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abstract

Steady State Configurations of Cells Connected by Cadherin Sites

Jared Adam McBride
Department of Mathematics, BYU

Master of Science

Many cells employ cadherin complexes (c-sites) on the cell membrane to attach to neigh-
boring cells, as well as integrin complexes (i-sites) to attach to a substrate in order to
accomplish cell migration. This paper analyzes a model for the motion of a group of cells
connected by c-sites. We begin with two cells connected by a single c-site and analyze the
resultant motion of the system. We find that the system is irrotational. We present a result
for reducing the number of c-sites in a system with c-sites between pairs of cells. This greatly
simplifies the general system, and provides an exact solution for the motion of a system of
two cells and several c-sites.

Then a method for analyzing the general cell system is presented. This method involves
0-row-sum, symmetric matrices. A few results are presented as well as conjectures made
that we feel will greatly simplify such analyses. The thesis concludes with the proposal of
a framework for analyzing a dynamic cell system in which stochastic processes govern the
attachment and detachment of c-sites.

Keywords: Differential Equations, Nondimensionalization, Stochastics.
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Chapter 1. Introduction and Setting

1.1 Introduction

Currently there is great interest in studying simple organisms that display specific aspects of

much more complex organisms. Such simple organisms, called model organisms, are vastly

more accessible to research and provide insights in understanding more complex organisms.

The research here began with the study of just such an organism, Dictyostelium discoideum.

In the summer of 1933 Kenneth B. Raper, just before arriving as a graduate student at

Harvard University, went on a brief vacation to North Carolina. Raper was among the rare

sort who would, while hiking in the Appalachian Mountains, collect samples of forest leaf

mold. From litter collected from western North Carolina’s Craggy Mountains, he isolated

a remarkable new species of cellular slime mold in the genus Dictyostelium. Raper named

the new species Dictyostelium discoideum (Dd) , when he described it in a paper in the

Journal of Agricultural Research in 1935 [1], [2]. A slime mold is a eukaryotic amoeba that

transitions from a collection of single cellular organisms into a multinucleated slug. Dd on

the other hand as a cellular slime mold spends most of its life as uninucleated cells, that form

a slug but retain, for the most part their cell membranes. The transition from a isolated

cell to a multicellular slug is based on several factors including scarcity of resources. It has

since been designated a model organism by the National Institutes of Health for the many

areas of research to which its study has contributed. These areas include cell differentiation,

chemotaxis and thermotaxis, programmed cell death, and DNA repair [3].

Motility in Dd involves periodic extension and retraction of pseudopodia with coordinated

adhesion to propel cellular movement in random directions [4]. The adhesion here referred to

is explained in great detail by Siu et al [3]. There, they identify cell-to-cell adhesion molecules

and note that a few of these molecules are dependent on the adhesion molecule DdCAD-1,

a form of cadherin. These attachment complexes reside at the end of pseudopodia. These

complexes will simply be referred to as c-sites (for cadherin), when they attach to other cells.
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When a cell attaches to a substrate the adhesion molecule are typically integrin based, for

this reason these adhesion sites are referred to as i-sites.

For the past 8 years, Dr. John Dallon (BYU) has been doing research on Dd, and has

employed undergraduate students in developing computer simulations in order to better

understand the movement of a population of cells like Dd.

The computer models referenced above involve a collection of cells reaching out to neigh-

boring cells as well as to the substrate (simulating both c-site and i-site attachment behavior).

The pseudopodia are modeled as a Hookean spring of zero rest length, meaning they exert

forces on both the c-site or i-site and the cell center that is directly proportional to their

distance apart. The tendency for a cell to attach to either a cell or the substrate both involve

random processes.

Figure 1.1: Here is a Dd slug in silico displaying the typical elongated structure. This structure seems to be a steady state of
the model.

These simulations have produced interesting results such as the elogated steady state

exhibited in Figure 1.1. This thesis was born out a desire to better understand this behavior

of the slug in silico.

The purpose of this study is to analyze the movement of these cell centers under assump-

tions similar to the computer model, but from a strictly theoretically perspective. Here, the

reaching of the pseudopodia is restricted to only other cells. These cells are thought of as

being in suspension with no substrate to latch on to. The result of this restriction is that

only c-sites and no i-sites are considered in the model. The exact assumptions used in the

majority of this work are now listed. (1) The cell centers are all two dimensional, identically
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shaped, objects in the plane. This means that, in the equations used to govern the motion

of these objects, cell centers have the same drag coefficient. (2) The c-sites are likewise two

dimensional and identically shaped objects in the plane, and, therefore, also all have the

same drag coefficient (different from the cell center drag coefficient). It is also supposed that

the c-sites are much smaller than the cells. (3) The spring constant for the springs that

model the pseudopodia are all the same. Also, the pseudopodia may be arbitrarily long. (4)

The cells possess an inhibition to occupy the same space. The cells should be thought of

not as overlapping but rather as deforming as they bump up against each other. The force

on the centers of two cells that are squashed together increases (continuously) as the dis-

tance between the centers decreases. It is not assumed that the force here described changes

linearly with the distance between the cell centers but only that the force gets large as the

distance becomes small. (5) There is no boundary to the plane on which the cell centers

reside. Another rather significant assumption that greatly simplifies the problem is that (6)

the c-sites are constantly attached to the cells. A more accurate and sophisticated model

would employ random variables, as switching terms, to govern the attachment and detach-

ment of the c-sites to various cells as well as random variables (times) to determine where

the c-sites move in the plane between attachments. As such, an approach to a formulation

of such a model involving stochastics has been considered and a framework for this approach

has been included in Chapter Five.

1.2 Formulation of the Model, Notation and Definitions

The objects in the model are defined mathematically as follows. The cell centers and the c-

sites will be represented by points in R2. Let xi = xi(t), for real t ≥ 0 and for i = 1, 2, . . . , n,

be points in R2 that denote the locations of the centers of n cells at time t. The coordinates

for the cell locations will be designated by xi = (xi, yi). Similarly, let ci,j,k = ci,j,k(t) be the

point in R2 that represents the location of the center of the kth c-site that is attached to both

the ith and the jth cell centers (so, ci,j,k = cj,i,k). The integer ni,j will denote the number
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of c-sites connecting the ith and the jth cells; m will denote the total number of c-sites, so

m =
∑

i<j ni,j. The coordinates will be denoted ci,j,k = (xi,j,k, yi,j,k). As mentioned above,

with regards to the assumptions in our model, cells are connected to c-sites by pseudopodia

which here is represented as a spring.

Now, we think of the network of cells and c-sites as a graph together with any information

relevant to its evolution in the plane. This is roughly what we mean when we refer to a cell

system (this will be defined more precisely below). So, in total a cell system includes data

about the drag of the cells in the group and the elasticity of areas of the cell, the size of the

c-sites etc. as well as information of which cells are connected by which c-sites, all this is in

a cell system. An illustration of a cell system is displayed in Figure 1.2.

x1

x2

x3

x4

x5

x6

c1,2,1

c1,2,2

c1,5,1

c1,5,2

c2,4,1

c3,5,1

c1,4,1

c1,3,1c4,6,1

c4,6,3

c4,6,2

Figure 1.2: This is a representation of a cell system. There are six cells and eleven c-sites, they are interconnected, as seen
above. The location of each body is given. The drag coefficients of the cells are γ1 and that of the c-sites are γ2. All the
pseudopodia spring constants are α and the body force is given by f . All this information is necessary in determining a cell
system.

Now, given any cell system it is handy to consider what we call the cell adjacency graph

of the cell system. This graph is associated with a cell system and has adjacency matrix

M = [nij] that is to say the matrix whose i, j-entry is the number ni,j (recall ni,j is defined

to be 0 if there are no c-sites connecting to the ith and the jth cells.) The edges of the graph

will correspond to the c-sites that connect the various cells. So, the cell adjacency graph

4



associated with the cell system in Figure 1.2 is show in Figure 1.3. The cell adjacency graph

of a system will be useful in Chapter Four where more general systems are discussed.

x1

x5

x3

x2

x4x6

c1,5,1c1,5,2

c1,3,1

c1,2,2 c1,2,1

c1,4,1

c3,5,1

c2,4,2

c4,6,1

c4,6,2

c4,6,3

Figure 1.3: The cell incidence graph of the cell system with six cells and eleven c-sites depicted in Figure 1.2.

The number mi,j will be defined as follows

mi,j =

 0 If ni,j = 0,

1 If ni,j 6= 0.
(1.1)

These are the entries of the adjacency matrix for the graph associated with a cell system

in which the multiple edges of the cell adjacency graph have been removed, it is called the

reduced cell adjacency graph.

Since we consider all cell centers to be identical, as mentioned above, they have the same

drag coefficient as do the c-sites of the model. The drag coefficient for the cells will be

denoted γ1 ∈ (0,∞), and for the c-sites, γ2 ∈ (0,∞).

Once attached, a c-site and a cell center, connected by the pseudopodia of the cell with the

c-site on the end, tug on each other. We will approximated this as being directly proportional

to the distance between the cell center and the c-site, as if they were connected by a Hookean

spring of zero rest length. The spring constant to the spring modeling the pseudopodia for

all the individual c-sites will be assumed to be the same and will be denoted by α ∈ (0,∞).
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We have just discussed the objects of the model and now describe in greater detail how

these objects relate to each other. The cells will have a body force that keeps them from

passing through each other. Let f : [0,∞)→ [0,∞] be a continuously differentiable function,

with f(0) =∞, and with support [0, r] for some real number r > 0. This function will denote

the magnitude of the body force or the force that repels any two cells as soon as their centers

become too close to each other (i.e. the distance between the centers of the cells is less than

r). Since the cells are assumed to be identical, only one body force function is necessary

throughout a single system. The input of the function f will be thought of as the distance

between two cells, in this case, the Euclidean 2-norm will be used, which will be denoted

simply by ‖ · ‖. We will sometimes write ∆xi,j to mean ‖xj − xi‖. So, below it will be

seen that the factor f(‖xj − xi‖) will ever be multiplied by the unit vector along the line

connecting the two cells xi and xj. Since the closer the cell centers get to each other the

more they repel each other, f may be assumed to be deceasing and even convex. With these

assumptions in hand it follows then that f > 0 and f ′ < 0 on (0, r).

The proposed model (so far, free from any stochastic terms) is derived from Newton’s

Second Law of Motion. The equation for a single cell may be thought of in the context of the

sum of the forces acting on the cell producing an acceleration. The principal forces acting

on the cell are (1) the body force (which vanishes when the cell centers are sufficiently far

away from each other), (2) the forces generated by the c-sites (linear forces), and (3) the

force of drag which in this environment is proportional to the velocity of the cell, but in the

direction opposite the velocity. So, in general, the equation (for a cell of mass µ) of motion

associated with the cell system is

µẍi =
n∑
j=1
j 6=i

f(‖xi − xj‖)
xi − xj
‖xi − xj‖

+
n∑
j=1

ni,j∑
k=1

α(ci,j,k − xi)− γ1ẋi.

The first sum ranges over the indices of all the cells in the cell system. And the second sum

ranges over the c-sites attached to the ith cell. Now, because of the medium through which
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the cell travels and the cell’s small size the Reynolds number is very small. As a result, the

acceleration term is negligible. The equation for the c-site is similar but without the body

force term. Writing an equations for each body, yields the following system:



γ1ẋ1 =
n∑
j=1
j 6=i

f(‖x1 − xj‖)
x1 − xj
‖x1 − xj‖

+
n∑
j=1

n1,j∑
k=1

αm1,j(c1,j,k − x1)

...

γ1ẋn =
n∑
j=1
j 6=i

f(‖xn − xj‖)
xn − xj
‖xn − xj‖

+
n∑
j=1

nn,j∑
k=1

αmn,j(cn,j,k − xn)

...

γ2ċi,j,k = α(xi − ci,j,k) + α(xj − ci,j,k)

...

(1.2)

where ci,j,k ranges over all the c-sites.

We conclude this section by summarizing the above in a few definitions.

1.2.1 Definitions.

Definition 1. A cell system is a connected bipartite graph, together with some additional

information associated with elements of the graph. One of the partite groups represents

the c-sites, the other, the cells. The c-site partite group is bivalent1 and incident with no

multi-edges2. The additional information coupled with the graph is as follows:

1. The location, on the plane, of each vertex (xi ∈ R2 for vertices in the cell partite and

(ci,j,k ∈ R2 for vertices in the c-site partite).

2. A positive value γi > 0 associated with each vertex in the cell partite and γi,j,k > 0

1This means each vertex in the partite group has degree two.
2A multi-edge is an edge whose endpoints are the same as the endpoints of some other edge in the graph.

Also, a vertex is incident to an edge if it is one of the endpoints of the edge. This condition is equvilonet to
saying the bipartite graph has girth at least 4, or in other words that there are no cycles of length smaller
than four.
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associated with each vertex in the c-site partaite (the drag coefficient). The index on γ

corresponds with the vertex with which it is associated.

3. A function ai,j,k,l : R4 → R2 associated with each edge modeling the attractive force of

the cell and the c-site incident to that edge. The function ai,j,k,l is thought of as having

for arguments locations of the cell and the c-site that form its endpoints. The c-site

is always the kth c-site attached to both the ith and jth cells. However, which cell is

the argument depends on the value of l, if l = 1 then the location of the ith cell center

in graph is the argument, if l = 2 then the location of the jth cell center is used. The

output of ai,j,k,l is a scalar multiple of the difference of the arguments being used. See

figure 1.4.

4. A function fi,j : R4 → R2 associated with a pair of vertices in the cell partite group

which models the repulsive body force of the cells in the pair. Hence the arguments of

fi,j are simply the locations of the ith and jth cell centers and its output is a scalar

multiple of their difference.

ai,j,1,1(xi, ci,j,1) ai,j,1,2(xj, ci,j,1)

aj,i,k,2(xi, ci,j,k) aj,i,k,1(xj, ci,j,k)

fi,j(xj,xi)

fi,j(xi,xj)

xi

γi

xj

γj

ci,j,1 γi,j,1

ci,j,k γi,j,k

Figure 1.4: A portion of a cell system. Note, the indices on a
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Notice, in the above definition there are some identities:

ci,j,k = cj,i,k

γi,j,k = γj,i,k

ai,j,k,1 = aj,i,k,2

fi,j = fj,i.

We impose the laws of Newtonian mechanics in low Reynolds number, to dictate the evolution

of the cell system. We now define a means of evaluating or studying the evolution of a cell

system. With all the information given above pertaining to a cell system we define a force

based system of differential equations as follows:

Definition 2. A cell system model is an initial value problem (IVP) associated with a cell

system formulated this way


γiẋi =

n∑
j=1

fi,j(xi,xj)−
n∑
j=1

ni,j∑
k=1

ai,j,k,1(xi, ci,j,k)

γi,j,kċi,j,k = ai,j,k,1(xi, ci,j,k) + ai,j,k,2(xj, ci,j,k)

(1.3)

Let x = (x1, . . . ,xn, . . . , ci,j,k, . . . ) ∈ R2n+2m be the state variable of the system. Then

let f : R2n+2m → R2n+2m be such that system (1.3) may be written as ẋ = f(x). This is

accomplished by assigning the right hand side of the lth equation of (1.3) as the lth component

of f . Here f is said to be a cell system model force function and ẋ = f(x) is referred to as

the ordinary differential equation (ODE) of the cell system model. The initial condition will

be the state x0 (value of the state variable) of the cell system at some initial time t0.

So, the cell system model is simply the IVP

 ẋ = f(x)

x(t0) = x0.
(1.4)
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In regards to (1.3), for conciseness we display only the general forms of each group of

equations that form the system, there are two groups of equations in these cell system models:

cell equations and c-site equations. It is then left to the reader to flesh out the full system.

For instance, system (1.3) has n+m equations (each equation equates elements of R2); n for

the cell equations denoted by the first line of (1.3) as j ranges from 1 to n, and m =
∑

i<j ni,j

for each c-site equation.

Throughout the text we employ a useful convention, functions with their range lying

in the state space of a cell system model are denoted in bold italics such as x, y, c, and

f . Functions of elements in R2 are donated by boldface characters such as x, y, c,and f .

Elements of R are simply written in normal type such as x, y, c, t, and f .

Definition 3. A Hookean cell system is a cell system in which

ai,j,k,l(xi, ci,j,k) = αi,j,k(xi − ci,j,k)

ai,j,k,2(xj, ci,j,k) = αi,j,k(xj − ci,j,k).
(1.5)

This we refer to as the Hookean condition.

Definition 4. A Hookean cell system will be said to be of type 1 if

1. γi = γ1 for each cell, i.e. for i = 1, 2, . . . , n (in which case, relabel all to γ1) and each

γi,j,k = γ2 for each c-site (in which case, relabel all to γ2),

2.

fi,j(xi,xj) = f(‖xi − xj‖)
xi − xj
‖xi − xj‖

for each i, j = 1, 2, . . . , n for some f : [0,∞)→ [0,∞] with the following properties:

(a) f(0) =∞,

(b) for some r > 0, f has support [0, r],

(c) f is convex,

(d) f is decreasing,

10



(e) f is C1 on (0, 1).

In this case f will be referred to as the generating function.

3. each αi,j,k = αmi,j (in which case, relabel).

Definition 5. A Hookean cell system will be said to be of type 2 if

1. each γi = γ1 for i = 1, 2, . . . , n and

2. each fi,j is as in the definition of a Hookean cell system of type 1.

There are a few things worth pointing out at this point. First, note that all Hookean

cell system of type 1 are also type 2. Second, the conditions in the definition of type 1 and

type 2 pertaining to fi,j make it antisymmetric, meaning fi,j = −fj,i. This is important as it

provides cancellation should some equations be added together.

More simply stated, in a Hookean cell system, the force representing the attraction be-

tween a cell and a c-site is linear with respect to their difference (the vector connecting the

two bodies), notice also by the Hookean condition (1.5) the force ai,j,k,1 = ai,j,k,2 thus the

pseudopod spring constants are the same for each pseudopod connected to the same c-site.

The careful reader will observe that they may be some ambiguity in the definition of γ1

and γ2. In the definition of a Hookean cell system of type 1 γ1 is used to denote the common

crag coefficient of the cells and γ2 is used for the common drag coefficient of the c-sites.

However in cell systems not of type 1 or 2 γ1 and γ2 are used for the drag coefficients of two

particular cells. We feel that the context makes this naming system sufficiently transparent

as to avoid any confusion.

Definition 6. A Hookean cell system model is a cell system model associated with a Hookean

cell system. Hookean cell system models of type 1 and 2 are similarly defined according to

the Hookean cell systems with which the model is associated.

For convenience a Hookean cell system and its corresponding model will be denoted

by the fraktur character H, and when it is important to vary the initial conditions without

11



changing the underlying differential equation, we will specify the initial conditions by writing

H(t0,x
0).

And lastly, as will be important in chapters three and four.

Definition 7. A cell system (cell system model) is said to be simple if each pair of cell centers

have at most one c-site connecting them, that is ni,j ≤ 1 for all pairs i, j = 1, 2, . . . , n.

1.3 Existence and Uniqueness Results

In this section we present a version of the famous existence and uniqueness theorem of ordi-

nary differential equations tailored to Hookean cell system models of type 2. This theorem

is used extensively in chapters two and three. We begin with an interesting observation.

1.3.1 Conservation of the Center of Drag. There is a useful property inherent in

Hookean cell systems of type 2. There is a conservation of what we call the “center of drag.”

Definition 8. In a cell system with x = (x1, . . . ,xn, . . . , ci,j,k, . . . ) ∈ R2n+2m the center of

drag of the cell system is defined to be the point

xcod =

n∑
i=1

γixi +
∑
i<j

ni,j∑
k=1

γi,j,kci,j,k

n∑
i=1

γi +
∑
i<j

ni,j∑
k=1

γi,j,k

.

This point is something of an analog to the center of mass.

Proposition 1.3.1. Given a Hookean cell system of type 2, the center of drag is conserved

throughout the entire evolution of that system.

12



Proof. Consider the derivative of the center of drag with respect to time

ẋcod =


n∑
i=1

γixi +
∑
i<j

ni,j∑
k=1

γi,j,kci,j,k

n∑
i=1

γi +
∑
i<j

ni,j∑
k=1

γi,j,k


.

=

(
n∑
i=1

γi +
∑
i<j

ni,j∑
k=1

γi,j,k

)−1( n∑
i=1

γiẋi +
∑
i<j

ni,j∑
k=1

γi,j,kċi,j,k

)

=0.

That
∑n

i=1 γiẋi +
∑

i<j

∑ni,j
k=1 γi,j,kċi,j,k = 0 can be seen from the definition of a Hookean cell

system of type 2, since the body forces are anti-symmetric and all the c-site forces in the

cell equations appear in the c-site equations with opposite sign. Indeed adding up all the

equations in (1.3) reveals that the right hand sides sum to zero. So, xcod = C where C ∈ R2

is a constant.

In fact, this law applies to more robust systems than those that are Hookean cell system

models of type 2, we will see that the first condition for type 2 may be discarded and the

second relaxed fi,j(xi,xj) = −fj,i(xj,xi) (an anti-symmetry of the body forces). However,

since this paper is mainly concerned with Hookean cell system of type 2 we state the law for

that class of cell system.

This principle is a direct result of the conservation of force. A useful consequence of this

fact is the following.

Proposition 1.3.2. If x(t) is a solution to a Hookean cell system model H, then there exist

an L > 0 which depends on x0 such that

‖x(t)‖ < L

for all t.

13



Proof. Let x0 be the initial state of H and let L0 be such that ‖x0‖ < L0. Now, it is important

to point out that the c-sites have no tendency to become further from the midpoint of the two

cell centers to which they are attached. Likewise the cell centers are only ever forced no more

then r units from another cell, by its body force. These facts together make it apparent that

any solution to H will not at any point have norm greater than L0 +nr. Hence, L := L0 +nr

is the distance that is the farthermost any cell and c-site could possibly be apart, given the

initial state of a system with condition ‖x0‖ < L0. So, as will be employed later, if x is a

solution to the H and ‖x0‖ < L0 then ‖x(t)‖ < L and ‖x− x0‖ < L0 + L.

1.3.2 Some important sets. These models necessitate a family of sets that will be

important to the analysis to follow. They arise naturally, from the avoidance of the case in

which two cell centers are in the same location. Here is one such set:

Θn =
{
x = (x1,x2, . . . ,xn) ∈ R2n : ‖xi − xj‖ 6= 0 for all 1 ≤ i 6= j ≤ n

}
An element of the set Θn×R2m ⊂ R2n+2m (which set should be thought of as being contained

in the state space) corresponds to a cell system in which no two cell centers are at the same

location (no such consideration is made for the c-sites). This is an invariant set for any

Hookean cell system model of type 2, as we here explain. From the physical interpretation,

the body force repelling any two cell centers will eventually overcome any c-site force (or

even any collection of c-site forces). This is because the body force is unbounded as the

distance between the two cell centers becomes small and the pseudopodia forces are generally

decreasing. Hence no pseudopodia forces will eventually overpower the body force; the cell

centers will, then, eventually, be forced apart or at least stop attracting.

Proposition 1.3.3. The set Θn is open and connected.

Proof. Let x = (x1, . . . ,xn) ∈ Θn and pick ε = 1
2

min
i 6=j
‖xi−xj‖. Now suppose y ∈ B(x, ε) :=
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{y ∈ R2n : ‖y − x‖ < ε}. Observe that

(
1

2
min
i 6=j
‖xi − xj‖

)2

= ε2 > ‖y − x‖2 =
n∑
i=1

‖yi − xi‖2 ≥ ‖yi − xi‖2.

and, so, for any i, ‖yi − xi‖ < 1
2

min
i 6=j
‖xi − xj‖. Now suppose there exist an i and j with

i 6= j so that yi = yj then

‖xi − xj‖ = ‖xi − yi + yj − xj‖ ≤ ‖xi − yi‖+ ‖yj − xj‖ < min
i 6=j
‖xi − xj‖

a contradiction. So, y ∈ Θn and B(x, ε) ⊂ Θn, hence Θn is open.

To see that Θn is connected, it is sufficient to show it is path connected. To do this

consider any two points y0,x0 ∈ Θn and a series of paths φi(x,y) : [0, 1] → Θn for i =

1, 2, . . . , n so that φi(x,y)(0) = x and φi(x,y)(1) = (x1, . . . ,xi−1,yi,xi+1, . . . ,xn) each

continuously deforming the ith component of x to the ith component of y leaving the other

components constant and avoiding equality with any other component of x. See Figure 1.5.

Let

x1 = φ1(x0,y0)(1)

x2 = φ2(x1,y0)(1)

...

xi = φi(x
i−1,y0)(1)

...

xn = φn(xn−1,y0)(1)

then the path

x0 φ1(x0,y0)−−−−−→ x1 φ2(x1,y0)−−−−−→ . . .
φn−1(xn−2,y0)−−−−−−−−−→ xn−1 φn(xn−1,y0)−−−−−−−→ xn = y0
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is a continuous deformation from x0 to y0 which remains in Θn

xi−1
i xi−1

i+2

xi−1
i+1

xi1n

yi

y1 = xi−1
1

y2 = xi−1
2

yi−1 = xi−1
i−1

yi+1

yi+2

yn φi

Figure 1.5: A demonstration of the continuous path φi(x
i−1,y0) that is used as the ith component of φi (the other components

being the identity on R2) so that φi(x
i−1,y0)(0) = xi−1 = (y1, . . . ,yi−1,xi,xi+1, . . . ,xn) and φi(x

i−1,y0)(1) = xi =
(y1, . . . ,yi−1,yi,xi+1, . . . ,xn). Notice that because the components of xi−1 are in the plane and finite there is always a

continuous path from xi−1
i to yi which does not intersect any other component of xi−1.

In the interest of building an existence and uniqueness result for a Hookean cell system

of type 2 H, it will be helpful for the force function f of H to be uniformly Lipschitz.

Because of the singularities that occur when two cell centers approach the same location it is

necessary to find a more restrictive set on which f is better behaved and which still possess

an invariance property. To that end, let ε > 0 and let

Θn,ε =
{
x = (x1,x2, . . . ,xn) ∈ R2n : ‖xi − xj‖ > ε for all 1 ≤ i < j ≤ n

}
These sets are not necessarily invariants sets for the ODE of some Hookean cell system model

H since cell centers generally do become closer together as the system evolves, but it may be

shown that for any given Hookean cell system model H it is impossible for the cell centers to

be forced within a particular distance. This is because there is, basically, a maximum to the

force that the c-sites can exert on a system. This is a result of Proposition 1.3.2; the c-sites

can only be so far from the cells. This is made precise in the following lemma:
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Lemma 1.3.4. Given the Hookean cell system model, H, there exists an ε > 0 for which if

there is a solution to H it will remain in Θn,ε × R2m.

Proof. Proposition 1.3.2 gives an L such that for any solution x of H we have ‖x‖ < L. This

implies that for any cell center and c-site of the cell system xi and cij,k, ‖xi − cij,k‖ < 2L.

Now, for each cell xi pick ri > 0 so that

f(ri) =
n∑
j=1

ni,j∑
k=1

2αi,j,k(2L), (1.6)

(since f is continuous on (0, r), f(0) = ∞, and f(r) = 0 such an ri > 0 exists for each xi)

choose ε1 = min
i
ri, ε2 = min

i 6=j
‖x0

i − x0
j‖ (for x0 = (x0

1, . . . ,x
0
n, . . . ,x

0
i,j,k, . . . ) the initial condi-

tion of H; we are concerned with only the cells in this initial condition for our formulation of

ε2), and ε = min{ε1, ε2}. Observe that the RHS of (1.6) provides a very crude upper bound

for the sum of all possible pseudopodia forces acting on the ith cell. By way of explanation, if

all the c-sites in the whole cell system were attached to that one cell and they were stretched

as far as possible from the cell, the resulting total force would be the RHS of (1.6). The ε is

chosen to be the minimum since because the function f is decreasing f(ε) will be larger than

the RHS of (1.6) for any i. Thus, the first time the distance of any two cell centers approach

ε (this would approach from above as all the cell started out farther then ε apart) the body

force of the cells would overpower all other possible forces of attraction, the velocity of the

cell centers would immediately be in a direction to increase their distance apart. And so,

the solution x remains safely in the set Θn,ε.

Proposition 1.3.5. The set Θn,ε is open and connected.

Proof. Let x ∈ Θn,ε, so then ‖xi − xj‖ > ε for all 1 ≤ i < j ≤ n. Let δ = 1
2
(mini 6=j ‖xi −

xj‖ − ε). Now suppose y ∈ B(x, δ) then

1

2
(min
i 6=j
‖xi − xj‖ − ε) = δ > ‖y − x‖ =

(
n∑
i=1

‖yi − xi‖2

) 1
2

≥ ‖yi − xi‖.
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and

min
i 6=j
‖xi − xj‖ ≤ ‖xi − xj‖ = ‖xi − yi + yi − yj + yj − xj‖

≤ ‖xi − yi‖+ ‖yi − yj‖+ ‖yj − xj‖

< 2δ + ‖yi − yj‖

< min
i 6=j
‖xi − xj‖ − ε+ ‖yi − yj‖.

So, ‖yi − yj‖ > ε for any i 6= j. Hence, y ∈ Θn,ε so B(x, δ) ⊂ Θn,ε and Θn,ε is open.

The proof that Θn,ε is connected is almost identical to that of Θn being connected, the

only difference is that some care may need to be taken in choosing the paths. Notice that

for any element x ∈ Θn,ε there is a path in Θn,ε from x to an element with the components

in a line with the components sufficiently far apart. This provides an intermediate step from

which any element of Θn,ε may be reached.

Before proceeding there is a small fact that should be pointed out

Lemma 1.3.6. For any ai ∈ R for i = 1, 2, . . . , n, (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i .

Proof. Young’s inequality provides that aiaj ≤
a2
i

2
+
a2
j

2
so

(
n∑
i=1

ai

)2

≤
n∑
i=1

a2
i +

∑
i<j

(a2
i + a2

j) ≤
n∑
i=1

a2
i +

n∑
i=1

(n− 1)a2
i = n

n∑
i=1

a2
i .

We are now in a position to show that for any ε > 0, f is uniformly Lipschitz on any

open ball contained in Θn,ε (with n appropriately chosen according to the domain of f).

Proposition 1.3.7. For any ε > 0 and Hookean cell system model of type 1 H, the force

function f of H is uniformly Lipschitz on any open ball contained in Θn,ε.
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Proof. Let x̂ ∈ Θn,ε be arbitrary and pick any r > 0 such that B(x̂, r) ⊂ Θn,ε Now, note

that there is a nonlinear function N and a linear function L both in C([0,∞);R2n+2m) such

that f = N + L. Namely,

N(x) =


1
γ1

n∑
i=1

f (‖xj − xi‖)
xj − xi
‖xj − xi‖

0

 , L(x) =


1
γ1

n∑
i=1

(
ni,j∑
k=1

αi,j,k(ci,j,k − xj)

)

1
γ2
αi,j,k(xi + xj − 2ci,j,k)

 .

Now, L is Lipschitz everywhere because it is a bounded linear operator. It will here be

shown that N is Lipschitz in B(x̂, r). Because f is decreasing, convex, and continuously

differentiable |f ′| is decreasing, so let M > f(ε) and M ′ > |f ′(ε)|. Observe that so long as

x ∈ Θn,ε, ‖xi − xj‖ > ε. Now, consider the following:

‖N(x2)−N(x1)‖2

=
n∑
j=1

∥∥∥∥∥∥∥
1

γ1

n∑
i=1
i 6=j

(
f(‖x2

i − x2
j‖)

x2
i − x2

j

‖x2
i − x2

j‖
− f(‖x1

i − x1
j‖)

x1
i − x1

j

‖x1
i − x1

j‖

)∥∥∥∥∥∥∥
2

≤
n∑
j=1

 1

γ1

n∑
i=1
i 6=j

∥∥∥∥(f(‖x2
i − x2

j‖)
x2
i − x2

j

‖x2
i − x2

j‖
− f(‖x1

i − x1
j‖)

x1
i − x1

j

‖x1
i − x1

j‖

)∥∥∥∥


2

≤ n− 1

γ2
1

n∑
j=1

n∑
i=1
i 6=j

∥∥∥∥f(‖x2
i − x2

j‖)
x2
i − x2

j

‖x2
i − x2

j‖
− f(‖x1

i − x1
j‖)

x1
i − x1

j

‖x1
i − x1

j‖

∥∥∥∥2

. (1.7)

Let us here consider

∥∥∥∥f(‖x2
i − x2

j‖)
x2
i − x2

j

‖x2
i − x2

j‖
− f(‖x1

i − x1
j‖)

x1
i − x1

j

‖x1
i − x1

j‖

∥∥∥∥ . (1.8)

Letting ξk = xki − xkj for k = 1, 2 and letting g(ξ) = f(‖ξ‖)
‖ξ‖ ξ, (1.8) becomes simply

∥∥g(ξ2)− g(ξ1)
∥∥ . (1.9)

19



Now, by the Mean Value Theorem [5]

∥∥g(ξ2)− g(ξ1)
∥∥ ≤ sup

t∈[0,1]

‖Dg(ξ1 + t(ξ2 − ξ1))‖‖ξ2 − ξ1‖ (1.10)

provided Dg(ξ1 + t(ξ2 − ξ1)) exists for all t ∈ [0, 1]. To determine ‖Dg(ξ1 + t(ξ2 − ξ1))‖,

let ξ = ξ1 + t(ξ2 − ξ1) and then observe that

‖ξ‖ = ‖ξ1 + t(ξ2 − ξ1)‖

= ‖x1
i − x1

j + t(x2
i − x2

j − (x1
i − x1

j))‖

= ‖x1
i + t(x2

i − x1
i )− (x1

j + t(x2
j − x1

j))‖

= ‖(x1 + t(x2 − x1))i − (x1 + t(x2 − x1))j‖

> ε (1.11)

for all t ∈ [0, 1]. Line (1.11) is by the convexity of B(x̂, r) which is in Θn,ε. Since x2,x1 ∈

B(x̂, r), x1 + t(x2 − x1) ∈ B(x̂, r) ⊂ Θn,ε. Thus, for all t ∈ [0, 1], ξ is never zero and

the following calculations are valid for any ξ in the understood context. To calculate the

Jacobian matrix of g let g = (g1, g2)T , and ξ = (ξ1, ξ2)T then,

∂

∂ξ1

(
f(‖ξ‖)
‖ξ‖

)
=
f ′(‖ξ‖)ξ1

‖ξ‖2
− f(‖ξ‖)ξ1

‖ξ‖3

=

(
f ′(‖ξ‖)
‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ1

and (recall we are using the Euclidean norm in R2)

∂

∂ξ2

(
f(‖ξ‖)
‖ξ‖

)
= −

(
f ′(‖ξ‖)
‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ2.
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Utilizing these we find

∂g1

∂ξ1

=
∂

∂ξ1

(
f(‖ξ‖)
‖ξ‖

ξ1

)
=

∂

∂ξ1

(
f(‖ξ‖)
‖ξ‖

)
ξ1 +

f(‖ξ‖)
‖ξ‖

=

(
f ′(‖ξ‖)
‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ2

1 +
f(‖ξ‖)
‖ξ‖

∂g1

∂ξ2

=
∂

∂ξ2

(
f(‖ξ‖)
‖ξ‖

ξ1

)
= −

(
f ′(‖ξ‖)
‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ1ξ2

∂g2

∂ξ1

=

(
f ′(‖ξ‖)
‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ1ξ2

∂g2

∂ξ2

=

(
f ′(‖ξ‖)
‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ2

2 +
f(‖ξ‖)
‖ξ‖

.

So that,

Dg(ξ) =


(
f ′(‖ξ‖)
‖ξ‖2 −

f(‖ξ‖)
‖ξ‖3

)
ξ2

1 + f(‖ξ‖)
‖ξ‖ −

(
f ′(‖ξ‖)
‖ξ‖2 −

f(‖ξ‖)
‖ξ‖3

)
ξ1ξ2(

f ′(‖ξ‖)
‖ξ‖2 −

f(‖ξ‖)
‖ξ‖3

)
ξ1ξ2

(
f ′(‖ξ‖)
‖ξ‖2 −

f(‖ξ‖)
‖ξ‖3

)
ξ2

2 + f(‖ξ‖)
‖ξ‖

 .

The Mean Value Theorem referenced above employs the operator norm on Dg(ξ) ∈ L(R2)

(where L(R2) is the set of all bounded linear operators on R2). Since this space is finite

dimensional, norms on this space are topologically equivalent. Here, we choose to work with

the Forbenius norm (written ‖·‖Forb). If a bound can be found on Dg(ξ) under the Forbenius

norm then there will exist a bound on Dg(ξ) under any other norm (that bound depends
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on the particular norm). So,

‖Dg(ξ)‖2
Forb =

∥∥∥∥(f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

)
ξ2

1 +
f(‖ξ‖)
‖ξ‖

∥∥∥∥2

+ 2

∥∥∥∥(f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

)
ξ1ξ2

∥∥∥∥2

+

∥∥∥∥(f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

)
ξ2

2 +
f(‖ξ‖)
‖ξ‖

∥∥∥∥2

≤
(∥∥∥∥(f ′(‖ξ‖)‖ξ‖2

− f(‖ξ‖)
‖ξ‖3

)
ξ2

1

∥∥∥∥+

∥∥∥∥f(‖ξ‖)
‖ξ‖

∥∥∥∥)2

+ 2

∥∥∥∥(f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

)
ξ1ξ2

∥∥∥∥2

+

(∥∥∥∥(f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

)
ξ2

2

∥∥∥∥+

∥∥∥∥f(‖ξ‖)
‖ξ‖

∥∥∥∥)2

≤ 2

∥∥∥∥f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

∥∥∥∥2

|ξ1|4 + 2

∥∥∥∥f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

∥∥∥∥2

|ξ1|2|ξ2|2

+ 2

∥∥∥∥f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

∥∥∥∥2

|ξ2|4 + 4

∥∥∥∥f(‖ξ‖)
‖ξ‖

∥∥∥∥2

≤ 6

∥∥∥∥f ′(‖ξ‖)‖ξ‖2
− f(‖ξ‖)
‖ξ‖3

∥∥∥∥2

L4 + 4

(
M

ε

)2

≤ 6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2

.

Pick κ ∈ R according to the definition of equivalent norms so that for all f ∈ L(R2),

‖f‖ ≤ κ‖f‖Forb. So, from the above together with (1.9), (1.10), and (1.11) we find that (1.8)

is bounded above by

κ

(
6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2
)
‖x1

i − x1
j − (x2

i − x2
j)‖.
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So, continuing from (1.7),

‖N(x2)−N(x1)‖2

< κ2n− 1

γ2
1

n∑
j=1

n∑
i=1

(
6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2
)2

‖x1
i − x1

j − (x2
i − x2

j)‖2

≤ κ2n− 1

γ2
1

n∑
j=1

n∑
i=1

(
6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2
)2

‖x1
i − x2

i − (x1
j − x2

j)‖2

≤ κ2n− 1

γ2
1

n∑
j=1

n∑
i=1

(
6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2
)2

(‖x1
i − x2

i ‖+ ‖x1
j − x2

j‖)2

≤ κ2n− 1

γ2
1

n∑
j=1

n∑
i=1

2

(
6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2
)2

(‖x1
i − x2

i ‖2 + ‖x1
j − x2

j‖2)

= κ2n− 1

γ2
1

2

(
6

(
M ′

ε2
+
M

ε3

)2

L4 + 4

(
M

ε

)2
)2

(2n‖x1 − x2‖2)

= κ2 16n(n− 1)

γ2
1

(
3L4

(
M ′

ε2
+
M

ε3

)
+ 2

(
M

ε

)2
)2

‖x1 − x2‖2.

So, N is Lipschitz in B(x̂, r). And since the sum of two Lipschitz continuous functions is

itself Lipschitz, f is Lipschitz in B(x̂, r).

Notice, the fact that f is Lipschitz does not depend on the initial condition x0. However,

there exists a bound on ‖f(x)‖, and this bound does depend on the initial condition of

H. This dependence is in the sense that a bound L on ‖x‖ according to Proposition 1.3.2

depends on x0 and it is in the sense that we require an ε > 0 according to Lemma 1.3.4

for which x remains in Θn,ε. That being said, let H be given and pick ε > 0 by Lemma

1.3.4 according to x0 and L (produced by Proposition 1.3.2). Pick M > f(ε), and let
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α = maxi,j,k αi,j,k then, if x ∈ Θn,ε × R2m, we get that

‖f(x)‖2 =
∑
j

∥∥∥∥∥∥∥
1

γ1

 n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

(
ni,j∑
k=1

αi,j,k(ci,j,k − xj)

)
∥∥∥∥∥∥∥

2

+
∑
i,j,k

∥∥∥∥ 1

γ2

(αi,j,k(xi − ci,j,k) + αi,j,k(xj − ci,j,k))

∥∥∥∥2

≤ 2

γ2
1

∑
j


∥∥∥∥∥∥∥

n∑
i=1
i 6=j1

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

(
ni,j∑
k=1

αi,j,k(ci,j,k − xj)

)∥∥∥∥∥
2


+
1

γ2

∑
i,j,k

‖αi,j,k(xi + xj − 2ci,j,k)‖2

<
2

γ2
1

∑
j

(
(n− 1)2M2 + (2mαL)2

)
+

1

γ2

∑
i,j,k

18(αL)2

=
2n

γ2
1

(
(nM)2 + (2mαL)2

)
+
m

γ2

18(αL)2 := N2.

So, N is an upper bound of ‖f(x)‖ for x ∈ Θn,ε and ‖x‖ < L. Now, we state and prove a

local existence and uniqueness theorem we will use to get the global version.

Theorem 1.3.8. For any Hookean cell system model of type 2 H, there exists a δ > 0 such

that H has a unique solution x(t) on [t0, t0 + δ].

The theorem and associated proof is very similar to the existence theorem for a Lipschitz

function on a parallelepiped found in [6].

Proof. Pick ε > 0 according to Lemma 1.3.4 so that x0 ∈ Θn,ε and any solutions to H remain

in Θn,ε. Pick r > 0, by Θn,ε being open (Proposition 1.3.5), so that B(x0, r) ⊂ Θn,ε. It has

been show that f is uniformly Lipschitz on B(x0, r) (Proposition 1.3.7).

Now, set δ = r
N

(recall ‖f(x)‖ < N for x ∈ Θn,ε). Let x0(t) = x0, and put

xk+1(t) = x0 +

∫ t

t0

f(xk(s))ds for k = 0, 1, 2, . . . . (1.12)
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Notice that each xk+1(t) is defined and continuous on [t0, t0 + δ], since each f(xk(t)) is.

Furthermore,

‖xk+1(t)− x0‖ =

∥∥∥∥∫ t

t0

f(xk(s))ds

∥∥∥∥ ≤ ∫ t

t0

‖f(xk(s))‖ds < Nδ = r

So, each xk ∈ B(x0, r) ⊂ Θn,ε This defines a sequence of continuous functions on [t0, t0 + δ].

Now, it will be show by induction that

‖xk+1(t))− xk(t)‖ < NKk(t− t0)k+1

(k + 1)!
(1.13)

where K is the Lipschitz constant for f on B(x0, r). The inequality is clearly true when

k = 0, so suppose it is true for some nonnegative integer k, then

‖xk+2(t)− xk+1(t)‖ =

∥∥∥∥∫ t

t0

f(xk+1(s))− f(xk(s))ds

∥∥∥∥
≤
∫ t

t0

∥∥f(xk+1(s))− f(xk(s))
∥∥ ds

≤ K

∫ t

t0

∥∥xk+1(s)− xk(s)
∥∥ ds

< K

∫ t

t0

NKk(s− t0)k+1

(k + 1)!
ds

=
NKk+1(t− t0)k+2

(k + 2)!
.

Hence, (1.13) is true for all k = 0, 1, 2, . . . . The above shows then, that,

x0 +
∞∑
i=0

(xk+1(t)− xk(t))

converges uniformly. And so,

x(t) = x0 +
∞∑
i=0

(xk+1(t)− xk(t)) = lim
k→∞

xk(t)
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exists uniformly for all t ∈ [t0, t0 + δ]. Then by uniform convergence

x(t) = x0 +

∫ t

t0

f(x(s))ds. (1.14)

And so, x(t) satisfies H.

To prove uniqueness, let z(t) also be a solution to H and therefore (1.14) also on [t0, t0+δ]

Then it can be shown by induction that

‖xn(t)− z(t)‖ < NKk(t− t0)k+1

(k + 1)!

and taking the limit of both sides as n → ∞ reveals ‖x(t) − z(t)‖ ≤ 0, so, x(t) = z(t) on

[t0, t0 + δ].

We now discuss a global existence and uniqueness result, that is, we entertain the ques-

tion: given a Hookean cell system model of type 2 H with t0 = 0 does there exist a unique

solution on the interval [0,∞)? To answer this, consider the existence of a maximal half

open interval of existence [0, T ) (possibly infinite) of a solution to H(0,x0). Here by maximal

we mean that there exists no strictly larger (half open) interval on which there is a solutions

to H(0,x0). Defining the interval is fairly straightforward. Let T = ∪{[0, δ)} be the union

of the collection of all intervals [0, δ) for which there exists a solution to H(0,x0). From

Theorem 1.3.8 there exists at least one such interval so T is not empty. Furthermore, T

is itself an interval with left endpoint 0; Let T = [0, T ). And certainly every interval of

existence is in fact a subinterval of T so no larger interval may exist. However, is there a

unique solution on T ?

To address this, we begin by considering any two intervals from the union which constructs

T , name them [0, δ1) and [0, δ2), and with no loss of generality suppose δ1 ≤ δ2. Each of

these intervals has at least one solution which we will call x1(t) for [0, δ1) and x2(t) for [0, δ2).

Now, let t̂ = inf{t : x1(t) 6= x2(t)}. If t̂ < δ1, then the continuity of both solutions gives

x1(t̂) = x2(t̂) and Theorem 1.3.8 applied to H(t̂,x1(t̂)) provides a δ > 0 for which there is a
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unique solution x(t) on [t̂, t̂ + δ]. So, x(t) = x1(t) = x2(t) on [t̂, t̂ + δ]. But, the definition

of t̂ implies x1(t) = x2(t) on [0, t̂], so

t̂ = inf{t : x1(t) 6= x2(t)} ≥ t̂+ δ,

a contradiction. We conclude t̂ ≥ δ1. This means that any two solutions to H(0,x0) on

a common interval containing 0 agree on that interval (notice, this demonstrates that no

interval can have more that one solution). Ultimately, this implies that there is a unique

solution x to H(0,x0) on [0, T ). Suppose otherwise, let

δ̂ = sup{δ : x(t) is a solution to H(0,x0) on [0, δ)}

now suppose δ̂ < T . Then there exists a δ̂ < δ < T and from the argument above there is a

unique solution x(t) to H(0,x0) on [0, δ), a contradiction. So, δ̂ ≥ T . However, if δ̂ > T this

would contradict the definition of T = [0, T ); we conclude therefore δ̂ = T . And so there is

a maximal interval of existence and a unique solution to H(0,x0) on that interval.

Now, suppose T < ∞. Recall that if x ∈ Θn,ε for any ε > 0 there exist an N such

that ‖f(x)‖ < N . Then, if x(t) is a solution to ẋ = f(x) (f , the force functions of H)

the mean value theorem gives ‖x(t) − x(s)‖ < N ′|t − s| for any s, t ∈ [0, T ) which implies

x(t) is uniformly continuous on [0, T ) and therefore continuously extendable to the closure

[0, T ]. furthermore, since x(t) is continuous on [0, T ] it is uniformly continuous there. Now,

it is not apparent that x(T ) lies in Θn,ε however it is in Θn,ε (the closure of Θn,ε). But for

0 < ε̂ < ε it is clear that Θn,ε ⊂ Θn,ε̂. So, pick r > 0 so that B(x(T ), r) ⊂ Θn,ε̂ in this ball,

Proposition 1.3.7 applies so that f is Lipschitz continuous. Now consider

lim
t↑T
ẋ(t) = lim

t↑T
f(x(t)) = f(x(T )).
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Thus the limt↑T ẋ(t) exists and

ẋ(T ) = lim
t↑T

x(T )− x(t)

T − t
= lim

c↑T
ẋ(c) = lim

c↑T
f(x(c)) = f(x(T )).

So, it may be deduced that the x(t) as solution to H(0,x0) may be extended to [0, T ]. Now,

apply Theorem 1.3.8, noting that x(T ) ∈ Θn,ε (as solutions remain in Θn,ε, ε̂ is no longer

necessary), to H(T,x(T )). We get that there exists a δ > 0 such that there is a solution

to H(T,x(T )) on [T, T + δ); meaning there exist a solution to H(0,x0) on [0, T + δ) this

contradicts the definition of T . We conclude that T = ∞ The above provides a proof for

the global existence and uniqueness theorem for any Hookean cell system model, H(0,x0).

Theorem 1.3.9 (Global Existence and Uniqueness for Hookean Cell System Models of Type

2). Given Hookean cell system model of type 2 H there exist a unique solution on [0,∞).

1.4 Overview

Chapter Two considers a highly simplified instance of this problem in which there are only

two cells and one c-site. The behavior of this simplified system is then explored in a variety

of ways. First, because the system presented does not have many equations, the exact

solutions may be computed in the case that the cell centers are sufficiently far from each

other (∆x = ‖xi− xj‖ > r). This way the system is linear as no nonlinear body force exists

until the cell centers become close. Analysis in this case provides some interesting findings

and helps develop intuition for the evolution of such a system when the nonlinear term is

included. It then is shown that y-values of the system are not affected by the body force.

This will be used to conclude that there is no rotation through the system. The case in

which the nonlinear body force has not vanished (i.e. when the cell centers are close enough

together to stimulate a body force, ‖x1−xj‖ < r) is then addressed and the equilibria of the

system are calculated. It is possible to explicitly determine the set of all possible equilibria.

It turns out that this set is a smooth submanifold of the state space. The stability of these
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equilibria is then considered. This is done by computing the derivative of the system at a

given equilibria (fixed point) and analyzing it, it is shown that the center manifold of the

system is exactly the set of fixed points. Since there is no unstable manifold the dynamics

of the system are not difficult to obtain. Chapter Two concludes with a summary. This

chapter represents much of the intuition-building which is able to motivate what is to follow.

Chapter Three focuses on the systems with a pair of cells but multiple c-sites between

them. The main result of this chapter addresses the possibility of reducing such a system to

an equivalent one of only a single “average” c-site. We present the statement of the c-site

reduction theorem with proof and provide an example, as verification. Following this it is

show that the theorem may be extended to a system involving more than two cells. The

general c-site reduction theorem is then presented with proof. The chapter concludes with a

discussion of which of the results of Chapter Two may be applied and further implications

of the theorem are discussed.

By Chapter Four we begin our analysis of system of n cells with an arbitrary number of

c-sites connecting various cells. Thanks to the general c-site reduction theorem, we consider

the system as having at most one c-site connecting any two cells (though the parameters for

each c-site may not all be the same). Motivated by seeking the equilibria of such systems

we develop the problem into solving the matrix equation 0 = Bx, where B is a symmetric

matrix of 0-row-sums that depends on x. This proves to be a highly complex question and

the theory for solving such an equation is only partially developed in this piece. Finding are

reported and conjectures are posited that will aid in the future study of these problems.

In Chapter Five a framework for the motion of these systems involving stochastic pro-

cesses is provided along with a discussion on how the work here can be of use to the inves-

tigation of the more robust model.
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Chapter 2. Two Cells Attached by One c-site

A study of the cell system of only two cells and one c-site is useful in the development of

intuition for the behavior of larger cell systems. We begin our study by recognizing that

in this analysis only the configuration of the cell centers and c-sites (really only the cell

centers) is of concern and no reference need be made to any external objects. It is for this

reason that, with no loss of generality, it may be assumed that the starting location of one

of the two cells of the cell system has its center at the origin and the other, on the positive

x-axis. The starting location of the c-site (since there is only one, it will be denoted as

c1,2,1(t) = c(t)) will be restricted only to the closed upper half plane R × R+. This means

x1(0) = (0, 0), x2(0) = (l, 0) for some real l > 0, and c(0) = (xc(0), (yc(0)) with yc(0) ≥ 0 (or

x0 = (0, 0, l, 0, xc(0), (yc(0))). So, in studying the evolution of a general Hookean cell system

of type 1 it is sufficient to study the cell system model Ĥ given explicitly by



γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + α(c− x1)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + α(c− x2)

γ2ċ = α(x1 − c) + α(x2 − c)

x1(0) = (0, 0), x2(0) = (l, 0), and c(0) = (xc(0), yc(0)),

(2.1)

where f is as in the definition of a Hookean cell system of type 1. By Theorem 1.3.9 there

is a solution x to Ĥ. The goal now becomes to determine as much as possible about x. A

picture of the cell system, represented by Ĥ, at time t = 0 is shown in Figure 2.1 .

Since (2.1) is not too large it is possible to analyze it quite thoroughly. To do this it

will be convenient to divide the problem into two regimes. The first regime will consider the

case in which the cell centers of Ĥ are sufficiently far apart as to make the body force trivial,

that is when ‖x2 − x1‖ ≥ r (recall r is the smallest value for which f(r) = 0; see page 11).

This is favorable as it reduces (2.1) to a linear system in which elementary methods may be

used to obtain an explicit solution, which will have to agree with x as far as the cell centers

are sufficiently far apart. This case will be described as Ĥ being “beyond the support of f .”
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γ1 γ1

γ2

f(‖x1 − x2‖)

α α

x1 x2

c1,2,1

Figure 2.1: Example of a cell system with two cell centers and one c-site placed on the coordinate grid.

The second regime considers the case in which the cell centers are close enough to produce

a positive body force, so, when ‖x2 − x1‖ < r. In this regime Ĥ is referred to as being

“within the support of f .” Here, Ĥ is possibly non-linear, so the analysis of it will be much

different from the analysis of Ĥ while in the first regime. It is not as convenient in this case

to find an explicit solution to Ĥ; however, it will be shown that because of some remarkable

symmetries inherent in Ĥ it is possible to obtain explicit solutions for the motion of the cell

system within the support of f .

It is natural to divide the problem into these regimes because of how Ĥ evolves. The

system usually begins with the cell centers far enough apart as to experience no body force.

The attached c-site then pulls the cell centers close enough together to incite the body force

(at which point Ĥ becomes in the support of f). Once the proximity of the cell centers

incites the body force they will not be forced clear of the effective range of the force. This

is because the body force (or rather the generating function f of the force function of Ĥ)

is continuous with the magnitude of the force approaching zero as the distance between the

two cell centers approaches r, the force generated by the attached c-site however remains

close to rα(> 0) when the distance between the two cell centers is near r (see Figure 2.2).

With this in mind also recall that the cells are in a low Reynold’s number environment.

Thus, the inertial terms are very small, which means that there is no drifting. So, at any

given time the motion of a cell center is exactly determined by the forces acting on it at
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∆xi,j

Fc
FB

F
or

ce

r

Figure 2.2: A illustrative graph for the relationship between the distance the cell centers are apart (∆xi,j) and the magnitude
of the body force (FB) and the magnitude of the force enacted by the c-site (Fc).

exactly that moment. For a ∆xi,j close enough to zero the body force will be larger in

magnitude then that of the c-site force (even when the c-site is directly between the two cell

centers), and the cell centers will move apart. However, for 0 << ∆xi,j < r the body force

will be small and the c-site force much larger; so, the cell centers move toward each other. In

fact, the cell will not be able to leave the effective range of the body force. This means that

it would not be possible, in Ĥ, for the cell centers to be forced apart to a distance beyond

the support of the body force. As a result, the system will remain structurally the same till

the end of time. Thus there is a time in which the system goes from regime one to regime

two where it remains.

2.1 Beyond the Support of f , A Linear System

Here the system in analyzed under the assumption that ‖x2 − x1‖ ≥ r. In this scenario the

term containing the possibly non-linear body force vanishes and system (2.1) becomes



γ1ẋ1 = α(c− x1)

γ1ẋ2 = α(c− x2)

γ2ċ = α(x1 − c) + α(x2 − c)

x1(0) = (0, 0), x2(0) = (l, 0), and c(0) = (xc(0), yc(0)).

(2.2)
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The initial conditions have been included to facilitate the nondimensionalization of the sys-

tem, which is done now to greatly simplify further calculations. Notice, there are five pa-

rameters above: γ1, γ2, α, l, xc(0), and yc(0). These have dimensions1 as follows:

[γ1] =
M

T
, [γ2] =

M

T
, [α] =

M

T 2
, [l] = L, [xc(0)] = L, and [yc(0)] = L.

In order to arrive at a quantity using these parameters that has the dimension of time,

take the characteristic time to be tc = γ1/α. In the characteristic time, γ1 is chosen over

γ2 in order to get more cancellation in the first two equations. For the characteristic length

take l.

Now, to begin the nondimensionalization of the system (2.2), set τ = t/tc,

ξi(τ) =
1

l
xi(tcτ) =

1

l
xi(t)

and take the derivative with respect to τ . This achieves the following: (The derivative with

respect to τ will be denoted by the usual apostrophe)

ξ′i(τ) =
d

dτ

(
1

l
xi(tcτ)

)
=

1

l
ẋi(tcτ)tc =

tc
l
ẋi(t).

Likewise, for the c-sites, put

σ(τ) =
1

l
c(tcτ) =

1

l
c(t).

Taking the derivative of this yields

σ′(τ) =
d

dτ

(
1

l
c(tcτ)

)
=

1

l
ċ(tcτ)tc =

tc
l
ċ(t).

1Here the we employ the notation of J. David Logan found in [7]. In which, brackets around a quantity
are used to denote the dimension of the quantity. These dimensions can be written in terms of the following
fundamental dimensions: M for mass, T for time, and L for length.
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Making the appropriate substitutions into system (2.2) produces the following,



γ1l
α
γ1
ξ′1(τ) = α(lσ(τ)− lξ1(τ))

γ1l
α
γ1
ξ′2(τ) = α(lσ(τ)− lξ2(τ))

γ2l
α
γ1
σ′(τ) = α(lξ1(τ)− lσ(τ)) + α(lξ2(τ)− lσ(τ))

ξ1(0) = (0, 0), ξ2(0) = (1, 0), and σ(0) = (xc(0)
l
, yc(0)

l
) .

Simplifying, letting γ = γ1
γ2

, and suppressing τ dependence produces a dimensionless system

equivalent to (2.2),



ξ′1 = σ − ξ1

ξ′2 = σ − ξ2

σ′ = γ(ξ1 − σ) + γ(ξ2 − σ)

ξ1(0) = (0, 0), ξ2(0) = (1, 0), and σ(0) = (xc(0)
l
, yc(0)

l
).

(2.3)

Because the system is linear it may be expressed in matrix form. With the notation ξ1 =

(ξ1, η1), ξ2 = (ξ2, η2), and σ = (ξσ, ησ) along with

Ξ =



ξ1

η1

ξ2

η2

ξσ

ησ


and A =



−1 0 0 0 1 0

0 −1 0 0 0 1

0 0 −1 0 1 0

0 0 0 −1 0 1

γ 0 γ 0 −2γ 0

0 γ 0 γ 0 −2γ


system (2.3) becomes, simply,

Ξ′ = AΞ, (2.4)
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with the initial condition

Ξ(0) =



0

0

1

0

xc(0)
l

yc(0)
l


. (2.5)

The eigenvalues 2 of A are 0, -1, and −1−2γ each with multiplicity two and the associated

eigenvectors are: for λ = 0,

ξ̂1 =



0

1

0

1

0

1


and ξ̂2 =



1

0

1

0

1

0


;

for λ = −1,

ξ̂3 =



0

−1

0

1

0

0


and ξ̂4 =



−1

0

1

0

0

0


;

2The computation of the eigenvalues of A as well as their associated eigenvectors was performed by
Mathematica .
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and for λ = −1− 2γ,

ξ̂5 =



0

− 1
2γ

0

− 1
2γ

0

1


and ξ̂6 =



− 1
2γ

0

− 1
2γ

0

1

0


.

The fundamental matrix3 for the solution may then be written as

Ψ(τ) =



0 1 0 −e−t 0 − 1
2γ
e−(1+2γ)τ

1 0 −e−t 0 − 1
2γ
e−(1+2γ)τ 0

0 1 0 e−t 0 − 1
2γ
e−(1+2γ)τ

1 0 e−t 0 − 1
2γ
e−(1+2γ)τ 0

0 1 0 0 0 e−(1+2γ)τ

1 0 0 0 e−(1+2γ)τ 0


.

Notice that Ξ(τ) = Ψ(τ)k is a solution for any k ∈ R6. However, a specific solution Ξ to

equation (2.4) that satisfies the initial condition (2.5) is sought. Happily, the matrix Ψ(0)

(shown below) is invertible4. Thus, the vector k = Ψ(0)−1Ξ(0) may be chosen. Now,

Ψ(0) =



0 1 0 −1 0 − 1
2γ

1 0 −1 0 − 1
2γ

0

0 1 0 1 0 − 1
2γ

1 0 1 0 − 1
2γ

1 0

0 1 0 0 0 1

1 0 0 0 1 0


3Throughout the process of finding the solution for system (2.3) we use the terminology and techniques

found in Boyce and DiPrima’s text on Elemetary Differential Equations [8]
4The computation of the inverse of Ψ(0) was preformed by Mathematica.
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and

Ψ(0)−1 =



0 γ
1+2γ

0 γ
1+2γ

0 1
1+2γ

γ
1+2γ

0 γ
1+2γ

0 1
1+2γ

0

0 −1
2

0 1
2

0 0

−1
2

0 1
2

0 0 0

0 − γ
1+2γ

0 − γ
1+2γ

0 2γ
1+2γ

− γ
1+2γ

0 − γ
1+2γ

0 2γ
1+2γ

0


.

So,

k = Ψ(0)−1Ξ(0) =



yc(0)
l(1+2γ)

xc(0)+lγ
l(1+2γ)

0

1
2

2yc(0)γ
l(1+2γ)

2xc(0)γ−lγ
l(1+2γ)



.

The solution, then, to the IVP (2.3) is Ξ(τ) = Ψ(τ)Ψ(0)−1Ξ(0) and its components are

ξ1(τ) =
xc(0) + lγ

l(1 + 2γ)
− 1

2
e−τ − xc(0)− l/2

l(1 + 2γ)
e−(1+2γ)τ ,

η1(τ) =
yc(0)

l(1 + 2γ)
− yc(0)

l(1 + 2γ)
e−(1+2γ)τ ,

ξ2(τ) =
xc(0) + lγ

l(1 + 2γ)
+

1

2
e−τ − xc(0)− l/2

l(1 + 2γ)
e−(1+2γ)τ ,

η2(τ) =
yc(0)

l(1 + 2γ)
− yc(0)

l(1 + 2γ)
e−(1+2γ)τ ,

ξσ(τ) =
xc(0) + lγ

l(1 + 2γ)
+

2xc(0)γ − lγ
l(1 + 2γ)

e−(1+2γ)τ ,

ησ(τ) =
yc(0)

l(1 + 2γ)
+

2yc(0)γ

l(1 + 2γ)
e−(1+2γ)τ .
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Then, substituting the original dimensioned variables back into this solution produces a

solution to system (2.2) shown below: (γ1 and γ2 are used rather than γ)

x1(t) =
xc(0)γ2 + lγ1

2γ1 + γ2

− l

2
e−αt/γ1 − 2xc(0)γ2 − lγ2

2(2γ1 + γ2)
e−α(γ−1

1 +2γ−1
2 )t, (2.6)

y1(t) =
yc(0)γ2

2γ1 + γ2

− yc(0)γ2

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t, (2.7)

x2(t) =
xc(0)γ2 + lγ1

2γ1 + γ2

+
l

2
e−αt/γ1 − 2xc(0)γ2 − lγ2

2(2γ1 + γ2)
e−α(γ−1

1 +2γ−1
2 )t, (2.8)

y2(t) =
yc(0)γ2

2γ1 + γ2

− yc(0)γ2

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t, (2.9)

xc(t) =
xc(0)γ2 + lγ1

2γ1 + γ2

+
2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t, (2.10)

yc(t) =
yc(0)γ2

2γ1 + γ2

+
2yc(0)γ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t. (2.11)

This then provides the exact values of x, at least until x leaves the set Θ2,r × R2.

2.1.1 Qualitative Findings of the Behavior of the Solution to the Linear System.

Here an interesting fact becomes apparent: the path that c travels is a line. Indeed, both

equations (2.10) and (2.11) may be set equal to γ1e
−α(γ−1

1 +2γ−1
2 )t. Equating these yields

xc(t)(2γ1 + γ2)− xc(0)γ2 − lγ1

2xc(0)− l
=
yc(t)(2γ1 + γ2)− yc(0)γ2

2yc(0)
.

With a bit of manipulation the following is achieved (suppressing dependence on t)

yc = xc

(
2yc(0)(2γ1 + γ2)

2xc(0)− l

)
+

(
yc(0)γ2 −

2xc(0)yc(0)γ2 − yc(0)lγ1

2xc(0)− l

)
.

The careful reader will recognize that any point (xc(t), yc(t)) ∈ R2 will satisfy the above

equation and therefore be found somewhere on this line. Since the solution is continuous the
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point c starts at (xc(0), yc(0)) and travels in line to the point

(
xc(0)γ2 + lγ1

2γ1 + γ2

,
yc(0)γ2

2γ1 + γ2

)
,

which is determined by simply taking the limit as t → ∞. If fact, all the bodies in the

system tend to this point (this is seen also by taking the limit as t → ∞ for each equation

(2.6-2.11)), for that reason we will call the above point xe, or the equilibrium point. We must

keep in mind that this is only the equilibrium of the linear system in which the body force

is completely ignored (because the cell centers are supposed to be sufficiently far apart). It

is not even the equilibrium of the linearization of the original system, so it is important to

realize that this point has rather limited usefulness in the solving of this original system.

However, in system (2.1) the equations (2.6-2.11) above are valid until the cell centers become

close enough to engage the body force. It will be shown that, in fact, the solutions y1(t),

y2(t), xc(t), and yc(t) to the linear system above are the same as their analog solutions to

the nonlinear case of regime two.

This point xe is a weighted average of the locations of the bodies weighted according to

their drag coefficients. It is the center of drag, as discussed in Section 1.3. Notice that the

center of drag of the system at t = 0 is the equilibrium xe. Indeed, using the explicit solution

found above this may be verified (at least as long as these solutions are valid). Checking

this for the y-components yields

γ1y1(t) + γ1y2(t) + γ2yc(t)

γ1 + γ1 + γ2

=
1

2γ1 + γ2

(
2γ1

(
yc(0γ2

2γ1 + γ2

− yc(0)γ2

2γ1 + γ2

e
−α( 1

γ1
+2 2

γ1
)t

)
+γ2

(
yc(0)γ2

2γ1 + γ2

+
2yc(0)γ1

2γ1 + γ2

e
−α( 1

γ1
+2 2

γ1
)t

))
=

1

2γ1 + γ2

(
(2γ1 + γ2)

yc(0)γ2

2γ1 + γ2

)
=
yc(0)γ2

2γ1 + γ2

.
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And likewise for the x-components

γ2xc(t) + γ1(x1(t) + x2(t))

γ2 + 2γ1

=
1

2γ1 + γ2

(
γ2

(
xc(0)γ2 + lγ1

2γ1 + γ2

+
2xc(0)γ1 − lγ1

2γ1 + γ2

e
−α( 1

γ1
+ 2
γ1

)t

)
+ γ1

(
xc(0)γ2 + lγ1

2γ1 + γ2

+
l

2
e
−αt
γ1 − 2xc(0)γ2 − lγ2

2(2γ1 + γ2)
e
−α( 1

γ1
+ 2
γ1

)t

)
+ γ1

(
xc(0)γ2 + lγ1

2γ1 + γ2

− l

2
e
−αt
γ1 − 2xc(0)γ2 − lγ2

2(2γ1 + γ2)
e
−α( 1

γ1
+ 2
γ1

)t

))
=

1

2γ1 + γ2

(
(γ2 + 2γ1)

(
xc(0)γ2 + lγ1

2γ1 + γ2

)
+ γ2

(
2xc(0)γ1 − lγ1

2γ1 + γ2

e
−α( 1

γ1
+ 2
γ1

)t

)
− γ1

(
2xc(0)γ2 − lγ2

2γ1 + γ2

e
−α( 1

γ1
+ 2
γ1

)t

))
=
xc(0)γ2 + lγ1

2γ1 + γ2

.

The above demonstrates that, the solutions to the system with no body force still conserves

the center of drag.

With the solutions to the system (2.2), we now seek to find the time at which the distance

between the two cell centers enters the support of the body function f . We get the following

formula for the distance between the two cell centers as they evolve through regime one:

‖x1(t)− x2(t)‖ = le−αt/γ1 .

This allows us to determine precisely where the cell centers will be as soon as the body

force becomes nonzero. This is also useful as it provides precisely the time regime one ends

and regime two begins. Let tr be the time in which, ‖x1(t)−x2(t)‖ = r. This may be solved

and yields

tr =
γ1

α
ln
l

r
.

Some interesting formulas are now available; such as, the location of the cell centers and

c-site precisely at the time the body force turns on. These provide the bridge between regime
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one and regime two.

x1(tr) =

 xc(0)γ2+lγ1
2γ1+γ2

− r
2
− 2xc(0)γ2−lγ2

2(2γ1+γ2)

(
r
l

) 2γ1
γ2

+1

yc(0)γ2
2γ1+γ2

− yc(0)γ2
2γ1+γ2

(
r
l

) 2γ1
γ2

+1

 ,

x2(tr) =

 xc(0)γ2+lγ1
2γ1+γ2

+ r
2
− 2xc(0)γ2−lγ2

2(2γ1+γ2)

(
r
l

) 2γ1
γ2

+1

yc(0)γ2
2γ1+γ2

− yc(0)γ2
2γ1+γ2

(
r
l

) 2γ1
γ2

+1

 ,

c(tr) =

 xc(0)γ2+lγ1
2γ1+γ2

+ 2xc(0)γ1−lγ1
2γ1+γ2

(
r
l

) 2γ1
γ2

+1

yc(0)γ2
2γ1+γ2

+ 2yc(0)γ1
2γ1+γ2

(
r
l

) 2γ1
γ2

+1

 .

Notice that when the cell centers reach the threshold of the body force the y-values are the

same, and the difference between the y-value of the cell centers and that of the c-site is

yc(tr)− y1(tr) = yc(0)
(r
l

) 2γ1
γ2

+1

.

This value may be made arbitrarily large by increasing the yc(0). The distances the bodies

are from the equilibrium point,

xe =

(
xc(0)γ2 + lγ1

2γ1 + γ2

,
yc(0)γ2

2γ1 + γ2

)

when the body force turns on are also provided below:

‖xe − c(tr)‖ =
(r
l

) γ1
γ2

+1
(

2γ1

2γ1 + γ2

)√(
xc(0)− l

2

)2

+ (yc(0))2,

‖xe − x1(tr)‖ =
(r
l

) γ1
γ2

+1
(

2γ1

2γ1 + γ2

)√√√√((xc(0)− l

2

)
+

(
l

r

) γ1
γ2

+1
l(2γ1 + γ2)

2γ2

)2

+ (yc(0))2,

‖xe − x2(tr)‖ =
(r
l

) γ1
γ2

+1
(

2γ1

2γ1 + γ2

)√√√√((xc(0)− l

2

)
−
(
l

r

) γ1
γ2

+1
l(2γ1 + γ2)

2γ2

)2

+ (yc(0))2.
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With this in hand, we are ready to discuss the case in which the distance between the

two cell centers enters the support of f , or, in the notation established, when ∆x1,2 =

‖x2(t)− x1(t)‖ ≤ r.

2.2 Within the Support of f , A Nonlinear System

We analyze this nonlinear system in two steps. First, the set of equilibria for the system is

identified and studied and the stability of the equilibria is explored. In this discussion of the

equilibria initial conditions have no bearing, so rather then talking about it in terms of Ĥ,

it is discussed in terms of f , the force function of Ĥ. The second step includes a method

for finding explicit solutions. This is done by proposing guesses based on our analysis of

the system in regime one. The existence and uniqueness theorem (Theorem 1.3.9) then

establishes the guesses as the unique solution to Ĥ.

Once the distance between the two cell centers enters the support of f the nonlinear

repulsive body force becomes nonzero and the system returns to Ĥ


γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + α(c− x1)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + α(c− x2)

γ2ċ = α(x1 − c) + α(x2 − c).

or rather, in the notation of the force function5

ẋ = f(x). (2.12)

To solve for the equilibria (if any) of the nonlinear system set the derivative terms equal

to 0. So, that

0 = f(x)

5Recall the definition on page 11
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or 
0 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + α(c− x1)

0 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + α(c− x2)

0 = α(x1 − c) + α(x2 − c).

The last equation will only be satisfied if

c =
x1 + x2

2
.

Substituting this for c into the first and second equations reduces the system to

 0 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + α
(
x2−x1

2

)
0 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + α
(
x1−x2

2

)
or more simply  0 =

(
f(‖x1−x2‖)
‖x1−x2‖ −

α
2

)
(x1 − x2)

0 =
(
f(‖x1−x2‖)
‖x1−x2‖ −

α
2

)
(x2 − x1).

By Lemma 1.3.4 there exists an ε > 0 for which x(t) ∈ Θ2,ε × R2. Hence, ‖x1 − x2‖ is

bounded away from 0. So, it can only be the case that

f(‖x1 − x2‖)
‖x1 − x2‖

− α

2
= 0.

Using ∆x1,2 = ‖x1 − x2‖, we require then

2f(∆x1,2) = α∆x1,2.

Now, it can be shown that 2
α
f has a unique fixed point; let r0 be that point.

Here then are both necessary and sufficient conditions for the equilibrium points of system
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x

y

y = x
y = 2

α
f(x)

r0 r

Figure 2.3: A illustrative graph for existence of a fixed point of 2
α
f . A rigorous proof is very straightforward use of the

intermediate value theorem of elementary calculus.

(2.12). The equilibrium points of this system are all the points x ∈ R6 such that

(1) c =
x1 + x2

2
and (2.13)

(2) ‖x2 − x1‖ = r0. (2.14)

From the work above one can see that if system (2.12) has equilibrium points they must

satisfy conditions (2.13) and (2.14). Conversely, any point x ∈ R6 that satisfies these

conditions is, in fact, an equilibrium for that system. Such a characterization of the equilibria

is then precise but not very useful. We seek to formulate the set of equilibria in a more

meaningful way. Let e(f)6 be the set of all the equilibria of f . Suppose x ∈ e(f), a ∈ R2

and a = (a, a, a)T then

x+ a =


x1 + a

x2 + a

c + a


and observe that from

(1) c + a =
x1 + a + x2 + a

2
and (2.15)

(2) ‖x1 + a− (x2 + a)‖ = ‖x1 − x2‖ = r0, (2.16)

6This notation is used since the set depends only on the force function f of Ĥ.
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x+a ∈ e(f). So, the three points in R2 that represent an equilibrium of f may be translated

by the same vector and remain an equilibrium. Now, suppose the points in R2 that corre-

spond to an equilibrium of f are rotated θ radians counterclockwise about the point c. To

check that the result would also satisfy conditions (2.13) and (2.14), consider the following.

Let

T =



1 0 0 0 −1 0

0 1 0 0 0 −1

0 0 1 0 −1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

Sθ =



cos θ − sin θ 0 0 0 0

sin θ cos θ 0 0 0 0

0 0 cos θ − sin θ 0 0

0 0 sin θ cos θ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and

Lθ = T−1SθT.

What is going on here is that T translates points in R2 of an equilibrium to where they would

be if the c-site were at the origin, the location of the c-site itself, however, remains unchanged.

Then, Sθ rotates the cell centers of the translated system θ radians counterclockwise. The

inverse of T then undoes the translation and the result of these three operators together is

45



simply a rotation about the c-site. Now, if x ∈ e(f) and θ ∈ [0, 2π) then let x̃ = Lθx.

x̃i =

 cos θ − sin θ

sin θ cos θ

 (xi − c) + c for i = 1, 2

and, of course c̃ = c. Notice then that

x̃1 + x̃2

2
=

1

2


 cos θ − sin θ

sin θ cos θ

 (x1 − c) + c +

 cos θ − sin θ

sin θ cos θ

 (x2 − c) + c


=

1

2

 cos θ − sin θ

sin θ cos θ

 (x1 + x2 − 2c) + c

=
1

2

 cos θ − sin θ

sin θ cos θ

 (2c− 2c) + c since x ∈ e(f)

=c = c̃

and

‖x̃2 − x̃1‖ =

∥∥∥∥∥∥∥
 cos θ − sin θ

sin θ cos θ

 (x2 − c) + c−


 cos θ − sin θ

sin θ cos θ

 (x1 − c) + c


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
 cos θ − sin θ

sin θ cos θ

 (x2 − x1)

∥∥∥∥∥∥∥
=‖x2 − x1‖ = r0.

The third equal sign is because the matrix is orthogonal. This shows that the set e(f) is

invariant under the operator Lθ , that is Lθ(e(f)) ⊂ e(f) for all real θ.
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Now to write out this set formally. Let

W = span





1

0

1

0

1

0


,



0

1

0

1

0

1





, and x0 =



0

0

r0

0

r0
2

0


.

We then seek to show ⋃
θ∈R

Lθ (x0 +W ) = e(f). (2.17)

From the above, since clearly x0 ∈ e(f),

⋃
θ∈R

Lθ (x0 +W ) ⊂ e(f).

To get the inclusion in the other direction suppose x = (x1, y1, x2, y2, xc, yc)
T ∈ e(f), and

note that it must satisfy conditions (2.13) and (2.14). Then let a = (xc, yc)
T −

(
r0
2
, 0
)T

,

a = (a, a, a)T and θ = tan−1
(
y2−y1
x2−x1

)
, if x1 = x2 let θ = ±π

2
. From this we can then recover

x

Lθ(x0+a) = Lθ



xc − r0
2

yc

xc + r0
2

yc

xc

yc


=



xc − r0
2

cos θ

yc − r0
2

sin θ

xc + r0
2

cos θ

yc + r0
2

sin θ

xc

yc


=



(x2+x1)
2
− (x2−x1)

2

(y2+y1)
2
− (y2−y1)

2

(x2+x1)
2

+ (x2−x1)
2

(y2+y1)
2

+ (y2−y1)
2

xc

yc


=



x1

y1

x2

y2

xc

yc


= x.

The third equality results from the definition of θ and the fact that x is an equilibrium of

f . See Figure 2.4.
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y2 − y1

r0

x2 − x1

θ

Figure 2.4: A triangle demonstrating the relation between r0, y2 − y1, x2 − x1, and θ. Notice then that r0 cos θ = x2 − x1.

Now that the set of equilibria is written explicitly by equation (2.17), we seek to under-

stand the structure of this set. It will be particularly useful if this set is a manifold. To

verify that this is indeed the case, consider the following as a proposed atlas for the proposed

manifold e(f):

U1 =
⋃

−π
2
<θ<π

2

Lθ (X0 +W )

U2 =
⋃

0<θ<π

Lθ (X0 +W )

U3 =
⋃

π
2
<θ< 3π

2

Lθ (X0 +W )

U4 =
⋃

π<θ<2π

Lθ (X0 +W )
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With (if p = (x1, y1, x2, y2, xc, yc)
T ∈ e(f))

ϕ1 : p 7→


xc − r0

2

yc

sin−1
(
y1−yc
r0/2

)
 ϕ2 : p 7→


xc − r0

2

yc

cos−1
(
x1−xc
r0/2

)


ϕ3 : p 7→


xc − r0

2

yc

sin−1
(
y1−yc
r0/2

)
+ π

 ϕ4 : p 7→


xc − r0

2

yc

cos−1
(
x1−xc
r0/2

)
+ π


Note also,

ϕ1 (U1) =R2 ×
(
−π

2
,
π

2

)
ϕ2 (U2) =R2 × (0, π)

ϕ3 (U3) =R2 ×
(
π

2
,
3π

2

)
ϕ4 (U4) =R2 × (π, 2π) .

Now, define G : R3 → e(f) ⊂ R6 by

G(xa, ya, θ) =



r0
2

cos θ + r0
2

+ xa

r0
2

sin θ + ya

r0
2

cos(θ + π) + r0
2

+ xa

r0
2

sin(θ + π) + ya

xa + r0
2

ya


, (2.18)

and notice

ϕi ◦G = G ◦ ϕi = Id for i = 1, 2, 3, 4.
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So, each transition map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is the identity map and therefore smooth. This gives that e(f) has a smooth atlas and

therefore a smooth structure (see [9]). Hence it is a smooth manifold.

Let us consider the tangent space of this 3-submanifold of R6.

Gxa =



1

0

1

0

1

0


, Gya =



0

1

0

1

0

1


, and Gθ =



− r0
2

sin θ

r0
2

cos θ

− r0
2

sin(θ + π)

r0
2

cos(θ + π)

0

0


.

Simplifying Gθ the basis of the tangent space of e(f) at some point (xa, ya, θ) is





1

0

1

0

1

0


,



0

1

0

1

0

1


,



tan θ

−1

− tan θ

1

0

0





. (2.19)

It has been shown that the set of equilibria have a smooth 3-manifold structure.
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2.2.1 Stability of the equilibria. In order to study the stability of these equilibria or

fixed points7 it will be useful to simplify f by defining a function g : R4 → R as

g(x1, y1, x2, y2) = g(x1,x2) =
f(‖x1 − x2‖)
γ1‖x1 − x2‖

.

This way,

f(x) =


(
g(x1,x2)− α

γ1

)
x1 −g(x1,x2)x2 + α

γ1
c

−g(x1,x2)x1 +
(
g(x1,x2)− α

γ1

)
x2 + α

γ1
c

α
γ2

x1 + α
γ2

x2 −2α
γ2

c

 . (2.20)

To analyze the stability of a fixed point x̃ consider the change of variable to the variable

y ∈ R6 defined as y = x− x̃. So, x = y + x̃ and ẋ = f(x) becomes

ẏ = f (y + x̃) ,

we have shifted the equilibrium we wish to study to the origin. Using a Taylor expansion

provides

ẏ = f(x̃) + Df(x̃)y +O
(
‖y‖2

)
= Df(x̃)y +O

(
‖y‖2

)
.

So, it is sufficient to determine the dynamics of y close to 0. For this we look at the linear

part, Df(x̃)y. Before taking the derivative of f at x̃ it may be helpful to express f(x) like

7The term “fixed points” is more common in the literature surrounding the techniques to follow. See [10].
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this:

f(x) =



(
g − α

γ1

)
x1 − gx2 + α

γ1
xc(

g − α
γ1

)
y1 − gy2 + α

γ1
yc

−gx1 +
(
g − α

γ1

)
x2 + α

γ1
xc

−gy1 +
(
g − α

γ1

)
y2 + α

γ1
yc

α
γ2
x1 + α

γ2
x2 − 2α

γ2
xc

α
γ2
y1 + α

γ2
y2 − 2α

γ2
yc


.
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Recall that the above will only be useful if evaluated at an equilibrium x̃ = (x̃1, ỹ1, x̃2, ỹ2, x̃c, ỹc) ∈

e(f). In which case notice that

g=g(x̃1, ỹ1, x̃2, ỹ2)

=f(‖x̃1−x̃2‖)
γ1‖x̃1−x̃2‖

=f(r0)
γ1r0

from (2.14)

=αr0/2
γ1r0

by definition of r0

= α
2γ1
.

Furthermore, the partials of g will be useful. From the definition of g the following is

obtained:

d

du

(
f(u)

γ1u

)
=
f ′(u)u− f(u)

γ1u2
.

So then, if u = ‖x1 − x2‖ (recall that is simply the Euclidean norm) then

∂g

∂x1

=
d

du

(
f(u)

γ1u

)
∂u

∂x1

=
f ′(u)u− f(u)

γ1u2

∂u

∂x1

=

(
f ′(u)u− f(u)

γ1u2

)(
x1 − x2

u

)
=

1

γ1r2
0

(
f ′(r0)− α

2

)
(x1 − x2).

and

∂g

∂x2

=
d

du

(
f(u)

γ1u

)
∂u

∂x2

=
f ′(u)u− f(u)

γ1u2

∂u

∂x2

=

(
f ′(u)u− f(u)

γ1u2

)(
x2 − x1

u

)
=− 1

γ1r2
0

(
f ′(r0)− α

2

)
(x1 − x2).
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Similarly for

∂g

∂y1

=
1

γ1r2
0

(
f ′(r0)− α

2

)
(y1 − y2)

and

∂g

∂y2

= − 1

γ1r2
0

(
f ′(r0)− α

2

)
(y1 − y2).
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ỹ
1
−
ỹ
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The eigenvalues8 of Df(x̃) are 0, 0, 0,−α
(

1
γ1

+ 2
γ2

)
,−α

(
1
γ1

+ 2
γ2

)
, 1
γ1

(
f ′(r0)− α

2

)
.

The eigenvectors of the zero eigenvalues are:



0

1

0

1

0

1


,



1

0

1

0

1

0


, and



y1−y2
x1−x2

−1

− y1−y2
x1−x2

1

0

0


.

It should be noted that because θ from the parameterization of e(f) by G (see (2.18) on

page 49)was defined to be the angle from the positive x-axis the solution was rotated coun-

terclockwise,

y1 − y2

x1 − x2

= tan θ.

In the above, three eigenvalues are zero and their associated directions according to the

eigenvectors are all tangent to the manifold e(f) at that point. This may be seen by com-

paring these eigenvectors to the basis of the tangent space of e(f) at a particular point found

in (2.19) on page 50. The other three eigenvalues above are negative, so the dynamics in the

directions associated with their eigenvectors are asymptotically stable. We conclude that

this system possesses a stable manifold and a center manifold which is in fact the set of all

equilibrium. So, any equilibrium point is stable but not asymptotically stable.

2.2.2 Qualitative Findings of the Behavior of the Solution to the Nonlinear

System. In this and the next section we present findings motivated by work in the first

regime of the problem (the linear case). By a few shrewd guesses we identify the unique

8The eigenvalues of the above matrix were found by Mathematica in which the following variables were
employed

a = (x̃1 − x̃2)2, b = (x̃1 − x̃2)(ỹ1 − ỹ2), c = (ỹ1 − ỹ2)2, d =
f ′(r0)− α

2

γ1r20
, and e =

α

2γ1
.
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solution to Ĥ.

The system Ĥ is given below, where l > 0 and yc(0) ≥ 0



γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + α(c− x1)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + α(c− x2)

γ2ċ = α(x1 − c) + α(x2 − c)

x1(0) = (0, 0), x2(0) = (l, 0), and c(0) = (xc(0), yc(0)).

(2.21)

By Theorem 1.3.9 there exists a unique solution to Ĥ on [0,∞). Let x̃(t) = (x̃1(t), ỹ1(t),

x̃2(t), ỹ2(t), x̃c(t), ỹc(t)) be that solution. For the sake of simplicity, let g(x1, x2, y1, y2) =

f(‖x1 − x2‖)/‖x1 − x2‖. Expand (2.21) by writing the equation for each component of the

vectors x1, x2, and c. This produces an equivalent system of six equations together with

initial conditions.

γ1ẋ1 = g(x1, x2, y1, y2)(x1 − x2) + α(xc − x1)

γ1ẏ1 = g(x1, x2, y1, y2)(y1 − y2) + α(yc − y1)

γ1ẋ2 = g(x1, x2, y1, y2)(x2 − x1) + α(xc − x2)

γ1ẏ2 = g(x1, x2, y1, y2)(y2 − y1) + α(yc − y2)

γ2ẋc = α(x1 − xc) + α(x2 − xc)

γ2ẏc = α(y1 − yc) + α(y2 − yc).

x1(0) = 0, y1(0) = 0, x2(0) = l, y2(0) = 0, xc(0) = cx, and yc(0) = cy.

(2.22)

Now, separate the equations associated with the derivatives in the y directions from the

equations with the derivatives in the x direction. This achieves two different coupled IVPs



γ1ẏ1 = g(x1, x2, y1, y2)(y1 − y2) + α(yc − y1)

γ1ẏ2 = g(x1, x2, y1, y2)(y2 − y1) + α(yc − y2)

γ2ẏc = α(y1 − yc) + α(y2 − yc)

y1(0) = y2(0) = 0, and yc(0) = cy.

(2.23)
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and 

γ1ẋ1 = g(x1, x2, y1, y2)(x1 − x2) + α(xc − x1)

γ1ẋ2 = g(x1, x2, y1, y2)(x2 − x1) + α(xc − x2)

γ2ẋc = α(x1 − xc) + α(x2 − xc)

x1(0) = 0, x2(0) = l, and xc(0) = cx.

(2.24)

Now, we will focus on each IVP individually.

We proceed to find an explicit solution to (2.23). First, consider as a guess, to be verified

in course, y1(t) = y2(t) = y(t) for all t ≥ 0. To form the rest of the guess, solve for y and

yc. With the appropriate substitutions the first and second equations of (2.23) are seen to

be identical so one may be omitted and the system here simplified becomes


γ1ẏ = α(yc − y)

γ2ẏc = 2α(y − yc).

y(0) = 0, and yc(0) = cy.

(2.25)

This equation may easily be solved as it is now linear. Let y = (y, yc)
T and

A =

 − α
γ1

α
γ1

2α
γ2

−2α
γ2

 .

So, we have ẏ = Ay. The eigenvalues of A along with their respective eigenvectors are listed

below9

λ1 = 0, ξ1 =

 1

1

 and λ2 = − α
γ1

− 2α

γ2

, ξ2 =

 − γ2
2γ1

1


9the computation here was done in Mathematica.
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So, the fundamental matrix for this system is

Ψ(t) =

 1 − γ2
2γ1
e
−t( α

γ1
+ 2α
γ2

)

1 e
−t( α

γ1
+ 2α
γ2

)

 .

Note that for any k ∈ R2 the solution y(t) = Ψ(t)k will also satisfy (2.25). In order, for

the solution to satisfy the initial conditions k will be chosen so that Ψ(0)k = y(0); hence

its desirable for k = Ψ(0)−1y(0). To that end note that

Ψ(0) =

 1 − γ2
2γ1

1 1

 and Ψ(0)−1 =

 2γ1
2γ1+γ2

γ2
2γ1+γ2

− 2γ1
2γ1+γ2

2γ1
2γ1+γ2

 .

We may therefore let

k =

 2γ1
2γ1+γ2

γ2
2γ1+γ2

− 2γ1
2γ1+γ2

2γ1
2γ1+γ2


 0

cy

 =

 cyγ2
2γ1+γ2

2cyγ1
2γ1+γ2


and now have as a solution to the IVP (2.25)

y(t) = Ψ(t)

 cyγ2
2γ1+γ2

2cyγ1
2γ1+γ2


=

 1 − γ2
2γ1
e
−t( α

γ1
+ 2α
γ2

)

1 e
−t( α

γ1
+ 2α
γ2

)


 cyγ2

2γ1+γ2

2cyγ1
2γ1+γ2


=

 cyγ2
2γ1+γ2

− cyγ2
2γ1+γ2

e
−t( α

γ1
+ 2α
γ2

)

cyγ2
2γ1+γ2

+ 2cyγ1
2γ1+γ2

e
−t( α

γ1
+ 2α
γ2

)

 .
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The proposed solution then to (2.23) is given by

y1(t) =
cyγ2

2γ1 + γ2

− cyγ2

2γ1 + γ2

e
−t( α

γ1
+ 2α
γ2

)
, (2.26)

y2(t) =
cyγ2

2γ1 + γ2

− cyγ2

2γ1 + γ2

e
−t( α

γ1
+ 2α
γ2

)
, (2.27)

yc(t) =
cyγ2

2γ1 + γ2

+
2cyγ1

2γ1 + γ2

e
−t( α

γ1
+ 2α
γ2

)
. (2.28)

Note that these equations are identical to those found on page 38. From the work above it

is clear that these satisfy the IVP (2.23). At this point we would like to suggest that the

solutions in (2.26-2.28) must be identical to ỹ1(t), ỹ2(t),and ỹc(t), respectively. But this may

not be accurate as there would be no guarantee that these functions put into (2.24) leave

it a system that has a solution. The difficulty is in the systems being coupled. As it is,

systems (2.24) and (2.23) are by themselves underdetermined, and for that reason need not

have a unique solution or even any solution at all. What is encouraging, however, (2.26-2.28)

satisfy (2.23) with no regard for g at all. We hope that something similar occurs in finding a

possible solution to (2.24). Observe how these y-component equations (2.26-2.28), being the

same as the solution found in regime one, were shown to conserve the center of drag. Now

we use this principle to inform the guess at a solution to (2.24).

As before a guess is made in which the x-components of the solution relate to each other

in a certain way which allows the system to be reduced. As was seen earlier (page 12)

γ1x1(t) + γ1x2(t) + γ2xc(t)

2γ1 + γ2

=
xc(0)γ2 + lγ1

2γ1 + γ2

. (2.29)

To this end, assume (2.29) and so then

x1 + x2 = l +
γ2

γ1

(xc(0)− xc)
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substituting this into the last equation of (2.24) achieves

γ2ẋc = α

(
l +

γ2

γ1

(xc(0)− xc)− 2xc

)
= −α

(
γ2

γ1

+ 2

)
xc + α

(
l +

γ2

γ1

xc(0)

)
.

This is an equation purely in xc and may be solved through elementary methods, to obtain

a very familiar

xc =
2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t +
xc(0)γ2 + lγ1

2γ1 + γ2

.

Notice this is the same as the xc solution found on page 38 and that the initial condition for

xc is satisfied (that is xc(0) = xc(0) as desired). Under the assumption of (2.29) xc has been

solved and x2 may be eliminated by writing it in terms of x1 as follows

x2 = l − x1 +
γ2

γ1

(xc(0)− xc).

Notice with this assumption x2 satisfy its initial condition (x2(0) = l) provided x1(0) = 0.

Now, consider the first and second equations of (2.24), both of which may be written in

term of a single differential equation in x1. If there exists a solution x1(t) that satisfies both

of these equations then it will admit a solution for x2 and these together with the above

formulation of xc will constitute a solution to (2.24).
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We start with the second equation of (2.24).

γ1
d
dt

(x2(x1)) = g(x1, x2(x1), y1, y2)(x2(x1)− x1) + α(xc − x2(x1))

⇔ −γ1ẋ1 − γ2ẋc = g(x1, x2(x1), y1, y2)(x2(x1)− x1) + α(xc − x2(x1))

⇔ −γ1ẋ1 = g(x1, x2(x1), y1, y2)(x2(x1)− x1) + α(xc − x2(x1)) + γ2ẋc

⇔ −γ1ẋ1 = g(x1, x2(x1), y1, y2)(x2(x1)− x1) + α
(
xc − l + x1 − γ2

γ1
(xc(0)− xc)

)
−α
(
γ2
γ1

+ 2
)
xc + α

(
l + γ2

γ1
xc(0)

)
⇔ −γ1ẋ1 = g(x1, x2(x1), y1, y2)(x2(x1)− x1) + α(x1 − xc)

+α
(
γ2
γ1

+ 2
)
xc + α

(
−l − γ2

γ1
xc(0)

)
−α
(
γ2
γ1

+ 2
)
xc + α

(
l + γ2

γ1
xc(0)

)
⇔ γ1ẋ1 = g(x1, x2(x1), y1, y2)(x1 − x2(x1)) + α(xc − x1)

This shows that any x1 that is a solution to the first equation of (2.24), with the appropriate

substitution of x2 in terms of x1 and initial condition, shown here:

γ1ẋ1 = g(x1, x2(x1), y1, y2)(x1 − x2(x1)) + α(xc − x1), x1(0) = 0 (2.30)

will also solve the second equation (again with x2 in terms of x1). Which means that if

there is a solution to (2.30), then that x1, the so generated x2 and the already formulated

xc constitute a solution to (2.24). That (2.30) has a unique solution may be seen from a

straightforward application of the techniques used to prove Theorem 1.3.8 and Theorem

1.3.9.

Notice that the solutions x1, x2, and xc are valid for any g(x1, x2(x1), y1, y2) that provides

(2.30) with a unique solution. We now take all six of the proposed solutions and investi-

gate whether they, together satisfy (2.22). Already it has been shown that the y-direction

equations of system (2.22) will be satisfied by (2.26-2.28) regardless of g and its arguments.

Likewise, the x-direction equations will be satisfied with the above formulated x1, x2, and

xc, provided, y1 and y2 when in the argument of g admit a solution to (2.30). This we will
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now investigate.

Equation (2.30) can be simplified quite a bit by recalling that throughout the entire

evolution of the system y2(t) = y1(t). We start by unpacking g

g(x1, y1(t), x2, y2(t)) =
f(‖x2 − x1‖)
‖x2 − x1‖

=
f(
√

(x2 − x1)2 + (y2 − y1)2)√
(x2 − x1)2 + (y2 − y1)2

=
f(|x2 − x1|)
|x2 − x1|

.

So,(2.30) becomes

γ1ẋ1 =
f(|x2 − x1|)
|x2 − x1|

(x1 − x2) + α(xc − x1). (2.31)

Now, again, since y2 = y1 it must be the case that x2(t) ≥ x1(t) for all t ≥ 0. This is

because if at t = 0 x2(0) = l > 0 = x1(0) since the solutions x1 and x2 are continuous if

x2(t) = x1(t) at any time t then x1(t) = x2(t) which is impossible, since Lemma 1.3.4 assures

us that the difference of the components of a solution is bounded away from zero. Hence

−(x1 − x2) = |x2 − x1| and (2.31) becomes

γ1ẋ1 = −f(x2 − x1) + α(xc − x1). (2.32)

Now to write out x2 − x1

x2 − x1 =

(
l − x1 +

γ2

γ1

(xc(0)− xc(t))
)
− x1

=l +
γ2

γ1

(xc(0)− xc(t))− 2x1

=l +
γ2

γ1

(
xc(0)−

(
xc(0)γ2 + lγ1

2γ1 + γ2

+
2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

))
− 2x1

=l +
γ2

γ1

(
2xc(0)γ1 − lγ1

2γ1 + γ2

− 2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

)
− 2x1

=l +
2xc(0)γ2 − lγ2

2γ1 + γ2

(
1− e−α(γ−1

1 +2γ−1
2 )t
)
− 2x1.
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With this in hand, along with the above definition for xc (2.32) becomes

γ1ẋ1 =− f
(
l +

2xc(0)γ2 − lγ2

2γ1 + γ2

(
1− e−α(γ−1

1 +2γ−1
2 )t
)
− 2x1

)
+ α

(
xc(0)γ2 + lγ1

2γ1 + γ2

+
2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t − x1

)
.

This will have a unique solution.

2.3 Summary and Conclusion of the Cell System with Two

Cells and One C-site

This gives a way for determining explicitly a solution x to the original system (2.1):

• x1(t) satisfies the differential equation:

γ1ẋ1 =− f
(
l +

2xc(0)γ2 − lγ2

2γ1 + γ2

(
1− e−α(γ−1

1 +2γ−1
2 )t
)
− 2x1

)
+ α

(
xc(0)γ2 + lγ1

2γ1 + γ2

+
2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t − x1

)

with x1(0) = 0.

• x2 = l − x1 +
γ2

γ1

(xc(0)− xc(t))

• y1(t) =
yc(0)γ2

2γ1 + γ2

− yc(0)γ2

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

• y2(t) =
yc(0)γ2

2γ1 + γ2

− yc(0)γ2

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

• xc(t) =
xc(0)γ2 + lγ1

2γ1 + γ2

+
2xc(0)γ1 − lγ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

• yc(t) =
yc(0)γ2

2γ1 + γ2

+
2yc(0)γ1

2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

The equilibrium associated with system (2.1) may also be written explicitly as
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lim
t→∞

x(t) =



xc(0)γ2+lγ1
2γ1+γ2

− r0
2

yc(0)γ2
2γ1+γ2

xc(0)γ2+lγ1
2γ1+γ2

+ r0
2

yc(0)γ2
2γ1+γ2

xc(0)γ2+lγ1
2γ1+γ2

yc(0)γ2
2γ1+γ2


.
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Chapter 3. Multiple c-sites between pairs of cells

It is sometimes the case that a pair of cells may be attached by more than one c-site. Hookean

cell systems of type 1 have c-sites of identical parameters, meaning, they all share the same

drag coefficient and pseudopodia spring constant. In this chapter we explore Hookean cell

system of type 1 analogous to that occurrence. This will be very useful in our eventual study

of cell systems in much more generality. We begin by considering Hookean cell system of

type 1 with two cells and m c-sites, where m is some positive integer. Principally, it would

be good to know if this system can be simplified and perhaps become suitable to applying

the results of Chapter Two.

A main result in this chapter is the general c-site reduction theorem which roughly states

that given a Hookean cell system of type 2 H in which two cells are connected by some

number of c-sites there, exists an analogous Hookean cell system also of type 2 H′ with the

same number of cells but with only one c-site between each pair, provided that pair already

had at least one c-site between them in H. The c-sites in H′ have drag coefficients and

locations that may be determined along with their pseudopodia spring constant. In H′ the

behavior of the cell centers is identical to that of H. So, when only the behavior of the cell

centers is desired this theorem allows the system to be simplified considerably.

We begin our study of reducing c-sites with the case of only two cells.

3.1 c-Site Reduction Theorem

In order to state the theorem more concisely we define a specific projection transformation:

let Pn,m : R2n+2m → R2n be defined for x = (x1,x2, . . . ,xn, c1, c2, . . . , cm)T ∈ R2n+2m as

Pn,m(x) = (x1,x2, . . . ,xn)T .

This projection truncates any information about the c-sites and returns only the locations

of the cells. Also, in the following it is handy to use the aforementioned Global Existence
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and Uniqueness for Hookean Cell System Models of Type 2 (Theorem 1.3.9).

Now we state the theorem.

Theorem 3.1.1 (c-Site Reduction Theorem). Let H be a Hookean cell system model of type

1 with two cells and m c-sites, x0 ∈ Θn × R2m, and x(t) be the solution to H(0,x0), Then

there exist a Hookean cell system model of type 2, H′, with two cells and one c-site, such that

if y(t) is a solution to H′,

P2,m(x(t)) = P2,1(y(t)) for all t ∈ [0,∞).

Furthermore, the drag coefficient of the c-site is mγ2, the pseudopodia spring constants

are mα and the location of the center of the c-site is

c(t) =
1

m

m∑
i=1

ci(t).

A picture illustrating Theorem 3.1.1 is given in Figure 3.1.

α

α

α

α

x1 x2

c1 γ2

c2 γ2

c4 γ2

c3 γ2

(a) Original cell system

4α

y1 y2

4γ2

c

c = 1
4

4∑
i=1

ci

(b) Reduced cell system

Figure 3.1: Here is a depiction of a cell system with two cells and four c-sites (Figure 3.1a) that is reduced to a system with a
single c-site (Figure 3.1b)

Whereas in Figure 3.1a the drag coefficients of each c-site is γ2, in Figure 3.1b the drag
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coefficient of the single c-site is 4γ2. The pseudopodia spring constants of Figure 3.1a have

likewise been summed together to make the spring constant of the reduced cell system. And

the location of the c-sites in Figure 3.1a have been averaged to supply the location of the

single c-site in Figure 3.1b. This can be done to the system as a whole. Above is shown a

particular instance in time but this is only for illustrative purposes.

Proof. As in the hypothesis of the theorem let x(t) be the solution to H(0,x0). This means,

since H is of type 1, x(t) satisfies the following IVP



γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ +
m∑
i=1

α(ci − x1)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ +
m∑
i=1

α(ci − x2)

γ2ċ1 = α(x1 − c1) + α(x2 − c1)

...

γ2ċm = α(x1 − cm) + α(x2 − cm)

x(0) = x0.

(3.1)

Consider what would become of this system if the last m equations (the c-site equations)

were added together and a new system was formed as follows:



γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ +
m∑
i=1

α(ci − x1)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ +
m∑
i=1

α(ci − x2)

m∑
i=1

γ2ċi =
m∑
i=1

(α(x1 − ci) + α(x2 − ci)) .

(3.2)

Certainly, x satisfies (3.2). Now, splitting up sums and rearranging terms slightly, system
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(3.2) becomes



γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + α

(
m∑
i=1

ci −
m∑
i=1

x1

)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + α

(
m∑
i=1

ci −
m∑
i=1

x2

)

γ2

m∑
i=1

ċi = α

(
m∑
i=1

x1 −
m∑
i=1

ci

)
+ α

(
m∑
i=1

x2 −
m∑
i=1

ci

)

and then

γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ + αm

((
1
m

m∑
i=1

ci

)
− x1

)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ + αm

((
1
m

m∑
i=1

ci

)
− x2

)

γ2m

(
1
m

m∑
i=1

ci

).
= αm

(
x1 − 1

m

m∑
i=1

ci

)
+ αm

(
x2 − 1

m

m∑
i=1

ci

)
.

(3.3)

Again, observe that x is a solution to (3.3) but it is not unique, in fact here there are a

variety of solutions.

Now, consider the IVP



γ1ẏ1 = f(‖y1 − y2‖) y1−y2

‖y1−y2‖ + α̃(c− y1)

γ1ẏ2 = f(‖y1 − y2‖) y2−y1

‖y1−y2‖ + α̃(c− y2)

γċ = α̃(y1 − c) + α̃(y2 − c)

y(0) = y0 = (x1(0),x2(0), 1
m

∑m
1=i ci(0))T

(3.4)

where γ = γ2m, and α̃ = αm. Notice that this is a Hookean cell system model of type 2;
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label this H′. Theorem 1.3.9 guarantees a unique solution y(t) on [0,∞) to H′. however

x̃ =


x1

x2

1
m

m∑
i=1

ci


is a solution to H′ by the uniqueness of solutions to H′, it must be that y(t) = x̃(t) on [0,∞)

and so,

P2,m(x(t)) = P2,1(x̃(t)) = P2,1(y(t)) for all t ∈ [0,∞).

Observe above from H′ the parameters of the c-site c are as promised in the theorem.

So, in fact x1(t) and x2(t) in the solution to H move as if there were only one c-site

attached to them this c-site having drag coefficient γ2m, spring constant αm and location

1
m

∑m
i=1 ci(t).

3.1.1 Behavior of Multiple c-sites in a Hookean Cell System of Type 1 with

Two Cells. We know that the c-sites may be “combined” into a single average c-site. The

work done in Chapter 2 gives the exact steady state solution for a Hookean cell system model

of type 2 with two cells and one c-site for any positive values of α and γ2. So, a system

of many c-sites can easily be solved with an application of Theorem 3.1.1. An interesting

question however, is how do the different c-sites move? It is shown that their center of drag

moves in the path of a line, but how do the individual c-sites move?

Consider a given Hookean cell system of type 1, H. For convenience this is written out
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explicitly below



γ1ẋ1 = f(‖x1 − x2‖) x1−x2

‖x1−x2‖ +
m∑
i=1

α(ci − x1)

γ1ẋ2 = f(‖x1 − x2‖) x2−x1

‖x1−x2‖ +
m∑
i=1

α(ci − x2)

γ2ċ1 = α(x1 − c1) + α(x2 − c1)

...

γ2ċm = α(x1 − cm) + α(x2 − cm)

x(0) = ((0, 0), (l, 0), c1(0), c2(0), . . . , cm(0))T = x0.

(3.5)

Proposition 1.3.1 showed that the center of drag of H is constant so

γ1(x1 + x2) + γ2(c1 + · · ·+ cm)

2γ1 +mγ2

=
γ1(x1(0) + x2(0)) + γ2(c1(0) + · · ·+ cm(0))

2γ1 +mγ2

or rather (since x1(0) = 0)

x1 + x2 = x2(0) +
γ2

γ1

(c1(0) + · · ·+ cm(0)− c1 − · · · − cm).

Now each c-site equations may be written as

γ2ċi = α(x1 + x2 − 2ci)

and using the above substitution, can be written as

γ2ċi = α

(
x2(0) +

γ2

γ1

(c1(0) + · · ·+ cm(0)− c1 − · · · − cm)− 2ci

)

or better yet,

ċi =
α

γ2

x2(0) +
α

γ1

(c1(0) + · · ·+ cm(0)− c1 − · · · − cm)− 2α

γ2

ci.
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So, the c-site equations are now uncoupled with the cell equations. The c-site equations form

the following system:



ċ1 = −
(
α
γ1
− 2α

γ2

)
c1 − α

γ1
c2 − · · · − α

γ1
cm + k

ċ2 = − α
γ1

c1 −
(
α
γ1
− 2α

γ2

)
c2 − · · · − α

γ1
cm + k

...

ċm = − α
γ1

c1 − α
γ1

c2 − · · · −
(
α
γ1
− 2α

γ2

)
cm + k

(3.6)

where k = α
γ2

x2(0) + α
γ1

(c1(0) + · · · + cm(0)). Now notice that the x-coordinate equations

and the y-coordinate equations are completely uncoupled. This means we can study each

set separately. To that end, let

c =



c1

c2

...

cm


, cx =



xc1

xc2
...

xcm


, and cy =



yc1

yc2
...

ycm


(recall ci = (xci, yci)). Similarly let

k =



k

k

...

k


, kx =



xk

xk
...

xk


, and ky =



yk

yk
...

yk


where, as would be expected, k = (xk, yk) so

xk =
αl

γ2

+
α

γ1

(xc1(0) + · · ·+ xcm(0)),

yk =
α

γ1

(yc1(0) + · · ·+ ycm(0)).
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With this in hand, the two uncoupled systems may be written as follows:



ẋc1 = −
(
α
γ1
− 2α

γ2

)
xc1 − α

γ1
xc2 − · · · − α

γ1
xcm + xk

ẋc2 = − α
γ1
xc1 −

(
α
γ1
− 2α

γ2

)
xc2 − · · · − α

γ1
xcm + xk

...

ẋcm = − α
γ1
xc1 − α

γ1
xc2 − · · · −

(
α
γ1
− 2α

γ2

)
xcm + xk

(3.7)



ẏc1 = −
(
α
γ1
− 2α

γ2

)
yc1 − α

γ1
yc2 − · · · − α

γ1
ycm + yk

ẏc2 = − α
γ1
yc1 −

(
α
γ1
− 2α

γ2

)
yc2 − · · · − α

γ1
ycm + yk

...

ẏcm = − α
γ1
yc1 − α

γ1
yc2 − · · · −

(
α
γ1
− 2α

γ2

)
ycm + yk

. (3.8)

These are both initial value problems as each variable was assumed to have a fixed value in

R at t = 0. Now, if

A =



−
(
α
γ1

+ 2α
γ2

)
− α
γ1

. . . − α
γ1

− α
γ1

−
(
α
γ1

+ 2α
γ2

)
. . . − α

γ1

...
...

. . .
...

− α
γ1

− α
γ1

. . . −
(
α
γ1

+ 2α
γ2

)


then the systems (3.7) and (3.8) may be written in matrix form as

ċx = Acx + kx and ċy = Acy + ky,

respectively.

The eigenvalues of A for m ≥ 2 are −2 α
γ2

with multiplicity m− 1 and −2 α
γ2
−m α

γ1
with

multiplicity 1. The eigenvector associated with λm = −2 α
γ2
−m α

γ1
is ξm = (1, 1, ..., 1)T ∈ Rm
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and the eigenvectors associated with λ1 = −2 α
γ2

are

ξ1 =



−1

1

0

0

...

0


, ξ2 =



−1

0

1

0

...

0


, . . . , ξm−1 =



−1

0

0

...

0

1


.

Notice these eigenvectors are all linearly independent. So, to solve systems (3.7) and (3.8) we

first specify that because they are fundamentally the same they will be treated simultaneously

as

ċι = Acι + kι (3.9)

for ι = x, y. The approach will be to find the complementary solution to (3.9) and then

add to it the particular solution ĉι = −A−1kι. Notice that kι = ιkξm and recall that a

matrix has the same eigenvectors as its inverse but the associated eigenvalues are reciprocals

(multiplicative inverses) meaning

ĉι = −A−1kι = −A−1(ιkξm) = −ιkA−1ξm = − ιk
λm
ξm = − 1

λm
kι.

Now these define a particular1 solution ĉι of system (3.7) or (3.8) according to which

variable, x or y, to which ι refers. Now, we seek the complementary solution.

1The word “particular” is used in a technical sense to mean any solution to a nonhomogeneous system
(see [8]).
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So, the fundamental matrix to the solution (3.9) yields

Ψ(t) =



−e−2 α
γ2
t −e−2 α

γ2
t −e−2 α

γ2
t
. . . −e−2 α

γ2
t
e
−
(

2 α
γ2

+m α
γ1

)
t

e
−2 α

γ2
t

0 0 . . . 0 e
−
(

2 α
γ2

+m α
γ1

)
t

0 e
−2 α

γ2
t

0 . . . 0 e
−
(

2 α
γ2

+m α
γ1

)
t

0 0 e
−2 α

γ2
t

. . . 0 e
−
(

2 α
γ2

+m α
γ1

)
t

...
...

...
. . .

...
...

0 0 0 . . . e
−2 α

γ2
t

e
−
(

2 α
γ2

+m α
γ1

)
t


.

Now to find the vector lι ∈ Rm such that cι(0) = Ψ(0)lι + ĉι. Solving for lι, it is found that

lι = Ψ(0)−1(cι(0) + A−1kι) = Ψ(0)−1cι(0) + Ψ(0)−1A−1kι. We will construct this vector in

parts. First, consider the inverse matrix of Ψ(0), shown here

Ψ(0)−1 =
1

m



−1 m− 1 −1 −1 . . . −1

−1 −1 m− 1 −1 . . . −1

−1 −1 −1 m− 1 . . . −1

...
...

...
...

. . .
...

−1 −1 −1 −1 . . . m− 1

1 1 1 1 . . . 1


.
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So, to get the first part we multiply by cι(0)

Ψ(0)−1cι(0) =
1

m



−ιc1(0) + (m− 1)ιc2(0)− ιc3(0)− ιc4(0)− · · · − ιcm(0)

−ιc1(0)− ιc2(0) + (m− 1)ιc3(0)− ιc4(0)− · · · − ιcm(0)

...

−ιc1(0)− ιc2(0)− ιc3(0)− ιc4(0)− · · ·+ (m− 1)ιcm(0)

ιc1(0) + ιc2(0) + ιc3(0) + ιc4(0) + · · ·+ ιcm(0)



=
1

m



mιc2(0)−
m∑
i=1

ιci(0)

mιc3(0)−
m∑
i=1

ιci(0)

...

mιcm(0)−
m∑
i=1

ιci(0)

m∑
i=1

ιci(0)


.

For the other part Ψ(0)−1A−1kι, the vector A−1kι has already been computed. So, we now

just multiply:

Ψ(0)−1A−1kι = Ψ(0)−1

(
ιk
λm
ξm

)
=

ιk
λm

Ψ(0)−1ξ =
ιk
λm



0

...

0

1


=



0

...

0

−ιkγ1γ2
α(mγ2+2γ1)


.

Now, the assignment of ι becomes important in simplifying the last component of Ψ(0)−1A−1kι,
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so for ι = x

−xkγ1γ2

α(mγ2 + 2γ1)
=

−γ1γ2

α(mγ2 + 2γ1)

(
αl

γ2

+
α

γ1

(xc1(0) + xc1(0) + · · ·+ xcm(0))

)
= − 1

α(mγ2 + 2γ1)
(αγ1l + αγ2(xc1(0) + xc2(0) + · · ·+ xcm(0)))

= − 1

mγ2 + 2γ1

(
γ1l + γ2

m∑
i=1

xci(0)

)
,

and for ι = y

−ykγ1γ2

α(mγ2 + 2γ1)
=

−γ1γ2

α(mγ2 + 2γ1)

(
α

γ1

(yc1(0) + yc2(0) + · · ·+ ycm(0))

)
= − γ2

mγ2 + 2γ1

m∑
i=1

yci(0).
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Now putting these together, we find

lx =Ψ(0)−1cx(0) + Ψ(0)−1A−1kx

=
1

m



mxc2(0)−
m∑
i=1

xci(0)

mxc3(0)−
m∑
i=1

xci(0)

...

mxcm(0)−
m∑
i=1

xci(0)

m∑
i=1

xci(0)


+



0

0

...

0

− 1
mγ2+2γ1

(
γ1l + γ2

m∑
i=1

xci(0)

)



=



xc2(0)− 1
m

m∑
i=1

xci(0)

xc3(0)− 1
m

m∑
i=1

xci(0)

...

xcm(0)− 1
m

m∑
i=1

xci(0)

− γ1l
mγ2+2γ1

+ 2γ1
m(mγ2+2γ1)

m∑
i=1

xci(0)


,

and

ly =Ψ(0)−1cy(0) + Ψ(0)−1A−1ky

=



yc2(0)− 1
m

m∑
i=1

yci(0)

yc3(0)− 1
m

m∑
i=1

yci(0)

...

ycm(0)− 1
m

m∑
i=1

yci(0)

2γ1
m(mγ2+2γ1)

m∑
i=1

yci(0)


.
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A
n
d

so
c
ι

=
Ψ

(t
)l
ι
+
ĉ
ι,

c
x

=

               −
e−

2
α γ
2
t
−
e−

2
α γ
2
t
−
e−

2
α γ
2
t
..
.
−
e−

2
α γ
2
t
e−
( 2

α γ
2

+
m

α γ
1

) t

e−
2
α γ
2
t

0
0

..
.

0
e−
( 2

α γ
2

+
m

α γ
1

) t

0
e−

2
α γ
2
t

0
..
.

0
e−
( 2

α γ
2

+
m

α γ
1

) t

0
0

e−
2
α γ
2
t

..
.

0
e−
( 2

α γ
2

+
m

α γ
1

) t

. . .
. . .

. . .
. .

.
. . .

. . .

0
0

0
..
.

e−
2
α γ
2
t

e−
( 2

α γ
2

+
m

α γ
1

) t                                

x
c2

(0
)
−

1 m

m ∑ i=
1

x
ci

(0
)

x
c3

(0
)
−

1 m

m ∑ i=
1

x
ci

(0
)

. . .

x
cm

(0
)
−

1 m

m ∑ i=
1

x
ci

(0
)

−
γ
1
l

m
γ
2
+

2
γ
1

+
(m
−

1
)γ

2
+

2
γ
1

m
γ
2
+

2
γ
1
)

m ∑ i=
1

x
ci

(0
)                 +

ĉ
x

=

                  ( x
c1

(0
)
−

1 m

m ∑ i=
1

x
ci

(0
)) e−

2
α γ
2
t
+

( −
γ
1
l

m
γ
2
+

2
γ
1

+
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

x
ci

(0
)) e−

( 2
α γ
2

+
m

α γ
1

) t
+

1
m
γ
2
+

2
γ
1

( γ
1
l
+
γ

2

m ∑ i=
1

x
ci

(0
))

( x
c2

(0
)
−

1 m

m ∑ i=
1

x
ci

(0
)) e−

2
α γ
2
t
+

( −
γ
1
l

m
γ
2
+

2
γ
1

+
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

x
ci

(0
)) e−

( 2
α γ
2

+
m

α γ
1

) t
+

1
m
γ
2
+

2
γ
1

( γ
1
l
+
γ

2

m ∑ i=
1

x
ci

(0
))

( x
c3

(0
)
−

1 m

m ∑ i=
1

x
ci

(0
)) e−

2
α γ
2
t
+

( −
γ
1
l

m
γ
2
+

2
γ
1

+
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

x
ci

(0
)) e−

( 2
α γ
2

+
m

α γ
1

) t
+

1
m
γ
2
+

2
γ
1

( γ
1
l
+
γ

2

m ∑ i=
1

x
ci

(0
))

. . .
( x

cm
(0

)
−

1 m

m ∑ i=
1

x
ci

(0
)) e−

2
α γ
2
t
+

( −
γ
1
l

m
γ
2
+

2
γ
1

+
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

x
ci

(0
)) e−

( 2
α γ
2

+
m

α γ
1

) t
+

1
m
γ
2
+

2
γ
1

( γ
1
l
+
γ

2

m ∑ i=
1

x
ci

(0
))                  .
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S
im

il
ar

ly
,

c
y

=

                  ( y c
1
(0

)
−

1 m

m ∑ i=
1

y c
i(

0)

) e−
2
α γ
2
t
+

(
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

y c
i(

0)

) e−
( 2

α γ
2

+
m

α γ
1

) t
+

γ
2

m
γ
2
+

2
γ
1

m ∑ i=
1

y c
i(

0)

( y c
2
(0

)
−

1 m

m ∑ i=
1

y c
i(

0)

) e−
2
α γ
2
t
+

(
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

y c
i(

0)

) e−
( 2

α γ
2

+
m

α γ
1

) t
+

γ
2

m
γ
2
+

2
γ
1

m ∑ i=
1

y c
i(

0)

( y c
3
(0

)
−

1 m

m ∑ i=
1

y c
i(

0)

) e−
2
α γ
2
t
+

(
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

y c
i(

0)

) e−
( 2

α γ
2

+
m

α γ
1

) t
+

γ
2

m
γ
2
+

2
γ
1

m ∑ i=
1

y c
i(

0)

. . .
( y c

m
(0

)
−

1 m

m ∑ i=
1

y c
i(

0)

) e−
2
α γ
2
t
+

(
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1

y c
i(

0)

) e−
( 2

α γ
2

+
m

α γ
1

) t
+

γ
2

m
γ
2
+

2
γ
1

m ∑ i=
1

y c
i(

0)

                  .
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)
=

     ( x
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)
−

1 m
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1

x
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(0
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2
α γ
2
t
+

( −
γ
1
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m
γ
2
+

2
γ
1

+
2
γ
1

m
(m
γ
2
+

2
γ
1
)
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(0
)) e−

( 2
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2

+
m
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1

) t
+

1
m
γ
2
+

2
γ
1

( γ
1
l
+
γ

2
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1

x
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(0
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j
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)
−

1 m
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1
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i(

0)

) e−
2
α γ
2
t
+

(
2
γ
1

m
(m
γ
2
+

2
γ
1
)

m ∑ i=
1
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i(

0)

) e−
( 2

α γ
2

+
m

α γ
1

) t
+

γ
2

m
γ
2
+

2
γ
1

m ∑ i=
1

y c
i(

0)

     
(3

.1
0)

n
ot

ic
e

th
at

,
fo

r
ea

ch
j

=
1,

2,
..
.,
m

,
c j

(0
)

=
(x

cj
(0

),
y c
j
(0

))
.
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Observe that if m = 1 (3.10) agrees with (2.10) and (2.11). Now we seek to verify that

the center of drag is constant at least until the system enters the support of f for the above

solutions. So, summing the x-coordinates of the solution gives

m∑
j=1

xcj(t) =
−mγ1l + 2γ1

∑m
i=1 xci(0)

mγ2 + 2γ1

e
−
(

2 α
γ2

+m α
γ1

)
t
+
lmγ1 +mγ2

∑m
i=1 xci(0)

mγ2 + 2γ1

. (3.11)

Now, by the c-site reduction theorem the solutions for the x-coordinates are

x1(t) =
lγ1 + γ2

∑m
i=1 xci(0)

2γ1 +mγ2

− l

2
e
−mαt

γ1 +
lmγ2 − 2γ2

∑m
i=1 xci(0)

2(2γ1 +mγ2)
e
−
(

2 α
γ2

+m α
γ1

)
t
, (3.12)

x2(t) =
lγ1 + γ2

∑m
i=1 xci(0)

2γ1 +mγ2

+
l

2
e
−mαt

γ1 +
lmγ2 − 2γ2

∑m
i=1 xci(0)

2(2γ1 +mγ2)
e
−
(

2 α
γ2

+m α
γ1

)
t
, (3.13)

and

x1(t) + x2(t) =
2lγ1 + 2γ2

∑m
i=1 xci(0)

2γ1 +mγ2

+
lmγ2 − 2γ2

∑m
i=1 xci(0)

2γ1 +mγ2

e
−
(

2 α
γ2

+m α
γ1

)
t
.

So,

γ2

m∑
j=1

xcj(t)+γ1(x1(t) + x2(t))

=γ2

(
−1mγ1 + 2γ1

∑m
i=1 xci(0)

mγ2 + 2γ1

e
−
(

2 α
γ2

+m α
γ1

)
t
+
lmγ1 +mγ2

∑m
i=1 xci(0)

mγ2 + 2γ1

)
+ γ1

(
2lγ1 + 2γ2

∑m
i=1 xci(0)

2γ1 +mγ2

+
lmγ2 − 2γ2

∑m
i=1 xci(0)

2γ1 +mγ2

e
−
(

2 α
γ2

+m α
γ1

)
t

)
=
lmγ1γ2 +mγ2

2

∑m
i=1 xci(0)

mγ2 + 2γ1

+
2lγ2

1 + 2γ1γ2

∑m
i=1 xci(0)

2γ1 +mγ2

=
mγ2 (lγ1 + γ2

∑m
i=1 xci(0)) + 2γ1 (lγ1 + γ2

∑m
i=1 xci(0))

2γ1 +mγ2

=lγ1 + γ2

m∑
i=1

xci(0).
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Similarly for y-coordinates since,

m∑
j=1

ycj(t) =
2γ1

∑m
i=1 yci(0)

mγ2 + 2γ1

e
−
(

2 α
γ2

+m α
γ1

)
t
+
mγ2

∑m
i=1 yci(0)

mγ2 + 2γ1

(3.14)

and

y1(t) + y2(t) =
2γ2

∑m
i=1 yci(0)

2γ1 +mγ2

+
−2γ2

∑m
i=1 yci(0)

2γ1 +mγ2

e
−
(

2 α
γ2

+m α
γ1

)
t
,

γ2

m∑
j=1

ycj(t) + γ1(y1(t) + y2(t)) =γ2

m∑
i=1

yci(0).

Now, using the theorem just proven, the cell centers’ behavior in system (3.5) on page 72 is

the same as how the cell centers behave in the system with a single c-site of drag coefficient

mγ2, spring constant mα, and residing at the point 1
m

∑m
i=1 ci.

3.2 General Reduction Theorem

Consider now a more general cell system with n cells and between the cell centers xi and xj

(i 6= j) there are ni,j c-sites. An example of such is depicted in Figure 3.2.

The question is: can the c-site reduction theorem be applied to a pair of cells connected in

a larger cell system? Consider the Hookean cell system model of type 1, H (again displayed

below for convenience)

We now state the theorem:

Theorem 3.2.1 (General c-Site Reduction Theorem). Let H be a Hookean cell system model

of type 1 with n cells and m c-sites, x0 ∈ Θn × R2m, and x(t) be the solution to H(0,x0),

Then there exists a Hookean cell system model of type 2, H′, with n cells and m′ =
∑

i<jmi,j
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α

x1

x2

x3

x4

x5

x6

c1,2,1

c1,2,2γ2

c1,5,1

c1,5,2

c2,4,1

c3,5,1

c1,4,1

c1,3,1c4,6,1

c4,6,3

c4,6,2

Figure 3.2: The cell system with six cells and with eleven c-sites. This is a Hookean cell system of type 1, note that each c-site
has the same drag coefficient of γ2 and pseupopodia spring constants of α

c-sites, such that if y(t) is a solution to H′,

Pn,m(x(t)) = Pn,m′(y(t)) for all t ∈ [0,∞).

In the cell system which generates H′, each of the m′ c-sites connects a unique pair of

cells xi and xj; this c-site will be referred to as ci,j. The drag coefficient γi,j of ci,j is ni,jγ2,

the pseudopodia spring constants are αi,j = ni,jα and the location of the center of the c-site

is

ci,j(t) =
1

ni,j

ni,j∑
k=1

ci,j,k(t).

The theorem is constructive, and shows there exists at least one such cell system with

the properties of H′, from the statement of the theorem, this we call the c-site-reduced cell

system of H. So, the cell system depicted in Figure 3.2 may be reduced to the cell system

with six cells and only seven c-sites show in Figure 3.3.

Proof. Let x be the solution to H(0,x0). So, if f is the generating function2 of the force

2Recall definition on page 11
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α1,2 = 2α

x1

x2

x3

x4

x5

x6

c1,2

γ1,2 = 2γ2

c1,5

c2,4

c3,5

c1,4

c1,3

c4,6

c1,2 =
1
2

2∑
k=1

c1,2,k

Figure 3.3: Here is the reduced cell system of Figure 3.2. Notice the c-sites attached to the same pair of cells are combined into
one c-site with different parameters. In this figure we see that c-sites c1,2,1 and c1,2,2 from Figure 3.2 are substituted for c1,2

this new c-site has drag coefficient γ1,2 = 2γ2, pseudopodia spring constant α1,2 = 2α, and locations c1,2 = 1
2

2∑
k=1

c1,2,k.

function of H then H(0,x0) may be written explicitly as



γ1ẋj =
n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

(
ni,j∑
k=1

α(ci,j,k − xj)

)

γ2ċi,j,k = α(xi − ci,j,k) + α(xj − ci,j,k)

x0 = (x1(0), . . . ,xn(0), . . . , ci,j,k(0), . . . )T .

Now, adding together the c-site equations associated with ci,j,k for each k = 1, 2, . . . , ni,j and
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each appropriate pair3 i, j = 1, 2, . . . , n the following is achieved:



γ1ẋj =
n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

(
ni,j∑
k=1

α(ci,j,k − xj)

)

γ2

ni,j∑
k=1

ċi,j,k =

ni,j∑
k=1

(α(xi − ci,j,k) + α(xj − ci,j,k))

x0 = (x1(0), . . . ,xn(0), . . . , ci,j,k(0), . . . )T .

which is equivalent to



γ1ẋj =
n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

α

((
ni,j∑
k=1

ci,j,k

)
− ni,jxj

)

γ2

ni,j∑
k=1

ċi,j,k = α

(
ni,jxi −

ni,j∑
k=1

ci,j,k

)
+ α

(
ni,jxj −

ni,j∑
k=1

ci,j,k

)

x0 = (x1(0), . . . ,xn(0), . . . , ci,j,k(0), . . . )T .

(3.15)

Now, let

γi,j = γ2ni,j and αi,j = αni,j, (3.16)

3By appropriate we simply mean for which ni,j > 0.
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then (3.15) becomes



γ1ẋj =
n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

αi,j

((
1

ni,j

ni,j∑
k=1

ci,j,k

)
− xj

)

γi,j

(
1
ni,j

ni,j∑
k=1

ċi,j,k

)
= αi,j

(
xi − 1

ni,j

ni,j∑
k=1

ci,j,k

)
+ αi,j

(
xj − 1

ni,j

ni,j∑
k=1

ci,j,k

)

x0 = (x1(0), . . . ,xn(0), . . . , ci,j,k(0), . . . )T .

(3.17)

Now, (3.17) is not equivalent to H(0,x0) but, clearly any solution to H(0,x0) will be a

solution to (3.17).

Consider the following Hookean cell system model of type 2, H′ defined by



γ1ẋj =
n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

αi,j((ci,j − xj)

γi,j ċi,j = αi,j(xi − ci,j) + αi,j(xj − ci,j)

y0 = (x1(0), . . . ,xn(0), . . . , 1
ni,j

∑ni,j
1=i ci,j,k(0), . . . )T .

(3.18)

By Theorem 1.3.9 there exists a unique solution y(t). However,

x̃ =



x1

...

xn
...

1
ni,j

ni,j∑
k=1

ci,j,k

...


∈ C(R,R2n+2m′) (3.19)
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is also a solution to H′ since x(t) satisfies (3.17). By uniqueness of solutions to H′ we conclude

y(t) = x̃(t) on [0,∞) and so,

Pn,m(x(t)) = Pn,m′(x̃(t)) = Pn,m′(y(t)) for all t ∈ [0,∞).

Then (3.16) and (3.19) justify the remaining claims of the theorem.

3.3 Conclusion

It has been shown that Hookean cell systems of type 1 possessing a multiplicity of c-sites for

a pair of cells may be reduced to a simple4 system of type 2. Theorems of greater generality

may also be shown such as one reducing systems already of type 2 to a simple system of type

2. One difference in that result would probably be that the resultant ci,j would be a weighted

average, weighted according to the various drag coefficients γi,j,k. The drag coefficient and

pseudopodia spring constant would also have to be modified accordingly. It is likely, then,

that the result may be extended to all Hookean cell systems and have a proof similar to the

one presented here. A more general result would warrent a different method of proof as that

above requires linearity in the ai,j,k,l.

4Recall Definition 7 on page 12.
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Chapter 4. Conclusion and Future Work

In chapter one we developed language and perspectives that proved to be useful in analyzing

in great detail the motion of deterministic1 cell systems. This included a version of the

existence and uniqueness theorem for initial value problems, which was nessesary to the

results of Chapter Two and Chapter Three. It is certain that these theroems will continue

to be helpful in the solving of systems of several cells.

In chapters two we provided an explicit solution to the Hookean cell system model of

two cells and a single c-site. This included a discussion of the stability of the equilibia by

determining and analyzing the center manifold of an arbitrary equilibrium.

Chapter Three provided a way to extend the work of Chapter Two to cell systems of

two cells but several c-sites and explicit solutions were presented for the motion of each of

the c-sites. This was accomplished by means of the c-site reduction theorem. The c-site

reduction theorem was then generalize to arbitrary Hookean cells systems of type 1. Explicit

solutions to Hookean cell system models of type 1 and type 2 of two cells.

4.1 Future Work

There is tremendous room to expand these results to systems of several cells. To follow,

we provide an approach with a few conjectures that may be helpful to that end. The main

question this work provides for deals with the hookean cell system of several cells and c-sites.

Such a system can be reduced and studied more readily. Some questions of interest to us

are:

1. What are the equilibria of a hookean cell system of n cells?

2. What is the behavior of the system at that equilibira?

3. What is the next step in modifying the model to make it a closer approximation of the

motion of a slug?

1Here deterministic is used as opposed to a stochastic based cell systems.
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4. How can stochastics be introduced to such a frame work?

4.1.1 What are the equilibria of a Hookean cell system of n cells?. Thanks to

Theorem 1.3.9 the motion of the cell centers in a Hookean cell system of type 1 may be

studied by choosing a particular cell system of type 2 in which there is at most a single

c-site connecting any pair of cell centers (recall these are referred to as simple cell systems).

This simplifies its corresponding system model because it may have much fewer equations

in the IVP. For this discussion it will be helpful to recall (from page 5) that an adjacency

graph of a cell system G with n cells was the graph G whose adjacency matrix is the n× n

matrix N = [ni,j] and that the reduced adjacency graph for G was the simple graph G′ whose

adjacency matrix was M = [mi,j]. Notice that if G is a Hookean cell system of type 1 and

G′ its c-site-reduced cell system, then the adjacency graph of the cell system generating G′

is equal to the reduced adjacency graph of G.

To clarify the adjency graphs are not the same as the graphs in the definition of the cell

system.

Let H be a Hookean cell system model of type 1, and let H′ be its c-site-reduced cell

model of type 2. Let f be the force function of H′. The following discussion, as in Section

2.2, deals with a cell system independent of its initial conditions. As such, consider the

ordinary differential equation form H′

ẋ = f(x). (4.1)

To find any equilibrium points of (4.1) we set the LHS equal to 0. Writing this out we

get 
γ1ẋj =

n∑
i=1
i 6=j

f(‖xj − xi‖)
xj − xi
‖xj − xi‖

+
n∑
i=1

αi,j(ci,j − xj)

γi,j ċi,j = αi,j(xi − ci,j) + αi,j(xj − ci,j).

(4.2)
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Now for each c-site equation for which αi,j 6= 0 we may solve for ci,j achieving

ci,j =
xi + xj

2
.

Substituting these into the cell equations for any i and j such that mi,j = 0 achieves

0 =
n∑
i=1
i 6=j

f(‖xj − xi‖)
‖xi − xj‖

(xi − xj) +
n∑
i=1

αi,j

(
xi − xj

2

)

=
n∑
i=1
i 6=j

(
f(‖xi − xj‖)
‖xi − xj‖

− mi,jαi,j
2

)
(xj − xi).

Let

βi,j :=
f(‖xi − xj‖)
‖xi − xj‖

− mi,jαi,j
2

and simply define βi,j = 0. Notice, βi,j = βj,i. So, our equations become for any j =

1, 2, . . . , n

0 =
n∑
i=1

βi,j(xj − xi)

=
n∑
i=1

βi,jxj −
n∑
i=1

βi,jxi

= β1,jx1 + β2,jx2 + · · ·+ βj−1,jxj−1 −
n∑
i=1

βi,jxj + βj+1,jxj+1 + βn,jxn
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this gives us the system



0 = −
n∑
i=1

βi,1x1 + β2,1x2 + β3,1x3 + . . . + βn,1xn

0 = β1,2x1 −
n∑
i=1

βi,2x2 + β3,1x3 + . . . + βn,2xn

0 = β1,3x1 + β2,3x2 −
n∑
i=1

βi,3x3 + . . . + βn,3xn

...

0 = β1,nx1 + β2,nx2 + β3,nx3 + . . . −
n∑
i=1

βi,nxn

(4.3)

Now , let xn = Pn,m(x) then (4.3) may be written in matrix form if

B(xn) =



−
n∑
i=1

βi,1 β2,1 β3,1 . . . βn,1

β1,2 −
n∑
i=1

βi,2 β3,1 . . . βn,2

β1,3 β2,3 −
n∑
i=1

βi,3 . . . βn,3

...
...

...
. . .

...

β1,n β2,n β3,n . . . −
n∑
i=1

βi,n


as

0 = B(xn)xn.

Now as before we seek only solutions for which xn ∈ Θn,ε. Solving this is equivalent to

finding a vector xn ∈ Θn,ε. Such that the following condition is satisfied:

xn ∈ N (B(xn)). (4.4)

That this approach is easier than directly analyzing the original system is apparent since

now, instead of n + m equation of vectors in R2 we have only n. However, this approach
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is yet far from easy. It will require a sophisticated understanding of how the nullspace of

a matrix from a matrix-valued function changes as the input changes. Methods from fixed

point theory may prove instructive in this problem. For our part, we found that there was

much in out intuition that needed to be developed. The first approach we took was to

recognize that xn had to be an element of Θn and then to ask what conditions must be

on a symmetric, 0 row sum matrix in order to ensure that its nullspace intersects Θn. Our

investigation of this problem began by asking what sort of matrices A have a nullspace that

intersect Θn?

First, note that B(xn) is always symmetric and has 0-row sums. This implies that B(xn)

has a nontrivial nullspace, as the vector (a, a, . . . , a)T will always be in the nullspace for any

a ∈ R2. This also demonstrates that B(xn) has a eigenvalue of zero.

To study this we started by building intuition using n × n matrices and dealing with

real numbers (as opposed to vectors). To that end, Dr. Gary Lawlor (BYU) and I wrote a

program in Mathematica to produce several random symmetric, 0-row sum matrices. The

Mathematica code is provided here:

findMO[range_, n_] := Module[{i, j, temp, M, sum},

M = Table[RandomInteger[{-range, range}], {i, 1, n}, {j, 1, n}];

M = (M + Transpose[M]);

For[i = 1, i <= n, i++,

sum = Sum[M[[i, j]], {j, 1, n}];

M[[i, i]] -= sum];

Return[M]

]

This allowed us to produce n × n random matrices with integer coefficients, that are

symmetric and have 0-row sum. It was then easy to check whether a matrix produced this

way had a nullspace that intersected Θ̃n = {x : x = (x1, x2, . . . , xn) ∈ Rn and Πi 6=j(xi−xj) 6=
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0}. We created the following flag to catch matrices produced by the findMO function (with

arguments range= 10 and n= 5) whose null intersected Θ̃5:

If[Length[NullSpace[U]] > 1,

If[Product[

Product[NullSpace[U][[1, i]] - NullSpace[U][[1, j]], {i,

j - 1}], {j, 2, 5}] != 0, Print["Here!"]]];

What this code does is checks that the product of the difference of every pair of com-

ponents of one of the basis vectors of the nullspace is nonzero. That is, it checks whether

one of the basis vectors of the nullspace is an element of Θ̃5. It is reasonable to check only

one vector in the nullspace because most of the nullspaces generated this way had only two

dimensions. Using this and similar criteria checks, we arrived at some conjectures which will

be introduced after a few definitions.

For ease of notation let S be a set and k be a positive integer no bigger than the cardinality

of S. Now let ℘k(S) = {T ∈ ℘(S) : |T | = k} (where ℘(S) is the power set of S). So, ℘k(S)

is simply the set of all subsets of S which have cardinality k. It will be convenient to use

the notation [n] = {1, 2, 3, ..., n} for any positive integer n.

Now, in order to percisely state the conjectures to follow we will need to define an total

order � on ℘k([n]). Fist, for each S ∈ ℘k([n]) let Gk(S) be the number generated by

multiplying powers of the first k consecutive primes. The power of the first prime is the

smallest element of S, the power of the second prime is the next smallest power of S and so

on. For example, note {1, 4, 3, 6} ∈ ℘4([8]); so,

G4({1, 4, 3, 6}) = 21 · 33 · 54 · 76.

With this in hand for S, T ∈ ℘k([n]) we say S � T if and only if Gk(S) < Gk(T ). This

is a total order since each element of ℘k([n]) is mapped uniquely to some integer (here the

fundamental theorem of arithmetic is used). Now, let φn,k :
[(
n
k

)]
→ ℘k([n]) be defined in
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terms of the order on the set ℘k([n]); it assigns i to the ith subset in ℘k([n]). Now we will

state a few definitions.

Let A be an n× n matrix.

Definition 9. Let S, T ⊂ [n] and define the S × T -submatrix AS,T of A to be the submatrix

of A formed by deleting the ith row of A only if i 6∈ S, and by deleting the jth column only

if j 6∈ T . The S × T -minor of A is the determinat of AS,T .

Definition 10. The k-minors matrix Mk(A) of a matrix A is the
(
n
k

)
×
(
n
k

)
matrix in which

the i, j-entry is the φn,k(i)× φn,k(j)-minor of A. So,

(Mk(A))i,j = det(Aφn,k(i),φn,k(j)).

Also, for any matrix A let rref(A) denote the reduced row echelon form of A.

Conjecture 4.1.1. If B is an symmetric, 0-row sum matrix, then

(i) dim(N (B)) ≥ 2 if and only if Mn−2(B) has rank 1.

(b) N (B) ∩ Θn 6= ∅ if and only if the top right (n − 2) × 2-submatrix of rref(B) has no

repeated numbers in a column and contains no zeros.

(c) N (B) ∩Θn 6= ∅ if and only if the top row of rref(Mn−2(B)) contains no zeros.

These systems have a variety of symmetries. It has been shown that these symmetries

may be used to great effect in simplifying the problem as was seen in Section 2.2.2. A

few results to keep in mind are the Theorem 1.3.9 (global existence and uniqueness of the

solutions of Hookean cell system models of type 2) and Proposition 1.3.1 (conservation of

the center of drag).

4.1.2 What is the behavior of the system at that equilibria?. To study the sta-

bility of the equilibria we have shown by an example that center manifold theory may be

employed and that the set of all equilibria itself formed the center manifold. This finding

95



was facilitated by the fact that the set of all equilibria could be defined explicitly. It would

be interesting to see if such is the case in systems with a greater number of cells.

Another approach may be to suppose that a point is an equilibria and compute the

derivative matrix at that point to determine the tangent space of the center manifold (assume

there is one, which is likely because there is sure to be a continuum of equilibria). This may

then give information of the set of equilibria. A good result to prove might be stated as

follows:

Conjecture 4.1.2. Given a force function f of some Hookean cell system model H, the set

equilibria e(f) of the system ẋ = f(x) is exactly the same as it’s center manifold.

4.1.3 What is the next step in modifying the model to make it a closer approx-

imation of the motion of a slug?. After a firm understand of how these cell systems

behave in a deterministic (stochastic free) scene the next step would be to include random

switching times that govern the attachment and detachment of the c-sites from the cells.

4.1.4 How can stochastics be introduced to such a framework?. And let ψ be a

Bernoulli random variable. The state of a c-site describes whether or not it is “attached”

or “detached.” A c-site is said to be attached if it is connected to two cells and detached if

otherwise. In the model the random variable ψ determines the state of the c-site. If ψ = 1

the c-site is attached to both of the cells if ψ = 0 the c-site is detached. With these notations

in hand we may rewrite system (2.1)


γiẋi =

n∑
j=1

fi,j(xi,xj)−
n∑
j=1

ni,j∑
k=1

ψi,j,k,1ai,j,k,1(xi, ci,j,k)

ψi,j,kγi,j,kċi,j,k = ψi,j,k,1ai,j,k,1(xi, ci,j,k) + ψi,j,k,2ai,j,k,2(xj, ci,j,k).

(4.5)

where ψi,j,k = max{ψi,j,k,1, ψi,j,k,2} and ψi,j,k,1 = ψj,i,k,2. Here we would require that ci,j,k be

only sectionally, continuously differentiable. This allows for dissolution and reformation of

c-sites.
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4.2 Conclusion

The work here presented is a prime example of simplifying and reducing a problem down to

a more tractable level. We began by working on the expected steady state configuration of

system (4.5) but it proved to be far from tractable. Then we focused on just the deterministic

behavior of a system of several cells and c-sites. Again, with our current understanding it

proved to be beyond our capabilities. So, then we boiled down the problem to a deterministic

system with only two cells and one c-site. We worked with that obtaining a very rich

understanding of the evolution of that system as well as a system with two cells and several

c-sites. The reduction theorem came out of this work; it was a thing we had not previously

supposed possible. Now, with the discovery that in this small case the center manifold in

the same as the set of equilibria, we have a method, far from any we previously considered,

that may prove to answer our original question.

This research has been a singular experience which I have enjoyed very much. I feel this

problem, though rich in challenges, now has a few sturdy tools which may be used to find

what we are looking for.
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