
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2014-09-01 

Measuring Human Workload in Unmanned Aerial Vehicles Measuring Human Workload in Unmanned Aerial Vehicles 

Timothy J. Gledhill 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Computer Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Gledhill, Timothy J., "Measuring Human Workload in Unmanned Aerial Vehicles" (2014). Theses and 
Dissertations. 6106. 
https://scholarsarchive.byu.edu/etd/6106 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6106?utm_source=scholarsarchive.byu.edu%2Fetd%2F6106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Modeling Human Workload in Unmanned Aerial Systems

TJ Gledhill

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael A. Goodrich, Chair
Eric M. Mercer

Kevin Seppi

Department of Computer Science

Brigham Young University

September 2014

Copyright c© 2014 TJ Gledhill

All Rights Reserved



ABSTRACT

Modeling Human Workload in Unmanned Aerial Systems

TJ Gledhill
Department of Computer Science, BYU

Master of Science

Unmanned aerial systems (UASs) often require multiple human operators fulfilling
diverse roles for safe and correct operation [11, 14, 24]. Reliably designing the human
interaction, autonomy, and decision making aspects of these systems requires the use of
modeling. We propose a conceptual model that models human machine interaction systems
as a group of actors connected by a network of communication channels. We present a
simulation framework implemented in Java, with an optional XML model parser that can be
analyzed using the Java Pathfinder (JPF) model checker. We propose two human workload
metrics based on a taxonomy extracted from the relevant literature. Using the simulator to
produce a workload profile over time for each human actor, we conducted a case study by
modeling a UAS integrated into the National Airspace System. Additionally we adapted an
existing cognitive workload metric to act as a baseline. The results of this case study were
consistent with known workload events and the results of our baseline metric.

Keywords: human workload, unmanned aerial system, UAS, national air space, unmanned
aerial vehicle, modeling human machine interaction
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Chapter 1

Introduction and Overview

Most existing Unmanned Aerial Systems (UASs) require two or more human oper-

ators [14, 24]. Standard UAS practice is to have one human to control the aerial vehicle

and another to control the camera or other payloads. In addition to this a third human is

often responsible for overseeing task completion and interfacing with the command structure.

Although some argue persuasively that this is a desirable organization [25], there is consider-

able interest in reducing the required number of humans and reducing human workload using

improved autonomy and enhanced user interfaces [11, 17, 20].

UAV enabled wilderness search and rescue (WiSAR) has been a focus of the Human

Centered Machine Intelligence (HCMI), Multiple Agent Intelligent Coordination and Control

(MAGICC) and Computer Vision (CV) labs at Brigham Young University since 2005. In

that time research has been conducted on human interaction with miniature unmanned

aerial vehicles (mUAVs), improving target detection by enhancing video taken from a mUAV,

integrating mUAVs into a search and rescue environment, and improving the mUAVs chance

of getting video footage of the target.

The research results over this time period appear promising [9, 10, 13, 18, 19, 23, 27?

], however, it remains unknown how these improvements will effect human workload within

the context of a UAS. While it was possible to make changes to our existing WiSAR UAS

and then perform user studies to view the effects of these changes, we felt that the more

important scientific problem lay in discovering a way to measure changes in human workload

as a result of changes to a UAS. To accomplish this we chose to use system modeling.
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System modeling is not a new approach, though applying system modeling to human-

machine systems requires extending most modeling languages. There are many different

modeling languages, each of which is designed to perform specific types of validation [4]. For

example, Brahms focuses on performing agent-based simulations, EOFM focuses on task

analytics, and ACT-R focuses on human cognition. Due to the complexity of these modeling

languages and our need to manipulate the internal workings of the language we decided that

our shortest path forward was to create our own simple modeling framework. We call this

modeling framework the Model Abstraction Framework.

The Model Abstraction Framework consists of the following core components: Models,

Model Parser, Modeling Interface, Simulator, and Workload Viewer. A link to the source

code is found in appendix B. The Model Abstraction Framework uses XML as the primary

modeling language. The models consist of a set of XML tags that represent a labeled state

transition system for each entity that has state, additionally the model defines a Directed

Team Graph (DiTG) representing the communication network between the different entities

and constraining the behavior of each labeled state transition system. The model is then

parsed using the Model Parser. The Model Parser checks that the model syntax is correct

and converts the XML into a set of Java classes that implement the Modeling Interface, a

set of Java interfaces and abstract classes. The Modeling Interface allows the model to be

expressed as a labeled state transition system to be run by the Simulator. The Simulator is a

core set of Java classes which simulates the running of the labeled state transition system

and gathers workload metrics. The simulation can be performed as a stand-alone application

or it can be run inside of Java Pathfinder (JPF) to perform model checking. The workload

viewer allows us to view human workload measures in real-time when the simulation is run

as a stand-alone application.

We present two workload measurements, Resource Workload Metric and Decision

Workload Metric, based off of multiple resource theory [32] with ties to queuing theory [26]

and operator fan-out theory [17]. By relating these theories to the different operational
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components of the model we obtain a quantitative measure of a human’s workload for each

time-step in the system. Additionally we adapt the Wickens’ computational model [32] to

the Model Abstraction Framework in an attempt to see how and where this metric differs

from our own.

We perform a case study representing the introduction of a UAS into the National Air

Space. We chose to model a UAS operating within the National Air Space for three reasons:

a) it is similar to the work done in WiSAR, b) the goals outlined by the FAA are similar

to our own [31], and c) the lack of modeling information, requiring the use of high levels of

abstraction. As part of the case study we created four variations of the model to see how the

workload metrics varied between models.

The verification of the metrics in this thesis is done using a consistency approach.

Using known high and low workload scenarios obtained from WiSAR [2], we check that

the workload is consistent with our expected results. While these results are inconslusive

regarding actual human workload, we were pleased to find that the workload measures are

consistent with known high workload scenarios. We were also pleased that our workload

metric, while more expressive, was consistent with the Adapted Wickens’ Model.

1.1 Overview and Papers

Chapter 2 consists of a paper published in the IEEE International Conference on Systems,

Man, and Cybernetics, Manchester, England, 2013. It presents our core conceptual model,

details of the Model Abstraction Framework, and a WiSAR model implemented in Java. It

also presents how the Simulator is able to validate the model using JPF.

Chapter 3 presents an example scenario along with a summary of the concepts that

facilitate the collection of metric data.

Chapter 4 presents our baseline workload metric, which is an adaptation of the Wickens’

computational model for calculating cognitive resource load [32]. It then presents two new

workload metrics, theResource Workload Metric and the Decision Workload Metric.

3



Chapter 5 presents a case study which involves modeling the integration of a UAS

into the NAS. It describes the model scenario, four model variations, and provides a detailed

analysis and comparison of the results generated by these models.

Chapter 6 describes the similarities and differences with other work that is closely

related to our approach of measuring human workload and modeling human-machine systems.

Chapter 7 contains a summary of the work, threats to validity, and future work needed

to accomplish our goals.
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Chapter 2

Modeling UASs for Role Fusion and Human Machine Interface Optimization

In relation to this thesis contributions were made to all aspects of this publication.

TJ Gledhill, Eric Mercer and Michael A. Goodrich. Modeling UASs for Role Fusion and

Human Machine Interface Optimization. In Proceedings of IEEE International Conference

on Systems, Man, and Cybernetics, Manchester, England, 2013.

Abstract

Currently, a single Unmanned Aerial System (UAS) requires several humans managing

different aspects of the problem. Human roles often include vehicle operators, payload experts,

and mission managers [11, 15, 24]. As a step toward reducing the number of humans required,

it is desirable to reduce operator workload through effective distributed control, augmented

autonomy, and intelligent user interfaces. Reliably doing this requires various roles in the

system to be modeled. These roles naturally include the roles of the humans, but they also

include roles delegated to autonomy and software decision-making algorithms, meaning the

GUI and the unmanned aerial vehicle. This paper presents a conceptual model which models

the roles of complex systems as a collection of actors, running in parallel. Results from

applying this model to the UAS-enabled Wilderness Search and Rescue (WiSAR) domain

indicate (a) it is possible to model the entire WiSAR system at varying degrees of abstraction

(b) that building and evaluating the model provides insight into the best practices of WiSAR

teams and (c) a way to model human machine interactions that works directly with the Java

Pathfinder model checker to detect errors.
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2.1 Introduction

Most existing Unmanned Aerial Systems (UASs) require two or more human operators[15, 24].

Standard UAS practice is to have one human to control the aerial vehicle and another to

control the camera or other payloads. In addition to this a third human is often responsible

for overseeing task completion and interfacing with the command structure. Although some

argue persuasively that this is a desirable organization [25], there is considerable interest

in reducing the required number of humans and reducing human workload using improved

autonomy and enhanced user interfaces [11, 17, 20].

The broad research context driving this paper takes a multistep approach: (a) model

the roles for a specific UAS and a well-defined set of tasks, (b) delimit assumptions and

abstractions used in the model, (c) verify properties of the model, (d) use the model to

explore ways of combining roles in such a way that operator workload and the number of

humans is minimized, and (e) design vehicle autonomy and user interface support to allow

a real UAS team to operate more efficiently. The focus of this paper is on the important

lessons learned in the first two steps.

The modeling used in this paper could be applied to a number of tasks, but we focus

on Wilderness Search and Rescue for two reasons. First, the authors have done prior work

on UAS-enabled Wilderness Search and Rescue (WiSAR) [16]; and second, there is a host

of modeling information about how WiSAR is currently performed [? ]. The UAS-enabled

WiSAR systems produced by this research requires three humans, two GUIs, and a single

UAV.

To gain insight into WiSAR we have chosen to model the system as a group of directed

role graphs (DiRGs). Each human, GUI, and UAV represent a DiRG, allowing evaluation

of potential conflicts between and opportunities for unification of the various roles. These

DiRGs are referred to as Actors in the models below.

Modeling is essentially a process of abstraction, choosing which elements of a system

are essential and which are not [7]. Since one of the goals of this paper is to use model-checking
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to evaluate models, we choose a model class that is simple enough that it allows us to clearly

delineate between what is modeled and what is not. Thus, we use DiRGs, which can be

expressed as Mealy state machines, to model different WiSAR roles. These models explicitly

encode key aspects of the various actors, and collectively form a group of Mealy machines

that run in parallel. The model is encoded in Java using a custom set of interfaces designed

to simulate a discrete time environment, facilitate input/output between roles, and provide

non-deterministic event handling.

Model checking is performed using Java Pathfinder (JPF). This is convenient because

JPF runs the model checking on the compiled Java code generated by the modeling exercise.

The results of this modeling exercise indicate (a) it is possible to model the entire

WiSAR system using varying degrees of abstraction and (b) that building and evaluating

the model provides insight into the best practices of WiSAR teams and (c) a way to model

human machine interactions that works directly with the Java Pathfinder model checker to

detect errors.

2.2 Related Work

NASA Ames Research Center (NASA ARC) is using Brahms, a complex and robust language,

to model interactions between operators and their aerial equipment [28]. To study the

Uberlingen collision, an in air collision of two commercial passenger planes, Rungta and her

colleagues produced a model entirely in the Brahms language. This model correctly predicts

the collision and also reveals some of the difficulties intrinsic to this type of system.

One critical aspect of NASA ARCs work carries over into our own: variable task

duration [1]. Task duration directly influences whether the situation ends safely, barely

avoids a crash, or crashes. The biggest advantage Brahms has over Java comes from its strict

grammar. However, Brahms must be translated into Java before using JPF, a step we avoid

by implementing our model in Java directly.
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Bolton and Bass used the Enhanced Operator Function Model (EOFM) language to

create a model consisting of the Air Traffic Controller, the pilot flying the plane, and the

pilot monitoring the equipment, as well as the interfaces they used [5]. As they increased the

number of allowable miscommunications, their system had an exponential increase of errors.

EOFM facilitates the division of goals into multiple levels of activities. These activities can

then be broken into atomic actions [6]. The main difference between this model and our own

is that EOFM is expressed in XML while ours is expressed in Java. This allows us to perform

model checking directly using JPF.

Wilderness Search and Rescue is primarily concerned with finding people who have

become lost in rugged terrain. Research has shown that UASs could potentially be used to

facilitate this work. Goodrich et al. tested the effectiveness of these types of operations [14].

A key outcome of these field tests is the speculation that effectiveness could be enhanced if

the roles of the UAV operator and video operator were combined.

In prior work, a goal-directed task analysis, a work domain analysis, and a control

task analysis were performed. [? ]. These analyses modeled WiSAR as a collection of goals,

work domains, and tasks. While these studies proved valuable for understanding the WiSAR

processes they were less helpful in suggesting improvements to the WiSAR processes. Indeed,

the limitations of such tools for informing the design of technology to support existing

processes has lead to new methods for performing such analyses [18]; the work in this paper

complements such work, using model-checking to perform analyses on problems that do not

lend themselves to answers using other approaches.

2.3 WiSAR UAS Domain

Wilderness search and rescue often occurs in remote, varying, and dangerous terrains. Ac-

cording to [30], there are four core elements of a WiSAR operation: Locate, Reach, Stabilize,

and Evacuate. The WiSAR UAS operates within this first element so it is the focus of this

paper.
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During the Locate element, the incident commander (IC) develops a strategy to obtain

information. This strategy makes use of the available tactics to obtain this information.

The WiSAR UAS is one of the tactics that the IC may choose to use. A WiSAR UAS

technical search team consists of three humans: Mission Manager, Vehicle Operator, and

Video Operator. These constitute the three human roles in the team. Supporting these

human roles are two intelligent user interfaces, the Vehicle Operator GUI and the Video

Operator GUI; these constitute two other roles that must be modeled. The final role is the

aerial vehicle itself, which is equipped with sensors and controllers that enable it to make

decisions. Since the WiSAR UAS technical search team must coordinate its efforts with other

members of the search team via the IC, we embed the five UAS roles within a Parent Search

model. The parent search model represents the entire command structure for the search and

rescue operation.

In the next section, we model the WiSAR roles and the interactions between these roles.

Naturally, these roles will need to take input from the environment, so we present a simple

model of the environment that emphasizes the key environmental elements, probabilistic

events and varying task durations. Note that this model of the environment exists at a higher

level of abstraction than what is typically considered an environment model in literature;

typical models tend to focus on environmental realism, encoding things like terrain, wind,

etc, but our model emphasizes events that affect the behavior of the WiSAR roles.

2.4 Conceptual Model

We have chosen to conceptualize the WiSAR UAS as a group of DiRGs. A DiRG represents

a sequence of tasks for a single role. By conceptualizing WiSAR as a collection of DiRGs

running in parallel we hope to gain more insight into the WiSAR processes with a goal

of improving these processes. In prior work, a goal-directed task analysis, a work domain

analysis, and a control task analysis were performed. [? ]. These analyses modeled WiSAR

as a collection of goals, work domains, and tasks. While these studies proved valuable for
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understanding the WiSAR processes they were less helpful in suggesting improvements to the

WiSAR processes. Indeed, the limitations of such tools for informing the design of technology

to support existing processes occurs because they discover conditions which may result in

problems rather than discovering system problems themselves. Performing system-level task

modeling, such as we are, is capable of discovering such problems [4].

While we are using this technique to find such problems we expand on it in several

ways. First, this technique is most commonly used for analyzing a single human using an

interface. Our models involve a team of humans simultaneously using multiple interfaces

which naturally increases the state space of the model, decreasing scalability. Second, we are

using this technique to analyze the workload of the system. Our goal is the combining of

human roles and interfaces. We hope to gain insight into decreasing the system workload,

and possibly combining roles, by establishing metrics associated with the task model and

model simulation. These metrics can then be used to determine if changes to the model

represent a decrease in operator workload.

As is common when modeling human-automation interaction we have decided to model

the DiRGs usings Mealy state machines [4] This allows us to abstract the different WiSAR

roles into individual state machines that we call Actors. Actors do not correspond to a single

aspect of the WiSAR domain, anything can be an Actor, thus providing the freedom to

flexibly model as many aspects of the domain as necessary and at various levels of resolution.

This freedom is important and represents our primary method of reducing the state space

to manage scalability. Actors transition between states by receiving inputs generated by

other Actors and Events. Events are also modeled as Mealy machines whose transitions

are triggered by a combination of simulation and Actor inputs. Because Actors and Events

may receive input from other Actors and Events the combination of their transition matrices

define the wiring of the different DiRGs. A single wire is when an output from one Actor is

an input on another Actor. This implies that the set of all inputs is the same as the set of all

outputs, however, in practice we do not treat these sets as the same since unhandled input
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represents transitions returning to the current state. We ignore these looping transitions

except when their behavior tells us something interesting.

Formally, the models are the following mathematical structures:

Actor = (S, s0,ΣA ∪ Σ,ΛA, T ) (2.1)

Event = (S, S0,ΣA ∪ ΣS,ΛA, T ) (2.2)

T : S × Σ⇒ S × ΛA (2.3)

where S is a set of states, s0 the start state, ΣA the set of all Actor inputs, ΣS the

set of all Simulator inputs, ΛA the set of all Actor outputs, and T a transition matrix which

specifies the outputs for any state transition. T may have multiple inputs and multiple

outputs.

At this point our conceptual model is implementation agnostic. Indeed, the abstraction

allows us to group Actors, break Actors into sub-Actors, and use Actors to validate specific

behaviors. The model also allows for complex transitions between Actor states and the ability

to enter normally unreachable state spaces using Events. The model is also easily adapted to

code which can be verified using model checking tools such as Java Pathfinder (JPF) which

we will show in the following sections.

2.5 Simulating the WiSAR UAS

Real WiSAR environments and UAV dynamics are complex so full models of the environment

and UAV can also become extremely complex. However, many of the complexities are not

relevant to the decisions made by the various WiSAR actors. Consequently, we propose

a model that ”abstracts away” many unessential details and encodes key aspects of the
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environment. In order to simulate critical aspects of the WiSAR UAS model it is necessary

to represent communication between Actors, concurrency, and task duration, concepts which

are outside the scope of a standard state machine. To do this we constructed a basic

simulation framework. The simulation framework is encapsulated into a single Java class,

called Simulator. This section discusses the key components of this simulation framework.

2.5.1 Core Simulator Objects

The Simulator is made up of the following objects: Team, Actors, Events, States, Transitions,

and Unique Data Objects (UDO). We organize these objects in the following way. A Team is

a wrapper class representing the entire model which contains a collection of Actors, Events,

and shared UDOs. Each Actor contains a set of private States. Each of these States contains

a set of Transitions. Each Transition contains a set of input UDOs, a set of output UDOs,

the outgoing Actor State, and a reference to the Actors current State. This structure is

convenient because it naturally encapsulates the different aspects of a Mealy machine.

Each UDO represents a unique piece of data, input or output, and is flagged as active

or inactive. A UDO is temporarily set to active after it is sent as output. Each Transition can

easily determine if it is possible by checking to see that all of its input UDOs are active. Each

State can then return a list of possible transitions. An Actor evaluates the list of possible

Transitions to determine how it should transition. If it is empty then the Actor does not

transition, otherwise the Actor chooses a single Transition to occur. An Actor chooses a

Transition at the Simulators request. The Simulator tracks when this Transition should occur,

at which point the Transition will set each output UDO to active and change the Actors

current state to the Transitions outgoing State. Because the UDOs must exist before Actors

can be initialized we have created the Team class. The Team class wraps all of the Actors,

Events, and UDOs into single entity. This class first initializes each UDO, afterwards each

Actor and Event is initialized with a list of input and output UDO references which it will

use in its transitions. This structure offers a few benefits. Code wise it allows us to simulate
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the transfer of data without actually transferring data which drastically simplifies the code.

It also forces us to explicitly define our model wiring in two places, first at the Team level

and second at the Actor Transition level as mentioned above. Although the Transition set of

inputs is not limited to the set of global UDOs we can still compare the set of global inputs

and outputs an Actor receives with the set of inputs and outputs defined by its transitions.

Through this we can validate that the set of Actor transitions is complete, as defined in

our Team, which is an important step in validating the model. A simple example of the

initialization of the Team and its components is shown in the following example:

Team {

UDO A1Output = new UDO()

UDO E1Output = new UDO()

UDO Inputs[] = [E1Output]

UDO Outputs[] = [A1Output]

Actor A1 = new Actor(Inputs, Outputs)

UDO Inputs[] = [A1Output]

Actor A2 = new Actor(Inputs, [])

UDO Outputs[] = [E1Output]

Event E1 = new Event([], Outputs)

}

A1(Inputs, Outputs) {

State S1 = new State()

State S2 = new State()

13



S1.addTransition(this,

Inputs.E1_Output,

Outputs.A1Output,

S2)

}

A2(Inputs, Outputs) {

State S1 = new State()

State S2 = new State()

S1.addTransition(this,

Inputs.A1Output,

null,

S2)

}

E1(Inputs, Outputs) {

State S1 = new State()

State S2 = new State()

S1.addTransition(this,

null,

Outputs.E1Output,

S2)

}

While this is only a basic example it clearly shows how the models have been imple-

mented as code. The example also illustrates the Event class. Events differ from Actors in
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that Event transitions require an express command from the Simulator before processing.

This allows the Simulator to non-deterministically trigger events which, when run in JPF,

can be setup to process events at different intervals or when the system changes state. From

this we can determine the effects events have on the system in a very robust manner.

2.5.2 Communication Between Actors

To simulate a team of Actors working together it is necessary to establish a communication

medium within the model and simulation which can represent the different forms of commu-

nication. In the model this communication medium is represented as inputs, outputs, and

transitions.

Our initial attempts to simulate this communication resulted in a PostOffice class

attached to the Simulator. Actors sent data along with the name of the recipient to the

PostOffice. Actors could then retrieve their input from the PostOffice, much the way PO

boxes work. Actors also had the ability to make certain output observable through the

PostOffice. This meant that an Actor could place data into the PostOffice for other Actors to

observe, a public PO box. When we added sub-Actors to the model code it became necessary

to allow Actors and sub-Actors to share both private and public PO boxes. It was also

necessary to store current and future output separately to achieve concurrency which we

explain in the next section. Although this achieved the desired goal the results were less than

satisfactory. In addition to the added complexity the design used implicit input and output

connections making it much harder to validate that the code represented the desired model.

Our next iteration of the Simulator simplified this communication medium with the use

of the previously defined UDOs. By initializing these UDOs and passing them as references

to the Actors and Events we greatly simplified inter-Actor communication. This new design

also requires explicit declarations for each UDO connection allowing us to validate the model

code with the model and again with the transition matrixes. The UDO is also capable of

representing both direct and observable communications which naturally allow sub-Actors to
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link inputs with parents. Indeed, Actor relationships are now irrelevant in regard to sharing

input and output since Actors only depend on the status of the UDOs. In the case where it

does matter which Actor generated the output then a new UDO can be created representing

that relationship thus preserving Actor independence through explicit connections.

The Team initialization example above demonstrates the use of UDOs. The example

defines two UDOs, A1Output and E1Output. Once defined these UDOs are passed by

reference to specific Actors and Events as inputs, explicitly defining the connectivity implied

by the UDOs. The Actors use the UDO references for constructing their transition matrices

which results in the connecting of A2 to A1 and A1 to E1. If we desired to change our model

and allow A2 to transition on E1Output the UDO would be added to the A2 input and A2

would declare a transition for that input resulting in the connectivity of A2 to E1.

2.5.3 Simulating Time

To simulate task duration the simulator uses the delta time algorithm. Each Transition has a

specified duration range defined by the Actor or Event. The simulator has five different dura-

tion settings for choosing a value within a range: MIN , the minimum; MAX, the maximum;

MIN OR MAX, a random choice between one of these settings; MIN MEAN OR MAX,

another random choice.. When an Actor begins a Transition the Simulator chooses a duration,

the value of that duration is then converted to the Simulator delta time. Basically if a

transition is to finish in 30 time steps but another Transition finishes at 25 time steps then

the first Transition is placed after the second Transition and is given a count of 5 which

means it happens 5 time steps after the prior Transition. Thus as the simulation progresses

time remains relative.

Slightly different from the use of transition durations is the notion of simulating

Events. The time range over which an Event may occur is often much larger than the ranges

defined by tasks, also, Events are only possible in specific state spaces thus preventing us

from predicting the available time range of the Event. This prevents us from simulating
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Event timing in the same way as task durations because such large time ranges cannot be

accurately represented with with only 2 to 3 choices and we cannot select a min, max, or

mean if the range is unknown. We solve this problem in two ways. One method is to trigger

the Event at regular time intervals while the Event is possible. Depending on the interval

size this can cause a dramatic increase in state space. While this increases the possibility of

exploring the possible effects an Event can generate on the system it offers no guarantees.

Another method for triggering Events is to trigger the Event on each state change within the

system while the Event is possible. This guarantees that the Event will be explored in each

state space that is presented during the simulation, however, this is also likely dramatically

increase the state space and is much more difficult to implement. Since triggering an Event

represents a transition within the Event it is included in the delta time algorithm used for

progressing simulation time.

2.5.4 The Simulation Loop

It is now possible to describe the actual simulation. After initialization we enter the simulation

phase. This phase is used to transition the Actors and trigger Events. One challenge with

transitioning the Actors is the need for concurrency. The simulation must allow multiple

Actors to transition without interfering with one another. Previous versions of our Simulator

placed each Actor within its own thread. We found that threads complicate the conversion

into JPF so instead we chose to use transactions. In each transaction we allow each Actor to

make the changes required by its transition. These transitions only modify a temporary value

on the UDOs. After all transitions are completed we finish the transaction by moving each

temporary UDO value into the actual value. The entire simulation phase can be described

thus:

Begin Transaction:

Foreach Actor

if ( Transition duration reached )
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Process Transition

End Foreach

End Transaction

Process Transaction

Foreach Actor

Transition = Get Next Transition

If Transition is not null

Convert Transition duration to delta time.

Update necessary Actor delta times.

End Foreach

When there are no longer any pending Transitions the loop ends and the simulation is

terminated.

2.6 WiSAR UAS Model

This section describes the models produced for the UAS-enabled WiSAR process. We first

discuss Actors and Events, followed by a brief discussion of Java asserts and a case study

drawn from WiSAR.

This conceptual model uses Mealy state machines. This allows us to abstract the

different WiSAR roles into individual state machines that we call Actors. Actor states do not

correspond to a single aspect of the WiSAR domain, thus providing the freedom to flexibly

model as many aspects of the domain as necessary and at various levels of resolution. Actors

transition between states are triggered by inputs generated by Events and by other Actors.

Events are also modeled as Mealy machines whose transitions are triggered by a combination

of simulator and Actor inputs. A benefit of this state machine-based conceptual model is the
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ability to convert the model into code. The coded model can be verified using model checking

tools such as Java Pathfinder (JPF) to gain further insight into the model. In the interest of

space we will not describe the Java simulation framework developed for JPF model checking.

2.6.1 Actors

Choosing the core Actors is critical since modeling UAS-enabled WiSAR requires a level of

abstraction that gives useful results without adding unnecessary complexity. After exploring

several levels of abstraction, we selected a model that treats as an Actor any core decision-

making element of the team, yielding the following Actors: parent search (PS), mission

manager (MM), UAV operator (VeOp), video operator (VidOp), UAV operator GUI (VeGUI),

video operator GUI (VidGUI), and the UAV. We deliberately chose to not model ground

searchers, leaving this to future work.

The models of the human roles use specific states for communication. We describe

these states once and then refer to them as a single communication state. Typically before a

human communicates he or she receives some signal that the communication is being received.

We model this as a POKE state. When communicating, an Actor model of a human enters the

POKE state where it waits until it receives an acknowledgement. If the acknowledgement is

not received then the communication does not occur. After the acknowledgement the human

moves into a transmit (TX) state whose duration is based on the data being transferred. At

the end of this transfer the human enters an end (END) state and outputs the transferred

data to the receiver.

If the Actor model of the human receives a poke, then it responds with a busy or an

acknowledge. If the human acknowledges the poke, then it enters the receive (RX) state.

The human will not leave this state until the end communication input is received or until it

decides to leave on its own. If one of these communications is interrupted before completion,

then we consider that the data was not transferred. To better facilitate communication

interruptions we only transfer a single piece of information per communication.
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Figure 2.1: UAV Operator DiRG. Excludes transition output.

The next sections are dedicated to describing the Actor state machines with a gen-

eralized description of their relative transition matrixes. We omit several of the previously

mentioned Actors in the interest of space.

UAV Operator (VeOp)

As illustrated in Figure 2.1, the VeOp Actor has the following states: IDLE, OBSERV-

ING VeGUI, FLYBY VeGUI, OBSERVING UAV, LAUNCH UAV, POST FLIGHT, and

three communication states: MM, VeGUI, and VidOp. Initially the VeOp is idle. After

receiving a new search command from the MM the VeOp constructs a flight plan using the

VeGUI. When this is complete the VeOp will then launch the UAV. While in the launch state

the VeOp is observing the UAV, when the UAV completes its take off the VeOp moves to

observing the VeGUI. While the UAV is airborne the VeOp will continually move between

observing the UAV and observing the VeGUI. The VeOp will respond to any problems that

are noticed while observing the VeGUI or UAV.
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Figure 2.2: Video Operator DiRG. Excludes transition output.

During the flight the VeOp listens for input from the PS and VidOp. If there are flyby

requests on the VeGUI, then the VeOp may choose to enter a flyby mode. This implies a

high cognitive load on the VeOp while positioning the UAV over the specified anomaly. The

VeOp will remain in flyby mode until the VidOp specifies, through the GUI, that the flyby is

finished. During an operation the UAV will often land and take off multiple times. The post

flight state represents the work necessary to get the UAV ready for flight, such as changing

the battery.

Video Operator (VidOp)

As illustrated in Figue 2.2, the VidOp Actor has the following states: IDLE, OBSERV-

ING VidGUI NORMAL, OBSERVING VidGUI FLYBY, and three communication states:

MM, VeOp, and VidGUI. Initially the VidOp is idle. After receiving a target description and

the search information the VidOp moves to normal GUI observation. While observing the

VidGUI the VidOp watches for anomalies, each time an anomaly is visible the VidOp decides

if the anomaly is seen. If it is seen the VidOp decides if it is an unlikely, possible, or likely

sighting. This is done with probabilities related to the type of anomaly, true positive or false
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positive. If the anomaly is classified as possible then the VidOp makes a validate sighting

request for the MM. If the anomaly is a likely sighting then the VidOp requests a flyby from

the VeOp.

When the VeOp begins a flyby request the VidGUI signals the VidOp to enter the

flyby state. In this state the VidOp watches for the anomaly. Due to the nature of the flyby

the VidOp can now make an informed decision about the nature of the anomaly, gaining a

much higher probability of being correct. After deciding if it is the target the VidOp signals

through the VidGUI that the flyby is finished. If the sighting is confirmed the VidOp reports

to the MM, otherwise the VidOp returns to normal GUI observation.

Operator GUI (VeGUI)

The VeGUI Actor has two states: NORMAL and ALARM. The VeGUI communicates directly

with the UAV and VidGUI Actors. The default function of the VeGUI is to observe the UAV.

The VeGUI keeps internal variables of all the UAV and VidGUI data that it tracks, all of

this data is available through observation of the VeGUI. If it detects an error with the UAV

outputs such as low battery, no flight plan, low height above ground, or lost signal the VeGUI

will enter the alarm state. This state indicates that there are visible warnings on the screen

to alert the VeOp of the problem. The VeGUI listens for VeOp input or changes in the UAV

output to signal that the problem has been dealt with before moving into the normal state.

UAV

The UAV Actor has the following states: READY, TAKE OFF, FLYING, LOITERING,

LANDING, LANDED and CRASHED. Initially the UAV is in the ready state. Upon command

the UAV moves to take off for a specific duration and then to flying or loitering. The flying

state is when the UAV is following a flight plan. The loitering state is when the UAV is circling

a specific location. The UAV will automatically enter the loitering state after completing

its flight plans. While airborne the UAV, upon command, moves to the landing state for a
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specific duration before moving into the landed state. Once landed the UAV must be moved

into the ready state before it can take off again.

The Actors in this model, thus far, represent a fairly high level of abstraction. For-

tunately, the DiRG conceptual framework allows incremental extension of the models by

adding lower levels of abstraction. This is accomplished by introducing sub-Actors into the

model. We illustrate how the Actor/sub-Actor hierarchy can be used by describing two UAV

sub-Actors. In these examples the sub-Actors receive all the same input as the parent Actor

and all sub-Actor output is sent from the parent Actor.

The first UAV sub-Actor is the UAVBattery. It contains the following states: IN-

ACTIVE, ACTIVE, LOW, and DEAD. Initially the battery is inactive. The battery is

assigned a duration and a low battery threshold. When the UAV receives the take off

command the battery enters the active state. The batteries next state is set to low at time

current time + battery duration− low battery threshold. When the battery enters the low

state its next state is set to dead at time current time + low battery threshold.

A second sub-Actor is the UAVFlightPlan. This represents the flight plan flown by

the UAV. The flight plan requires a specific amount of time to complete. The UAVFlightPlan

has the following states: NONE, ACTIVE, PAUSED, and COMPLETE. Initially the flight

plan is set to none. After the operator creates a flight plan using the VeGUI then the flight

plan moves to active. During a flight the UAV may loiter, land, or flyby; this causes the flight

plan to move to paused. When the UAV begins following the flight plan again it returns

to active. After the UAV has flown the flight plan for the specified duration the flight plan

enters the complete state.

The results discussed below include four other UAV sub-Actors: UAVHeightAbove-

Ground, UAVSignal, UAVVidFeed, and FlybyAnomaly. Details are omitted in the interest of

space.
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2.6.2 Events

We used the Event Abstraction for several different elements of the UAS-enabled WiSAR

problem. Adding this abstraction allows humans analyzing the system to give a set of inputs

to the model and observe the consequences of the inputs.

The following Events were encountered in various UAS-enabled WiSAR field trials

and represent a sample of interesting possible operating conditions for the Actors. In the

interest of space we list these events while omitting their descriptions. NewSearchAOIEvent,

TargetDescriptionEvent, TerminateSearchEvent, LowHAGEvent, LostSignalEvent, TruePosi-

tiveAnomalyEvent, FalsePositiveAnomalyEvent, and BadVideoFeedEvent.1

2.6.3 Asserts

As a general rule in model-checking, the more complex the model the more that can go

wrong. Detecting flaws in the model is extremely valuable because such flaws trigger further

evaluation. We present a case study in the next section that illustrates how the evaluation

can identify things that need to change in the WiSAR process to avoid serious errors and

perhaps failure to find the missing person.

Unfortunately, it can be challenging to differentiate between important flaws and

coding bugs. To catch all errors, both flaws and bugs, we use Java Asserts. JPF automatically

halts processing when it encounters a false assertion, allowing us to determine if the error is

a bug or a flaw.

The model uses asserts in two ways. The first is detection of an undesired state. If

an actor enters an undesirable state then an assertion halts the simulation. An example

of this is the UAV CRASHED state. The second deals with inputs. Many operations are

sequential. They require a specific state and input before the next task can be performed.

By looking at an Actors received inputs we are able to tell if an Actor is out of sync with the

other Actors. An example of this is the VeOp TAKE OFF input for the UAV. If the UAV is

1HAG = Height Above Ground, AOI = Area of Interest
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already airborne and it receives this input we know that the operator is out of sync with the

UAV.

Asserts are critical to debugging and verifying of the model. We found that having

too many asserts is preferable to having too few.

2.6.4 Case Study: Anomaly Detection

The scenario illustrated in figure 2.3 represents a portion of what should occur when the

video operator believes a target has appeared on the video GUI. Each vertical swimlane

represents an Actor/ DiRG. Periodically during a flight the UAV will fly over an anomaly.

An anomaly can be either a false positive or a true positive, meaning that it is either the

desired target or it is not. If the video operator believes that it is the target then a flyby

request is made through the video GUI. This request is then made visible to the operator

through the operator GUI. When the operator decides to perform the flyby request he signals

this through the operator GUI and begins to manually direct the UAV to the location of

the anomaly. While the operator is directing the UAV the video operator closely examines

the video stream until the anomaly is visible again. The video operator then decides if it

is a true target sighting or a false positive. The video operator communicates this to the

operator through the video GUI. If it was a target sighting then the video operator passes the

information to the mission manager who then passes it to the parent search. This high level

view communicates the basic structure of the communication between the different actors.

2.7 Results

In this section, we first discuss model-checking results and then present insights from the

modeling process.
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Figure 2.3: Anomaly Detection Model: Swim lanes represent actors. Arrows represent
input/output. Colored sections represent actor states.
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2.7.1 JPF Results

Model checking constructs an exhaustive proof, by enumerating every reachable state of a

system, to establish a property. The JPF model checker uses native Java as the modeling

language to describe a system, and implements a custom virtual machine to systematically

explore the reachable state space of the compiled Java program. The reachable state space of

a sequential model is trivial to enumerate but the reachable state space grows exponentially

with the level of non-determinism (i.e., random choice).

The source of non-determinism in the WiSAR model is in timing. The model defines

time bounds for different events and tasks in the system. When the model is run, it non-

deterministically chooses delays from within those bounds. For example, the time to land

the UAV is a uniform random variable bounded between 60 and 1,800 time units. In the

WiSAR model, there are 69 different tasks or events with non-deterministic durations. As it

is not feasible to enumerate the entire reachable state space of such a large model, this work

implements several standard heuristics to limit the non-determinism: minimum(maximum)

time only; minimum and maximum times only; and minimum, maximum, and mean times

only. As expected, the first heuristic using only the minimum(maximum) time bound results

in a sequential model with no non-determinism.

The total number of meaningful lines of code, code within methods, for the WiSAR

model is 3,804. JPF is able to analyze the model using the minimum heuristic in negligible

time only enumerating 124 states on a MacBook Air with 4GB of memory and an Intel Core

I7 1.6 Ghz processor. The maximum heuristic also has negligible time but fewer behaviors

with only 16 states. The difference in states is due to the UAV not needing to land several

times to recharge its battery.

The minimum and maximum bounds heuristic in JPF generates an important and

interesting result. JPF finds a combination of task durations that result in an infinite loop

using the heuristic. The same infinite loop can be recreated outside of JPF by repeatedly

running the model over and over again as random trials until one of the trails goes into an
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infinite loop. The power of using JPF is that it finds the infinite loop every time without the

need for the random trials. The root cause of the infinite loop was a flawed communication

protocol that implicitly relied on specific delays in the interaction. The protocol has since been

corrected and JPF verifies the model to now terminate under all combinations of minimum

or maximum delays: 3,911 states in 6 seconds of running time.

The greatest number of states enumerated by JPF comes from using the minimum,

maximum, and mean heuristic. For all 69 points of non-determinism in the WiSAR model,

JPF exhaustively considers 3 distinct values for each point, and checks every possible

combination. JPF enumerates 51,344 states in around 52 seconds using the heuristic. None of

the states violate the current set of assertions in the model and the model terminates under

all the duration combinations. The jump in the number of states between the minimum

and maximum bounds heuristic and this heuristic illustrates the exponential state explosion

inherent in model checking.

The JPF model checking does not prove the WiSAR model is the desired model

or even a correct working model. There is considerable research yet to be completed in

writing the system level requirements of WiSAR and then having JPF verify each of those

requirements. If JPF finds a violation on any given requirement, there is still considerable

work to determine if the requirement is correct (i.e., really what is desired from the system),

if the model has a bug, or if the protocols in the model are fundamentally flawed and not

able to implement the requirement. These topics are future work for the WiSAR model.

2.7.2 Lessons from Modeling

One of the goals of using model-checking with UAS-enabled WiSAR is to discover problems

and opportunities with the structure of the organization. This section presents several

important lessons for UAS-enabled WiSAR that were obtained through the modeling exercise.

First, while modeling the VidOp it became apparent that there was a problem with

the organization. This problem occurs because, while the VidOp is marking an anomaly,
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the video feed continues to run. This means that it is possible that the VidOp may miss

detecting the target. If the VidOp pauses the video, the feed falls behind the live video

feed which makes flyby requests more expensive because the UAV will have to backtrack

to the anomaly sighting. We analyzed why this problem was not discovered in the WiSAR

field trials. The answer is that the field trials included multiple video feeds with multiple

observers, a condition that is not likely to occur in a resource-limited search. A lesson from

this observation for WiSAR is that technology needs to be developed that allows the WiSAR

team to manage this problem. A more general lesson is that the modeling and model-checking

process uncovered a potential problem before it appeared in practice.

A second lesson was learned when performing model-checking of a flyby. Our model

showed two problems, resuming a flight plan after a flyby and needing to keep a list of flyby

requests. We solved this in the model by adding visible queues to the VeGUI and VidGUI

and allowing the VeGUI to store multiple flight plans. As before, we analyzed why these

problems were not discovered in the WiSAR field trials. The answer is that these problems

did occur but were not documented. The lesson for WiSAR is that the VeGUI and VidGUI

need new features to support real searches. A broader lesson is that the modeling exercise

can be used to not only detect problems but specify the requirements for fixing them.

2.8 Conclusions and Future Work

We have presented DiRGs expressed as Mealy state machines for the purpose of modeling

WiSAR in a way that will give insight into improving the WiSAR processes. In addition we

have coded these Mealy machines in Java and performed model-checking using the JPF tool

for the purpose of gaining even more insight into our model by running it. This contrasts

with previous modeling attempts. Results show that additional insight was gained, and that

it was possible to introduce new processes into the model and see the effect of those changes.

The result of the modeling and model checking processes was the detection of problems

within WiSAR that were not seen during other analysis, or were seen but not documented.
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The processes also gave insight, and in some cases specifications, for fixing the encountered

problems.

Future work will use explicit declarations to formalize Actor states and transition

matrixes. By formalizing these properties it will be possible to find transition errors imme-

diately; it will also make it possible to compare the model with the model documentation

for accuracy. This may also make it possible to export the state machine into other model

checkers.

We also plan to add sequential constraints to the model using Actors. These Actor will

embody the desired sequence of tasks and transitions and will throw assertions if a sequence

is not executed in the desired order. This will help us verify that the model is following the

desired behaviors.
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Chapter 3

Example Scenario

The paper presented in Chapter 2 was written before the workload concepts and

modeling language semantics had settled into their current form. Jared et al. [21], in concert

with this work, published a paper that expands on the concepts in Chapter 2 but is also

slightly outdated. Thus we feel it expedient to summarize those aspects of the language

which are critical to our metrics before we present the metrics themselves. To assist in this

effort we have prepared a simple scenario which includes a partial model and illustrations of

the DiTG, and labeled state transition system.

3.1 Example Scenario

In this scenario there are two people, Alice and Bob. Alice is standing next to Bob listening

to a friend on her cell phone. Bob suddenly remembers that he wants to ask Alice out. Not

noticing that Alice is listening to her phone Bob starts to ask Alice on a date. When this

happens Alice looks at Bob and points to her phone, signaling to him that she is on the

phone. Bob stops talking and decides between waiting for her to finish or walking away.

Eventually Bob walks away.

3.1.1 Actors

From the scenario above we create three Actors: A) Alice, B) Bob, and C) Cell Phone. Actors

represent any aspect of the system that has state. An Actor can be anything. In our example

we have two humans and a cell phone. We could also create a sub-Actor which is part of a
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larger Actor, such as Bob’s hair, and give it states like messy or combed. Actors can also be

very abstract or very detailed. The more states an Actor contains, the more expressive it

becomes.

Figure 3.1: State Transition System for Alice and Bob scenario

While we ultimately express an Actor as a labeled state transition system, for now we

describe the Actors as simple state transition systems. The state transition system represents

how an Actor is allowed to flow between states and can be visualized as a directed graph.

Figure 3.1 represents all three Actors as a state transition system. We see that Alice is

initially in a Listening on phone state while Bob is in the Standing idle state. Alice can

either stay in the Listening on phone state, shown by the looping transition, or move into the

Signaling Bob state. Once in the Signaling Bob state her only choice is to stay there forever

or to return to the Listening on phone state. We see from figure 3.1 that Alice and Bob

are interacting with one another and influencing the transitions of the other. To define the

characteristics of the transitions we convert our state transition system into a labeled state
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transition system, however, before we do so must first define the inter-Actor relationship that

allows Actors to influence one another.

3.1.2 Channels

We define inter-Actor connections as Channels. A channel is a uni-directional communication

medium which allows an Actor to send information to another Actor. Each Channel is

composed of a source Actor, a target Actor, and a type. The source Actor sends information

as output, the target Actor receives the information as input, and the type specifies which

communication medium is being used. When describing the metrics we sometimes refer to

the Channel source as the input source and the Channel target as the output target. In the

case of Alice and Bob we use audio, visual, and manual Channels [32], the case study in

Chapter 5 also uses a Data channel that represents network communication.

We also designate that each Channel can represent multiple layers of communication.

To show this we will use the visual channel from Alice to Bob as an example. We can express

Alice’s output, Bob’s input, as two different layers on the visual channel, one for Alice’s body

language, and another for her facial expressions. This allows us to explicitly set how much

data is being sent over the channel, it also allows us to express multiple visual inputs for Bob

without creating a channel conflict. A channel conflict occurs when an Actor is receiving

input from two or more channels of the same type. In our example scenario Alice is listening

to her cell phone which uses an audio channel. At the same time Bob is talking to Alice on a

different audio channel. Because Alice is receiving input on multiple audio channels she has

an audio channel conflict.

3.1.3 DiTG

To express a systems Channels we use a Directed Team Graph (DiTG)[21]. The DiTG defines

all the channels that exist between the Actors within the system. Figure 3.2 shows the DiTG

for our Alice and Bob scenario. From the figure we can see that Alice has two channels to
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Figure 3.2: Directed Team Graph for Alice and Bob scenario

Bob, an audio and a visual and an audio channel to her cell phone. We also see that Bob has

two channels to Alice, an audio and a visual. Lastly, the cell phone has an audio channel to

Alice. While the simplicity of this scenario makes it difficult to see the value of the DiTG,

by combining the DiTG with the state transition system we have effectively constrained the

Actor behavior and communication for the entire system. With the constraints in place we

are ready to define the behavior of the system, which we do with transitions.

3.1.4 Transitions

Transitions represent an Actor’s behavior. Transitions tells us about the state of the Actor,

what caused the Actor to change state, and how that change effects the system. Transitions

are composed of a start state, an end state, a set of input equations, a set of outputs, a

duration, and a priority. The Transition start and end states represent two Actor states and

signifies that the Actor can move from the start state to the end state.

The Transition input equations are used to determine if the transition is enabled.

Each equation is composed of a source value, a predicate, and an expected value. The source

value is obtained from one of two sources, Channels or Memory. Actor memory is an internal

variable that allows an Actor to store and retrieve data. For predicates we use equal to, less
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than, greater than, etc. The structure of the input equations allows each equation to evaluate

to a simple true or false. If all input equations evaluate to true then the Transition is enabled.

The Transition outputs contain all output generated by the transition as a set of target

value pairs. The target is the Channel or Memory variable that will receive the designated

value. The Transition duration is a range which represents the minimum and maximum

number of time steps that a transition will remain active before it fires. When an Actor

decides to transition it selects an enabled transition to become active. While a Transition is

active its outputs are kept in temporary memory stored by the Simulator, once the Transition

fires the Actor changes state and the temporary outputs are sent to the respective channels.

We sometimes refer to inputs and outputs as being active, this implies that they are coming

from an active Transition and that the value is not null. The final Transition element is

priority. Priority reflects how important a Transition is to the Actor relative to the other

Transitions. If multiple Transitions are enabled the Actor will choose the Transition with the

highest priority.

3.1.5 Labeled State Transition System

The inclusion of the transition properties represent the switch from a state transition system

to a labeled state transition system. In our case the label translates directly to the transition

input equations, outputs, duration, and priority. The label allows us to determine if a

transition is enabled, if it should be fired, how long it remains active, what outputs it sends

out and more.

In figure 3.3 we can see that every transition has a label. These labels are used by

the simulator to determine if the transition is enabled, what channels will become active,

and how long those channels should remain active before the state changes. To make this

clear we will describe LabelA12 of Alice’s transition from the Listening on phone state to the

Signaling Bob state. From figure 3.3 we see that when Bob is speaking to Alice there is an

audio channel that is active (opaque yellow arrow). The description on the transition implies
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Figure 3.3: Labeled State Transition System for Alice and Bob scenario

that Bob’s talking has somehow triggered the transition, to represent this in the label we

create two input equations. Audio channel from Bob does not equal null. And audio channel

from Cell Phone does not equal null. This means that when Alice is listening to her cell

phone if she hears Bob at the same time then this transition becomes enabled. If she chooses

to follow the transition then the transition becomes active and the transition outputs will

become active. In this case the output is a signal on the visual channel from Alice to Bob.

We will make the duration 5 seconds with a priority of 1.

The XML language we developed allows us to model scenarios using the concepts

summarized in this chapter. Using our XML parser, appendix A, the model is converted into

the Java classes used by the Simulator to generate and execute a labeled state transition

system. We chose the labeled state transition system because the state transition system

lends itself well to model checking while the label allows us to add data points that relate
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specifically to workload. Almost all of the label values are present in the workload metrics

that we present next.
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Chapter 4

Workload Metrics

Now that we have a basic understanding of the data that the simulator has access

to during the simulation we can now discuss how we translate this data into meaningful

metrics. We will first discuss our baseline workload metric. Afterwards we will describe the

two workload metrics we created as part of this work.

4.1 Adapted Wickens’ Metric

Since we are interested in metrics that reveal human workload we have chosen to replicate

Wickens’ computational model [32], shown in equations 4.1-4.2, using data gathered from the

Model Abstraction Framework. Wickens’ model is a measure of resource demand and overlap

that has been shown to predict performance degradation, making it a good baseline metric

for evaluating consistency with known high workload events and for comparison with the

new metrics presented later in the chapter.

Wickens’ computational model is based on the concept of tasks, where a task is some

arbitrary unit of activity. Wickens’ model calculates the resource interference between two

tasks, a value that is closely related to mental workload [32]. The problem with using this

computational model as a metric within the Model Abstraction Framework is the difference

in the modeling paradigms. In this work we abstract the notion of a task, relying instead on
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states and transitions to infer activity. The challenge is to apply the task-based abstraction of

Wickens’ model to the state/transition based abstraction of the Model Abstraction Framework.

WWickens(T1, T2) = RDemand(T
1, T 2) + RConflict(T

1, T 2) (4.1)

RDemand(T
1, T 2) = T 1

demand + T 2
demand (4.2)

RConflict(T
1, T 2) =

dimensions∑
x=1

 1 T 1
x = T 2

x

0 otherwise
(4.3)

Wickens’ model WWickens, equation 4.1, calculates the resource interference between

two tasks, represented as T 1 and T 2, through the use of two components: resource demand

RDemand and resource conflict RConflict. Resource demand is a subjective measure of the

cognitive resources required by a task. In equation 4.2 we see that the resource demand

of tasks T 1 and T 2 is calculated by summing the resource demand of both tasks. To keep

the model simple and intuitive Wickens limits Tdemand to a range of 0 to 2, where 0 is an

automated task and 2 is a difficult task. Thus RDemand will always be between 0 and 4.

For resource conflict two tasks are considered to have conflicting resources when they

share resources within one of the dimensions illustrated in figure 4.1. In equation 4.3 when

Tx represents the task resources for dimension x, then RConflict is calculated by taking the

sum of the total number of resource conflicts between two tasks. Since there are only four

dimensions RConflict will always be between 0 and 4. For example if TaskA required a person

to listen for distinct sounds while TaskB required listening to a conversation, the resource

conflict would be 2. One in the Stages dimension for perception, and another in the Modalities

dimension for auditory. Since one deals with spacial sound and the other verbal sound no

resources are shared in the Codes dimension. As neither task dealt with visual perception

there are no conflicts in the Visual Processing dimension.
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Figure 4.1: Multiple Resource Theory Dimensions [32]

4.1.1 Actor Load

To mimic resource demand within the Model Abstraction Framework we introduce the notion

of Actor Load. Actor Load represents an abstraction of the load an Actor is under while in

a specific state. Similar to resource demand in Wickens’ model, Actor Load is a subjective

value assigned by the modeler to each state in the system. To make this value more intuitive

and simple we have abstracted it into an integer value ranging from 0-4. An Actor Load of 0

represents little to no load on the actor. These are automated or transitional states where

the Actor is idle or has minimal contact with the system. An Actor Load of 4 represents

simultaneously performing multiple high difficulty tasks. These are states where an Actor

is pushed to the limit of their cognitive capabilities. Any value between 0 and 4 is some

combination of task difficulty and the number of tasks being performed.
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4.1.2 Determining Dimensional Conflicts

To calculate the dimensionality of resource conflicts we need a way to determine when multiple

tasks are being performed. Since the Model Abstraction Framework does not define specific

tasks we must find another method to approximate when multiple tasks are being performed.

We accomplish this by making the assumption that if an Actor has input from multiple

sources then multiple tasks are being performed.

DStages(Φ,Λ) =


1,Φsources > 1 Multiple Input Sources

1,Λtargets > 1 Multiple Output Targets

0, otherwise

(4.4)

With this assumption we are ready to calculate dimensional conflicts as illustrated

in Figure 4.1. If Φ represents the set of all inputs and Λ the set of all outputs then we

calculate the dimensional conflicts as follows. For the Stages dimension (Perception, Cognition,

Response), equation 4.4, we check to see if there are multiple sources of active input or

multiple output targets, not including memory inputs and outputs. If multiple sources or

targets exist then the stages dimensionality (DStages) has a conflict.

DModalities(Φ,Λ) =


1,Φ

audio/visual
active > 1 Multiple Active Inputs

1,Λ
audio/visual
active > 1 Multiple Active Outputs

0, otherwise

(4.5)
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For the Modalities dimension (Audio, Visual), equation 4.5, we check if there is more

than a single active channel, input or output, for a specific channel type. If there is then the

modality dimensionality (DModality) has a conflict.

DCodes(Φ,Λ) =


1,Φaudio + Λaudio > 1

1,Φvisual/manual + Λvisual/manual > 1

0, otherwise

(4.6)

For the Codes dimension (Spatial, Verbal), equation 4.6, we check that the total

number of audio inputs and outputs is greater than 1 or that the total number of visual

inputs, visual outputs, and manual outputs is greater than 1. Since we do not specify

different types of audio output we assume that all audio is verbal, likewise we assume that

all visual/manual input and output is spacial. If either check succeeds then the codes

dimensionality (DCodes) has a conflict.

DV P (Λ) =

 1,Λmanual
target > 1 Multiple Manual Output Targets

0, otherwise
(4.7)

For the Visual Processing dimension, equation 4.7, we check if there is more than one

target for manual outputs. We do not check inputs as we have no way of distinguishing if a

visual channel is focal or ambient. Instead we assume that manual outputs require visual

focus, allowing us to determine if visual processing is split between multiple tasks. If we have

manual output to multiple targets then the visual processing dimensionality (DV P ) has a

conflict

4.1.3 Adapted Wickens’ Model

Using the Actor Load and the adapted dimensionality conflicts we are now in a position

to replicate WWickens within the Model Abstraction Framework. As the model values are

calculated differently than Wickens’ model we will refer to this model as an adapted Wickens’
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model WAdapted
Wickens. The equation 4.8 is as follows: given an actors State S we can obtain Actor

Load SALoad
as well as the inputs SΦ and outputs SΛ needed to calculate the four dimensionality

values. We obtain WAdapted
Wickens by adding SALoad

to the sum of the four dimensionality values.

This ensures that WAdapted
Wickens is between 0 and 8, just like WWickens.

WAdapted
Wickens(S) = SALoad

+DStages(SΦ, SΛ)+DModalities(SΦ, SΛ)+DCodes(SΦ, SΛ)+DV P (SΦ, SΛ)

(4.8)

Now that we have a baseline metric adapted from the related work to use as a baseline

for consistency it is now time to describe two new workload metrics.

4.2 Resource Workload Metric

The resource workload metric WResource attempts to measure the resource load an Actor is

experiencing via inter-actor communications and memory access for each time step of the

simulation. The concept is based off of the cognitive workload category presented by Jared et

al. [21]. For example, when Bob is talking to Alice she is processing input on multiple audio

channels while also accessing any relevant memory. Once Alice is alone again her resource

workload will have decreased as she is only processing a single audio channel.

WResource(S
Current) = SActorLoad+ChannelConflicts(SΦ)+ResourceLoad(SΦ)+ResourceLoad(SΛ)

(4.9)

ChannelConflicts(Φ) =
∑

ChannelTypes

 1
∑

ΦChannelType ∈ Φ > 1

0 otherwise
(4.10)
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ResourceLoad(IO) =
∑

IOActive +
∑

IOLayersUsed + IOMemoryUsed +
∑

IOChannelTypes
Active

(4.11)

We see from equation 4.9 that resource workload WResource is composed of three sub-

metrics: channel conflicts, resource load, and Actor Load. Given the current state SCurrent we

can extract the Actor Load SActorLoad, the set of inputs SΦ from the available transitions, and

the set of outputs SΛ from the active transition. We can then pass these values to equations

4.10 and 4.11 to obtain the required sub-metrics.

Channel conflicts occur whenever more than one active channel shares a type, such

as an Actor receiving input on multiple audio channels. Given a set of input channels (Φ)

equation 4.10 calculates the total channel conflicts by counting the number of ChannelTypes

that occur more than once in the set of all inputs. Since we currently only allow visual and

audio input for human Actors this value ranges from 0 to 2.

Resource load attempts to quantify the load being placed on the Actor’s resources.

We break the resource load into two parts, input and output, the final result being the sum

of both parts. Each part is calculated using equation 4.11. The equation states that given

a set of inputs/outputs IO the respective resource load is the sum of the number of active

channels, number of layers used, number of memory objects used, and the number of active

channel types. Actor Load is the same metric that is used in the adapted Wickens’ metric

and is included here because it is a direct reflection of the modelers belief of what the resource

load is during this state.

4.3 Decision Workload Metric

The decision workload metric attempts to measure the complexity of the decision making

process by measuring the size of the decision space for each time step of the simulation. The

concept is based off of the algorithmic workload category presented by Jared et al. [21]. For
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example, when Bob begins talking to Alice the added input enables an additional transition.

This means that Alice must now choose to keep trying to listen to the phone while Bob

talks or signal Bob to stop talking, thus increasing her decision workload. When Bob stops

talking Alice’s decision workload decrease as there is less input to process and fewer enabled

transitions to choose from.

WDecision(SCurrent) = SEnabledTransitions + SΦRead + SΛSet + DurationComplexity(SCurrent)

(4.12)

To calculate the decision workload metric we use equation 4.12 which is composed of

four sub-metrics: decision complexity, input complexity, output complexity, and duration

complexity. The decision complexity represents how many options were available to choose

from and is calculated as the number of enabled transitions SEnabledTransitions for the current

state. In the case of Alice and Bob when Alice signals to Bob that she is on the phone Bob

can choose to keep talking, stop talking and wait for Alice to finish, or walk away; thus Bob

has a decision complexity of 3 while Alice is signaling.

The input complexity represents the number of inputs that the Actor must process to

make a decision. It is calculated by summing the total number of inputs read by transitions

SΦRead
, this includes active channels and memory variables. Using the previous example,

when Bobs decision complexity was three his input complexity could have been two, one from

Alice’s signal and another from a memory value representing how cute Alice is to Bob. The

output complexity is the same as the input complexity only the value is calculated from the

total number of outputs SΛSet that can be set.

DurationComplexity(S) = log
max(SDuration)

60
(4.13)

The duration complexity represents complexity that is related to the size of the task(s)

being performed. The underlying assumption being that difficult tasks take more time to
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complete than simple tasks. While this assumption is not always true it is possible that some

future variation of this metric may prove useful. Due to the high variance and low trust

associated with this metric we decided to normalize the duration complexity using equation

4.13. By assuming that durations are in seconds and that any duration that is less than a

minute has zero duration complexity we can convert durations into minutes and then use a

logarithmic scale for the final value. While the diminishing returns of this model allow us to

show the duration complexity within the context of our other metrics it does not account for

human fatigue and other factors associated with long running tasks. We leave it up to future

work to determine the usefulness of duration complexity and how it should be calculated.
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Chapter 5

Case Study: UAS operating in the NAS

To analyze the workload metrics presented in the previous chapter we chose to perform

a case study by modeling the integration of a UAS into the National Airspace System. First

we will describe the scenario that we modeled and the assumptions required to make the

model work. Then we will present an analysis of the workload metrics gathered using the

Model Abstraction Framework.

5.1 Model Scenario and Assumptions

Since we would eventually like to correlate these workload metrics with real human workload

our goal was to model a UAS that presented high and low workload periods similar to those

observed during the WiSAR flight tests. Such as creating fight plans, monitoring normal flight,

handling active alarms, introducing increased autonomy, and handling operator interruptions.

This will allow us to check that the results are generally consistent with a known workload

profile. The model we chose was the integration of a UAS into the National Airspace System.

To help illustrate this model we have created a state transition system that shows the

states and data flow for each Actor. Figure 5.2. A matching DiTG for the model showing

the Actor communication channels can be seen in figure 5.1.

An Unmanned Aerial System (UAS) plans to operate within the National Airspace

System. The UAS is composed of a server (UAS Server), an Unmanned Aerial Vehicle

Operator (UAV Operator), and an Unmanned Aerial Vehicle (UAV). The UAV Operator

controls the UAS Server through a graphical user interface (UAS GUI) that in turn controls
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the UAV, as illustrated in the DiTG shown in figure 5.1. The UAV will take off and land

at an airport serving both manned and unmanned aerial vehicles. The UAV Operator is

located at this airport and visually monitors the takeoff and landing of the UAV. UAV state

is continuously shown on the UAS GUI.

Figure 5.1: DiTG: UAS integration into the NAS Model

There is an FAA Server that provides real-time notice to airmen (NOTAM) information.

The UAS Server connects to this server, receives the NOTAMs and displays them on the UAS

GUI. Figure 5.1. The FAA system also allows the UAS Server to file flight plans. Filed flight

plans are automatically checked for simple conflicts such as crossing NOTAMS or duplicate

takeoff/landing times. If there is a conflict the FAA Server flags the flight plan for an Air

Traffic Controller (ATC) and displays these requests on an FAA GUI that is monitored by

the ATC. The ATC then approves or denies flight plans, using the FAA GUI, at their leisure.

This approval/denial then becomes available to the UAS Server, which displays it on the

UAS GUI as illustrated in the state transition system shown in Figure 5.2.

The FAA Server also provides radar information to the ATC through the FAA GUI.

The ATC uses this information to spot potential collisions with UAVs. If a potential UAV
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collision is detected the ATC creates an emergency NOTAM in the region of conflict. This

emergency NOTAM is then sent to the UAS Server, which displays the emergency NOTAM

on the UAS GUI. If the UAV is in or near the emergency NOTAM it must change course to

immediately evacuate/avoid the NOTAM. This can be done automatically by the UAV or

manually by the UAV Operator. Once the UAV has finished avoiding the emergency NOTAM

it enters a loiter state. The UAV Operator is then required to change the flight plan before

the UAV will leave the loiter state. Figure 5.2.

The UAV also has a radar that can detect nearby objects. This information is displayed

on the UAS GUI and if the UAV Operator detects a potential collision they will begin the

deconfliction procedure that requires changing the current flight plan. Once the UAV has

landed the scenario is considered complete.

5.1.1 Assumptions

Given our lack of domain knowledge regarding the National Airspace System we have had

to make a number of assumptions in order to achieve a high level of abstraction. The

assumptions required for the model to perform as designed are:

• The UAV has an unlimited flight time, never loses contact with the UAS Server, can

takeoff and land without incident, has accurate GPS data, and is non line-of-sight.

• The UAS Server/GUI never loses connection to the FAA Server, always has instant

communication with the UAV and FAA Server, has no bugs, can create flight plans,

can detect NOTAMs on the flight plan, can automatically direct the UAV out of an

emergency NOTAM, displays radar information from the UAV, and never goes down.

• The UAV Operator detects all warnings displayed on the UAS GUI, generates flight

plans that do not touch NOTAMS, can always deconflict the UAV, and never gets

fatigued.
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• The FAA Server/GUI distributes NOTAMS and automatically detects if a flight plan

needs to be approved by the ATC.

• The ATC detects all information displayed on the FAA GUI, can add NOTAMS with

the FAA GUI, always adds NOTAMS correctly, and approves all flight plans.

5.2 Model Results

We created three scenarios by adding small variations to the model. The first scenario

involved an uneventful flight. The second scenario involves the UAV Operator manually

avoiding an emergency NOTAM. The third scenario involves the UAV automatically avoiding

an emergency NOTAM. The second and third scenarios also involve a possible UAV collision

and the ATC adding a NOTAM onto the UAV flight path. Additionally we added a high

workload scenario that involves the UAV Operator being interrupted by another person while

deconflicting the UAV. The respective results are shown in figures 5.3-5.9.

For each scenario we have four charts depicting the UAV Operator workload and four

charts depicting the ATC workload; we currently ignore the workload for non-human Actors.

The first three charts represent the resource input, resource output, and decision workload.

The last chart shows the combined total workload next to the adapted Wickens’ model. For

each chart the y axis represents the workload value while the x axis represents Actor state for

the given delta time. What this means is that the x axis cannot be seen as a normal timeline

since each time step represents an arbitrary amount of time. Instead this should be viewed

as a progressive change in Actor workload for each time step where a transition was fired.

The results we obtained from the Model Abstraction Framework are very encouraging

due to the general consistency with the expected workload. Despite a few unexplained

anomalies, example in figure 5.6, and some unusual workload spikes, shown in figure 5.7, we

can see that generally the Actors have more workload when performing active tasks and less

workload for simple tasks. A clear example of this is the UAV Operator workload in figure

5.3. The workload spikes while creating the flight plan then remains low while monitoring the
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UAV GUI for information. When that information is received we see a small spike followed

by a prolonged workload spike while the UAV Operator is deconflicting the flight plan.

5.2.1 Inter Actor Comparison

When comparing the UAV Operator and ATC baseline workload, shown in Figures 5.3 and

5.4, the relationship between the UAV Operator and the ATC becomes very clear. For this

scenario the UAV Operator creates a flight plan for the mission. When the UAV Operator

finishes the flight plan it is sent to the FAA Server where it is flagged to be approved by the

ATC. The ATC then performs the approval and returns back to normal operations. The

UAV Operator receives the approval and begins normal mission operations that increase the

workload. This is reflected beautifully in the Actor workload. The UAV Operator workload

spikes during flight plan creation then flat lines while waiting for a response. Once the UAV

Operator receives the response their workload spikes again as they perform the mission. The

ATC workload is just the opposite, spiking while approving the flight plan and returning to

normal afterwards. The comparison of the other scenarios show the same correlations.

We also see the effects of the UAV Operator and ATC relationship in the manual

avoid scenario, shown in Figures 5.5 and 5.6, when the delayed action of the UAV Operator

causes the ATC to remain in the avoid conflict state for an abnormally long period of time.

By looking at the Actor state we see that the UAV Operator was already in the process

of deconflicting the UAV and was not able to immediately respond to the ATC emergency

NOTAM. The auto avoid scenario, shown in Figures 5.7 and 5.8, shows an improvement in

this regard as the UAV automatically avoids the emergency NOTAM while the UAV Operator

is busy. This example demonstrates how the workload modeling allows us to detect problems

using the model and then analyze fixes to those problems.
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5.2.2 Intra Actor Comparison

At first glance the UAV Operator workload between the manual avoid scenario, Figure 5.5,

and the auto avoid scenario, Figure 5.7, appear almost identical. This is good as these

scenarios are nearly identical. Upon closer examination we see that when the UAV Operator

has to manually avoid the emergency NOTAM there is a prolonged increase in resource input

workload, an extra spike of resource output workload, and a noticeable spike in decision

workload once the UAV Operator begins the process of avoiding the NOTAM. This results in

a significant workload spike compared to the more stable workload seen in the auto avoid

scenario. Another less noticeable difference is that the manual emergency NOTAM avoidance

takes longer to complete than the auto avoid feature, something that is critical in these types

of situations.

To make this simple model a little more interesting we decided to add an interruption

to the auto avoid scenario. See Figure 5.9. When the UAV Operator begins the first

deconfliction procedure he or she is interrupted by another person, a dummy Actor added to

the model just for this interruption. Instead of ignoring this interruption the UAV Operator

attempts to communicate with this person while still performing the deconfliction procedure.

This results in a visual channel conflict as the UAV Operator is watching both the UAS GUI

and the person that caused the interruption. In addition to this the UAV Operator is now in

a high load/multi tasking state. The result is a workload value of 20, almost double the next

highest workload value seen in the simulation.

While we are mostly pleased with the workload results there are a few anomalies in

the results that are misleading. The most commonly occurring anomaly is a drastic decrease

in workload followed immediately be an equally drastic increase in workload, see figure 5.6.

This tends to happen when an Actor is transitioning into the same state it just left. The

spike happens because we are collecting metrics twice for each step in the delta clock; once

right before the active transitions are fired and once after they are fired. In future work we

may collect specific metrics once per delta clock step to prevent these anomalies.
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5.2.3 Workload Analysis

To view the metric data more clearly we split the data into four different charts that represent

the resource input workload, resource output workload, decision workload, and overall workload.

In the resource input workload chart we get an idea of how many channels, layers, and memory

objects the Actor is observing. By comparing this with the resource output workload we can

see when the inputs occasioned a response from the Actor. For the most part these charts

are well behaved and follow the workload patterns that we know about.

On the other hand the decision workload typically jumps all over the place. While we

believe the increase in decision workload does in fact increase overall workload, we are unsure

how to weight this value in comparison with the resource workload. This is something that

needs to be verified through sensitivity and user studies in future work.

The last analysis we would like to make is the comparison of our workload metric to

that of the adapted Wickens’ model from chapter 4. The general flow of the two metrics is

very similar, as is expected since everything in the Wickens’ model also exists in our workload

metric. What is more interesting is where the two metrics differ. Our workload metric is

comprised of 9 different values each of which can range from zero to two or more. This adds a

fair amount of detail into the workload measurement. An example of this can be seen in the

auto avoid scenario shown in Figure 5.7. After avoiding the emergency NOTAM the UAV

Operator continues to monitor the UAS GUI eventually avoiding another potential conflict.

The adapted Wickens’ model shows a flat line during this portion of the scenario while our

metric shows a heart beat that correlates with the UAV Operator actions.
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Figure 5.2: State Transition System of UAS integration into the NAS Model. Columns
represent Actors, column sections represent states, and arrows represent inter Actor data
flow.
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Figure 5.3: UAV Operator: Baseline
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Figure 5.4: ATC: Baseline
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Figure 5.5: UAV Operator: Manually Avoided Emergency NOTAM
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Figure 5.6: ATC: Manually Avoided Emergency NOTAM
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Figure 5.7: UAV Operator: Auto Avoid Emergency NOTAM
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Figure 5.8: ATC: Auto Avoid Emergency NOTAM
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Figure 5.9: UAVOP: Auto Avoid Emergency NOTAM w/ Interruption
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Chapter 6

Related Work

Threaded cognition theory states that humans can perform multiple concurrent tasks

that do not require executive processes. By making a broad list of resource assumptions about

humans, threaded cognition is able to detect the resource conflicts of multiple concurrent

tasks. Additionally threaded cognition is able to model task learning. Our model differs

from Threaded cognition theory in a few key areas, our model does not allow learning which

decreases workload through skill mastery. Also, it does not distinguish between perceptual

and motor resources, instead perception and action both use the same resource. In almost all

other aspects our model behaves in a similar fashion. [29]

Other similar work has attempted to predict the number of UAVs an operator can

control, otherwise known as fan-out. [12] This work used queuing theory to model how a

human responds in a time sensitive multi-task environment. Queuing theory is helpful in

determining the temporal effects of task performance by measuring the difference between

when a task was received and when it was executed. At the highest level our model uses

Queuing theory, our Actors can only perform a single transition at a time. We differ, however,

in that a transition may represent multiple concurrent tasks.

Act-R is a cognitive architecture which attempts to model human cognition and has

been successful in human-computer interaction applications. [3] The framework for this

architecture consists of modules, buffers, and a pattern matcher which in many ways are

very similar to our own framework. The major difference being the cognitive detail available
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with ACT-R such as memory access time, task learning, and motor vs perceptual resource

differences. [22, 26]

Brahms is a modeling language, developed by the Nasa Ames Research Center, used for

modeling multi-agent systems. [8] The language allows the modeler to create highly detailed

models consisting of agents, objects, locations, activities, and more. Brahms also allows

modeling of time/resource requirements and has been used to find communication bottlenecks

and to estimate the value of adding automation. In many ways Brahms is very similar to

the Model Abstraction Framework and at some point it may be possible to introduce the

workload metrics we are developing into the Brahms language. We chose not to use Brahms

for this research due to the complexity of the modeling language, preferring instead a simple

modeling language that would make experimenting with the language implementation more

feasible.
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Chapter 7

Summary and Future Work

As part of this thesis work we have developed the Model Abstraction Framework.

This simple modeling framework allowed us to experiment with generating different types

of raw data from a human-machine model. The modeling framework uses the concepts of

labeled state transition systems and Directed Team Graphs to build models constrained by

specific behavior and communication. The framework then takes this model and converts it

into a labeled state transition system that is run on the simulator. During the simulation we

collect raw data from the states, transitions, and labels.

Using this raw data we have demonstrated the generation of three workload metrics:

Adapted Wickens’ Model, Resource Workload Metric, and Decision Workload Metric. The

Adapted Wicken’s Model, our baseline metric, is an adaptation of a simple model meant

to measure cognitive resource load [32]. The Resource Workload Metric, based off of the

cognitive workload category presented by Jared et al. [21], represents the cognitive resource

load from inter-actor communication and memory access. The Decision Workload Metric,

based off of the algorithmic workload category presented by Jared et al. [21], represents the

complexity of the decision making process.

Using these metrics we demonstrated two important results. The first result is a general

consistency between our baseline model, Adapted Wickens’ Model, and the combination of

the Resource and Decision workload metrics. While the Resource and Decision workload

metrics are more expressive they trend very closely with the Adapted Wickens’ Model.
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The second result was a general consistency with the known high and low workload

periods observed during the UAV Enabled Wilderness Search and Rescue (WiSAR) flight

tests. Indeed the results from the Resource and Decision workload metrics was more closely

aligned to our observations than that of the Adapted Wickens’ Model.

Additionally we are encouraged by the predicted workload reduction observed when we

introduced automation into scenario three of the case study. The ability to predict workload

reduction with models is one of the primary objectives towards reducing the number of human

required to operate a UAS.

7.1 Threats to Validity

While these results are encouraging we realize that they do not yet represent human workload.

The Model Abstraction Framework was developed to enable experimentation with the

generation of raw data. No studies have been performed showing that the Model Abstraction

Framework can accurately model human-machine systems. No work has been done to show

that the raw data generated by the framework correlates to memory usage, decision making,

cognitive resource usage, and other recognized aspects of human workload.

The baseline workload results were generated by the Model Abstraction Framework

and not by a separate modeling framework that has been shown to correctly model human-

machine systems and cognitive resource load. Since there is no guarantee that converting the

model used by the Model Abstraction Framework to another modeling language produces the

same model we chose to instead attempt to convert the workload metric from a task based

paradigm to a state/transition based paradigm.

The WiSAR high and low workload profile used for validating workload consistency is

not the result of actively measuring different aspects of human workload during a flight test.

Instead the workload profile was obtained from in-flight observations and post-flight surveys

for a limited number of flight tests.
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7.2 Future Work

The ultimate goal of this work is to create a UAS for WiSAR that allows a single human to

perform all of the necessary tasks. In order to achieve this goal there is still a lot of work

to be done. This thesis represents the beginning phase of this research, which is to begin

comprising workload metrics. The next phase will be to modify and validate that the metrics

reflect human workload, and the last phase will be to show that the predicted workload

reductions are indeed reductions in human workload.

This work focuses on two facets of human workload, cognitive resource load and

decision complexity. To predict human workload more facets must be explored. Jared et al.

[21] are expanding on these metrics by experimenting with a temporal workload category[21].

They are also developing second and third order metrics within all three workload categories.

Additionally it may be necessary to expand the scope of the human workload categories

before a moderately accurate measure of human workload can be obtained.

The next step will be to find the correlations between the different workload aspects

in order to use the correct ratios to predict workload. Once a metric profile for measuring

human workload has been achieved, there may be many, the next phase of modifying and

validating the metrics begins.
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Appendix A

XML Model Parser

This chapter describes the XML structure used to create the models used to predict

workload within this thesis. We first describe the XML structure components, we then briefly

describe how the model is sent to the simulator. A link to the full XML models used in our

results can be found in appendix B.

A.1 XML Structure

We defined the following XML structure to represent the labeled state transition system sent

to the simulator.

The root node is the <team> element which consists of the name attribute and three

child elements: <channels>, <actors>, and <events>.

<team name="Basic UAS in NAS">

<channels></channels>

<actors></actors>

<events></events>

</team>

A.1.1 Channels

The <channels> element represents the DiTG and is comprised of any number of <channel>

elements. Each <channel> element represents a single uni-directional communication channel

between a source Actor and a target Actor with attributes for the name, type, source, target,
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and optional dataType. This is the only location in the XML that defines channels. Every

other <channel> element references one of these channels by using the channel name as its

value. In future work, we hope to identify other properties of channels such as bandwidth.

Figure A.1: Communication Channel Layers

Each channel can have any number of layers, see figure A.1. For example, a visual

channel from one person to another has two channels, one that analyzes the face and another

that analyzes the body. There may be more accurate channel layering for this scenario but

these layers satisfy this example. When communication occurs on this visual channel the

recipient can examine as many layers as are needed for the given state. If the person is in

a distracted state then they may not be looking at the face layer, which may reduce the

probability of comprehending the corresponding audio channel. Another example where this
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is useful is in GUIs. Each item that a GUI represents to the user can be represented as

a different layer. The more layers a GUI presents to a user the more complex it becomes,

potentially making it more difficult for a person to analyze due to conflicting resources [29].

<channels>

<channel name="V_UAS_UAVOP" type="VISUAL" source="UAS" target="UAVOP"/>

<channel name="M_UAVOP_UAS" type="MANUAL" source="UAVOP" target="UAS"/>

</channels>

<channel>M_UAS_UAVOP</channel>

<channel name="MANUAL_UAVOP_UAS">

<layer name="MOUSE"><null/></layer>

<layer name="KEYBOARD"><null/></layer>

</channel>

A.1.2 Actors

The <actors> element represents the state transition systems contained in the model and is

comprised of one or more <actor> elements. Each <actor> has a name attribute, which

must be unique, and a showMetrics attribute and is made up of several child elements. The

<inputchannels> and <outputchannels> elements are placed here to validate the DiTG. The

actor may have zero or more memory elements that represent declarative memory, memory

that is an active part of the cognitive decision process, and is used internally as part of

the labeled state transitions. The <actor> contains a list of one or more <state> elements

inside of the <states> element. Additionally the <actor> element must contain a single

<startState> element with a value that matches the name attribute of one of the <states>

child elements.

<actors>

<actor name="UAVOP" showMetrics="true">
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<inputchannels>

<channel>V_UAS_UAVOP</channel>

<channel>A_UAS_UAVOP</channel>

<channel>V_UAV_UAVOP</channel>

</inputchannels>

<outputchannels>

<channel>M_UAVOP_UAS</channel>

</outputchannels>

<memory name="FLIGHT_PLAN_READY" dataType="Boolean">false</memory>

<startState>IDLE</startState>

<states>

<state name="IDLE" load="0"></state>

</states>

</actor>

</actors>

A.1.3 States and Transitions

The <state> element represents the ‘State’ in the labeled state transition system. Each

<state> element has a name attribute, which must be unique to the parent <actor> element,

and a load attribute with a value of 0-4 (we will discuss state load in the next chapter). The

<state> element also contains zero or more <transition> child elements. If no <transition>

child elements are specified then it is an end state.

The <transition> element represents the ‘Transition’ in the labeled state transition

system and is composed of durationMin and durationMax attributes that are used to create a

transition duration range to enable timing analysis in JPF. It also has a priority attribute used
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to rank a transitions priority with respect to the other state transitions. Each <transition>

element contains four child elements: <description>, <inputs>, <outputs>, and <endState>.

The <description> element value contains a description of the transition that is meant

to help give the modeler insight into what the transition is actually doing. It is also used in

the debug logs to help track down modeling errors.

The <inputs> and <outputs> elements represent the ‘Label’ in the labeled state

transition system. These elements contain zero or more <memory> and <channel> elements.

All <inputs> element children have a name attribute, a predicate attribute, an optional

dataType attribute and a value. If the child element is a <channel> then it may optionally

declare only the name attribute and one or more <layer> child elements to specifically

describe the different types of data being sent over the channel. The <layer> element consists

of name, predicate, and optional dataType attributes with an accompanying data value. The

<channel> name must correlate with an <actor> <inputchannels> <channel> value. The

predicate attribute contains one of six predicate values: equal to, not equal, greater than,

less than, greater than or equal, or less than or equal. The dataType is one of three options:

String, Integer, or Boolean with a default of String. The value of these child elements is the

value that will be compared against the channel or memory value.

The <outputs> element is similar to the <inputs> element except that its children

do not specify predicate or dataType attributes.

This structure allows the modeler to use a 2 dimensional labeling system. The first

dimension is the direction of the data flow, input or output. The second dimension is the source

of the data; channel, layer, or memory. This allows the labeled state transition system to be

very flexible while using a relatively simple syntax. We should also point out that the transition

<inputs> element uses the following propositional logic: (Child1

∧
Child2

∧
. . .

∧
Childn).

This means that all transition inputs are evaluated together, preventing the modeler from

defining multiple sets of inputs for a single transition. Thus each labeled state transition, no

matter how similar to another, must be expressed as a separate <transition> element.

71



The value of the <endState> element contains the name of the Actor’s ending state if

this transition is applied. This value cannot be empty and must match an existing <state>

name.

<state name="END_BUILD_FP" load="0">

<transition durationMin="1" durationMax="1" priority="1">

<description>Clear mouse and keyboard output layers</description>

<inputs>

</inputs>

<outputs>

<channel name="M_UAVOP_UAS">

<layer name="MOUSE"><null/></layer>

<layer name="KEYBOARD"><null/></layer>

</channel>

</outputs>

<endState>WAITING_ON_FAA</endState>

</transition>

</state>

A.1.4 Events

The <events> element contains a child <event> element for each unique type of event the

system can experience. The <event> has a name attribute, must be unique, and a count

attribute that determines how many times the event will be fired during the simulation.

Each <event> element defines a single <transition> element that differs from the previously

mentioned transition element in that it does not define duration, priority, or an end state.

Since Events have a single state and a single transition there is no need for these additional

transition attributes. At the implementation level this forces Events to act as sipmle triggers

that perturb the model in interesting ways.
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<events>

<event name="NEW_MISSION" count="1">

<transition>

<description> Start a new UAV mission</description>

<inputs>

</inputs>

<outputs>

<channel name="NEW_MISSION">NEW_MISSION</channel>

</outputs>

</transition>

</event>

</events>

A.2 XML Model Parser

Figure A.2 illustrates the process of parsing the XML model. To accomplish this we created

a Java class named XMLModelParser. This class performs two main functions. The first is

to create the necessary Java objects and the second is to perform basic error checking on the

model.

The XMLModelParser works by first loading the XML model into an XML object.

This allows us to search the XML structure for specific elements and attributes. The structure

of the XML model facilitates the parsing effort since each child element is also a child object.

The first object that is created is the Team. Next the DiTG is added to the team by creating

ComChannel objects for each channel. The Actor parsing is the most complex. Each actor

element defines input and output channels, memory, states, transitions, and labels.
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Figure A.2: XML Model Parser Breakdown

A.2.1 Attaching to the Simulator

To pass a valid labeled state transition system to the simulator, the XMLModelParser must

construct Java classes that implement the Modeling Interface. To accomplish this we created

a set of generic XML classes. Each class implements a specific portion of the Modeling

Interface such as the ITransition or IActor interfaces. These interfaces allow the simulator to

query and execute transitions on the labeled state transition system. The list of XML classes

includes the XMLTeam, XMLActor, XMLTransition, XMLEvent, XMLEventTransition and

other helper classes. A link to the source code can be found in appendix B. Each of these

generic XML classes lies separate from the core simulation code.

This means that the addition of the XML parser does not prevent the use of custom

Actors or Transition classes, use of a different model parser, or extension of our existing XML

parser. In fact our XML model parser is meant to be expanded to handle a more robust set

of models. As we developed a model using this XMLModelParser we had several occasions to

extend its capabilities.
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Appendix B

Code and Models

The source code for the modeling framework, xml parsing, WiSAR model, and UAS

integration into the NAS models can be obtained on github from the following link:

https://github.com/tjflexmaster/UAV_ROLE_MODEL
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Appendix C

Debug Log Generated by the Model

This is the output log generated when running the UAS integrated into the NAS

model with automatic emergency NOTAM avoidance. The main simulation cycle consists of

three main parts: Load transitions, advance time, and fire transitions.

Load Transition(1): Start a new UAV mission

Time: 1

Fired Transition: Start a new UAV mission

-----------------------------------------------

Load Transition(1): UAVOP: StartState: IDLE EndState: BUILD_FP Description: Received new mission, begin building flight plan.

Time: 2

Fired Transition: UAVOP: StartState: IDLE EndState: BUILD_FP Description: Received new mission, begin building flight plan.

-----------------------------------------------

Load Transition(900): UAVOP: StartState: BUILD_FP EndState: BUILD_FP Description: Build a flight plan

Time: 902

Fired Transition: UAVOP: StartState: BUILD_FP EndState: BUILD_FP Description: Build a flight plan

-----------------------------------------------

Load Transition(1): UAVOP: StartState: BUILD_FP EndState: END_BUILD_FP Description: Click the Send flight plan button

Time: 903

Fired Transition: UAVOP: StartState: BUILD_FP EndState: END_BUILD_FP Description: Click the Send flight plan button

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: Send flight plan to FAA

Load Transition(1): UAVOP: StartState: END_BUILD_FP EndState: WAITING_ON_FAA Description: Clear mouse and keyboard output layers

Time: 904

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: Send flight plan to FAA

Fired Transition: UAVOP: StartState: END_BUILD_FP EndState: WAITING_ON_FAA Description: Clear mouse and keyboard output layers

-----------------------------------------------

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: Received Flight plan from UAS

Time: 905

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: Received Flight plan from UAS

-----------------------------------------------

Load Transition(1): ATC: StartState: NORMAL EndState: APPROVING_FLIGHT_PLAN Description: ATC is ready to approve flight plans.

Time: 906

Fired Transition: ATC: StartState: NORMAL EndState: APPROVING_FLIGHT_PLAN Description: ATC is ready to approve flight plans.

-----------------------------------------------

Load Transition(200): ATC: StartState: APPROVING_FLIGHT_PLAN EndState: END_APPROVING_FLIGHT_PLAN Description: ATC is approving flight plans.

Time: 1106

Fired Transition: ATC: StartState: APPROVING_FLIGHT_PLAN EndState: END_APPROVING_FLIGHT_PLAN Description: ATC is approving flight plans.

-----------------------------------------------

Load Transition(1): ATC: StartState: END_APPROVING_FLIGHT_PLAN EndState: NORMAL Description: ATC finished approving the flight plan.

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: FAA received approved flight plan from ATC, send to UAS

Time: 1107

Fired Transition: ATC: StartState: END_APPROVING_FLIGHT_PLAN EndState: NORMAL Description: ATC finished approving the flight plan.

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: FAA received approved flight plan from ATC, send to UAS

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: Received flight plan approved from FAA

Time: 1108

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: Received flight plan approved from FAA

-----------------------------------------------

Load Transition(30): UAVOP: StartState: WAITING_ON_FAA EndState: END_WAITING_ON_FAA Description: FAA approved the flight

Time: 1138

Fired Transition: UAVOP: StartState: WAITING_ON_FAA EndState: END_WAITING_ON_FAA Description: FAA approved the flight

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAVOP sent take off command

Load Transition(1): UAVOP: StartState: END_WAITING_ON_FAA EndState: MONITOR_TAKEOFF Description: Clear user output

Time: 1139

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAVOP sent take off command

Fired Transition: UAVOP: StartState: END_WAITING_ON_FAA EndState: MONITOR_TAKEOFF Description: Clear user output

-----------------------------------------------

Load Transition(1): UAV: StartState: GROUNDED EndState: TAKEOFF Description: Move to takeoff from UAVGUI cmd

Time: 1140

Fired Transition: UAV: StartState: GROUNDED EndState: TAKEOFF Description: Move to takeoff from UAVGUI cmd

-----------------------------------------------

Load Transition(300): UAV: StartState: TAKEOFF EndState: FLYING Description: Automatic Transition to Flying

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to takeoff, show this to the UAVOp
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Time: 1141

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to takeoff, show this to the UAVOp

-----------------------------------------------

Time: 1440

Fired Transition: UAV: StartState: TAKEOFF EndState: FLYING Description: Automatic Transition to Flying

-----------------------------------------------

Load Transition(1): Potential collision on UAS radar

Load Transition(1): FAA radar shows a potential collision with a UAV

Load Transition(1): Request that ATC create a new NOTAM on UAV FP

Load Transition(10000): UAV: StartState: FLYING EndState: LANDING Description: UAV normal flight

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to fly, show this to the UAVOp

Load Transition(1): UAVOP: StartState: MONITOR_TAKEOFF EndState: MONITOR_UAVGUI Description: UAV is airborne, move to monitor GUI

Time: 1441

Fired Transition: Request that ATC create a new NOTAM on UAV FP

Fired Transition: Potential collision on UAS radar

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to fly, show this to the UAVOp

Fired Transition: FAA radar shows a potential collision with a UAV

Fired Transition: UAVOP: StartState: MONITOR_TAKEOFF EndState: MONITOR_UAVGUI Description: UAV is airborne, move to monitor GUI

-----------------------------------------------

Load Transition(1): ATC: StartState: NORMAL EndState: CREATE_NOTAM Description: ATC needs to create a new NOTAM

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: Potential collision on FAA Radar, show the user

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAS received radar collision event

Load Transition(900): UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_UAVGUI Description: Monitoring the UAVGUI

Time: 1442

Fired Transition: ATC: StartState: NORMAL EndState: CREATE_NOTAM Description: ATC needs to create a new NOTAM

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: Potential collision on FAA Radar, show the user

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAS received radar collision event

-----------------------------------------------

Load Transition(1): ATC: StartState: CREATE_NOTAM EndState: CREATE_EMERGENCY_NOTAM Description: ATC sees the alert about a UAV collision and trie...

Load Transition(1): UAVOP: StartState: MONITOR_UAVGUI EndState: AVOID_COLLISION Description: Operator sees a potential conflict and trys to avoid...

Time: 1443

Fired Transition: ATC: StartState: CREATE_NOTAM EndState: CREATE_EMERGENCY_NOTAM Description: ATC sees the alert about a UAV collision and tries ...

Fired Transition: UAVOP: StartState: MONITOR_UAVGUI EndState: AVOID_COLLISION Description: Operator sees a potential conflict and trys to avoid i...

-----------------------------------------------

Load Transition(60): ATC: StartState: CREATE_EMERGENCY_NOTAM EndState: END_CREATE_EMERGENCY_NOTAM Description: ATC is creating an Emergency Nota...

Load Transition(300): UAVOP: StartState: AVOID_COLLISION EndState: AVOID_COLLISION Description: Operator is in the act of deconflicing the UAV

Time: 1503

Fired Transition: ATC: StartState: CREATE_EMERGENCY_NOTAM EndState: END_CREATE_EMERGENCY_NOTAM Description: ATC is creating an Emergency Notam ar...

-----------------------------------------------

Load Transition(1): ATC: StartState: END_CREATE_EMERGENCY_NOTAM EndState: AVOID_UAV_COLLISION Description: ATC is creating an Emergency Notam aro...

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: ATC sent an Emergency NOTAM to the FAA system, send it to the UAS

Time: 1504

Fired Transition: ATC: StartState: END_CREATE_EMERGENCY_NOTAM EndState: AVOID_UAV_COLLISION Description: ATC is creating an Emergency Notam aroun...

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: ATC sent an Emergency NOTAM to the FAA system, send it to the UAS

-----------------------------------------------

Load Transition(500): ATC: StartState: AVOID_UAV_COLLISION EndState: AVOID_UAV_COLLISION Description: ATC is waiting for collision to stop.

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: Receive Emergency Notam on the UAV, force UAV away from NOTAM

Time: 1505

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: Receive Emergency Notam on the UAV, force UAV away from NOTAM

-----------------------------------------------

Load Transition(1): UAV: StartState: FLYING EndState: AVOID_NOTAM Description: UAV gets a command to avoid a NOTAM

Time: 1506

Fired Transition: UAV: StartState: FLYING EndState: AVOID_NOTAM Description: UAV gets a command to avoid a NOTAM

-----------------------------------------------

Load Transition(300): UAV: StartState: AVOID_NOTAM EndState: LOITER Description: Avoid the Emergency NOTAM

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV is avoiding a NOTAM, show this to the UAVOp

Time: 1507

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV is avoiding a NOTAM, show this to the UAVOp

-----------------------------------------------

Time: 1743

Fired Transition: UAVOP: StartState: AVOID_COLLISION EndState: AVOID_COLLISION Description: Operator is in the act of deconflicing the UAV

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: Radar collision has been avoided

Time: 1744

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: Radar collision has been avoided

-----------------------------------------------

Load Transition(1): UAVOP: StartState: AVOID_COLLISION EndState: MONITOR_UAVGUI Description: Collision has been avoided, return to watching the U...

Time: 1745

Fired Transition: UAVOP: StartState: AVOID_COLLISION EndState: MONITOR_UAVGUI Description: Collision has been avoided, return to watching the UAV...

-----------------------------------------------

Load Transition(1): UAVOP: StartState: MONITOR_UAVGUI EndState: AVOID_EMERGENCY_NOTAM Description: Operator notices an emergency notam on the UAV...

Time: 1746

Fired Transition: UAVOP: StartState: MONITOR_UAVGUI EndState: AVOID_EMERGENCY_NOTAM Description: Operator notices an emergency notam on the UAV a...

-----------------------------------------------

Load Transition(300): UAVOP: StartState: AVOID_EMERGENCY_NOTAM EndState: AVOID_EMERGENCY_NOTAM Description: Operator is waiting for the UAV to au...

Time: 1806

Fired Transition: UAV: StartState: AVOID_NOTAM EndState: LOITER Description: Avoid the Emergency NOTAM

-----------------------------------------------

Load Transition(1): End the FAA potential collision with a UAV

Load Transition(10000): UAV: StartState: LOITER EndState: LANDING Description: Default to land after loitering for a long time.

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV is now Loitering, show this to the UAVOp

Time: 1807

Fired Transition: End the FAA potential collision with a UAV

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV is now Loitering, show this to the UAVOp

-----------------------------------------------

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: Radar collision has ended.

Load Transition(5): UAVOP: StartState: AVOID_EMERGENCY_NOTAM EndState: AVOID_EMERGENCY_NOTAM Description: Operator sees that the UAV is loitering...

Time: 1808

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: Radar collision has ended.

-----------------------------------------------

Load Transition(1): ATC: StartState: AVOID_UAV_COLLISION EndState: NORMAL Description: FAA radar no longer shows a potential collision

Time: 1809
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Fired Transition: ATC: StartState: AVOID_UAV_COLLISION EndState: NORMAL Description: FAA radar no longer shows a potential collision

-----------------------------------------------

Load Transition(1): ATC: StartState: NORMAL EndState: CREATE_NOTAM Description: ATC needs to create a new NOTAM

Time: 1810

Fired Transition: ATC: StartState: NORMAL EndState: CREATE_NOTAM Description: ATC needs to create a new NOTAM

-----------------------------------------------

Load Transition(60): ATC: StartState: CREATE_NOTAM EndState: END_CREATE_NOTAM Description: ATC is creating a new NOTAM

Time: 1812

Fired Transition: UAVOP: StartState: AVOID_EMERGENCY_NOTAM EndState: AVOID_EMERGENCY_NOTAM Description: Operator sees that the UAV is loitering, ...

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAVOP sent resume flight

Load Transition(1): UAVOP: StartState: AVOID_EMERGENCY_NOTAM EndState: MONITOR_UAVGUI Description: NOTAM has been avoided, return to watching the...

Time: 1813

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAVOP sent resume flight

Fired Transition: UAVOP: StartState: AVOID_EMERGENCY_NOTAM EndState: MONITOR_UAVGUI Description: NOTAM has been avoided, return to watching the U...

-----------------------------------------------

Load Transition(1): UAV: StartState: LOITER EndState: FLYING Description: Resume a normal flight

Time: 1814

Fired Transition: UAV: StartState: LOITER EndState: FLYING Description: Resume a normal flight

-----------------------------------------------

Load Transition(10000): UAV: StartState: FLYING EndState: LANDING Description: UAV normal flight

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to fly, show this to the UAVOp

Time: 1815

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to fly, show this to the UAVOp

-----------------------------------------------

Load Transition(900): UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_UAVGUI Description: Monitoring the UAVGUI

Time: 1870

Fired Transition: ATC: StartState: CREATE_NOTAM EndState: END_CREATE_NOTAM Description: ATC is creating a new NOTAM

-----------------------------------------------

Load Transition(1): ATC: StartState: END_CREATE_NOTAM EndState: NORMAL Description: ATC finished creating NOTAM return to normal

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: FAA received new NOTAM on UAV FP from ATC, send to UAS

Time: 1871

Fired Transition: ATC: StartState: END_CREATE_NOTAM EndState: NORMAL Description: ATC finished creating NOTAM return to normal

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: FAA received new NOTAM on UAV FP from ATC, send to UAS

-----------------------------------------------

Load Transition(1): FAA: StartState: NORMAL EndState: NORMAL Description: Clear New NOTAM memory

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: Receive new NOTAM from FAA which appears on the Flight Plan

Time: 1872

Fired Transition: FAA: StartState: NORMAL EndState: NORMAL Description: Clear New NOTAM memory

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: Receive new NOTAM from FAA which appears on the Flight Plan

-----------------------------------------------

Load Transition(1): UAVOP: StartState: MONITOR_UAVGUI EndState: AVOID_NOTAM Description: Operator notices new NOTAM(s) on the flight plan, begin ...

Time: 1873

Fired Transition: UAVOP: StartState: MONITOR_UAVGUI EndState: AVOID_NOTAM Description: Operator notices new NOTAM(s) on the flight plan, begin ch...

-----------------------------------------------

Load Transition(600): UAVOP: StartState: AVOID_NOTAM EndState: AVOID_NOTAM Description: Operator is changing the flight plan for a normal NOTAM

Time: 2473

Fired Transition: UAVOP: StartState: AVOID_NOTAM EndState: AVOID_NOTAM Description: Operator is changing the flight plan for a normal NOTAM

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAVOP sent a new flight

Load Transition(1): UAVOP: StartState: AVOID_NOTAM EndState: MONITOR_UAVGUI Description: NOTAM has been avoided, return to watching the UAVGUI

Time: 2474

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAVOP sent a new flight

Fired Transition: UAVOP: StartState: AVOID_NOTAM EndState: MONITOR_UAVGUI Description: NOTAM has been avoided, return to watching the UAVGUI

-----------------------------------------------

Load Transition(900): UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_UAVGUI Description: Monitoring the UAVGUI

Time: 3374

Fired Transition: UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_UAVGUI Description: Monitoring the UAVGUI

-----------------------------------------------

Time: 11814

Fired Transition: UAV: StartState: FLYING EndState: LANDING Description: UAV normal flight

-----------------------------------------------

Load Transition(600): UAV: StartState: LANDING EndState: GROUNDED Description: Land the UAV

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to land, show this to the UAVOp

Load Transition(900): UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_UAVGUI Description: Monitoring the UAVGUI

Time: 11815

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV has started to land, show this to the UAVOp

-----------------------------------------------

Load Transition(1): UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_LANDING Description: Operator sees that the UAV is beginning the landin...

Time: 11816

Fired Transition: UAVOP: StartState: MONITOR_UAVGUI EndState: MONITOR_LANDING Description: Operator sees that the UAV is beginning the landing a...

-----------------------------------------------

Time: 12414

Fired Transition: UAV: StartState: LANDING EndState: GROUNDED Description: Land the UAV

-----------------------------------------------

Load Transition(1): UAS: StartState: NORMAL EndState: NORMAL Description: UAV is GROUNDED, show this to the UAVOp

Time: 12415

Fired Transition: UAS: StartState: NORMAL EndState: NORMAL Description: UAV is GROUNDED, show this to the UAVOp

-----------------------------------------------

Load Transition(30): UAVOP: StartState: MONITOR_LANDING EndState: IDLE Description: Operator sees that the UAV has landed and sets the mission...

Time: 12445

Fired Transition: UAVOP: StartState: MONITOR_LANDING EndState: IDLE Description: Operator sees that the UAV has landed and sets the mission to ...

-----------------------------------------------

Time: 12445

-----------------------------------------------
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