or firmware is running on the machine, along with what ports

are open, what services are running on those ports, and versions of those services. These methods

are never completely accurate, and the level of accuracy varies from platform to platform.

System Administrators have full access to their machines. They should not have to rely on

port scanning them from outside to check for vulnerabilities. This is a good method for them to

see what potential attackers can see, but it is a poor tool for them to actually lockdown their

equipment.

 Purpose of the Research 1.2

The purpose of this research is to assess the viability of using a log file based inventory

management system to cross check devices with a vulnerability database and to ascertain the

benefits and limitations that such an approach would bring.

 Project Approach 1.3

The novel aspects of this research are to develop and evaluate new techniques to build and

update a system inventory in real-time through the use of log files, develop and evaluate a

standard to gather log file data with the intent to cross check all relevant data with a vulnerability

database, and to develop a conceptual framework for gathering the data from log files and to

analyze the data. In the situation in which existing log files are not sufficient, other methods will

3

need to be considered to gather the requisite data, such as creating custom agents to gather the

appropriate data and generate logs suitable for the proposed system.

Log files will be gathered from several devices to inventory the software running on them.

That data will be sent to a centralized server to build the inventory and to cross check it with

known vulnerabilities all in real-time. Figure 1 shows the basic architecture for this approach.

Figure 1: Architecture for Log File Inventory Management System

 Scope and Limitations 1.4

The scope of this research will be limited to the reported information from existing or custom

log files for a specific set of defined devices. Only a limited subset of existing Operating

Systems, applications, and updates will be used. Likewise, the scope will also be limited to using

an existing vulnerability database instead of creating a customized one. In the event that no

existing vulnerability databases contain the required information in a usable format, a custom

vulnerability database will be manually compiled using other databases.

4

 Research Questions and Hypotheses 1.5

The following questions will be answered from this research:

• (R1) How does the log file inventory management system compare with

traditional port scanning with regards to speed and accuracy?

• (R2) What are the challenges of creating a log file inventory management system

and what techniques can be used to overcome them?

• (R3) What are the key indicators required from log files to cross check them with

a vulnerability database?

The following hypotheses will be tested as part of this research:

• (H1) It is possible to generate an accurate system inventory using log files.

• (H2) It is possible to generate an accurate inventory of vulnerabilities that may

exist in the current configuration.

• (H3) The log file inventory management system will enable faster alerting of

vulnerabilities than port scanning.

 Definitions 1.6

• Agent Technology – A primitive form of artificial intelligence that is able to

recognize an environment and respond to alerts (Kercher 2013).

• Log File – A computer file in which a program records events, such as user access

or data manipulation as they occur, to serve as an audit trail, diagnostic device, or

security measure.

• Port Scanner – A software application designed to probe a host for open ports.

5

• Vulnerability Database – A collection of known software vulnerabilities often

with a score to represent the severity of the vulnerability.

 Thesis Outline 1.7

The remainder of this thesis will be outlined as follows:

1.7.1 Chapter 2: Literature review

This chapter contains a comprehensive study of existing and related research to the

research questions and hypotheses listed above.

1.7.2 Chapter 3: Methodology

This chapter explains how the research will be carried out and how the data was gathered

and analyzed.

1.7.3 Chapter 4: Framework

This chapter contains a detailed discussion of everything that was done with regards to

this research including all information about how relevant data was generated.

1.7.4 Chapter 5: Results

This chapter contains an in depth analysis of the data and its significance to the research

field.

1.7.5 Chapter 6: Conclusions and Future Work

This chapter contains conclusions regarding the validity of the previously mentioned

research questions along with general insights.

6

1.7.6 Appendix A. ELK Configuration Files

This Appendix contains the contents of all of the configuration files used to parse, store,

analyze, and visualize the data using the ELK stack.

1.7.7 Appendix B. MySQL Database Configuration

This Appendix contains an SQL script that can be used to recreate the schema of the

tables that were used as part of this research.

1.7.8 Appendix C. Python Scripts

This Appendix contains the Python scripts that were used to compare the log file data

with known vulnerabilities.

1.7.9 Appendix D. Comparison for Windows 7

This Appendix contains the test results for Windows 7.

7

2 LITERATURE REVIEW

 Introduction 2.1

This chapter examines existing research related to creating a log file inventory

management system, using a standard for comparing log files with a vulnerability database,

performing centralized log file correlation, relevant syslog and agent technologies, and

supporting situational awareness. Combining all of these components is required in order to

answer the questions presented in the prior chapter.

 Vulnerability 2.2

A vulnerability is a weakness or flaw in computer software that can allow attackers to gain

some level of unauthorized access to a machine or to information stored on a machine. The

severity of the vulnerability is directly correlated with the level of unauthorized access an

attacker can obtain by exploiting the vulnerability.

Vulnerabilities in software are usually found in firmware, Operating Systems, or in the

applications that run on those Operating Systems. Due to the sheer number of applications and

Operating Systems, it can be difficult to know whether or not the code running on any given

machine is vulnerable to outside attack.

Two examples of recent major vulnerabilities are Heartbleed and Shellshock. Both of these

vulnerabilities were discovered in 2014. Heartbleed involved an improper input validation in the

8

OpenSSL cryptography library which is heavily used in the implementation of the Transport

Layer Security protocol (Canada 2014). By exploiting this vulnerability, attackers could gain

access to users’ session cookies and passwords, and servers’ private keys.

The Shellshock vulnerability was a bug within the Bash shell. Many public facing

services such as web servers use Bash to process certain requests. Shellshock allows attackers to

exploit vulnerable versions of Bash to execute arbitrary commands meaning that they could gain

unauthorized access to the entire computer system.

Several organizations have created databases of known vulnerabilities such as Heartbleed

or Shellshock. These databases provide information regarding the vulnerabilities such as which

version of an application is affected or what can be compromised by a successful exploit.

However, these databases often are inconsistent with one another with respects to naming

conventions, actual data stored, and format. Additionally, the entries in the databases are also

often inconsistent with regards to what data is stored. These inconsistencies can make it difficult

to automate a process to check these databases(Mell, Scarfone, and Romanosky 2006).

 Vulnerability Database 2.3

There are several existing vulnerability databases. These databases differ in content and

format, but all try to provide critical information about known vulnerabilities. Some of the more

popular databases include:

• National Vulnerability Database (NVD) – A U.S. government repository of

standards based vulnerability management data (NVD 2015). The entire database

is available for free download in XML format.

9

• Open Source Vulnerability Database (OSVDB) – An open source web based

vulnerability database. The entire database can be queried using their website, but

users are limited to two queries a day using their API (OSVDB 2015). The

database is not available for download.

• United States Computer Emergency Readiness Team (US-CERT) – A

government team that attempts to improve the nation’s cyber security (US-CERT

2015). This website offers RSS feeds and alerts to keep users updated on current

cyber security issues.

• Vendor Databases – Several vendor specific databases exist such as Microsoft’s

Security Bulletin which provides information on vulnerabilities specific to

Microsoft products.

Because the National Vulnerability Database is comprehensive, free, and available for download

it will be used as the primary database for this research.

 Port Scanning 2.4

A port scan is a method to discover what services are running on a machine. The scan

iterates over all of the specified ports on a machine looking for open ones. When the scan

discovers that a port is open it attempts to determine what service is running on that port, and

what version of that service is installed. Based off of this information, intruders can attempt to

exploit the machine, and system administrators can attempt to patch any discovered

vulnerabilities (Teo 2000). Port scanning can pose a stability risk to software. Port scans can

cause software to crash or malfunction. Port scans are also frequently blocked by firewalls and

Intrusion Detection Systems (IDS). This can limit the usefulness of running port scans. However,

10

many of the devices that are at risk to port scans generate log files, and support the syslog

protocol.

 Log Files 2.5

The inner workings of computers and applications can be difficult for developers and

System Administrators to understand. This can make it hard for them to understand why things

are not working the way they think they should. In order to alleviate this problem, programmers

have set up a system to write events to a log file. These files can provide highly useful insights

into system operation and to debug undesired computing results. Log files also usually contain

identifying information regarding the application or service that is writing to a log file. This

information is not always found on every log entry, but it is often included in certain entries such

as during the reboot cycle or after installing updates. This information can be useful to

identifying what services are running on a machine. For example, one Windows Event Log

includes the following information: Microsoft (R) Windows (R) 6.0.1 7601 Service Pack 1,

where Windows 6.01 represents Windows 7.

 Typically, these log files are not written to a standard format. Rather they are customized

to record the events and information that is important to their services. This can make it difficult

to gather and analyze information from multiple services (Havens 2011).

 Syslog 2.6

In the 1980’s Eric Allman created a logging standard known as syslog. This standard

includes the basic layout for a log entry along with a protocol to transmit logs to a logging server.

Since its creation, this protocol has been improved by defining the standards it uses more clearly,

11

and by adding additional transport and security documents to its definition (Havens 2011). This

standard has become widely used for Linux systems and for many network devices such as

printers and routers. Figure 2 shows a sample syslog message. The syslog payload consists of

three major parts, the PRI, Header, and MSG which will be described below.

Figure 2: Example of Syslog

2.6.1 PRI

The PRI portion of the syslog is meant to describe both the priority and facility of the log

entry. The PRI consists of 1 to 3 digits enclosed inside of two angle brackets (<>). Table 1 shows

the potential facility values and Table 2 shows the potential values for the Priority Field.

Table 1: Numeric Codes for Facility Field (RFC 3164)

Numerical Code Facility
0 kernel messages
1 user-level messages
2 mail system
3 system daemons
4 security / authorization messages
5 internal syslogd messages
6 line printer subsystem
7 network news subsystem
8 UUCP subsystem
9 clock daemon
10 security / authorization messages
11 FTP daemon
12 NTP subsystem
13 log audit

12

 Table 1 Contd.
14 log alert
15 clock daemon
16 local use 0 (local0)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (local4)
21 local use 5 (local5)
22 local use 6 (local6)
23 local use 7 (local7)

Table 2: Numeric Code for Priority Field (RFC 3164):

Numerical Code Priority
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages

2.6.2 Header

The header contains a timestamp followed by a single space, and then the hostname of

the machine the log originated from. If that machine does not have a hostname the IP address of

that machine may be sent instead.

2.6.3 MSG

The MSG section contains the name of the source program that generated the log, plus

the actual contents of the log. The MSG section has a loose structure that can allow different

13

syslog messages to have slightly different formats, which can make it difficult to parse through

all of them.

2.6.4 Network

Typically, syslog messages are sent over UDP through port 514. Some administrators

prefer the reliability of TCP to the speed of UDP and so syslog has evolved to support both

protocols. Syslog also supports the option to mirror or relay messages to other syslog servers

allowing for a logging hierarchy to be established. One major drawback of Syslog is that it isn’t

protected. Anyone on the network could intercept and view the unencrypted packets.

 Data Mining 2.7

Data Mining is the process of identifying patterns within large datasets by applying

concepts from artificial intelligence, machine learning, and database systems. The basic principle

of data mining is to extract information from a data set and transform it into something

understandable and actionable. Data Analysis systems typically consist of 5 major components:

• A Shipper program, which sends log files from clients to a centralized server

• A Broker program, which aggregates the data and queues it until it is ingested

• An Indexer program, which breaks the data up into individual searchable fields

• A Search and Storage program, stores the data and indexes it to facilitate

searching

• An Interface to allow users to interact with the stored data.

By combining these components, it is possible to mine data from log files and turn it into useful

information (Lund et al. 2015).

14

 Agent Technology 2.8

An agent is a primitive intelligence that is able to perform autonomous action in an

environment in order to meet programmed objectives (Kercher 2013). An agent is used to

observe its environment and identify conditions to act upon (Wooldridge 1998). Agents will be

used to provide custom log files for necessary data that is not already incorporated into existing

syslog files. For example, an agent installed on a Windows machine could be designed to report

on information pertaining to a third party application, such as a browser, which is not typically

included inside of Windows log files.

 Simple Network Management Protocol 2.9

Another technology that is used to monitor and manage network devices is the Simple

Networking Management Protocol (SNMP). This protocol typically supported by routers,

switches, printers, servers, workstations, and other devices. This protocol uses agents running on

the devices, often known as managed devices, to report information to a manager or server.

Through these agents the server can gather information about all the managed devices, and

conduct active tasks such as modify configuration files. There have been three major versions of

SNMP, and the latest version addresses many security concerns regarding the protocol, but may

still be vulnerable to brute force and dictionary attacks when weak authentication keys are used

(RFC1098 2015).

 Log File Inventory Management System 2.10

While very little work has been done previously to validate the use of log files in creating a

system inventory, the components of such a system have been researched and discussed in great

detail. The three major components of a Log File Inventory Management System include:

15

configuration management, centralized log file correlation, and log management for incident

response.

2.10.1 Configuration Management

Configuration Management is a process for establishing and maintaining the consistency

of a product. For a Log File Inventory System to work effectively, it will need to incorporate

several concepts from Configuration Management. Traditionally Configuration Management is

comprised of four activities: identification, control, status, and audit (Bendix and Pendleton

2013).

• Configuration Identification – The act of identifying all of the important parts that

should be put under configuration control.

• Configuration Control – The act of managing changes made to the configurations.

• Configuration Status – The act of providing a current status of the configurations.

• Configuration Audit – A sanity check to ensure that it will deliver as promised.

The proposed solution in particular will incorporate the concept of Configuration Status and

Configuration Audit. Configuration Identification and Control will not be used as those aspects

are needed when creating an all-encompassing adaptable product. Since this research will be

used to generate a proof of concept prototype only specified configurations will need to be

created and audited.

2.10.2 Centralized Log File Correlation

Centralized Log File Correlation is the process of using a centralized hub for log file

analysis. This is especially useful for a system that gathers log files from more than one device.

There are five steps that have been identified that need be followed in order to implement this

16

central hub effectively: centralization, normalization, consolidation, aggregation and correlation

(Rinnan 2005).

• Centralization – Gathering log files from multiple devices into one place.

• Normalization – The process of reducing a complex data structure into its

simplest form.

• Consolidation – The process of combining data from different formats into one

unified view.

• Aggregation – The process of grouping distinct data.

• Correlation – The process of analyzing the data in real-time.

The proposed solution will utilize four of these concepts. Log files will be sent to a centralized

server. This server will normalize and consolidate the data. The data will then be analyzed in real

time and compared against a vulnerability database.

2.10.3 Log Management for Incident Response

Incident response refers to an organized approach to managing the aftereffects of a

security breach or attack. In order for an incident response to be effective, there are a few key

characteristics that log files should include. These characteristics are also important for an

inventory system in order to ensure the authenticity of the log files themselves. These

characteristics are: integrity, time stamping, and data reduction (Forte 2005).

• Integrity – The log files must not be altered in any way by an unauthorized person

or program.

• Time Stamping – The logs must be time stamped in order to review and analyze

them accurately later.

17

• Data Reduction – It is important to be able to reduce the log files down the key

data in order to quickly and accurately analyze them.

The proposed solution will incorporate two of these ideas. The logs will be time stamped to

ensure that they can be accurately analyzed. Likewise, the data will be reduced down to the key

indicators so that they can be quickly and accurately analyzed. Integrity is important for a

production level product. Since this solution will involve creating a proof of concept prototype,

that aspect will not be included.

 Data Integrity can be guaranteed through the use of a hashing algorithm. A hash function

maps data of arbitrary size into a fixed size. The hashed value is uniquely generated based on the

original data. Passing a hashed value along with the original data allows the centralized server to

create its own hashed value of the original data that it received and compare it with the hash that

was sent with the data. If the hashes match, then the data was not altered during transit. Note,

that while it is mathematically possible to generate the same hash value from different data, the

odds of it happening are so slim that hashing is generally accepted as a method to prove data

integrity.

18

3 METHODOLOGY

This chapter outlines how the research will be conducted and how answers for the proposed

research questions will be found.

 (R1) Log File Inventory Management System 3.1

The purpose of this research is to assess the viability of using a log file based inventory

management system to cross check devices with a vulnerability database. It was determined not

to use SNMP for the following three reasons. 1) It has been done before, 2) SNMP doesn’t

include the same real-time benefits that come from using log files, and 3) because this research is

attempting to find a one-fits-all solution instead of using several different technologies for

different situations. To examine the effectiveness of this approach, a proof of concept prototype

will be built and its performance will be compared with that of traditional port scanning methods.

The development process of this prototype will inherently verify what components are necessary

to create the Log File Inventory Management System.

The development phase will consist of three parts, client side syslog/agents, a centralized

log file analysis server, and cross checking the log files with a vulnerability database. The

syslog/agents monitor system and application configurations and send identifying information to

the centralized server. The server analyzes the log files in real time and cross checks the

identifying information with known vulnerabilities and reports any vulnerabilities currently

19

present on the clients. Figure 3 is a flowchart that details how the clients will interact with the

centralized logging server.

Figure 3: Prototype Flowchart

3.1.1 Prototype

Linux based systems, and many network devices such as printers and firewalls support

the syslog format natively. However, Microsoft systems do not natively support the syslog

standard. Several programs exist to “translate” Microsoft Event Logs into the syslog format. In

order to simplify the process for parsing the log files, one of these translation programs will be

installed on the Windows machine to make all of the log files conform to the syslog protocol.

This program will need to be open source, configurable, easy to use, and readily available.

The clients will be configured to send syslog information to a centralized server. In the

case where necessary information is not contained in the syslog files, custom agents will be

written and deployed to gather and transmit the requisite data wherever possible. Any required

20

data that is not already part of existing log files will be identified during the development of this

prototype.

The centralized server will need to use a log management tool to capture incoming syslog

messages, process and parse the messages, and store the messages for further analysis. This tool

will need to provide some method for external access to the stored data such as an API or it will

need to use a database that has functionality built in for external access such as a SQL database.

The data will need to be stored in real-time and will also need to be accessible in real-time. This

tool will also need to be open source, well documented, and highly customizable. It will need to

have the ability to listen on multiple ports for messages using both TCP and UDP. It will also

need to incorporate the ability to transform and normalize the data from the syslog messages

before storing it.

The identifying information from the log files will then be checked against a vulnerability

database. Several databases exist, each formatted differently. A few of the databases are

explained in greater detail in Section 2.3. The database(s) that will be used for this research will

be selected during the implementation phase after testing them to ensure that they will be

suitable. The database(s) will need to be downloadable, easy to parse, complete, and will need to

contain all relevant fields such as Severity and Affects Version. The overall topology for the Log

File Inventory Management System is found in Figure 4.

21

Figure 4: Proposed Log File Inventory Management System

 (R2) Overcoming Challenges of Log File Inventory Management System 3.2

The challenges of implementing a Log File Inventory Management System will be

identified during the course of creating the prototype. Notes on these challenges will be captured

by the author on a frequent basis throughout the development process. The solutions to these

challenges will be incorporated into the prototype to provide the required functionality. Specific

technical challenges will be classified into more general problem types with this approach.

22

 (R3) Log File Key Indicators 3.3

To effectively compare the log files with a vulnerability database, several key indicators

will need to be identified. These indicators will be used to check the current status of any given

device with known vulnerabilities. During the course of the creation of the prototype, these

indicators will be determined. They will consist of the necessary core elements that are required

to compare the originating system of the log files with known vulnerabilities.

 (H1) It is Possible to Generate an Accurate System Inventory using Log Files 3.4

This hypothesis will be tested by automatically generating a system inventory using log

files from network devices and manually comparing the results with the network devices. This

will primarily consist of manually analyzing the firmware, Operating System, and updates

installed on each device to ensure that the software running on each device was accurately

depicted in the log files.

 (H2) It is Possible to Accurately Detect Vulnerabilities using Log Files 3.5

The data for this hypothesis will be gathered by compiling a list of all vulnerable software

from the devices using their log files and a vulnerability database. These will then be manually

compared with the software running on the devices to ensure determine if the vulnerabilities

actually exist on the machines. The information will also be checked to see if the vulnerabilities

were not reported that should have been.

 (H3) Log Files can Enable Faster Vulnerability Alerts than Port Scanning 3.6

There are two metrics for speed for testing this hypothesis. The first metric deals with how

much time it takes for the vulnerability assessment to be started after there is a change in the

23

software configuration. Port scans must be manually started, or automated to run at specific

intervals. The log file method will run in real-time when changes are made to the software on the

machine. The log file method is almost always going to be faster in this metric because of its

inherent real-time aspect. It is difficult to compare synchronous and asynchronous methods in

terms of speed. In order to do this, specific intervals for the port scan will be specified, such as

daily, weekly, and monthly. The prototype will then be compared with these intervals to

determine the difference in speed.

The second metric for speed is how long it takes to actually conduct the vulnerability

analysis. For port scanning that means how long does it take to report a vulnerability from the

time the scan is first initiated. For the log file method that means how long does it take to report

a vulnerability from the time the entry is first written to the log file.

This assessment of both tools will be done to see if there are quantifiable benefits to using

the log file method over port scanning in terms of the speed with which they conduct the

vulnerability assessment.

3.6.1 Data Collection

The prototype will monitor the log files from the following proposed devices:

• Windows 7

• Debian 7 with Apache webserver

• HP LaserJet 500 printer

• Palo Alto VM100 firewall

• Cisco 3500 router

24

The proposed devices were chosen to represent a wide range of commonly used devices

and Operating Systems. They represent a large proportion of devices in use today. Windows 7

was proposed because it is one of the most commonly used Microsoft operating systems

currently. Debian 7 with apache was proposed to represent the Linux distributions since it is

widely used, and it is the latest stable release. The printer, firewall, and router were all proposed

because they represent commonly used devices, and the Information Technology program at

BYU already has access to all of them. This wide sampling will be used as part of the prototype

to help validate the benefits of using the log file method.

 The following identifying data will be gathered from the log files from the devices

proposed above to build an accurate inventory of the software running on them:

• Operating System / Firmware

• Service Packs / Updates

• Running services identified previously

• Version of running service

• Additional data as is deemed necessary

This data will then be cross checked with known vulnerabilities, and the results will be compared

to the results of using a port scan.

25

4 FRAMEWORK

There are two major components to the proposed framework, the centralized log file server

and the client side configurations. The following sections detail the implementation of these

framework components.

 Centralized Log File Data Collection Server 4.1

The server consists of a Debian 7 Virtual Machine running on the Brigham Young

University Cyber Security and Research Lab network. Debian 7 was chosen to run on the central

server because it is a commonly used distribution of Linux and it is the latest stable release of

Debian,.

4.1.1 ELK Configuration

The centralized server will use Elasticsearch, Logstash, and Kibana (the ELK stack) to

gather and analyze log files. The ELK stack is an open source real time search and analytics

engine. Elasticsearch also provides an API to access the log file information stored there making

it a feasible process to compare the data in real time with a vulnerability database. Logstash

stores log files into Elasticsearch and additionally allows users to transform the data using filters

and parsing algorithms. Kibana is a visualization engine for Elasticsearch that allows users to

interact with their data through custom web based dashboards. Combined these programs

26

provide a powerful log management capability. The ELK stack was chosen for this prototype

because it is open source, reliable, highly customizable, and is widely used.

The server uses Elasticsearch 1.4.2, Logstash 1.4.2, and Kibana 3.1.2 to gather, parse, and

store syslog events transmitted over the network from the clients. These versions were chosen

because they were the latest versions at the beginning of the initial research. It is also running

MySQL to store the vulnerability databases, and uses Python 2.7 to compare the data stored in

Elasticsearch with the vulnerabilities in the MySQL database. Table 3 shows Python Libraries

that were used.

Table 3: Python Libraries

Library Name Description

urllib2 Used to open and read URL requests

json Used to parse JSON objects

datetime Used to perform operations on dates and times

pymysql Used to connect to a MySQL database and execute commands

re Used to support regular expressions

requests Used to add base64 password encoding to URL request

base64 Used to encode a URL password to access the SEA database

socket Used to send data into ELK

Logstash listens on port 5000 for any incoming UDP or TCP traffic. It then uses a custom

configuration file to specifically look for syslog transmissions and parse them into separate fields

that can be used to filter the data. The syslog messages do not all conform to the exact same

specifications so each field isn’t necessarily present in each syslog transmission. Table 4 shows

the fields that are being parsed by the configuration file. After parsing the data Logstash stores it

inside of Elasticsearch.

27

Table 4: Parsed Fields from Syslog

Field Description

syslog_pri A numerical value representing the priority and facility of the message.

syslog_timestamp A timestamp

syslog_hostname The hostname or IP address of the device where the log file originated

syslog_program The program that sent the syslog

syslog_pid The ID of the program that sent the syslog

syslog_program_version The version of the program that sent the syslog

syslog_message The message contents of the syslog

4.1.2 Elasticsearch API

Elasticsearch provides a built in REST API that allows external access to the data stored

there. This API allows programs to GET, DELETE, or UPDATE the data stored in Elasticsearch

individually or to GET the data in bulk. By default, the GET method is in real-time and is

unaffected by the index refresh rate. Built on top of this, is the Elasticsearch Query DSL, which

is based on JSON and is used to define queries to retrieve the desired data. The proof-of-concept

prototype uses these technologies built into Elasticsearch to retrieve the identifying information

from the log files to compare them with the vulnerability database.

4.1.3 Python Script

A python script (see Appendix C.) compares the identifying information being stored into

Elasticsearch with the vulnerability data stored in a local MySQL database. When the script

discovers a known potential vulnerability, it sends a message containing the name of the

vulnerability, the severity of the vulnerability, the CVE of the vulnerability, and the IP address of

the vulnerable machine into ELK. Logstash parses the message and stores it into Elasticsearch,

while Kibana displays a graph showing the discovered vulnerabilities. It was determined to use

28

ELK to visualize and report discovered vulnerabilities because it allowed for one simple user

interface (Kibana) to be used. Through ELK, it is possible to see what is running on the

machines in the network, a high level overview of the discovered vulnerabilities, and the option

to drill down and get specific vulnerability data.

4.1.4 Vulnerability Database

Initially it was believed that the National Vulnerability Database would be ideal for cross

checking configurations for known vulnerabilities. This was determined based on the wide range

of platforms and vulnerabilities that are contained within the National Vulnerability Database.

However, the structure of the database is very loose and is not conducive for parsing out the

requisite data. There is no good way to see each version of software that is affected by a

vulnerability in the NVD. The problem is derived from the fact that the database uses a single

field (description) to contain both description and affected versions. This can lead to difficulties

when parsing the data.

• Sometimes more than one software is listed in the description. Searching for both

the program and version can result in false positives. For example, searching for

Apache 2.2.22 can result in an entry that mentions Apache and version 2.2.22 of a

completely unrelated software.

• If a vulnerability affects multiple versions of the software, there is no standard

way for listing them. For example, the description could say that it affects all

versions before 2.2.4, or that it affects 2.2.x, or that it affects 2.2.1-4.

These limitations make the NVD a very impractical choice for using it to cross check the client

configurations for known vulnerabilities.

29

 Similarly, the Open Source Vulnerability Database (OSVDB), Mitre Common

Vulnerabilities and Exposures (CVE), and the United States Computer Emergency Readiness

Team (US-CERT) databases were determined to be an impractical choice for the same reasons as

the NVD.

 After further research it was decided to use vendor specific vulnerability databases as

much as possible. The Microsoft Security Bulletin was selected for all Microsoft vulnerabilities.

The Microsoft Security Bulletin is designed in such a way to be highly conducive for checking

for vulnerabilities. The Security Bulletin is structured in such a way to give it three distinct

advantages.

1. There is an entry in the database for each affected version. For example, if the same

vulnerability affects Windows 7 and Windows 8, there may be four separate entries.

One for Windows 7 32bit, Windows 7 64bit, Windows 8 32bit, and Windows 8 64bit.

This makes it extremely easy to search for vulnerabilities.

2. Windows Security Updates each have a unique identifier in the format KB#######.

The Security Bulletin includes these identifiers in each vulnerability to show what

update was issued to fix the problem. This means that the Centralized Server just

needs to get all potential vulnerabilities for a client and see if the corresponding

update has been applied. This approach results in very few false positives so long as

the database is accurate because each vulnerability maps directly to an update,

making it very easy to see if the vulnerability has been patched.

3. The Windows Security Updates are hierarchical. New updates might supersede a

previous update if they are related. This means that clients may not need to install old

updates if newer ones exist. The Security Bulletin tracks which updates supersede

30

others. This makes it is easy to ensure that a red flag is not raised because outdated

updates have not been installed.

The Microsoft Security Bulletin could probably be optimized by normalizing it into a

relational database, but it works well as it is for cross checking vulnerabilities in its provided

format. The main limitation of the Security Bulletin is that it is limited to Microsoft only

products.

 Several problems were identified when attempting to use the vendor databases for open

source technologies. Most of these databases are not downloadable, and do not have an external

API. The data in them was also structured similarly to the NVD making them difficult to parse.

Another issue is that the versioning of Linux packages is not consistent across platforms making

it extremely difficult to automate a process for gathering vulnerabilities about these packages.

This issue is best illustrated with the following workflow related to gathering the affects version

and fix version for the Heartbleed vulnerability.

According to the CVE database all versions of OpenSSL between 1.0.1 and 1.0.1g are

vulnerable to Heartbleed. However, according to the Debian Wheezy package database, the

problem was fixed in the Debian version of OpenSSL, with the 1.0.1e-2+deb7u5 release. This is

a direct conflict with the CVE database statement that all versions between 1.0.1 and 1.0.1g are

vulnerable. To further illustrate this problem, the vulnerability was fixed in RedHat Linux 6 with

version 1.0.1e-16.e16_5.7, also in contradiction to the CVE database.

Because of these limitations it was determined to remove the fully automated Linux

vulnerability comparison from scope. Instead a few packages were selected and the vulnerability

data was manually gathered and entered into the research database. This was done because the

object of this research was to prove the viability of comparing log files with a vulnerability

31

database, not with being able to automate the creation of such a database. The Microsoft Security

Bulletin along with the Windows client will serve as the primary proof-of-concept for a

completely automated method of comparison while the open source technologies will be partially

automated to prove that vulnerabilities can accurately be reported so long as the vulnerability

data is stored efficiently.

 Two Debian packages were selected for this comparison – Apache and OpenSSL. It was

simple to test a vulnerable version of Apache since it was already included in the Debian 7

distribution and updates weren’t installed. The apache log files were gathered sent to the

centralized server using the Syslog protocol. Apache included the required identifying

information in its log files each time someone accessed a website that it was serving. Several

entries from Apache’s vulnerability database were manually entered into the research database.

(Apache 2015)

 It was not a trivial matter to install a version of OpenSSL that was vulnerable to

heartbleed. Because of the severity of heartbleed, the vulnerable versions were removed from the

default packages so typical users could only install the updated versions. However, there is an

organization that maintains snapshot.debian.org (Debian 2015) which is an archive containing

packages from back as far as 2005. After finding the desired package on their website the

following line of code was added to the sources.list file as shown in Figure 5:

Figure 5: Code Added to sources.list

32

Then running the following command shown in Figure 6 updated the package list and forced the

package manager to allow the outdated repository.

Figure 6: Update Package Manager

After running these commands, it was possible to install an outdated version of OpenSSL

(1.0.1c-4) that is vulnerable to heartbleed. The vulnerability was manually entered into the

database to allow the centralized server to compare the installed version of OpenSSL with the

versions that are affected by heartbleed. Table 5 shows the extent to which each of the initial

proposed devices found in section 3.6.1 were incorporated into the prototype.

Table 5: Usage of Proposed Devices

Platform Included in Prototype Level of Automation

Windows 7 Yes Fully Automated

Debian 7 Yes Partially Automated

Printer No N/A

Firewall No N/A

Switch Yes Partially Automated

4.1.5 MySQL Database

In order to better facilitate the comparison of the log files with multiple vulnerability

databases it was decided to import all of the chosen vender databases into a custom MySQL

database. This database not only contains a list of all of the known vulnerabilities within the

33

scope of the research, but it also stores the identifying information received from the log files of

each host.

Figure 7: Database Schema for System Inventory

The database schema used to store the software inventory of the clients in the prototype is

shown in Figure 7. The database stores information regarding the Windows, Linux, and Cisco

systems in separate tables because they each track slightly different things. The hosts table tracks

the basic information for each client regardless of vendor.

 Figure 8 depicts the database schema that was used to store the lists of known

vulnerabilities for each vendor. Because the vendors store significantly different types of

information, the vulnerabilities were stored in separate tables as well.

34

Figure 8: Database Schema for Vulnerabilities

 Client Side Configurations 4.2

Each client handles logging differently so it was necessary to configure each of them

separately to transmit their log file data using the syslog protocol.

4.2.1 Windows 7

Windows does not support the syslog protocol natively, so Datagram SyslogAgent was

installed to convert the event logs into the syslog format and transmit them to the centralized

server. The Datagram SyslogAgent was chosen because it met the criteria found in section 3.1.1.

35

The agent was configured to send all of the System Event Log files which contain the requisite

information to the centralized server over the port 5000 using UDP. Port 5000 was chosen over

the standard port 514 in order to avoid the accidental insertion of data from a misconfigured

client not in the research scope.

4.2.2 Debian 7

There are two major syslog programs for Linux, syslog-ng, and rsyslog. It was decided to

use syslog-ng since it was already preinstalled. Syslog-ng was configured to send all of the

aptitude installation logs, Apache error logs, along with the default logs to the Central Server

over port 5000 using UDP.

4.2.3 Printer

 The available printer was an HP LaserJet 500 color M551 running the 2305083_000200

firmware revision. However, log messages contained no usable information for this research

even when rebooting or upgrading the firmware. Because of this it was determined to remove the

printer from scope. It was determined that it would require more time to find a printer through

trial and error that reported the requisite information than was justified by the objectives of this

research. It was decided that the proof of concept prototype could be properly analyzed without

using a printer. In fact, this drawback shows a real potential weakness for the completed

prototype. It will not be compatible with any devices that are incapable of sending the requisite

information.

36

4.2.4 Firewall

The available firewall was a Palo Alto 6.1.2 PA 4020. It was determined to remove the

firewall from scope. Like the printer, this firewall didn’t send any of the needed information in

its log files even during a reboot or a firmware update. It was decided that removing the firewall

from scope would be acceptable for the same reasons described above for the printer.

4.2.5 Switch

A group at BYU known as System Event Analytics (SEA) has conducted a significant

amount of research by sending log files from devices all over campus to their ELK cluster. After

requesting access, this data was made available for this research. The BYU Office of Information

Technology (OIT) gathers syslog data from devices all around campus and stores that data into

Event Tracker. SEA has arranged with them to mirror that traffic, and forward it to the SEA

system. SEA then buffers the logs using Redis and stores it into ELK. This is illustrated in

Figure 9 created by Lane Broadbent, BYU CT.

Figure 9: SEA Network Architecture

37

It is possible to view the logs generated by numerous Cisco switches by accessing the

SEA instance of Elasticsearch. Due to the large pool of devices in their database it was

determined to use the Cisco Catalyst 3560 log data for the purposes of this research. The Cisco

Catalyst 3560 was chosen because there were recent log entries for this device in their database

that indicated it may be possible to retrieve the necessary firmware information from them. Cisco

maintains its own vulnerability database in cvrf format. Due to the complexity of this format it

was decided to manually enter vulnerability information about the Cisco Catalyst 3560 into the

local vulnerability database, instead of trying to parse the information out of Cisco’s database

automatically.

 Problems Encountered with the Implementation 4.3

There were several problems that were encountered during the development phase of the

prototype. The following sections explain the problems and illustrate the steps that were taken to

overcome or circumvent them.

4.3.1 Loose Format of the Syslog Protocol

The Syslog protocol is notorious for having a loose standard. The MSG component of

syslog does not have defined standard. This allows for several different devices to log different

types of information depending on their requirements. This is useful, because it allows devices

with different types of data to “mostly” conform to a single standard. However, this makes it

difficult to parse all syslog entries in Logstash since messages may not all conform to the same

exact standards. Because of this, several grok filters were created in the Logstash configuration

files to account for the different Syslog messages that were being used. If additional syslog

messages will be used in the future, it is likely that additional grok filters will need to be created.

38

4.3.2 Syslog Messages without Identifying Information from Network Devices

Some network devices do not contain the requisite identifying information in their syslog

messages. For example, an HP printer was configured to send Syslog messages to the centralized

server, yet those messages never contained information regarding what firmware was running on

the printer. This is a real limitation for using the Log File Inventory Management System to

actively monitor the security status of all network devices.

4.3.3 Kibana Reports Duplicate Vulnerabilities when Duplicate Logs Are Sent

Log files containing update or package installation data can be sent more than once from

the same machine to the centralized server. Because the Python script reports a vulnerability

back into Kibana every time one is discovered, or rediscovered, the Kibana interface may often

report duplicate vulnerabilities. There are several recommendations that will be discussed in

Chapter 6 that will help alleviate this problem.

4.3.4 Kibana is Designed to Show a History instead of the Current State

The dashboard interface in Kibana is configured to show data during a specific time

interval. This makes it difficult to show the exact “Current State” of the devices. For example, a

log file containing a vulnerability may have been sent 7 hours ago. If Kibana is configured to

display vulnerabilities from the last 6 hours, the dashboard will not show the vulnerability

despite the fact that it is still present on the machine.

Likewise, if a vulnerability is fixed within the interval being displayed on Kibana, Kibana

will still show the vulnerability as being present, despite the fact that the vulnerability was fixed.

Chapter 6 includes some recommendations to overcome these issues.

39

 Testing 4.4

Developmental testing was conducted throughout the creation of the prototype to ensure

that things were working as expected. The ELK server was tested to ensure that it was receiving

Syslog messages and parsing them correctly. The Python script was tested to ensure that it was

retrieving data from Elasticsearch, comparing that data with vulnerabilities in a MySQL database,

and sending discovered vulnerabilities back into ELK. The clients were all tested to ensure that

they were sending the requisite data via Syslog to the ELK server.

After development, the prototype was tested to assess the accuracy of the software running

on the clients that was detected by the ELK server. The system was also tested to assess how

much time it took to gather and parse log files, compare the data with the vulnerability database,

report discovered vulnerabilities, and the accuracy of the vulnerabilities that were reported.

4.4.1 Summary of Test Results

Several key findings were discovered as a result of the testing and analysis that took place:

• The prototype was able to detect every installed update and package on the

Windows and Linux Systems, as well as correctly identify the versions that were

installed and the Operating Systems that were running on them.

• The prototype was able to detect with 100% accuracy when vulnerable software

was installed on Linux, or when Windows was missing security updates.

• The prototype was able to report discovered vulnerabilities in real-time, often

taking less than 30 seconds to do so from the moment the vulnerability was

introduced to the system.

40

• The traditional port scan was unable to detect any installed updates on the default

Windows 7 installation, or accurately guess the Operating System that was

running.

• The traditional port scan did not detect any vulnerabilities. Instead it only detected

the versions of a few pieces of software running on the machines. A user would

have to cross reference this information with known vulnerabilities to see if the

software was vulnerable.

Figure 10 shows the number of vulnerabilities that each method detected. The prototype detected

all of them, while the port scan only detected one.

Figure 10: Comparison of Discovered Vulnerabilities

0

5

10

15

20

25

30

35

40

Windows 7 Debian 7 Cisco Switch

Vulnerabilities Prototype Port Scan

41

4.4.2 Accuracy of Software Inventory

To test the accuracy of the software detected by the ELK server, each client was

manually inspected and compared with the results discovered by the ELK server. For the

installed updates on Windows 7 the following command was run and compared with the data in

the database that was gathered by the ELK server.

Figure 11: List Installed updates

This was also compared with the results of a port scan. There are several ways to configure a

port scan, and the following command was used for each client.

Figure 12: Nmap Scan

Appendix D. Comparison for Windows 7 contains the results of the prototype compared

with the port scan for Windows 7. The comparison shows that the research successfully created a

completely accurate representation of the updates that were actually installed on the Windows 7

machine. The ELK server reported a complete and accurate representation of the OS,

Architecture, and installed updates. The port scan, failed to detect any installed updates, reported

the wrong OS, and didn’t report anything for the architecture. The port scan was only able to

detect that the following services were running: MSRPC, Microsoft-DS, cmrcservice, and ms-

wbt-server. This shows that the prototype was much more complete and accurate than the port

scan at detecting what updates were running on the machine.

42

 Like many Linux distributions, Debian 7 comes with several packages preinstalled. None

of these preinstalled packages were considered for this research. Instead, only the packages that

were installed during the research period were recorded. To assess the accuracy of the packages

installed on the Debian 7 machine, the apt log files were compared with the data stored in ELK.

This was also compared with the results of running a port scan and is shown in Table 6.

Table 6: Comparison for Debian 7

 Debian 7 Manual Results Debian 7 Prototype Results Debian 7 Port Scan
IP Address 192.168.230.139 192.168.230.139 192.168.230.139
Operating
System

Debian 7 Debian 7 Linux

Architecture 3.2.0-4-amd64 3.2.0-4-amd64 3.2 – 3.13
Installed
Packages

Apache 2.2.22

Slsh 2.2.4-15

Libslang2-modules 2.2.4-
15

Jed-common
0.99.19-2.1

Jed 0.99.19-2.1

Libonig 2 5.9.1-1

Openssl 1.0.1c-4

Apache 2.2.22

Slsh 2.2.4-15

Libslang2-modules
2.2.4-15

Jed-common 0.99.19-2.1

Jed 0.99.19-2.1

Libonig 2 5.9.1-1

Openssl 1.0.1c-4

Apache 2.2.22

OpenSSH
6.0p1 4+deb7u2

The comparison shows that the prototype contained a completely accurate representation

of the packages that were actually installed on the Debian 7 machine. However, the prototype did

not report on any packages that were preinstalled such as OpenSSH. The port scan detected the

correct version of Apache, and detected OpenSSH. This shows that the port scan can pick up

things that the prototype cannot in the case where the packages were installed prior to the client

being configured to send log files to the ELK server. This could be partially addressed in a future

version of the prototype, by ingesting the results of the dpkg-query command when a Debian

43

client is initially introduced to the system. This command will generate a list of all installed

packages.

 However, the port scan missed several packages that were installed on the Debian

machine, because they didn’t have open ports associated with them. Also, the port scan was only

able to determine that the client was Linux based. It couldn’t tell which version of distribution or

version of Linux was running. It also was only able to guess what kernel was installed 3.2 – 3.13.

The installed kernel was included in the port scan’s guess, but so were several other kernels. This

shows that the prototype was more accurate than a port scan. Not only was the prototype more

accurate, it was more complete. The port scan failed to detect the critical heartbleed vulnerability.

Since physical access to the equipment on SEA wasn’t possible, the log files stored for the

Cisco switches in their ELK cluster were compared the data stored in the ELK database used for

this research. The results are shown in Table 7.

Table 7: Comparison for Cisco Switch

 Cisco Switch Manual
Results

Cisco Switch Prototype
Results

Cisco Switch Port Scan

IP Address 10.3.17.43

10.3.17.43

10.3.17.43

Firmware IOS 15.0 IOS 15.0 IOS 15.0

The comparison shows that the ELK server used for this research contained a completely

accurate representation of the firmware that was installed on the Cisco Catalyst 3560 Switch. It is

also important to note that the port scan was similarly successful at detecting the firmware

running on the cisco switch.

44

 Even though the printer and firewall were removed from scope, it was decided to include

a summary of a port scan of those devices to better show the data that the prototype was unable

to retrieve. The port scan was able to detect that the printer was either an HP LaserJet 600 M602,

HP LaserJet 500 M551, or a LaserJet M830. It did guess the correct model, but only with a 33%

confidence level. The port scan inaccurately reported the Palo Alto firewall as a Linux 2.6.x

device.

4.4.3 Speed to Report Vulnerabilities

It is difficult to compare the speed of the two methods because of the inherent difference

in their natures. The prototype runs asynchronously in real-time, while the port scan runs

synchronously at undefined intervals. Figure 13 15 illustrate the speed of reporting a

vulnerability with port scans being conducted at different intervals. The Figures show a port scan

being conducted daily at 8pm, weekly, and monthly on the first day of the month. Note that the

time interval is not displayed to scale across the different figures.

Figure 13: Speed Comparison for Daily Port Scan

45

As shown in this figure, the prototype will detect all vulnerabilities in real-time, but the port scan

will detect them every 24 hours. This means that vulnerable software could be running for up to

24 hours before being detected.

Figure 14: Speed Comparison for Weekly Port Scan

As shown in this figure, the prototype continues to detect all vulnerabilities in real-time,

but because the interval between port scans has been increased to a week, vulnerable software

could run on the system for up to 7 days, or 168 hours before being detected by the port scan.

Figure 15: Speed Comparison for Monthly Port Scan

46

As shown in this figure, the prototype continues to detect all vulnerabilities in real-time,

but because the interval between port scans has been increased to a month, vulnerable software

could run on the system for up to 31 days, or 744 hours before being detected by a port scan.

As shown in Figure 13-15, when a vulnerability is installed on a machine, the prototype

detects it immediately in real-time. The port scan does not detect the vulnerability until the scan

is run. In Figure 13, if the vulnerability was installed at 8am, it would be detected immediately

by the prototype but it would take 12 hours for the port scan to detect it. The amount of time it

takes a port scan to detect a vulnerability is directly correlated to the frequency in which port

scans are conducted. For example, in Figure 15, a vulnerability could be installed on January 7.

This vulnerability would not be detected by a port scan for 24 days until February 1, or for a total

of approximately 576 hours. These timelines show that unless a port scan is conducted

immediately after vulnerable software was installed, the prototype will always be faster at

reporting vulnerabilities. If the port scan is conducted immediately after the software was

installed, it depends on whether the port scan or the prototype runs faster to determine which

would discover the vulnerability first, though the difference would probably be a matter of

seconds or minutes depending on the complexity of the port scan and the network speed, instead

of a matter of days.

It is possible to compare the speed of the port scan with the time it takes the prototype to

report a vulnerability from the time a log file is transmitted. However, the port scan will take

longer for each client it scans in the network, and for each open port that it discovers. On

average it took the Python Script about 20 seconds to run. Most of that time was spent

communicating with SEA’s server. The port scan took between 10 seconds and 110 seconds for

47

each client. This shows that the actual time that the port scan takes could be less than the

prototype when there are few clients. However, in most cases, the prototype will be faster.

4.4.4 Accuracy of Discovered Vulnerabilities

To test the accuracy of the vulnerabilities reported by the prototype and the port scan,

each client was manually inspected to see what versions of software are running on them

compared with the results reported by the prototype and the port scan.

Table 8: Comparison of Missing Updates for Windows

 Windows 7 Manual Results Windows 7 ELK Results Windows 7 Port Scan Results
Missing Updates KB2393802

KB2425227
KB2476490
KB2503658
KB2503665
KB2507938
KB2508429
KB2525694
KB2535512
KB2584146
KB2617657
KB2618451
KB2620712
KB2644615
KB2655992
KB2658846
KB2659262
KB2660649
KB2691442
KB2709715
KB2743555
KB2753842
KB2769369
KB2778930
KB2785220
KB2790113

KB2393802
KB2425227
KB2476490
KB2503658
KB2503665
KB2507938
KB2508429
KB2525694
KB2535512
KB2584146
KB2617657
KB2618451
KB2620712
KB2644615
KB2655992
KB2658846
KB2659262
KB2660649
KB2691442
KB2709715
KB2743555
KB2753842
KB2769369
KB2778930
KB2785220
KB2790113

 KB2849470
KB2859537
KB2868623
KB2875783
KB2876284
KB2876331
KB2929961
KB3000061
KB3000869
KB3020393

KB2849470
KB2859537
KB2868623
KB2875783
KB2876284
KB2876331
KB2929961
KB3000061
KB3000869
KB3020393

48

For the Windows machine, the list of installed updates was cross checked with the

Microsoft Security Bulletin to look for missing updates, and then was compared with the results

reported by the ELK server.

As shown in Table 8, the prototype was able to detect all of the updates that were missing

from the machine, while the port scan was unable to detect a single missing update. However,

the ELK server reported updates that should have been installed on a given version of Windows,

but if the related software isn’t present on the machine, the update may not actually be needed.

For example, if the ELK server detects that the Windows machine is missing update KB2659262

for Silverlight, but Silverlight was never actually installed on the machine, then it isn’t actually

vulnerable, even though the update is missing. The prototype could easily allow for false

positives with regards to Windows updates. Methods to negate the effects of false positives will

be discussed further in Chapter 5.

For the Debian machine, the installed updates were manually compared with known

vulnerabilities in the CVE database, and then was compared with the results of the prototype.

Table 9: Comparison of Discovered Vulnerabilities for Debian

 Debian 7 Manual Results Debian 7 Automated
Results

Debian 7 Port Scan

Vulnerabilities Openssl 1.0.1c-4 Heartbleed Openssl 1.0.1c-4
Heartbleed

 Apache 2.2.22
DOS

Apache 2.2.22
DOS

As shown in Table 9 the prototype was able to detect all of the vulnerabilities on the Debian

machine, but the port scan failed to detect any of them.

49

 The firmware on the Cisco switch was manually confirmed and then compared with the

results of the port scan and the prototype.

Table 10: Comparison of Discovered Vulnerabilities for Cisco Switch

 Cisco Manual Results Cisco Automated Results Cisco Port Scan

Vulnerabilities IOS 15.0 DDOS IOS 15.0 DDOS IOS 15.0 DDOS

As shown in Table 10, both the port scan and prototype were able to detect the vulnerability in

the Cisco switch.

50

5 RESULTS

 Framework Analysis 5.1

This section analyzes the final framework and answers the proposed research questions and

addresses the proposed hypotheses:

• (R1) How does the log file inventory management system compare with

traditional port scanning with regards to speed and accuracy?

• (R2) What are the challenges of creating a log file inventory management system

and what techniques can be used to overcome them?

• (R3) What are the key indicators required from log files to cross check them with

a vulnerability database?

• (H1) It is possible to generate an accurate system inventory using log files.

• (H2) It is possible to generate an accurate inventory of vulnerabilities that exist in

the current configuration.

• (H3) The log file inventory management system will enable faster alerting of

vulnerabilities than port scanning.

5.1.1 (R1) Comparison of Log File Prototype and Port Scanning

As shown in section 4.4 the Prototype outperformed the traditional port scanning method

in all ways except for one. The prototype was more accurate than the port scanning method at

51

detecting the Operating Systems, installed updates and packages, and at identifying

vulnerabilities. The only thing that the port scan was able to detect that the prototype didn’t was

the presence of OpenSSH on the Debian machine. The port scan detected it because it was

running on port 22, while the prototype did not detect it because it was a package that came

preinstalled before the prototype was setup to monitor for installed packages.

This is a limitation with the prototype that could be resolved with future research. One

such method would be to ingest a list of pre-installed packages into ELK when the client is

initially introduced to the system. Despite that one advantage that port scanning has, the results

of the testing clearly indicate that the prototype is faster and more accurate than port scanning.

5.1.2 Accuracy of Software Inventory

The prototype was able to detect the correct versions of the OS and firmware, the updates,

and installed packages, with a high level of accuracy on the Windows, Debian, and Cisco clients.

It failed to detect anything on the printer and firewall because they were not compatible with the

prototype due to their lack of identifying information in their log files. Most network devices

support SNMP. Even though the log files do not contain the requisite information, the prototype

could gather that information through SNMP to overcome this limitation. The port scan failed to

detect the correct Operating System, any of the windows updates, and most of the installed Linux

packages.

5.1.3 Speed of Methods

The prototype reported discovered vulnerabilities in real-time, usually in less than 30

seconds after the vulnerability was introduced to the system. The port scan reported discovered

software whenever it was run. The software then had to be cross check for vulnerabilities.

52

5.1.4 Accuracy of Reported Vulnerabilities

The prototype detected all of the missing updates on Windows, the vulnerable packages

on Debian, and the firmware on the Cisco Switch. The port scan didn’t detect any vulnerable

software. It didn’t identify the missing Windows updates, or even the presence of a vulnerable

version of OpenSSL on Debian. The prototype was much more accurate at reporting vulnerable

software than the port scan.

5.1.5 Limitations

There are several limitations to the prototype that will be discussed in greater detail in

Chapter 6. These limitations include the lack of a comprehensive vulnerability database, the

problems related to keeping such a database updated, the ability to check for vulnerable software

that was installed before it was known to be vulnerable, a method for reporting when

vulnerabilities have been resolved, and a better method of reporting vulnerabilities that can easily

show the current state of the clients.

 (R2) Challenges in Creating a Log File Inventory Management System 5.2

The challenges that arose from creating a Log File Inventory Management System have

been discussed in detail in section 4.3. In general, the problems that arose were related to the lack

of a parsable vulnerability database, and limitations within ELK for reporting resolved

vulnerabilities. The open source vulnerability databases were not normalized enough to be useful

in this research. In general, the vendor databases were detailed and formatted in such a way to be

conducive to this research. A more detailed analysis of a few well known vulnerability databases

can be found in section 4.1.4.

53

 (R3) Required Key Indicators from Log Files 5.3

Throughout the development of the prototype, several key indicators were identified that

are required in order to be able to generate an accurate system inventory using log files. These

indicators vary from vendor to vendor, but are similar in all of them. These indicators are shown

in Table 11.

Table 11: Log File Key Indicators

Key Indicators Windows Linux Network Device

Operating System X X

Architecture X X

Kernel X

Service Pack X

Firmware X

Firmware Version X

Application X X

Application Version X X

Windows Update X

Not every log file for each vendor will contain all of the key indicators, but each key

indicator for a given vendor needs to be represented inside a log file so that it can be reported to

the centralized server.

 (H1) It is Possible to Generate an Accurate System Inventory Using Log Files 5.4

As shown from the testing results, this hypothesis was proven true if the client logs the

necessary identifying information.

54

 (H2) It is Possible to Accurately Detect Vulnerabilities Using Log Files 5.5

As shown from the testing results, this hypothesis was also proven true if the client logs the

necessary identifying information.

 (H3) Log Inventory Management System is Faster than Port Scanning 5.6

As shown from the testing results, this hypothesis was also proven true for almost all

situations.

 Research Contributions 5.7

Software vulnerabilities are not a new problem. They have existed for decades. Finding

and resolving vulnerabilities is a continuous process that is difficult and time consuming.

Vulnerabilities can often be overlooked until they are exploited. This research attempts to find a

way to mitigate the difficulty of finding vulnerable software. Components of this research can

also be used in other non-security related applications.

5.7.1 Automated Log File Inventory Management System

The framework for this research introduced a completely original method of software

inventory through the use of log files. Any application that requires an automated method of

inventorying the software running on network devices can benefit from this research. This

framework is beneficial because it runs in real-time, is completely accurate, and can be

configured to work on a wide range of computers and network devices.

55

5.7.2 Standard for Requisite Log Data for Vulnerability Assessment

As shown in Section 5.3, this research identified the requisite information that needs to be

collected from log files to create an accurate inventory of a networked system, but also the

information required to compare that information with known vulnerabilities.

5.7.3 Framework for Data Gathering and Analysis

The prototype, that was created to gather and parse log files and cross check their data

with known vulnerabilities, is another significant research contribution. It shows the viability of

using such an approach and can be built upon. It provides a foundation for furthering this

research in the future.

56

6 CONCLUSIONS AND FUTURE WORK

The purpose of this research was to ascertain the viability of using log files to find and report

vulnerabilities running on local systems. From this research, it was found that such an approach

can be much more effective and efficient at than traditional port scanning methods at finding and

reporting software vulnerabilities. A prototype was created as part of this research to demonstrate

the feasibility of such an approach. There were two major components of this prototype: The

centralized ELK server, and the individual clients.

 Conclusions 6.1

The results of this research show high potential for this method of detecting vulnerabilities.

Not, only is this method faster than tradition port scanning, but it is more accurate as well. The

prototype detected installed updates and vulnerabilities with 100% accuracy. While there is a lot

of work to do to turn this prototype into a reality, this research confirms that there is a very high

potential for making the vulnerability assessment process easier and more accurate. This research

resulted in the following key findings:

• It is possible to generate an accurate system inventory using log files

• It is possible to generate an accurate inventory of vulnerabilities that currently exist

• The prototype was faster than the port scan at reporting vulnerabilities

57

• The prototype was more accurate than the port scan at identifying the software

running on the clients and at identifying that vulnerable software was present

While the current prototype still has some major limitations, the findings show that it has a

high potential. There is very little that can be done in order to improve the port scanning

method. However, there are many ways in which the prototype can be enhanced and

improved.

 Improvements and Recommendations 6.2

The prototype strictly used log files to gather data. In order to overcome the limitations of a

log file only approach, SNMP could be added to gather the requisite data from network devices.

Other technologies and techniques could also be included as deemed necessary, such as initially

ingesting log files, creating customized agents to log specific data not already found in log files,

and running scripts to report information such as what packages or updates have already been

installed.

In order to make this prototype a reality several things need to occur. Ideally, vendors

would ensure that all of their devices support the syslog protocol and log the key indicators used

in this research. In cases where this does not happen, other technologies like those mentioned

above could be used to supplement the log files. Due to the loose nature of the syslog protocol,

someone would have to write a significant number of Logstash parsing algorithms to allow the

centralized server to collect all the needed data from any number of devices. One way to do this

would be to rely on crowdsourcing the technology to spread out the work among interested

parties.

58

A complete and always up to date vulnerability database would also need to be created in

order for this to work. This database would need to be properly normalized, and would need to

contain a comprehensive list of vulnerabilities across all platforms and vendors. This could be

created and maintained through cooperation among vendors, or perhaps through crowd sourcing

as well.

 Future Research 6.3

This section outlines the potential for future research and improvements including:

• Creation and maintenance of a parsable and comprehensive vulnerability

database

• Create a method to keep the vulnerability database up to date.

• Automate a process to rank discovered vulnerabilities based on context, severity,

and any other factors deemed relevant

• Check previously reported logs for vulnerabilities when new vulnerabilities are

discovered.

• Create a better method of reporting discovered vulnerabilities that doesn’t

contain duplicates and shows the current state of discovered vulnerabilities

• Create and implement a methodology to report when vulnerabilities have been

resolved

6.3.1 Comprehensive Vulnerability Database

In order to fully assess the potential for this prototype, a method for creating a

comprehensive database needs to be developed. For this research, data was manually gathered

59

and compiled into a database. This process needs to be optimized, automated and expanded to

cover a much bigger subset of software vulnerabilities.

6.3.2 Keep Vulnerability Database up to date

Related to creating a comprehensive database, there should be a mechanism in place to

ensure that the database is always up to date, in real-time if possible. In order to catch newly

discovered vulnerabilities the system has to have access to a frequently updated database.

6.3.3 Rank Discovered Vulnerabilities

When vulnerabilities are discovered, they must be prioritized in order to determine which

ones need to be resolved first. Currently, the standard method for doing this is to manually rank

them based on severity and the status of the vulnerable machine. Fixing a low severity

vulnerability on a production machine may me more urgent than fixing a critical severity

vulnerability on a sandboxed development environment. In order to fully automate the

vulnerability reporting process, this component should be implemented.

6.3.4 Check for Previously Installed Vulnerabilities

If vulnerable software is installed on a machine, before a corresponding entry is made in

the vulnerability database, the current prototype will not detect the vulnerability, unless the log

file is sent a second time. Developing a method to check for recently discovered vulnerabilities

after the software has already been installed is necessary to have a good vulnerability assessment

system.

60

6.3.5 Better Method for Reporting

Kibana is a poor reporting tool for this framework. It is inherently time based and doesn’t

easily support a method for showing the current configuration of the devices on the network. It is

better suited for displaying trends. Creating a custom platform to report discovered

vulnerabilities and resolved vulnerabilities would greatly enhance the value and efficiency of this

framework. This new reporting tool could be built on top of the existing Elasticsearch database

using the Elasticsearch API.

6.3.6 Report Resolved Vulnerabilities

The centralized server needs a method to detect when vulnerabilities have been resolved

and to keep resolved vulnerabilities from showing up as current vulnerabilities. This feature

would make the framework a much more complete and effective vulnerability assessment tool.

61

REFERENCES

Apache. 2015. “Apache Vulnerabilities.” Accessed July 11.
http://httpd.apache.org/security/vulnerabilities_22.html.

Bendix, L., and C. Pendleton. 2013. “The Role of Configuration Management in Outsourcing
and Distributed Development.” Proceedings of the 9th Central & Eastern ….
http://dl.acm.org.erl.lib.byu.edu/citation.cfm?id=2556610.2556615&coll=DL&dl=ACM&C
FID=593073421&CFTOKEN=26469304.

Canada, Public Safety. 2014. “AL14-005: OpenSSL Heartbleed Vulnerability,” April.
http://www.publicsafety.gc.ca/cnt/rsrcs/cybr-ctr/2014/al14-005-eng.aspx.

Debian. 2015. “Snapshot.debian.org.” Accessed July 11. http://snapshot.debian.org/.

Forte, D. 2005. “Log Management for Effective Incident Response.” Network Security.
http://www.sciencedirect.com/science/article/pii/S1353485805702798.

Havens, R. 2011. “Naive Bayesian Spam Filters for Log File Analysis.” All Theses and
Dissertations. http://scholarsarchive.byu.edu/etd/2814.

Kercher, K. 2013. “Distributed Agent Cloud-Sourced Malware Reporting Framework,” no.
September. http://scholarsarchive.byu.edu/etd/4250/.

Lund, T., H. Panike, S. Moses, D. Rowe, and J. Ekstrom. 2015. “Practical Data Mining and
Analysis for System Administration.” In 2015 ASEE Annual Conference and Exposition,
26.1233.1–26.1233.24. https://peer.asee.org/practical-data-mining-and-analysis-for-system-
administration.

Mell, P., K. Scarfone, and S. Romanosky. 2006. “Common Vulnerability Scoring System.” IEEE
Security and Privacy Magazine 4 (6). IEEE: 85–89. doi:10.1109/MSP.2006.145.

NVD. 2015. “National Vulnerability Database.” Accessed January 27. http://nvd.nist.gov/.

OSVDB. 2015. “OSVDB: Open Sourced Vulnerability Database.” Accessed February 6.
http://osvdb.org/.

RFC1098. 2015. “A Simple Networking Management Protocol (SNMP).” Accessed September
5. http://www.rfc-editor.org/rfc/rfc1157.txt.

62

Rinnan, R. 2005. “Benefits of Centralized Log File Correlation.”
http://brage.bibsys.no/xmlui/handle/11250/143787.

Teo, L. 2000. “Port Scans and Ping Sweeps Explained.” Linux Journal 2000 (80es). Belltown
Media: 2. http://dl.acm.org/ft_gateway.cfm?id=364651&type=html.

US-CERT. 2015. “US-CERT | United States Computer Emergency Readiness Team.” Accessed
February 6. https://www.us-cert.gov/.

Wooldridge, M. 1998. Agent Technology: Foundations, Applications, and Markets. Springer
Science & Business Media.
http://books.google.com/books/about/Agent_technology.html?id=D5pnZ_fUplUC&pgis=1.

63

APPENDICES

64

APPENDIX A. ELK CONFIGURATION FILES

Logstash-syslog.conf

input {
 tcp {
 port => 5000
 type => syslog
 }
 udp {
 port => 5000
 type => syslog
 }
 udp {
 port => 514
 type => syslog
 }
 udp {
 port => 5005
 type => vulnerabilities
 }
}

filter {

 grok {
 break_on_match => false
 match => { "message" =>
"<%{POSINT:syslog_pri}>(?:%{SYSLOGTIMESTAMP:syslog_timestamp}|%{TIMESTAMP
_ISO8601:syslog_timestamp8601}) %{SYSLOGHOST:syslog_hostname} %{PROG:syslog_pr
ogram}(?:\[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}" }
 match => { "message" =>
"<%{POSINT:syslog_pri}>(?:%{SYSLOGTIMESTAMP:syslog_timestamp}|%{TIMESTAMP
_ISO8601:syslog_timestamp8601}) %{SYSLOGHOST:syslog_hostname}
(?<syslog_program>[-a-zA-Z0-
9_]*\[\w*\]) %{POSINT:syslog_pid} %{GREEDYDATA:syslog_message}" }

 match => { "message" =>
"\[(?<timestamp>%{DAY:day} %{MONTH:month} %{MONTHDAY} %{TIME} %{YEAR})

65

\] \[%{WORD:class}\] %{WORD:program}/(?<program_version>[0-
9.]*) %{GREEDYDATA:errmsg}" }

 match => { "message" => "<%{POSINT:syslog_pri}>(?<router_time>[0-
9:]*)(?<syslog_command>[%A-Z0-9:_-]*) %{GREEDYDATA:syslog_message}" }

 match => { "message" => "%{POSINT:vuln_id} IP:%{IP:vuln_ip}
Date:%{DATE:vuln_date} Severity:%{WORD:vuln_severity}
Message:%{GREEDYDATA:vuln_message}" }

 match => { "message" => "%{USERNAME:vuln_id} IP:%{IP:vuln_ip}
Severity:%{WORD:apache_severity} Message:%{GREEDYDATA:vuln_message}" }

 match => { "message" => "%{USERNAME:vuln_id} IP:%{IP:vuln_ip}
Severity:%{WORD:cisco_severity} Type:cisco Message:%{GREEDYDATA:vuln_message}" }

 match => { "message" => "Install: %{GREEDYDATA:packages}" }
 add_field => ["received_at", "%{@timestamp}"]
 add_field => ["received_from", "%{host}"]
 }

 syslog_pri {
 type => syslog
 }
 ruby {
 code => "
 temp = event['packages']
 if temp
 array = temp.split('), ')
 program = Array.new()
 architecture = Array.new()
 version = Array.new()
 lin = 'y'
 for element in array do
 element.delete!(')')
 element.gsub!(/, automatic/, '')
 newEl = element.split(/([:])|(\()/)
 program.push(newEl[0])
 architecture.push(newEl[2])
 version.push(newEl[4])
 #event['program'][counter] = newEl[0]
 #event['architecture'][counter] = newEl[2]
 #event['version'][counter] = newEl[4]
 end
 event['program'] = program
 event['architecture'] = architecture

66

 event['version'] = version
 event['lin-pack'] = lin
 end
 "
 }
}

output {
 elasticsearch { cluster => elasticsearch
 protocol => http
 }
 stdout { codec => rubydebug }

stdout { debug => true }
}

67

APPENDIX B. MYSQL DATABASE CONFIGURATION

MySQL Create Table Script

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS
*/;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;

--
-- Database: `Vulnerabilities`
--

-- --

--
-- Table structure for table `apachevulnerabilities`
--

CREATE TABLE IF NOT EXISTS `apachevulnerabilities` (
 `id` int(25) NOT NULL AUTO_INCREMENT,
 `rank` varchar(255) NOT NULL,
 `title` varchar(255) NOT NULL,
 `cve` varchar(255) NOT NULL,
 `description` varchar(500) NOT NULL,
 `affectsVersion` varchar(255) NOT NULL,
 `fixVersion` varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=13 ;

-- --

--
-- Table structure for table `ciscohosts`
--

CREATE TABLE IF NOT EXISTS `ciscohosts` (

68

 `ip` varchar(15) NOT NULL,
 `product` varchar(50) NOT NULL,
 `firmware` varchar(100) NOT NULL,
 `version` varchar(50) NOT NULL,
 PRIMARY KEY (`ip`,`product`,`firmware`,`version`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ciscovulnerabilities`
--

CREATE TABLE IF NOT EXISTS `ciscovulnerabilities` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `rank` varchar(20) NOT NULL,
 `title` varchar(100) NOT NULL,
 `description` varchar(255) NOT NULL,
 `cve` varchar(50) NOT NULL,
 `product` varchar(50) NOT NULL,
 `affectsVersion` varchar(50) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3 ;

-- --

--
-- Table structure for table `hosts`
--

CREATE TABLE IF NOT EXISTS `hosts` (
 `ip` varchar(255) NOT NULL,
 `hostname` varchar(255) NOT NULL,
 `os` varchar(255) NOT NULL,
 `version` varchar(255) NOT NULL,
 `dt` datetime NOT NULL,
 PRIMARY KEY (`ip`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `linuxvulnerabilities`

69

--

CREATE TABLE IF NOT EXISTS `linuxvulnerabilities` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `rank` varchar(20) NOT NULL,
 `title` varchar(80) NOT NULL,
 `cve` varchar(20) NOT NULL,
 `description` varchar(250) NOT NULL,
 `affectsVersion` varchar(100) NOT NULL,
 `fixVersion` varchar(100) NOT NULL,
 `package` varchar(20) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3 ;

-- --

--
-- Table structure for table `msvulnerabilities`
--

CREATE TABLE IF NOT EXISTS `msvulnerabilities` (
 `id` int(255) NOT NULL AUTO_INCREMENT,
 `DatePosted` varchar(255) NOT NULL,
 `Bulletin` varchar(255) NOT NULL,
 `BulletinKB` varchar(255) NOT NULL,
 `Severity` varchar(255) NOT NULL,
 `Impact` varchar(255) NOT NULL,
 `Title` varchar(255) NOT NULL,
 `AffectedProduct` varchar(255) NOT NULL,
 `ComponentKB` varchar(255) NOT NULL,
 `AffectedComponent` varchar(255) NOT NULL,
 `SupercededBy` varchar(255) NOT NULL,
 `Supercedes` varchar(255) NOT NULL,
 `Reboot` varchar(255) NOT NULL,
 `CVE` varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=17083 ;

70

APPENDIX C. PYTHON SCRIPTS

The following Python script was used in this research:

import urllib2
import requests
import base64
import json
import datetime
import pymysql
import re
import socket

db = pymysql.connect(host="localhost", # your host,
 user="root", # your username
 passwd="password", # your password
 db="Vulnerabilities",) # name of the data base
cur = db.cursor()
 # you must create a Cursor object. It will let
 # you execute all the queries you need

#Query ELK for Windows Updates
url = 'http://localhost:9200/_search?q=syslog_pid:19&size=300&sort=@timestamp:desc'
req = urllib2.Request(url)
out = urllib2.urlopen(req)
data = out.read()

data = json.loads(data)

total = data['hits']['total']
for each in range (0, total):
 bit = "none"
 message = data['hits']['hits'][each]['_source']['syslog_message']

 results = re.search('(KB[0-9]*)', message)
 if results is not None:
 if len(results.group(1)) != 0:
 update = results.group(1)

71

 results = re.search('(x64)', message)
 if results is not None:
 if len(results.group(1)) != 0:
 bit = results.group(1)

 results = re.search('(32-bit)', message)
 if results is not None:
 if len(results.group(1)) != 0:
 bit = results.group(1)

 ip = data['hits']['hits'][each]['_source']['received_from']
 hostname = data['hits']['hits'][each]['_source']['syslog_hostname']
 timestamp = data['hits']['hits'][each]['_source']['received_at']

Insert a list of installed Windows Updates to track them.
 query = "INSERT IGNORE INTO updates (ip, hostname, updates, dt) VALUES ('" + ip
+ "', '" + hostname + "', '" + update + "', '" + timestamp + "');"
 cur.execute(query)
 db.commit()

#Query ELK for Windows OS and SP

url = 'http://localhost:9200/_search?q=syslog_pid:6009&size=1&sort=@timestamp:desc'
req = urllib2.Request(url)
out = urllib2.urlopen(req)
data = out.read()

data = json.loads(data)

windows = data['hits']['hits'][0]['_source']['syslog_message'].split()

version = windows[4]
if version == "6.01.":
 version = "7"
windowsOS = windows[2] + " " + version
windowsSP = "Service Pack " + windows[8][0]
ip = data['hits']['hits'][0]['_source']['received_from']
hostname = data['hits']['hits'][0]['_source']['syslog_hostname']

#Check for missing Windows Updates
query = "SELECT DISTINCT(ComponentKB), DatePosted, Severity, Impact, Title,
AffectedComponent, SupercededBy, Supercedes, CVE, BulletinKB FROM msvulnerabilities
WHERE AffectedProduct LIKE '%" + windowsOS + "%' AND AffectedProduct LIKE '%" + bit

72

+ "%' AND AffectedProduct LIKE '%" + windowsSP + "%' AND SupercededBy = '' AND
AffectedComponent = '' GROUP BY ComponentKB ORDER BY ComponentKB desc";

cur.execute(query)
issues = []
for row in cur.fetchall():
 issues.append(row)
entries = []
toRemove = []
for entry in issues:
 query = "SELECT * FROM updates WHERE (updates = 'KB" + entry[0] + "' OR updates
= 'KB" + entry[9] + "') AND ip = '" + ip + "';"
 cur.execute(query)
 #print query
 if cur.rowcount == 0:
 entries.append(entry)

update = ""
for entry in entries:
 for entry2 in entries:
 val = entry[7]
 kb = entry2[0]
 results = re.search('MS[0-9]*-[0-9]*\[([0-9]*)\]', val)
 if results is not None:
 if len(results.group(1)) != 0:
 update = results.group(1)
 if update != "":
 if kb == update:
 toRemove.append(entry2)
 #entries.remove(entry2)
 update = ""
print len(toRemove)
toRemove = list(set(toRemove))
print len(toRemove)
for entry in toRemove:
 entries.remove(entry)
#Send discovered missing updates back to ELK
for entry in entries:

 UDP_IP = "127.0.0.1"
 UDP_PORT = 5005
 MESSAGE = entry[0] + " IP:" + ip + " Date:" + entry[1] + " Severity:" + entry[2] + "
Message:" + entry[4]
 MESSAGE = entry [0]

 sock = socket.socket(socket.AF_INET, # Internet

73

 socket.SOCK_DGRAM) # UDP
 sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))

Query ELK for Apache vulnerabilities
url = 'http://localhost:9200/_search?q=program:Apache&size=1&sort=@timestamp:desc'

req = urllib2.Request(url)
out = urllib2.urlopen(req)
data = out.read()

returned data is JSON
data = json.loads(data)
num = data['hits']['total']

message = data['hits']['hits'][0]['_source']['program_version']
ip = data['hits']['hits'][0]['_source']['host']
date = data['hits']['hits'][0]['_source']['timestamp']

query = "SELECT title, rank, cve FROM apachevulnerabilities WHERE affectsVersion LIKE
'%" + message + "%'"

cur.execute(query)
#Send Apache vulnerabilities back to ELK
for row in cur.fetchall():

 UDP_IP = "127.0.0.1"
 UDP_PORT = 5005
 MESSAGE = row[2] + " IP:" + ip + " Severity:" + row[1] + " Message:" + row[0]

 print "message:", MESSAGE

 sock = socket.socket(socket.AF_INET, # Internet
 socket.SOCK_DGRAM) # UDP
 sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))

Query ELK for Linux Distribution Info
url = 'http://localhost:9200/_search?q=syslog_pri:5&size=300&sort=@timestamp:desc'

req = urllib2.Request(url)
out = urllib2.urlopen(req)
data = out.read()

74

data = json.loads(data)
num = data['hits']['total']

for each in range (0, num):
 message = data['hits']['hits'][each]['_source']['syslog_message']
 results = re.search('Linux version ([amd0-9.-]*)', message)
 if results is not None:
 if len(results.group(1)) != 0:
 update = results.group(1)
 print update

#Query ELK for installed Linux Packages
url = 'http://localhost:9200/_search?q=lin-pack:y'
req = urllib2.Request(url)
out = urllib2.urlopen(req)
data = out.read()
data = json.loads(data)
ip = data['hits']['hits'][0]['_source']['received_from']
num = data['hits']['total']

for each in range (0, num):
 programs = data['hits']['hits'][each]['_source']['program']
 versions = data['hits']['hits'][each]['_source']['version']

 length = len(programs)
 for i in range (0, length):
 query = "INSERT IGNORE INTO packages (ip, hostname, package, version)
VALUES ('" + ip + "', '" + ip + "' , '" + programs[i] + "', '" + versions[i] + "');"
 cur.execute(query)
 db.commit()

 for i in range (0, length):
 query = "SELECT * FROM linuxvulnerabilities WHERE package='" +
programs[i] + "' AND affectsVersion='" + versions[i] + "';"
 cur.execute(query)

Send Linux Vulnerabilities back into ELK
 for row in cur.fetchall():
 UDP_IP = "127.0.0.1"
 UDP_PORT = 5005
 MESSAGE = row[3] + " IP:" + ip + " Severity:" + row[1] + " Message:" +
row[2]

 print "message:", MESSAGE

 sock = socket.socket(socket.AF_INET, # Internet

75

 socket.SOCK_DGRAM) # UDP
 sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))

Query SEA for Cisco Switches
url =
'https://sea.byu.edu/es/_search?q=description:C3560%20Software&analyze_wildcard=true&size
=1000'

req = urllib2.Request(url)
base64string = "**************" #base64 encoded password
print base64string
req.add_header("Authorization", "Basic %s" % base64string)

out = urllib2.urlopen(req)
data = out.read()

data = json.loads(data)
num = data['hits']['total']

for each in range (0, 99):
 description = data['hits']['hits'][each]['_source']['description']
 ip = data['hits']['hits'][each]['_source']['logSourceIP']
 firmware = ""
 version = ""
 results = re.search('Cisco IOS Software, C3560 Software \(([A-z0-9-]*)\)', description)
 if results is not None:
 if len(results.group(1)) != 0:
 update = results.group(1)
 firmware = update

 results = re.search('Cisco IOS Software, C3560 Software \([A-z0-9-]*\), Version ([0-
9\.]*)', description)
 if results is not None:
 if len(results.group(1)) != 0:
 update = results.group(1)
 version = update

 query = "INSERT IGNORE INTO ciscohosts (ip, product, firmware, version) VALUES
('" + ip + "', 'Cisco Catalyst 3560', '" + firmware + "', '" + version + "');"

 cur.execute(query)
 db.commit()

76

 query = "SELECT * FROM ciscovulnerabilities WHERE product='Cisco Catalyst 3560'
AND affectsVersion='" + version + "';"
 cur.execute(query)

Send Cisco Vulnerabilities into ELK
 for row in cur.fetchall():

 UDP_IP = "127.0.0.1"
 UDP_PORT = 5005
 MESSAGE = row[4] + " IP:" + ip + " Severity:" + row[1] + " Type:cisco" + "
Message:" + row[2]

 sock = socket.socket(socket.AF_INET, # Internet
 socket.SOCK_DGRAM) # UDP
 sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))

77

APPENDIX D. COMPARISON FOR WINDOWS 7

 Windows 7 Manual
Results

Windows 7 Prototype
Results

Windows 7 Port Scan

IP Address 192.168.230.137 192.168.230.137 192.168.230.137
OS Windows 7 Windows 7 Windows Server 2008 R2

Architecture 64 Bit 64 Bit
Installed
Updates

KB2461484
KB2479943
KB2491683
KB2506014
KB2506212
KB2506928
KB2509553
KB2511455
KB2515325
KB2532531
KB2533552
KB2533623
KB2536275
KB2536276
KB2544893
KB2545698
KB2547666
KB2552343
KB2560656
KB2563227
KB2564958
KB2570947
KB2574819
KB2579686
KB2585542
KB2592687
KB2603229
KB2604115
KB2619339
KB2620704
KB2621440
KB2631813
KB2639308
KB2640148
KB2647753
KB2653956
KB2654428

KB2461484
KB2479943
KB2491683
KB2506014
KB2506212
KB2506928
KB2509553
KB2511455
KB2515325
KB2532531
KB2533552
KB2533623
KB2536275
KB2536276
KB2544893
KB2545698
KB2547666
KB2552343
KB2560656
KB2563227
KB2564958
KB2570947
KB2574819
KB2579686
KB2585542
KB2592687
KB2603229
KB2604115
KB2619339
KB2620704
KB2621440
KB2631813
KB2639308
KB2640148
KB2647753
KB2653956
KB2654428

78

KB2660075
KB2667402
KB2670838
KB2676562
KB2685811
KB2685813
KB2685939
KB2690533
KB2698365
KB2705219
KB2706045
KB2712808
KB2718704
KB2719857
KB2726535
KB2727528
KB2729094
KB2729452
KB2731771
KB2732059
KB2732487
KB2736422
KB2742599
KB2750841
KB2758857
KB2761217
KB2763523
KB2770660
KB2773072
KB2786081
KB2789645
KB2791765
KB2798162
KB2799926
KB2800095
KB2803821
KB2807986
KB2808679
KB2813347
KB2813430
KB2820331
KB2830477
KB2832414
KB2834140
KB2836942
KB2836943
KB2839894
KB2840149
KB2840631
KB2841134
KB2843630
KB2846960
KB2847077
KB2847311
KB2847927
KB2849696

KB2660075
KB2667402
KB2670838
KB2676562
KB2685811
KB2685813
KB2685939
KB2690533
KB2698365
KB2705219
KB2706045
KB2712808
KB2718704
KB2719857
KB2726535
KB2727528
KB2729094
KB2729452
KB2731771
KB2732059
KB2732487
KB2736422
KB2742599
KB2750841
KB2758857
KB2761217
KB2763523
KB2770660
KB2773072
KB2786081
KB2789645
KB2791765
KB2798162
KB2799926
KB2800095
KB2803821
KB2807986
KB2808679
KB2813347
KB2813430
KB2820331
KB2830477
KB2832414
KB2834140
KB2836942
KB2836943
KB2839894
KB2840149
KB2840631
KB2841134
KB2843630
KB2846960
KB2847077
KB2847311
KB2847927
KB2849696

79

KB2849697
KB2852386
KB2853952
KB2855844
KB2857650
KB2861191
KB2861698
KB2862152
KB2862330
KB2862335
KB2862966
KB2862973
KB2864058
KB2864202
KB2868038
KB2868116
KB2868626
KB2871997
KB2872339
KB2882822
KB2884256
KB2887069
KB2888049
KB2891804
KB2892074
KB2893294
KB2893519
KB2894844
KB2900986
KB2908783
KB2911501
KB2912390
KB2913152
KB2918077
KB2918614
KB2919469
KB2922229
KB2923545
KB2926765
KB2928562
KB2929733
KB2931356
KB2937610
KB2939576
KB2943357
KB2952664
KB2957189
KB2957503
KB2957509
KB2961072
KB2965788
KB2966583
KB2968294
KB2970228
KB2971850
KB2972100

KB2849697
KB2852386
KB2853952
KB2855844
KB2857650
KB2861191
KB2861698
KB2862152
KB2862330
KB2862335
KB2862966
KB2862973
KB2864058
KB2864202
KB2868038
KB2868116
KB2868626
KB2871997
KB2872339
KB2882822
KB2884256
KB2887069
KB2888049
KB2891804
KB2892074
KB2893294
KB2893519
KB2894844
KB2900986
KB2908783
KB2911501
KB2912390
KB2913152
KB2918077
KB2918614
KB2919469
KB2922229
KB2923545
KB2926765
KB2928562
KB2929733
KB2931356
KB2937610
KB2939576
KB2943357
KB2952664
KB2957189
KB2957503
KB2957509
KB2961072
KB2965788
KB2966583
KB2968294
KB2970228
KB2971850
KB2972100

80

KB2972211
KB2972280
KB2973112
KB2973201
KB2973351
KB2976627
KB2976897
KB2977292
KB2977728
KB2978092
KB2978120
KB2978668
KB2978742
KB2979570
KB2980245
KB2984972
KB2984976
KB2984981
KB2985461
KB2991963
KB2992611
KB2993651
KB2993958
KB2994023
KB3000483
KB3001554
KB3002885
KB3003057
KB3003743
KB3004361
KB3004375
KB3004394
KB3005607
KB3006121
KB3006226
KB3006625
KB3008627
KB3008923
KB3009736
KB3010788
KB3011780
KB3012176
KB3013126
KB3013410
KB3013455
KB3014406
KB3019215
KB3019978
KB3020338
KB3020388
KB3021674
KB3021952
KB3022777
KB3023266
KB3023562
KB3023607

KB2972211
KB2972280
KB2973112
KB2973201
KB2973351
KB2976627
KB2976897
KB2977292
KB2977728
KB2978092
KB2978120
KB2978668
KB2978742
KB2979570
KB2980245
KB2984972
KB2984976
KB2984981
KB2985461
KB2991963
KB2992611
KB2993651
KB2993958
KB2994023
KB3000483
KB3001554
KB3002885
KB3003057
KB3003743
KB3004361
KB3004375
KB3004394
KB3005607
KB3006121
KB3006226
KB3006625
KB3008627
KB3008923
KB3009736
KB3010788
KB3011780
KB3012176
KB3013126
KB3013410
KB3013455
KB3014406
KB3019215
KB3019978
KB3020338
KB3020388
KB3021674
KB3021952
KB3022777
KB3023266
KB3023562
KB3023607

81

KB3025390
KB3029944
KB3031432
KB3034196
KB915597
KB971033
KB976902
KB982018

KB3025390
KB3029944
KB3031432
KB3034196
KB915597
KB971033
KB976902
KB982018

	Deriving System Vulnerabilities Using Log Analytics
	BYU ScholarsArchive Citation

	Title

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Nature of the Problem
	1.2 Purpose of the Research
	1.3 Project Approach
	1.4 Scope and Limitations
	1.5 Research Questions and Hypotheses
	1.6 Definitions
	1.7 Thesis Outline
	1.7.1 Chapter 2: Literature review
	1.7.2 Chapter 3: Methodology
	1.7.3 Chapter 4: Framework
	1.7.4 Chapter 5: Results
	1.7.5 Chapter 6: Conclusions and Future Work
	1.7.6 Appendix A. ELK Configuration Files
	1.7.7 Appendix B. MySQL Database Configuration
	1.7.8 Appendix C. Python Scripts
	1.7.9 Appendix D. Comparison for Windows 7

	2 Literature review
	2.1 Introduction
	2.2 Vulnerability
	2.3 Vulnerability Database
	2.4 Port Scanning
	2.5 Log Files
	2.6 Syslog
	2.6.1 PRI
	2.6.2 Header
	2.6.3 MSG
	2.6.4 Network

	2.7 Data Mining
	2.8 Agent Technology
	2.9 Simple Network Management Protocol
	2.10 Log File Inventory Management System
	2.10.1 Configuration Management
	2.10.2 Centralized Log File Correlation
	2.10.3 Log Management for Incident Response

	3 Methodology
	3.1 (R1) Log File Inventory Management System
	3.1.1 Prototype

	3.2 (R2) Overcoming Challenges of Log File Inventory Management System
	3.3 (R3) Log File Key Indicators
	3.4 (H1) It is Possible to Generate an Accurate System Inventory using Log Files
	3.5 (H2) It is Possible to Accurately Detect Vulnerabilities using Log Files
	3.6 (H3) Log Files can Enable Faster Vulnerability Alerts than Port Scanning
	3.6.1 Data Collection

	4 Framework
	4.1 Centralized Log File Data Collection Server
	4.1.1 ELK Configuration
	4.1.2 Elasticsearch API
	4.1.3 Python Script
	4.1.4 Vulnerability Database
	4.1.5 MySQL Database

	4.2 Client Side Configurations
	4.2.1 Windows 7
	4.2.2 Debian 7
	4.2.3 Printer
	4.2.4 Firewall
	4.2.5 Switch

	4.3 Problems Encountered with the Implementation
	4.3.1 Loose Format of the Syslog Protocol
	4.3.2 Syslog Messages without Identifying Information from Network Devices
	4.3.3 Kibana Reports Duplicate Vulnerabilities when Duplicate Logs Are Sent
	4.3.4 Kibana is Designed to Show a History instead of the Current State

	4.4 Testing
	4.4.1 Summary of Test Results
	4.4.2 Accuracy of Software Inventory
	4.4.3 Speed to Report Vulnerabilities
	4.4.4 Accuracy of Discovered Vulnerabilities

	5 Results
	5.1 Framework Analysis
	5.1.1 (R1) Comparison of Log File Prototype and Port Scanning
	5.1.2 Accuracy of Software Inventory
	5.1.3 Speed of Methods
	5.1.4 Accuracy of Reported Vulnerabilities
	5.1.5 Limitations

	5.2 (R2) Challenges in Creating a Log File Inventory Management System
	5.3 (R3) Required Key Indicators from Log Files
	5.4 (H1) It is Possible to Generate an Accurate System Inventory Using Log Files
	5.5 (H2) It is Possible to Accurately Detect Vulnerabilities Using Log Files
	5.6 (H3) Log Inventory Management System is Faster than Port Scanning
	5.7 Research Contributions
	5.7.1 Automated Log File Inventory Management System
	5.7.2 Standard for Requisite Log Data for Vulnerability Assessment
	5.7.3 Framework for Data Gathering and Analysis

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Improvements and Recommendations
	6.3 Future Research
	6.3.1 Comprehensive Vulnerability Database
	6.3.2 Keep Vulnerability Database up to date
	6.3.3 Rank Discovered Vulnerabilities
	6.3.4 Check for Previously Installed Vulnerabilities
	6.3.5 Better Method for Reporting
	6.3.6 Report Resolved Vulnerabilities

	References
	Appendices
	Appendix A. ELK Configuration Files
	Appendix B. MySQL Database Configuration
	Appendix C. Python Scripts
	Appendix D. Comparison for Windows 7

