
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2016-06-01

A Hybrid Approach to Cross-Linguistic Tokenization: Morphology A Hybrid Approach to Cross-Linguistic Tokenization: Morphology

with Statistics with Statistics

Logan R. Kearsley
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Linguistics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Kearsley, Logan R., "A Hybrid Approach to Cross-Linguistic Tokenization: Morphology with Statistics"
(2016). Theses and Dissertations. 5984.
https://scholarsarchive.byu.edu/etd/5984

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5984&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=scholarsarchive.byu.edu%2Fetd%2F5984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5984?utm_source=scholarsarchive.byu.edu%2Fetd%2F5984&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Hybrid Approach to Cross-Linguistic Tokenization:

Morphology with Statistics

Logan R. Kearsley

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Arts

Deryle Lonsdale, Chair
Cynthia Hallen

Alan Melby
Michael Bush

Department of Linguistics and English Language

Brigham Young University

June 2016

Copyright c© 2016 Logan R. Kearsley

All Rights Reserved

ABSTRACT

A Hybrid Approach to Cross-Linguistic Tokenization:
Morphology with Statistics

Logan R. Kearsley
Department of Linguistics and English Language, BYU

Master of Arts

Tokenization, or word boundary detection, is a critical first step for most NLP ap-
plications. This is often given little attention in English and other languages which use
explicit spaces between written words, but standard orthographies for many languages lack
explicit markers. Tokenization systems for such languages are usually engineered on an indi-
vidual basis, with little re-use. The human ability to decode any written language, however,
suggests that a general algorithm exists.

This thesis presents simple morphologically-based and statistical methods for identi-
fying word boundaries in multiple languages. Statistical methods tend to over-predict, while
lexical and morphological methods fail when encountering unknown words. I demonstrate
that a generic hybrid approach to tokenization using both morphological and statistical
information generalizes well across multiple languages and improves performance over mor-
phological or statistical methods alone, and show that it can be used for efficient tokenization
of English, Korean, and Arabic.

Keywords: tokenization, lexing, morphological analysis

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Deryle Lonsdale, for putting up with

me and helping me acquire the resources I needed to finish this research project, and for

his guidance in polishing up this paper. I would also like to thank Dr. Michael Bush, my

committee member and employer, for his encouragement and willingness to provide assistance

even though finishing means I won’t be a student employee anymore. It’s his good luck that

he’s managing to retire just as I’m finally graduating. I am grateful also to Dr. Alan Melby

for his mentorship on undergraduate projects which led up to this thesis, and to Dr. Cynthia

Hallen for her good attitude, encouragement, and editing skills.

Of course, I also must thank my wonderful wife, Erin, who promised to love me

whether I finished or not, and supported me throughout.

Table of Contents

ABSTRACT ii

ACKNOWLEDGMENTS iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Relevant Literature 4

2.1 Tokenization of English . 5

2.2 Orthographies Traditionally Lacking Whitespace 8

2.3 Psychological Modeling . 11

2.4 Simplified Statistical Models . 12

2.5 Path Selection Methods . 14

2.6 Lattice Generation with Morphology & Statistics 15

3 Methodology 17

3.1 Data Collection & Formatting . 17

3.2 Morphological Tokenization . 18

3.2.1 Arabic . 22

3.2.2 English . 23

iv

3.2.3 Korean . 23

3.3 Statistical Tokenization . 24

3.4 Hybrid Tokenization . 26

3.5 Evaluation . 27

4 Results & Discussion 29

4.1 Morphological Tokenization . 30

4.2 Statistical Tokenization . 32

4.2.1 Zero-Threshold . 32

4.2.2 Gap Threshold . 33

4.3 Hybrid Tokenization . 35

4.3.1 Filtering . 35

4.3.2 Filling . 37

5 Conclusions & Future Work 41

Bibliography 44

v

List of Tables

4.1 F-scores for Boundary Recognition . 30

4.2 F-scores for Token Recognition . 30

4.3 Results for Morphological Tokenization . 31

4.4 Morphological Analyzer Recognition Rates 31

4.5 Prediction Rate for Zero-threshold Statistical Tokenization 32

4.6 Results for Zero-Threshold Statistical Tokenization 33

4.7 Prediction Rate for Gap-Threshold Statistical Tokenization 33

4.8 Results for Gap-Threshold Statistical Tokenization 34

4.9 Filter Reduction for Zero Threshold . 35

4.10 Results for Zero-Threshold Filtering . 36

4.11 Filter Reduction for Gap-Threshold . 36

4.12 Results for Gap-Threshold Filtering . 37

4.13 Results for Filling—Both Thresholds . 38

vi

List of Figures

1.1 Example of Thai Text . 1

1.2 Example of Japanese Text . 2

2.1 Token Lattice . 4

3.1 Example of Arabic Text . 17

3.2 Example of Korean Text . 18

3.3 Morphological Tokenization . 22

3.4 Statistical Tokenization . 26

3.5 Hybrid Tokenization . 27

vii

Chapter 1

Introduction

One of the most basic and yet often overlooked problems in natural language pro-

cessing (NLP) is word boundary detection, or tokenization. Identifying words is a critical

preprocessing step before almost any other work can be done with text: frequency counting,

part-of-speech tagging, parsing, etc. In many languages, this is far from trivial. The standard

orthographies for languages as diverse as Ancient Greek and Latin, and modern languages

like Thai, Japanese, and Chinese, lack spaces or any other explicit indicator of word bound-

aries. (Examples of the standard orthographies for Thai and Japanese are shown in Figures

1.1 and 1.2.) This often results in ambiguity about the proper grouping of characters into

words, and difficulty in identifying the boundaries of unknown words.

Substantial research has been done in text segmentation for languages like Chinese

and Japanese. The highest-performing systems all use a hybrid approach, incorporating both

statistical knowledge to predict probable word boundaries, and access to lexicons to identify

known words. Unfortunately, the specific algorithms used are often drastically different,

and bespoke tokenizers are typically built on a language-by-language basis. There is no

standard, generic framework for handling tokenization across multiple languages. Even in

English and other languages that use whitespace in writing, there are numerous edge-cases,

Figure 1.1: Example of Thai text. Thai uses spaces to separate clauses, but not individual
words [1].

1

Figure 1.2: Example of Japanese text. While punctuation and changes in writing system
provide some clues, Japanese does not use spaces to separate words or clauses [2].

such as clitic and punctuation separation, which must be handled with special rules on

a per-language basis. In developing software for searching, analyzing, or teaching multiple

languages, or supporting natural-language based user interfaces, the complexity of developing

separate systems to support equal levels of computer-enhanced interactivity for every desired

language quickly becomes impractical. This severely limits both the number of languages

that can be supported in any given application and the level of functionality available for

each language. Given that the human ability to successfully read any natural language

provides an existence proof that a generalized segmentation system (as implemented in the

human mind) is possible, it is reasonable to investigate the feasibility of a language-agnostic

segmentation system that could be easily integrated into larger natural language processing

systems.

In order to make NLP applications more accessible in a wider variety of languages,

I am developing a generalizable framework for tokenization which can be easily adapted

to any given language. The general tokenization problem can be broken down into a few

generic parts, regardless of the language involved: a hypothesis generator, which makes use

of both a morphological recognizer encoding lexical knowledge and a statistical model or

models, and a selector, which identifies the best hypothesis. Even if a single master system

cannot be used for every language, decomposing the problem in this way should allow for

replacing only certain parts and reusing others, as long as the replacement modules conform

to a standard interface.

For the purposes of this thesis, I have focused only on the hypothesis generation stage.

I identify promising lexical (morphological) and statistical models and several methods of

integrating them into a single framework for hypothesis generation across multiple languages.

I then test these systems on corpora of native-speaker texts from three typologically dissimilar

2

languages. The success of each system is determined by two major factors. The first is

generalizability, or the consistency of results across multiple languages. Generalizability,

however, is a necessary but not sufficient condition for a generic tokenization framework.

The second factor is token-recognition performance. Additionally, hybrid systems can be

evaluated in terms of their improvement over morphological or statistical methods used

alone. I show that a hybrid system based on this framework:

1. does generalize well across a variety of languages,

2. produces results comparable to those of state-of-the-art tokenization systems developed

for specific languages, and

3. outperforms both morphological and statistical methods used individually.

3

Chapter 2

Relevant Literature

Prior to almost any other natural language processing task, the first task that must

be done with any text is tokenization (also called segmentation, lexing, or word break-

ing)—figuring out where the words (or other logical units) are.

This problem is most obvious in the context of automatic speech recognition, where it

is further necessary to convert continuous phonetic data into discrete phonemes. The stan-

dard solution in this context is to use Hidden Markov Models (HMMs) encoding the possible

words of the language to transduce phonetic data into sequences of potentially-overlapping

possible phonemes and words [3]. The correct tokenization is obtained by applying the

Viterbi algorithm over a pre-generated lattice1 of “word hypotheses” [4], or by performing

an on-line beam search over possible tokenizations as new possibilities are generated [5].

If we set aside the issue of transducing phonetic data into discrete phonemes, how-

ever, the problem of identifying logical groups in a stream of discrete lower-level symbols

still remains, and we can isolate this aspect of the problem by working with written text,

1a data structure which stores only one copy of common prefixes and suffixes, showing which unique
states (in this case, unique tokens) can precede or follow each other

Figure 2.1: A sample lattice showing possible tokenizations of three words of Korean, exclud-
ing spaces. The correct selection is shown in bold.

4

assembling morphemes and words from a stream of graphemes. In general, tokenization of

written text2 may be a harder problem than tokenization of speech since writing generally

does not reflect spoken language losslessly3, and fewer boundary clues (such as prosodic

information) will be available. Nevertheless, the fact that reading is possible is itself proof

that text-only tokenization can be done at useful levels of accuracy.

2.1 Tokenization of English

In English and many other languages, the problem of text tokenization is often con-

sidered trivial: simply split words on whitespace, which substitutes for many of the prosodic

clues available in speech. Van Aken [6], for example, studied the problem of tokenizing

continuous English text with spaces removed, but only as a proxy for understanding human

tokenization strategies more generally. While often good enough, however, the space-splitting

approach is far from perfectly accurate. Even with perfectly clean data, this approach fails

to account for:

1. Word boundaries that correctly occur in the absence of whitespace (e.g., before punc-

tuation, with specialized items like URLs, or simply due to typographical errors)

2. Whitespace that may not indicate a relevant boundary in certain applications (e.g.,

spaces in compounds, idioms, and borrowed foreign-language phrases used as single

logical lexical units).

These complications can be dealt with in various ways, but only on an individual language-

by-language basis. Even among languages that all use the Roman alphabet, significant

differences in whitespace and punctuation conventions exist. The tokenization conventions

for the Penn Treebank, for example, separate “most punctuation” [7], but depend on prior

knowledge of sentence boundaries to help disambiguate final periods from periods indicating

abbreviations and on English-specific knowledge about the structure of contractions and

cliticized forms.

2In corpus studies, “text” is often used to refer to any reification of language, be it spoken or written;
here however, I will assume that “text” refers only to written communication.

3i.e., without loss of information, such that all details of speech could be re-constituted exactly from its
written form

5

Van Aken’s system relies purely on statistical information available within a single

text to infer word segmentation. In particular, it keeps track of recurring sequences that

occur with frequency greater than a certain threshold as possible word types. It further keeps

track of the transition probabilities between known sequences to determine the optimal path

through a lattice of tokenization hypotheses [6]. This algorithm was tested against both

randomly generated strings of words from a dictionary, and a small sample of natural English

text, which revealed a weakness in identifying boundaries in sequences of multiple short

words, such as “in a”; this is a particular weakness shared by other statistical algorithms as

well. This approach taken in isolation would likely perform poorly on a text containing a

large number of hapax legomena4, which would pass the frequency threshold for recognition,

making it potentially less suitable for languages with extensive productive morphology.

Van Aken’s algorithm also depends on an implicit assumption about what the defi-

nition of a “word” is: a fixed sequence of symbols that can occur multiple times. While this

assumption may indeed be a useful one for vocabulary induction from unlabeled data, it is

not necessarily the best definition of “word” for all circumstances, especially across multiple

languages. Additionally, there is ambiguity in the usage of “word” to refer to a particular

sequence of symbols, versus a particular instance of that sequence in a text. Unfortunately,

per Islam et al. [8], no widely accepted definitions for what constitutes a “word” exist, even

within a single language, let alone cross-linguistically. Different native speakers often seg-

ment text in different ways, and the rate of agreement between human judges can be less than

80%, making it impossible to construct a single “gold standard” to evaluate results between

systems that employ different conventions, whether implicit or explicit. For these reasons, it

is often useful to dispense with the problem of defining a “word” at all and, when exactness

is required, to instead refer to types, meaning specific abstract sequences of symbols, and

tokens, meaning specific instances of a type at specific locations in a text. Tokenization

is thus the process of identifying meaningful tokens, however “meaningful” is defined for a

particular application in a particular language, and may cover items traditionally identified

as “words” as well as clitics, punctuation, and other errata. Note, however, that differences

in conventions regarding what constitutes a meaningful token at a given level of analysis

4types which occur exactly once in a corpus

6

still require consideration during evaluation. The performance of tokenization algorithms is

usually evaluated in terms of precision and recall ; precision (P) is defined as the proportion

of items in the output that are correct (i.e., which match items in the answer key), while

recall (R) is defined as the proportion of correct items (i.e., entries in the answer key) which

are in the output. Mathematically, these are given by

P = TP
TP+FP

R = TP
TP+FN

where TP is the number of true positives, FP is the number of false positives, and FN is

the number of false negatives. Since it is often easy to obtain high performance on either

measure individually (e.g., perfect recall can be achieved simply by guessing that every

character boundary might be a token boundary, such that there are many false positives

but no false negatives), but difficult to achieve high performance on both, an additional

measure, the F-score is used to combine precision and recall and provide an estimate of

overall performance. In this thesis I use the usual definition:

F = 2PR
(P+R)

For all three measures, scores range from 0.0 to 1.0, where a score of 1.0 represents perfect

performance.

While his algorithm requires no prior knowledge of linguistic structure, van Aken [6]

does note that “A shortcut [...] is to incorporate a ready-made dictionary that contains some

or all of the words that the algorithm will encounter.” This lexical-access approach is most

clearly demonstrated by Norvig [9], who describes the use of a simple lexicon to recursively

split a string into a known word and a suffix of remaining characters, using dynamic program-

ming techniques to construct a lattice to avoid the inefficiency of recomputing overlapping

segmentations for the same suffixes multiple times. Word-level n-gram frequency data is

then used to extract the highest probability tokenization from the lattice. Norvig [9] cites

applications to Chinese, as well as to specialized genres of English, such as URLs, which are

written without spaces as previously described. Norvig’s algorithm, however, is only as good

as the dictionary—it will fail on encountering out-of-vocabulary (OOV) words. This makes

it less suitable for application to languages that have extensive productive morphology, such

7

as Turkish, in which it may be literally impossible to encode the complete set of possible

words in a finite dictionary, even before we account for the fact that new words appear

constantly in living languages [8]. Although this overlaps somewhat with the weaknesses of

van Aken’s algorithm, the potential benefits of a hybrid approach are already evident, as a

strong statistical algorithm may make up for gaps in vocabulary.

2.2 Orthographies Traditionally Lacking Whitespace

Most practical work in text tokenization involves languages whose writing systems

traditionally have no spaces or other written word breaks, such as Chinese, Japanese, or

Thai, as previously mentioned. In these cases, as with the special rules for Treebank annota-

tion, researchers develop separate tokenization systems on a per-language basis, often using

substantially different approaches. This has produced some impressive state-of-the-art re-

sults in each language, but unfortunately these systems all differ significantly in their details,

and none are easily extensible for use on additional languages without effectively re-building

them from the ground up.

Peng, Feng, & McCallum [10] developed a system for Chinese segmentation which re-

casts segmentation as a tagging problem using linear-chain conditional random fields (CRFs);

every character is tagged as either a start-of-word character, or not. This is an inherently

hybrid system, as the CRF models incorporate lexical knowledge in addition to lower-level

statistics, which are used for probabilistic new-word detection. This provides the best of

both worlds: the efficiency and accuracy improvements that lexical access entails, without

the need to store the entire vocabulary, and allowing for the proper identification of unknown

words as long as they do not exhibit structural characteristics too far removed from those

used to create the statistical model (i.e., the normal morphographological5 structure of the

language). Their model produced results ranging from (P = 0.828, R = 0.870, F = 0.849)

to (P = 0.953, R = 0.961, F = 0.957) over eight tests on various corpora.

The state-of-the-art Japanese segmentation system by Kudo, Yamamoto, & Mat-

sumoto [11] also makes use of CRFs to simultaneously achieve tokenization and morpho-

logical analysis by selecting the best path through a lattice of possible morpheme-level to-

5the written parallel to morphophonological

8

kenizations generated from a morphologically-aware dictionary. In fact, Kudo et al. were

primarily motivated by the problem of morphological analysis of unlabelled text, for which

automatic tokenization was merely an unavoidable first step when working with Japanese

orthography. This builds on prior work by Asahara et al. [12] and Uchimoto et al. [13]

on Japanese tokenization and morphanalysis using two different statistical modelling tech-

niques: HMMs and Maximum Entropy Markov Models (MEMMs), respectively. Kudo et

al.’s CRF model improved on both HMM and MEMM models due to the ability of CRFs

to make use of a wider range of tagging features, including lexical information, providing

additional evidence for the utility of hybrid segmentation approaches. They report results

of (P = 0.9904, R = 0.9888, F = 0.9896) and (P = 0.9903, R = 0.9920, F = 0.9911) on two

different corpora.

Choosing to work at the level of morphemes rather than words additionally removes

many of the problems present in other systems with hapax legomena or OOV words. This

requires, however, either the ability to re-synthesize complete words from morphemes, or an

agreement with later stages of the NLP pipeline to define “tokens” at the appropriate sub-

word level. Where possible, however, the ability to achieve simultaneous tokenization and

morphanalysis substantially improves efficiency and provides more contextual information

to later stages of an NLP pipeline, such as syntactic parsing.

Suzuki, Brockett, and Kacmarcik [14], in fact, took this one step further, by using a

syntactic model to simultaneously select an optimal tokenization while producing a syntactic

parse. Like Kudo et al. [11], Asahara et al. [12] and Uchimoto et al. [13], they also use a “word

breaker” that performs simultaneous morphanalysis while producing a lattice of possible

tokenizations. However, they eliminate the complication of collapsing the information in the

lattice into a single unambiguous best token sequence. Instead, the lattice is used as the

bottom level of a parsing chart, with the selection of the correct token sequence being a

natural consequence of identifying the best syntax tree. They report results ranging from

(P = 0.974, R = 0.980, F = 0.977) to (P = 0.981, R = 0.985, F = 0.982) on three corpora.

In my own previous work [15], I addressed the problem of efficient lattice genera-

tion with simultaneous morphanalysis using a finite-state transducer (FST) based on the

KIMMO two-level morphology system [16]. This system runs in amortized constant time

9

per-character. Hence, as each input character needs to be examined exactly once and in

document order to determine which morphemes it could participate in, it generates a lattice

of all possible sequences of known morphemes that could be extracted from an input stream

in amortized linear time over arbitrary sized inputs [15]. Storing the lexicon as a finite-state

transducer both saves a great deal of space and also allows recognition of a potentially infi-

nite number of regularly derived or inflected words, though with some reduction in flexibility

versus the CRF models. Compared to a fixed lexicon as used by Norvig [9], a morphological

transducer suffers less from from the problem of encountering OOV tokens, but does not

solve the problem completely; it will still encounter difficulty with unknown roots and other

morphemes. This system was tested on English and Turkish, using synthetic corpora con-

sisting of randomly-generated sequences of concatenated words, similar to the method used

by van Aken [6]. On corpora of known words, the system achieved (P = 0.209435, R = 1,

F = 0.346335) for English and (P = 0.164989, R = 1, F = 0.283246) on Turkish. The low

precision scores are attributable to the fact that I focused only on lattice generation, as a

clearly separate issue from path selection—an approach I continue in this thesis. Prior to

optimal path selection, the precision measure of a lattice generation system reflects the level

of genuine morphological ambiguity present in the input.

The great advantage of this approach is that nearly any morphological model can be

adapted to use in a simultaneous lexical-access based tokenizer (although it is optimized for

FST-based models). In other words, the language model does not need to be developed with

tokenization specifically in mind, and existing analyzers are reusable, potentially saving a

great deal of effort that would otherwise go into another bespoke, language-specific tokeniza-

tion system. Additionally, this approach specifically supports on-line, real-time usage. While

that feature is common (nearly obligatory, in fact) for speech processing, it is relatively rare

in text tokenization [6]. On-line operation significantly restricts the types of algorithms that

can employed in tokenization, because it is necessary for the speed of processing to keep up

with the speed of input. This means that any system intended for on-line use must take, on

average, constant time to process each character in the text, resulting in amortized linear

(O(n)) time to process a complete text. Real-time applications introduce slightly stricter

constraints on the maximum allowable constant factor per character.

10

2.3 Psychological Modeling

In addition to the NLP-oriented approach, the tokenization problem also arises in

language acquisition: When hearing a new language that one does not know, how does a

learner begin to identify new words to add to their mental lexicon? This clearly requires some

generic mechanism (although of unknown and possibly great computational complexity) for

inducing probable words boundaries (where contiguous sequences between two boundaries

then constitute words) from unlabeled input. That humans are capable of this provides an

existence proof of the technical possibility of language-agnostic tokenization.

Studying the ways that human minds may tackle tokenization is not guaranteed to

produce the best possible artificial tokenization system, since they may involve unnecessary

complexity or require quantities of data infeasible to obtain for many NLP applications, in

the same way that the best way to build an airplane is not to exactly copy a flapping bird’s

wing. Studies of human psychological segmentation mechanisms do, however, serve two

useful purposes: They set a baseline against which errors can be measured, and they may

provide an initial example implementation from which further engineering can draw [17].

To establish a baseline of performance, it is sufficient to use manually-tagged corpora

as a gold standard to test against; to provide an example implementation for re-engineering,

it is important to have a reasonable psychological model of human speech segmentation. Da-

land [17] argues that both statistical predictive mechanisms and lexical access are necessarily

involved in human segmentation, with contributions from each shifting over the language ac-

quisition process: statistical mechanisms in order to guess at the boundaries around new

unknown words and to determine the probability that a potential bounded sequence is in

fact a new word, and lexical access to filter errors. Empirical evidence for the validity of this

claim is provided by Islam et al. [8], who report that many state-of-the-art NLP systems do

in fact use hybrid approaches. Daland [17] further proposes that there are only two feasible

error-correction conditions for the human tokenization system. The first is statistical over-

recognition, where lexical access must filter out erroneously predicted word boundaries; the

second is statistical under-recognition, where lexical access must be prepared to add statisti-

cally unlikely word boundaries. Logically, however, both may occur in any newly-developed

system.

11

In either case, we can expect an improvement from merging statistical and lexicon-

based methods. The set of correct word boundaries found by either method would not a

priori be expected to form a subset of those found by the other; thus, their unions would be

a larger set of correct boundaries. However, in the case of statistical under-recognition, we

would expect a smaller contribution from statistical boundary prediction to the recognition

of unknown words by lexicon-based methods. We would thus expect that statistical over-

recognition would be the norm, and indeed, this is exactly the result obtained by Rytting [18].

2.4 Simplified Statistical Models

Revisiting the analogy of the airplane versus flapping bird wing, one is led to wonder

whether statistical models might exist which are much simpler than CRFs or HMMs yet

still in some sense “good enough”. Brent [19], motivated, like Daland, by the study of

first language acquisition, identified distribution regularities at the phoneme (or grapheme)

level, such as segment-to-segment transition probabilities, to be useful indicators of word

boundaries [20]. In later work, Brent [19] and Rytting [18] both investigated simple character-

level statistical cues that could be used as effective predictors of word boundaries during

language acquisition, and for tokenization of text. The identification of such useful “minimal

information” predictors holds significant promise for developing simplifications of Daland’s

cognitive model [17] and further improving the performance of hybrid tokenizers.

While Brent [19] assumed that a prediction technique based on local comparisons

(i.e., looking for significant differences between the values of a given statistical measure-

ment between adjacent positions in the text), would be most appropriate for identifying

word boundaries, Rytting [18] argued that this is guaranteed to under-predict due to the

impossibility of correctly identifying common single-segment words, since the values of any

two measurements in immediately adjacent positions cannot simultaneously be either sig-

nificantly greater than or significantly less than each other. This echoes the problems with

identification of small words encountered by van Aken [6] with a significantly more com-

plex model. Global comparisons are therefore needed to ensure maximum recall of correct

boundaries.

12

Rytting [18] tested the predictive power of two statistics based on Brent’s work [19]:

character-level transition probabilities, and character bigram mutual information scores,

using both local and global comparisons for each. Rytting [18] showed that, on Greek

text, a very simple mutual-information (MI) model outperformed the competing transition-

probability models. He also showed that it was highly over-predictive on its own, and that

using a global threshold for comparison was the most effective of the techniques that he

tested, giving results of (P = 0.439, R = 0.544, F = 0.486) for identifying individual to-

ken boundaries. This is despite the fact that the threshold value of zero used in Rytting’s

study [18] was chosen “arbitrarily” with no justification attempted. Rytting’s model, how-

ever, does also take into account the probability, based on a pre-annotated training corpus,

that any particular bigram spans a known word boundary.

In my own previous work [21], I applied the MI approach to English, testing the

sensitivity of the model to the quantity of training data available for calculating bigram MI

scores. In contrast to Rytting’s supervised (i.e., guided by human input) approach, however,

I employed a further simplified, completely unsupervised algorithm which relied solely on

MI scores calculated from the unannotated text of the Open American National Corpus

(OANC) [22], consisting of samples from a variety of genres including transcribed speech,

fiction, news, and technical writing. Additionally, in response to Rytting’s claim that the

zero threshold is “arbitrary”, I compared its performance with an alternative “gap threshold”

assignment method. In this approach, a model-specific threshold is dynamically selected by

dividing bigrams into two clusters based on the largest gap between successive MI scores.

The unsupervised zero-threshold MI approach had better precision on English than

Rytting’s supervised approach [18] did on Greek, although it comes at a cost in recall—(P =

0.564, R = 0.386, F = 0.458). The gap-threshold approach, on the other hand, showed high

recall, but significantly lower precision—(P = 0.275, R = 0.846, F = 0.415). I also found

that, above a certain relatively small minimum size, results were not strongly dependent on

the size of the training corpus. This, combined with the demonstrated efficacy of the unsu-

pervised approach, means that the data required to build useful statistical word boundary

prediction systems can be acquired cheaply, without the need for human annotation. Neither

my nor Rytting’s results, however, show recall scores close to 1.0, which, together with the

13

early performance plateau, supports Daland’s thesis that human tokenization must transi-

tion from primarily statistics-based to more lexical-access based methods during the learning

process. While these extremely simple systems based on a single statistical measure (in this

case, mutual information) do not have sufficiently good performance to use entirely on their

own, their improvement over a random baseline is sufficient to justify investigating their use

as heuristic filters to improve the performance of more complex hybrid word segmentation

systems [21].

2.5 Path Selection Methods

While my work sidesteps the problem of path selection, it is worth briefly reviewing

what options are available. Suzuki et al.’s [14] parser-based approach, while highly effective,

is also very heavyweight, as it requires the use of a syntactic model and full parser. Sev-

eral simpler options exist for modular systems that separate lattice generation from path

selection. Kudo et al. [11], as justification for the need to incorporate lexical knowledge,

cite accuracy of over 0.9 using a simple longest-prefix matching algorithm, which simply as-

sumes that the longest prefix of a string which is a known token is a correct token, and then

restarts after that longest prefix to find the next token. It is unclear, however, whether the

cited statistic applies only to Japanese, or cross-linguistically. Islam et al. [8] also describe a

“maximal match” algorithm (with several variations for resolving ambiguities), which essen-

tially consists of finding the longest substring that is a known token (regardless of whether

or not it is a prefix of the text), and then proceeding to select the next longest known tokens

in the remaining non-overlapping sections of text. Their particular modification, using type

frequency and entropy measurements to resolve ambiguity between equal-length options,

achieved (P = 0.8992, R = 0.9469, F = 0.9224) in tests on the Brown corpus. This method

is particularly useful in restricted settings where it is necessary to identify correct instances

of certain types in desegmented text, but where complete tokenization and identification

of unknown tokens is unnecessary; for example, a “maximal match” algorithm is used in

the TIARA6 [23] and Ayamel [24] software developed by BYU’s ARCLITE Lab in order to

identify words and phrases that require annotations to be applied—an application in which

6The Interactive Annotated Reader Application

14

normal English tokenization conventions are completely unsuitable, as the relevant tokens

are often larger than single words and may contain spaces. Norvig [9] provides an approach

which incorporates language-specific knowledge but is still relatively simple, calculating the

most likely lattice traversal using n-gram probabilities, as noted above. Accurate results

from this approach, however, depend on access to an extremely large training corpus (over

3 billion words in this case) to ensure that accurate statistics are available for all possible

n-grams; the algorithm’s performance is compromised when presented not merely with OOV

tokens, but with previously unseen sequences of known tokens. The OOV token problem

is partially addressed by model smoothing—assigning a small default probability to any

unknown token—but can be significantly ameliorated by replacing the simple word n-gram

model with a part-of-speech (POS) tag model, which can produce accurate statistics with

a much smaller training corpus, since one tag sequence equates to several concrete word se-

quences. The tag-based approach is particularly attractive for use with systems that employ

simultaneous morphanalysis, since POS information comes essentially “for free”.

2.6 Lattice Generation with Morphology & Statistics

Regardless of the path selection algorithm used, the final results are only as good as

their input. If a lattice generation step cannot produce all of the correct token boundaries

as hypotheses, then no selection algorithm can produce the complete correct token sequence.

On the other hand, a näıve conservative lattice generation algorithm could simply propose

every character boundary as a possible token boundary, in which case the correct sequence

is guaranteed to exist somewhere, and could be found—but only in a highly inefficient

manner, as the lattice generator has provided no useful information to guide the search. A

separate lattice generation algorithm can thus be rated both on how many correct hypotheses

its output contains, and on how much work it requires of the succeeding path selection

algorithm. In this context, lexicon-based tokenizers have an additional advantage over many

pure statistical algorithms in that they inherently produce pairs of starting and ending

boundaries for specific tokens; this significantly reduces redundancy compared to single-

boundary tagging systems [11] like those of Peng et al. [10], Brent [19], or Rytting [18].

In the worst case, these systems can require considering a number of token hypotheses

15

proportional to the square of the number of individual boundary hypotheses, significantly

slowing down the tokenization process.

Based on my previous work, I have built a series of hybrid lattice-generation systems

implementing fundamentally language-agnostic lexical-access based and simple statistical al-

gorithms, employing pre-existing morphological analyzers to provide language-specific lexical

knowledge. I will show that a relatively simple hybrid model produces results which improve

on the performance of either lexical-access based or simple statistical methods alone. I will

also demonstrate the generalizability of these algorithms across multiple languages that are

orthographically and typologically (specifically, morphologically) dissimilar.

16

Chapter 3

Methodology

3.1 Data Collection & Formatting

I ran tokenization experiments on each of three languages—Arabic, English, and

Korean, covering the range of synthetic, isolating, and agglutinative typologies. This first

required acquiring and pre-processing appropriate corpus data to use for testing, including

annotations indicating the correct token boundaries to use as a gold standard.

Corpus data for Arabic came from the Arabic Treebank: Part 1 v 3.0 [27], consisting

of 165,419 tokens of Modern Standard Arabic, where tokens include full words, clitics, and

punctuation. Corpus data for English came from a subset of the Open American National

Corpus (OANC) [22], consisting of 100,165 tokens, again including words, clitics, and punc-

tuation. Corpus data for Korean came from data packaged with the KLEX morphological

analyzer [28], itself a subset of the Korean Treebank, consisting of 41,024 tokens, including

independent words, punctuation, and dependent suffixes. In each case, I converted all data

into plain text in UTF-8 encoding.

Answer keys and tokenizer outputs were stored as lists of pairs of starting and ending

indices for each token. I measured token boundary indices in terms of Unicode codepoints

in order to abstract away the problem of defining a single “character” in the presence of

Figure 3.1: Example of Arabic text [25]. While Arabic does use spaces, not all tokens are
separated by spaces. Additionally, the lack of written vowels introduces an unusually high level
of ambiguity into the recognition of tokens and token boundaries.

17

Figure 3.2: Example of Korean text [26]. Like Arabic, Korean does use spaces, but with
different conventions for spacing, punctuation, and clitic attachment than English uses.

Arabic vowel diacritics and Hangul syllabary combining characters. English token boundary

locations as measured in codepoints were already available in the OANC annotations, and

only had to be extracted and put into the list format. I calculated answer keys for Arabic and

Korean by matching up sequential tokens in part-of-speech tagging files with their locations

in the unannotated plain text.

Acquiring suitable annotated corpora and morphological analyzers for all three lan-

guages was the most time-intensive portion of the project. Once those were in hand, it was

a matter of a day or two per language to write and run Python scripts which could extract

answer key data from each of the differing annotation formats used by the three corpora,

convert the data into UTF-8 plain text, and write adapters for each morphological analyzer’s

interface. Running experiments took approximately two weeks, including debugging time.

3.2 Morphological Tokenization

The simplest dictionary-based tokenization algorithm calculates all possible sub-

strings of the input. Each substring is then checked against the dictionary and, if found, is

added to the lattice of possible tokens. In order to reduce the incidence of unknown tokens

and reduce the size of the lexicon that needs to be stored, the simple dictionary can be

replaced by a morphological analyzer to determine whether a given string is or is not a to-

ken. This is particularly important in languages, such as Turkish, with extensive productive

morphology, in which most tokens will not appear in a standard dictionary.

This näıve approach to lattice generation is, however, highly inefficient. Given that

there are n−m+1 substrings of length m in any string of length n, we must check for tokens

of all possible lengths (of which there are n). The algorithm thus requires
∑n

m=1(n−m+1) =

1
2
n(n+1) or O(n2) time to produce all possible substrings, times a language-specific function

18

w(m) representing the time required to accept or reject a string of length m to produce the

lattice of possible tokens. If w(m) is approximately linear (i.e., the amount of time it takes

to accept or reject a possible token is, on average, proportional to the length of the token),

this results in
∑n

m=1m(n −m + 1) = 1
6
n(n + 1)(n + 2) or O(n3) time required to produce

all possible tokenizations of a given input—entirely unacceptable for on-line, real-time use.

In practice, however, while specific tokens may be unbounded in length, the highly non-

random morphological structure of human languages means that most non-tokens will be

rejected early since the probability of any randomly selected substring being a valid prefix

of the language is inversely related to length. As a result, for long inputs, w(m) is well

approximated by a language-specific constant factor kw representing the average time (in

terms of codepoints read) required to accept or reject a string as a valid token, resulting

in O(n2) asymptotic complexity. This is still too slow for on-line applications, but some

additional savings are possible if we know that there is an upper limit on the largest possible

token in the dictionary; that reduces m to an effective constant factor as well, rather than

ranging to the arbitrarily large value of n (the total size of the input). A similar, adaptive,

version of that optimization was used by Norvig in his lexicon-based algorithm [9].

There is one fundamental problem with the näıve algorithm which causes repeated

work: the rejection of a particular substring as a token says nothing about the status of

any other substrings containing the first as a prefix. This results in the need to check each

substring, which means that each codepoint is examined n/2 times—once for each substring

of which it is a part—thus generating the aforementioned O(n2) time complexity under the

assumption that w(m) has some constant upper bound. However, if it is possible to accept

or reject substrings as possible prefixes1 of valid tokens, then, after a substring is rejected as

a possible prefix of any valid token, there is no need to check any larger substrings containing

the first as a prefix. This reduces the number of operations that must be performed on each

codepoint to be proportional to the level of morphological ambiguity at any point in the

input, which, under the same assumption that let us treat w(m) as an effective constant,

approaches a constant average value on large inputs, rather than growing linearly with the

1where “prefix” in this case refers to any string of codepoints matching the beginning of a token, not to
a morphological prefix

19

size of the input. This gives us access to amortized linear-time performance without the need

to artificially limit the maximum length of substrings that we will consider for tokenhood.

Additional redundancy can be eliminated by remembering that a particular substring

has already been accepted as a possible token prefix when considering the text that follows

it. Given an analyzer that can only check complete strings all at once (which is the interface

provided by most morphological analyzers), each codepoint must be examined at least once

for every possible token (or not-yet-rejected prefix of a possible token) that overlaps that

codepoint’s position. If, however, the internal state of an analyzer that has already accepted

a given prefix can be saved and incrementally updated with following codepoints, rather

than starting over from the beginning of that prefix to check the validity of every new

substring starting at the same position, the number of operations that must be performed

per codepoint is reduced to become proportional to the number of groups of valid token

prefixes having different starting points that overlap that position. This does not provide

any additional asymptotic improvements, but yields significant constant-factor savings.

Both of these optimizations can be naturally realized by encoding the morphological

analyzer as a finite state machine (FSM), which can consume input one codepoint at a time,

examining each codepoint exactly once. Transitioning to an accepting state of the automaton

triggers the output of the current accepted token, but does not cause the automaton to

terminate. Instead, it continues consuming more codepoints and emitting tokens at every

accepting state until entering a failure state, indicating that the string consumed up to that

point is no longer a valid prefix of any token, and thus no more tokens beginning in the

same position are recognizable. Since the automaton consumes no more input after reaching

a failing state, substrings containing rejected prefixes are never considered. Additionally,

common prefixes are identified only once; the complete set of a maximal token and all

possible prefix tokens (e.g., base forms missing suffixes, or components of compounds) are

recognized in the same time as a single maximal token. Encoding a morphological analyzer

as a pure FSM is not always convenient, but the same optimizations are available to any

model that relies only on features that can be updated one codepoint at a time, and can

thus be analyzed as a (potentially infinite) state machine with each codepoint consumed

resulting in a transition to a discrete, recallable state. Even without the optimization that

20

eliminates duplicate work on all prefixes of a maximal token, however, we can at least achieve

the necessary linear-time performance with any model that can reject invalid prefixes.

In order to recognize possible tokens occurring as suffixes of maximal tokens (base

forms missing prefixes, components of compounds, etc.) and to recognize tokens beginning at

later points in the input stream, it is necessary to initialize a new instance of a morphological

model, whether FSM-based or otherwise, (henceforth a “recognizer”) in its starting state at

each point in the input stream. Every time a codepoint is consumed, it is thus fed into

each of a cohort of recognizers that have not yet reached failure states. When processing

first starts, the number of active FSMs grows linearly with the number of input codepoints

consumed, as one is created for each codepoint. Recognizers will, however, be eliminated at a

rate proportional to kw (the aforementioned average number of codepoints required to reject

a string as a possible token) times the size of the cohort. This algorithm is illustrated in 3.3.

Eventually, the collection of active recognizers reaches an approximate steady state, with a

uniform average cohort size over long stretches of input. The expected number of recognizers

active at any given point in the input stream, and thus the number of operations that must

be performed per codepoint, is thus proportional to kw. Hence, we achieve O(kwn) = O(n)

(linear) performance, allowing the production of all possible tokenizations of any input on-line

and (if the constant factors are small enough) in real time. Additionally, as each recognizer

in a cohort can be advanced independently, the algorithm is trivially parallelizable.

For the first set of experiments, I implemented a generic morphological tokenizer in

Python which reads input, builds a lattice, and manages cohorts of recognizers, and and

which allows any concrete morphological analyzer to be plugged in to the system. Where

necessary, I then wrote simple wrappers around the morphological analyzers for each lan-

guage to ensure that they would present the proper FSM-like interface. The output of each

morphological experiment was saved in the form of a list of pairs of codepoint indices indi-

cating the beginnings and ends of identified tokens—the same format used for the answer

keys. This allowed the output stream to be replayed for use in hybrid experiments without

needing to actually re-run the morphological tokenizer again, saving significant amounts of

time and computational resources.

21

Figure 3.3: Morphological Tokenization

3.2.1 Arabic

I performed morphological tokenization of Arabic using the MADAMIRA morpholog-

ical analyzer [29]. MADAMIRA, unfortunately, does not expose an FSM network API, so it

was necessary to collect complete candidate-token substrings to check all at once. Addition-

ally, it does not provide any means of querying valid prefixes. In order to avoid quadratic or

cubic runtime, which would make the experiment infeasible even on relatively short texts,

extra rules were added to the interface connecting MADAMIRA to the generic tokenizer to

reject strings satisfying certain conditions which I knew a priori could never result in valid

prefixes. First, the interface would reject any string longer than 16 codepoints, as there

were no tokens in the Arabic corpus greater than that length. Second, the interface would

reject any string containing a whitespace codepoint, since I knew ahead of time that the

MADAMIRA lexicon did not contain any tokens containing whitespace codepoints. In other

respects, however, MADAMIRA is almost too sophisticated to effectively integrate with a

tokenizer. In particular, MADAMIRA does not assume that the input will necessarily be a

single word, and can analyze sentences with words in context; as a result, it does its own word

breaking (by some apparently undocumented method), and can return positive results for

input containing more than one token. In order to account for this, I filtered MADAMIRA’s

output to accept only those strings which MADAMIRA identified as containing exactly one

“word”. Additionally, MADAMIRA will “helpfully” ignore extraneous punctuation, leading

22

it to produce valid analyses for words with, e.g., parentheses attached, as well as for the

actual words themselves. I could find no principled way to avoid these spurious analyses.

MADAMIRA is accessed via an HTTP interface, which introduces significant in-

put/output overhead. In order to maximize CPU usage, I split the corpus into three

parts processed by three simultaneous instances of the tokenizer, each accessing a single

MADAMIRA server process.

3.2.2 English

I performed morphological tokenization of English with the Englex morphological de-

scription of English [30] developed for PC-KIMMO [16]. This model was run on a modified

version of PyKIMMO2 known as Stream-KIMMO [15], which already has the appropri-

ate FSM-like interface and required no adaptation. While the system runs in linear time,

however, the original PyKIMMO implementation was highly inefficient, and introduced an

enormous constant-factor slowdown, proportional to the size of the lexicon, due to simu-

lating an FSM by dynamically calculating transitions and new states by iterating over the

entire plain-text lexicon on every codepoint. Re-implementing the core of PyKIMMO to

construct a real FSM was not a viable option, but I was able to introduce several efficiency

improvements which sped up the algorithm by approximately a factor of five; still, the rela-

tive slowness of this analyzer limited the quantity of text that could be processed from the

OANC within a reasonable timeframe. The English morphological experiment thus termi-

nated after approximately four days, once sufficient data was obtained. The 100,165 tokens

processed constitute a random sample of approximately 0.7% of the 15-million-word OANC

covering fiction, magazine text, and voice transcription.

3.2.3 Korean

I performed morphological tokenization of Korean using the KLEX morphological

analyzer developed for the Xerox Finite-State Tools (XFST). KLEX was originally designed

to operate with input in either KSC-5601 or Unicode 1.0 encoding. In order to comply with

modern versions of XFST, which only accept UTF-8 or Latin-1 encodings, and to enable

2a Python implementation of the KIMMO two-level morphology algorithm

23

it to work with the corpus which had been converted into UTF-8, I modified the KLEX

source code to handle modern Unicode input. Fortunately, KLEX had been designed to

transliterate Hangul into a modified Yale romanization for internal processing and back

again; thus, updating it for modern encodings was a simple matter of running a search-and-

replace on the file containing Hangul-Yale equivalencies to replace the old Korean codepoints

with modern Unicode 8.0 UTF-8 codepoints.

Python bindings for the XFST library do exist which are supposed to directly expose

the underlying FSM, allowing linear-time traversal. However, these tools have not been

maintained, and I was unable to successfully install the software. Instead, I made use of a

simpler Python API which exposes only the “apply up” and “apply down” functions of the

morphological analyzer. As with MADAMIRA, I thus introduced special-case rules which

rejected any string longer than 22 codepoints (again based on the maximum-length token

known to exist in the corpus), and to reject any string containing whitespace, again based

on prior knowledge that the KLEX lexicon contained no tokens containing whitespace.

KLEX has the ability to recognize certain suffixes and clitics in isolation, if they are

prefixed with the tag “ˆDEP+” to indicate their status as bound (dependent) morphemes.

Thus, in order to account for at least some possible variation in tokenization conventions,

I ran two experiments with the morphological tokenizer on Korean: one which ignored

dependents, and one which checked every possible token alone and with “ˆDEP+” prefixed.

3.3 Statistical Tokenization

In order to create a predictive model for statistical tokenization, I computed mutual

information (MI) scores for every pair of codepoints present in each corpus. For this purpose,

MI is given by the formula log2(
P (a,b)

P (a)P (b)
), where a and b are adjacent codepoints, P (x) is

the probability of encountering a given codepoint x at any position, and P (a, b) is the joint

probability of encountering the pair of codepoints a followed by b at any given position. Word

boundaries were then predicted by testing the MI score of each codepoint pair in the corpora

against a threshold value, as shown in 3.4. This trivially requires constant time per pair,

and thus achieves the necessary O(n) complexity for on-line usage, like the morphological

algorithm.

24

Two different methods of calculating thresholds were used in two different experi-

ments:

1. In the gap-threshold method, the largest gap between MI scores for a given languages

was identified, and a model was created which predicts a token boundary between

every pair of codepoints whose mutual information score falls below that gap. This

encodes the intuition that there may be a significant clustering of codepoint pairs that

can occur across token boundaries versus codepoint pairs that tend to occur within

tokens, and was previously found to produce extremely high recall with reasonable

accuracy on English data [21].

2. In the zero-threshold method, boundaries are predicted between every pair of code-

points whose MI score is less than or equal to 0, for all languages. This encodes the

intuition that there may be a token boundary wherever the probability of encountering

a codepoint in that position is less than the overall probability of encountering that

codepoint in any position.

Contrary to Rytting’s method [18], MI scores are used to predict token boundaries directly,

rather than being weighted against a known prior probability of a particular codepoint pair

marking a token boundary as determined from training data. This simplification results in

a completely unsupervised system, which makes it attractive for use in a hybrid system as it

avoids increasing the amount of language-specific configuration needed beyond the dictionary

or morphological model. With either threshold-assignment method the model could also be

updated on-line, as in Brent’s prior work [19], during real-time processing of a large input

stream.

As in the morphological experiments, the output of each statistical experiment was

saved to allow replaying the output for hybrid experiments. Since the statistical methods

only identify single boundaries between tokens, rather than pairs bounding the start and end

of a token, the saved output in this case consists of only a single list of possible boundary

indices.

25

Figure 3.4: Statistical Tokenization

3.4 Hybrid Tokenization

I tested two methods of combining statistical and morphological methods to produce

an improved hybrid tokenization system: “filtering” and “filling”. Each of these was run

with the output of both zero-threshold and gap-threshold statistical experiments, for a total

of four hybrid experiments.

The filtering method is an attempt to improve system performance on precision by

only initiating a new recognizer to add to the active cohort in the morphological tokenizer at

indices where the statistical model indicates a token boundary is likely. This should eliminate

spurious tokens that appear as suffixes of other tokens. This approach was simulated by

constructing a new stream of (start, end) index pairs from stored morphological output

including only those pairs in which the start index exists in the stored statistical data.

The filling method is an attempt to improve performance on recall and address the

limitations of lexical-access based tokenization methods (including morphological tokenizers).

This approach uses statistical predictions to fill in gaps of unanalyzed codepoints between

tokens identified by the morphological model. This was simulated by identifying spans of

codepoints not covered by any (start, end) pair in the morphological output, and filling

them in with all (start, end) pairs that could be constructed from the predictions of the

statistical models over those spans. One downside of this method is that, while it should

run in amortized linear (O(n)) time in most cases, it does have worst-case quadratic (O(n2))

performance on pathological inputs where the morphological model recognizes no possible

tokens. As previously discussed, this would make it unsuitable for on-line usage. As long as

26

Figure 3.5: Hybrid Tokenization

the morphological model has reasonably good coverage, however, this should not become an

issue in practice.

Combined with the individual morphological and statistical experiments, this resulted

in a total of seven tokenization experiments run on each language.

3.5 Evaluation

I evaluated all seven experiments on recognition of starting boundaries, ending bound-

aries, total boundaries (with no distinction between starting and ending), and matched pairs,

representing specific tokens.

Since statistical predictions do not distinguish starting boundaries from ending bound-

aries, the precision measures for starting and ending boundaries considered individually are

skewed, as they were determined by the total number of correctly-predicted boundaries that

are starting (or ending) boundaries over the total number of undifferentiated boundaries pre-

dicted. This makes comparisons with the precision and F-scores for other methods slightly

suspect. Recall, however, could be calculated normally for start and ending boundary pre-

dictions, and all three measures were calculated normally for the total set of individual

boundaries. Token recall was based on the number of (start, end) pairs in the answer key for

which both starting and ending indices appeared in the statistical output. Because the sta-

tistical tokenizers output only individual boundaries at a time—rather than (start, end) pairs

bounding a single token—I omitted precision calculations for complete tokens for these ex-

periments. The lack of pairing information makes precision measures on an un-pruned lattice

(containing token hypotheses derived from all possible pairs of undistinguished boundaries)

27

almost useless—the number of possible hypotheses for all possible pairs grows as the square

of the input length, making precision measurements dependent almost entirely on the size

of the input, rather than any inherent feature of the algorithm. In the absence of a precision

value, F-score is also meaningless. In place of precision for complete tokens, I also evaluated

statistical results on what fraction of all codepoint boundaries were identified as possible

token boundaries; a lower score on this measure corresponds to a higher effective precision,

in terms of reducing the amount of work required by later stages of an NLP pipeline.

For the morphological experiments, I calculated precision, recall, and F-score for

all four types of output. Starting and ending boundary sets were merged into a single

undifferentiated set to allow direct comparison on that measure with the purely statistical

methods. With no generic method of controlling for the effects of differing effective token

definitions between corpora and morphological analyzers, I obtained qualitative results by

manual inspection of the lists of missed types and tokens for each language.

Since morphological tokenization depends on a morphological analyzer to identify

lexical items and other valid tokens, my evaluation results for any particular language depend

on the qualities of the analyzer available for that language. In particular, we can expect

maximum accuracy and recall measurements when the definition of a “token” used by the

creator of a morphological analyzer is the same as the definition of a token used by the

corpus annotator. Additionally, we can expect recall to be approximately bounded by the

percentage of actual tokens in the corpus that are recognizable by the analyzer in isolation,

with any missed tokens being restricted to those that are out-of-vocabulary for the analyzer.

In order to control for the quality of the analyzers used, I ran coverage tests to measure the

fraction of tokens and types in the answer key that were recognizable by the analyzer for

each language.

As in the morphological experiments, I calculated precision, recall, and F-score for

starting boundaries, ending boundaries, total individual boundaries, and matched pairs for

all hybrid experiments. I also calculated a reduction factor for the filter experiments, con-

sisting of the total number of token boundaries output by the filtering algorithm divided by

the number of boundaries present in the raw morphological output.

28

Chapter 4

Results & Discussion

Table 4.1 summarizes overall system performance on boundary identification for all

seven experiments on all three languages. Table 4.2 summarizes performance on token iden-

tification. Since F-scores were not calculated for token identification on the pure statistical

experiments, results from only five experiments are included here. Note that only one set of

results is provided for the filling experiments in either case. Results for both zero-threshold

and gap-threshold filling experiments were identical, so the common results for the filling

hybridization method are presented only once.

These summary views show significant variability in F-score across languages on al-

most every experiment, with the notable exception of gap-threshold boundary recognition.

These summary numbers, while an important indicator of the range of performance that

can be expected from this kind of system using off-the-shelf data sources, do not, however,

account for variability in the performance of individual morphological models or mismatches

between the effective token definitions used by the answer keys versus the tokenizer. Deeper

insights are gained by examining the raw precision and recall scores for each individual

experiment, as presented below.

29

Arabic English Korean
Morphological 0.257299 0.601582 0.511887

Zero Threshold 0.242313 0.280959 0.129573
Zero Filter 0.309639 0.256445 0.214498

Gap Threshold 0.606717 0.539698 0.668813
Gap Filter 0.257299 0.601582 0.511884

Fill 0.257201 0.153340 0.510694

Table 4.1: F-scores for Boundary Recognition

Arabic English Korean
Morphological 0.137505 0.346242 0.284924

Zero Filter 0.087241 0.155838 0.057650
Gap Filter 0.137505 0.346242 0.142457

Fill 0.137448 0.074367 0.283966

Table 4.2: F-scores for Token Recognition

4.1 Morphological Tokenization

Table 4.3 presents the results of the morphological tokenization experiments, while

Table 4.4 shows the morphological recognition rates for each analyzer. Surprisingly, the

Korean morphological experiments produced identical output when explicitly checking for

dependent tokens and when ignoring them. Thus, only one set of Korean results is shown.

The token recall rates for each language closely track the token coverage rates of the respec-

tive analyzers, which indicates that, given a suitable morphological model, this approach to

lattice generation does indeed generalize well across languages.

MADAMIRA, with the best coverage, failed to recognize only four types in the entire

corpus, all of which were abbreviations in non-Arabic script. The unusually low coverage of

ENGLEX is attributable to multiple factors. First, unlike the other two analyzers, ENGLEX

did not recognize punctuation, which eliminates a large group of common types. A more

significant contribution to ENGLEX’s low performance, however, is due to arguable errors

in the answer key, derived from errors in the annotations to the OANC. Specifically, a

large number of the types which ENGLEX failed to recognize are sequences like “Alaska–

are”, “bed-”, or “city–to”—agglomerations of one or more words and punctuation which

reasonably should be interpreted as multiple tokens. Both ENGLEX and KLEX, however,

failed to identify over a thousand genuine word types genuinely present in the corpora.

30

Precision Recall F-score

Arabic

Start 0.073836 0.998735 0.137506
End 0.073836 0.998735 0.137506
Total 0.147672 0.998735 0.257299

Tokens 0.073835 0.998729 0.137505

English

Start 0.238051 0.808606 0.367818
End 0.239844 0.814696 0.370588
Total 0.477895 0.811651 0.601582

Tokens 0.224087 0.761174 0.346242

Korean

Start 0.173279 0.988841 0.294884
End 0.172365 0.983624 0.293328
Total 0.345644 0.986233 0.511887

Tokens 0.167426 0.955441 0.284924

Table 4.3: Results for Morphological Tokenization

MADAMIRA (Arabic) ENGLEX (English) KLEX (Korean)
Types 0.999764 0.747059 0.924060
Tokens 0.999976 0.761174 0.941961

Table 4.4: Morphological Analyzer Recognition Rates

Neither ENGLEX nor KLEX correctly identified numerical tokens, and ENGLEX failed to

recognize punctuation.

Precision scores are more variable. This is attributable to the level of genuine ambi-

guity recognized by the model, which is in part a feature of specific morphological analyzers

but is also largely dependent on the real features of a language. English, with the highest

token precision score, has a relatively low rate of smaller tokens occurring as substrings of

larger tokens, attributable to the relatively isolating nature of English morphology com-

pared to Arabic (more synthetic) or Korean (more agglutinative). Additionally, the English

precision scores are artificially lowered due to the English tokenizer correctly identifying in-

dividual words in the aforementioned agglomerations like “city–to”, which are missing from

the answer key.

The extremely low precision seen for Arabic is easily explained by the nature of

Arabic orthography. Since short vowels are typically not written, this explodes the number

of possible analyses that have to be considered for any given string of text, even compared to

31

the large number of prefix analyses necessitated by Korean’s agglutinative morphology. The

results for this particular experiment, however, are likely particularly bad due to the overly-

helpful nature of MADAMIRA as previously described; these low precision scores reflect the

identification of strings like “(èYê
	

j
�
JÖÏ @” as possible unique tokens, where MADAMIRA has

“helpfully” ignored a piece of punctuation which should have simply invalidated that string,

thus causing the tokenizer to output a spurious token hypothesis.

4.2 Statistical Tokenization

Having considered the purely morphological approach, we now turn to the two meth-

ods of mutual-information based statistical tokenization: zero-threshold and gap-threshold

boundary prediction. Recall that the zero-threshold method predicts a token boundary be-

tween any two codepoints whose MI score is below zero, while the gap-threshold approach

predicts a token boundary between any two codepoints whose MI score is below the largest

gap in the set of all MI scores for all possible codepoint pairs in a given language.

4.2.1 Zero-Threshold

Table 4.5 shows the fraction of all codepoint boundaries which were identified as

possible token boundaries in each language by the zero-threshold criterion. Surprisingly,

the prediction rates closely correspond to recall performance for each language—Korean,

with the lowest prediction rate, also shows the lowest recall and F-scores, while English and

Arabic are comparatively very close together. This suggests that a large fraction of correct

boundaries are being identified essentially at random, such that a larger number of guesses

produces a larger number of correct guesses. Per my previous work on English, however, this

method is known to show a statistically significant improvement in performance over purely

random guessing [21].

Arabic English Korean
0.267130 0.209335 0.099916

Table 4.5: Prediction Rate for Zero-threshold Statistical Tokenization

32

Precision Recall F-score

Arabic

Start 0.162632 0.198899 0.178947
End 0.156655 0.191589 0.172370
Total 0.319287 0.195244 0.242313

Tokens - 0.040725 -

English

Start 0.121669 0.137783 0.129225
End 0.266911 0.302261 0.283488
Total 0.388580 0.220022 0.280959

Tokens - 0.046703 -

Korean

Start 0.109952 0.042950 0.061771
End 0.286540 0.111930 0.160978
Total 0.396492 0.077440 0.129573

Tokens - 0.006073 -

Table 4.6: Results for Zero-Threshold Statistical Tokenization

Table 4.6 presents the remaining results of the zero-threshold experiments. There is

remarkable similarity between all three languages on total boundary precision. Compared

to my [21] and Rytting’s [18] prior results, however, these look quite bad. Since my previous

experiments were run on a different subset of the same larger corpus (OANC), this suggests

that the similarity of results seen here may simply be coincidental. This approach, therefore,

does not seem to generalize well either across languages or even across different corpora

within the same language. The practical usefulness of this method is thus determined by

the level of overlap between its predictions and those of morphological tokenization, which

is addressed in the hybrid experiments.

4.2.2 Gap Threshold

Table 4.7 shows the fraction of all codepoint boundaries which were identified as

possible token boundaries in each language by the gap-threshold criterion. In all three

languages, a similar high fraction of boundaries were identified. Table 4.8 presents the

Arabic English Korean
0.999988 0.999945 0.999973

Table 4.7: Prediction Rate for Gap-Threshold Statistical Tokenization

33

Precision Recall F-score

Arabic

Start 0.218421 0.999982 0.358530
End 0.217459 0.995580 0.356952
Total 0.435880 0.997781 0.606717

Tokens - 0.9955628 -

English

Start 0.184808 0.999700 0.311948
End 0.184812 0.999720 0.311954
Total 0.369619 0.999710 0.539698

Tokens - 0.999621 -

Korean

Start 0.253362 0.990502 0.403510
End 0.252121 0.985649 0.401533
Total 0.505483 0.988075 0.668813

Tokens - 0.999663 -

Table 4.8: Results for Gap-Threshold Statistical Tokenization

remaining results of the gap-threshold experiments. Precision scores for this method are

higher than those for the zero-threshold experiments on Arabic and Korean, and comparable

to those from the morphological experiments on all languages. Recall rates for this method

are the highest out of all seven total methods tried.

In one sense, the uniformly high recall rates are clear evidence of generalization.

Unfortunately, however, the extremely high prediction rate of this model makes it very

nearly useless for practical purposes. It fails to capture the unique structural features of

each language’s lexicon, and is thus little better than the brute-force case of hypothesizing

that every codepoint boundary is a possible token boundary. It is, in fact, even worse than

brute-force in one significant way: although the recall scores shown in 4.8 are very high,

they are not 1.0. This means that despite extreme levels of overprediction, the gap-threshold

statistical approach still missed some real token boundaries.

Given the marginal difference from hypothesizing every codepoint boundary, the pre-

cision scores (and thus F-scores) for this method are almost entirely determined by the aver-

age token length in each language. None of the languages tested have sufficiently distinctive

bigram-level token-boundary statistics to prevent prediction of spurious boundaries internal

to actual tokens. Assuming a uniform distribution of predicted boundaries throughout the

text, the number of spurious boundaries internal to an actual token is inversely related to

34

the number of actual tokens in the text, and thus directly related to average token length.

As in the zero-threshold case, the practical usefulness of this method is thus determined by

the level of overlap between its predictions and those of morphological tokenization.

4.3 Hybrid Tokenization

We now consider hybrid methods, which attempt to improve performance by combin-

ing the strengths of both morphological and statistical models. I tested two hybridization

methods: filtering and filling. Filtering aims to improve the precision of morphological to-

kenization by eliminating token hypotheses which start at statistically unlikely locations.

Filling aims to improve the recall of morphological tokenization by predicting additional

boundaries in spans where the morphological model could not recognize any possible tokens.

4.3.1 Filtering

Table 4.9 shows the proportion of hypotheses generated by zero-threshold filtering

compared to pure morphological tokenization. Table 4.10 presents the remaining results

from this experiment. As could be predicted from the poor recall scores obtained in the

zero-threshold statistical experiment and shown in Table 4.6, zero-threshold filtering resulted

in reduced scores for almost all measures compared to pure morphological tokenization.

There are slight improvements to ending boundary precisions for Arabic and Korean, and

a slight increase in start boundary precision and token precision on English, but these are

far outweighed by the reduced recall rates. Additionally, while useful for comparison with

the pure statistical experiments, single-boundary precision is one of the least consequential

performance metrics. What matters most are token precision and token recall; i.e., not

merely correctly identifying individual boundaries, but correctly pairing them. While the

filtering method did achieve its goal of increasing precision by some amount, the fact that it

only produced marginal improvement on token precision in one language, and had a severely

Arabic English Korean
0.262744 0.135199 0.075932

Table 4.9: Filter Reduction for Zero Threshold

35

Precision Recall F-score

Arabic

Start 0.055894 0.198646 0.087241
End 0.186050 0.661221 0.290392
Total 0.241944 0.429934 0.309639

Tokens 0.055894 0.198646 0.087241

English

Start 0.263174 0.120861 0.165648
End 0.423457 0.194469 0.266534
Total 0.686630 0.157665 0.256445

Tokens 0.247587 0.113702 0.155838

Korean

Start 0.099060 0.042924 0.059895
End 0.503204 0.218047 0.304255
Total 0.602264 0.130486 0.214498

Tokens 0.095346 0.041315 0.057650

Table 4.10: Results for Zero-Threshold Filtering

Arabic English Korean
1.000000 1.000000 0.999973

Table 4.11: Filter Reduction for Gap-Threshold

negative effect on recall, makes this an essentially useless combination for practical purposes.

The reduction rates, indicating potential run-time efficiency improvements, while impressive,

are thus unfortunately irrelevant.

Tables 4.11 and 4.12 present the reduction rates and prediction statistics, respec-

tively, for the gap-threshold filtering experiments. The results for gap-threshold filtering

show better performance than zero-threshold filtering, but no better utility. The level of

overprediction produced by the gap-threshold algorithm resulted in almost no actual filter-

ing of the morphological outputs. In consequence, the results are identical between these

two methods for Arabic and English.

Only tiny (less than ±.01%) differences exist for Korean, but this was the only lan-

guage for which any filtering occurred at all. Unfortunately, even with the high level of

overprediction in the gap-threshold statistical results, the set of correct boundaries pre-

dicted by the gap-threshold statistical algorithm did not completely overlap with the set of

correct start boundaries predicted by the morphological algorithm, resulting in a decrease

36

Precision Recall F-score

Arabic

Start 0.073836 0.998735 0.137506
End 0.073836 0.998735 0.137506
Total 0.147672 0.998735 0.257299

Tokens 0.073835 0.998729 0.137505

English

Start 0.238051 0.808606 0.367818
End 0.239844 0.814696 0.370588
Total 0.477895 0.811651 0.601582

Tokens 0.224087 0.761174 0.346242

Korean

Start 0.173275 0.988789 0.294875
End 0.172370 0.983624 0.293335
Total 0.345644 0.986207 0.511884

Tokens 0.167422 0.955389 0.284915

Table 4.12: Results for Gap-Threshold Filtering

in recall compared to either method alone. The extra time needed to calculate statistical

information thus represent a loss rather than a gain in run-time efficiency, for, at best, no

improvement. At worst, this hybrid approach results in both worse run-time efficiency and

decreased recall.

4.3.2 Filling

Surprisingly, the results for the filling hybridization method were identical for both

zero-threshold and gap-threshold statistics on all measures and across all three languages.

Thus, only one set of unified results is shown, in Table 4.13. Recall scores are all higher

than or equal to those for pure morphological tokenization, but precision scores are lower.

On balance, this has resulted in slightly lower F-scores as well, but this does not take into

account the relative importance of recall over precision during the lattice-generation step.

The largest improvement is seen for English, which also had the lowest morphological recall.

Korean, with higher morphological recall scores, shows a much smaller improvement over

the morphological tokenization results, and the improvement for Arabic is negligible.

The congruence of results from zero-threshold and gap-threshold filling suggests that,

despite the vast differences in results between the zero-threshold and gap-threshold statis-

tical experiments on their own, both had identical outputs on spans of text for which the

37

Precision Recall F-score

Arabic

Start 0.073804 0.998760 0.137451
End 0.073802 0.998735 0.137448
Total 0.147607 0.998747 0.257201

Tokens 0.073802 0.998735 0.137448

English

Start 0.041307 0.970349 0.079241
End 0.041891 0.984056 0.080360
Total 0.083198 0.977203 0.153340

Tokens 0.038767 0.910667 0.074367

Korean

Start 0.172582 0.989619 0.293908
End 0.171826 0.985285 0.292621
Total 0.344408 0.987452 0.510694

Tokens 0.166744 0.956141 0.283966

Table 4.13: Results for Filling—Both Thresholds

morphological algorithm alone could not identify any possible tokens. This pattern would

have to break down given a morphological model with sufficiently low coverage, since results

for zero-threshold filling and gap-threshold filling must approach the results obtained from

the pure statistical experiments in the limit where analyzer coverage goes to zero. But, even

with token coverage as low as 0.761174, as demonstrated by ENGLEX in the morphological

experiment on the English corpus, the pattern still holds.

The identical results of both filling experiments are fairly easy to explain for Arabic:

with such high initial recall scores due to MADAMIRA’s high coverage, there was very little

left to fill in, and thus little room for potential variation in the output from different statistical

algorithms. This also explains why Arabic sees almost no improvement in recall—there

simply aren’t that many more correct tokens left to find.

The situation is more complicated for English and Korean, but suggests some com-

monality in the kinds of types that are likely to be left out of a morphological model. There

are two (non-exclusive) obvious possibilities: First, they may be relatively small but fre-

quent. Small gaps occupied by only one or a few small tokens minimize the opportunities

for different statistical algorithms to differ, just as is the case with Arabic. Second, they

may have uniquely distinguishing MI scores for their bounding bigrams. Specifically, they

are types whose sets of bounding bigrams tend to have MI scores that are both less than

38

or equal to zero, and less than the largest gap in MI scores for all bigrams in the language.

Given that the largest gap is above zero for all three languages tested1, this is equivalent

to saying that the boundaries of common tokens unlikely to be recognized by morphological

analyzers tend to have MI scores below zero, while the poor recall of the zero-threshold

method indicates that many genuine tokens that are recognized by a morphological analyzer

have boundary MI values above zero, but below the largest gap.

Both of these explanations appear to fail when confronted with examples like the

aforementioned “city–to”, which make up a significant fraction of the missed tokens in En-

glish, and which is neither particularly short nor possesses particularly uncommon boundary

characters. In fact, however, a seven-codepoint missed token like “city–to” does not consti-

tute a seven-codepoint gap; in other words, the fact that the specific boundary pair enclosing

“city–to” is missing does not imply that no boundaries were identified in that span of code-

points. The morphological tokenizer does identify tokens in that span—just not the one in

the answer key. Thus, the filling algorithm will not be expected to identify any additional

boundaries in that span. If tokens like “city–to” were in fact legitimate, this would be a

problem to be addressed by filtering, to remove the extra hypotheses inserted into that span,

not filling.

In fact, the statistical algorithms are primarily identifying numbers and punctuation

marks. Given that ENGLEX, as previously mentioned, misses both of these categories,

while KLEX only fails on numbers, this explains why English is improved so much more

than Korean, even though it does not quite reach parity: English simply has more of the

relevant categories to make up, and results after statistical filling are limited by the number

of remaining word tokens which the morphological analyzers cannot recognize.

Filling gaps of course comes at a cost in precision, as noted above; this is seen most

strongly in the English data, which is to be expected since the low coverage of the English

analyzer provides more gaps to fill in, and thus more opportunities for overprediction. This

of course results in a severe drop in F-score relative to pure morphological tokenization,

and as previously mentioned the small reduction in precision more than offsets the small

1Even without checking the specific numbers, this can be inferred from how much the gap-threshold
method overpredicts compared to zero-threshold.

39

increase in recall for both remaining languages as well. The precision scores for all languages

are, however, still much higher than would be obtained by the brute-force method. Given

that low recall makes identifying the correct tokenization from a lattice impossible, however,

while low precision merely makes it more difficult, this is therefore an acceptable tradeoff in

most situations. Furthermore, the token recall and individual boundary recall rates for all

three languages, which are all above 0.9, are comparable to the state-of-the-art results given

by language-specific tokenizers for Japanese, Chinese, and desegmented English.

40

Chapter 5

Conclusions & Future Work

Precision scores for tokenization are highly sensitive to the details of a specific lan-

guage’s morphology and orthography. On the other hand, morphological tokenization gen-

eralizes well across the three languages I tested in terms of recall. In each case, recall scores

are limited by the quality of the morphological analyzer used. Additionally, a simplified

statistical model using character bigram mutual information scores with a zero threshold

was effective at identifying unknown tokens like numbers and punctuation marks, which are

likely to be left out of typical morphological analyses lexicons. This significantly improves

recall performance in a hybrid tokenizer across multiple languages as well, even though the

statistical approaches do not produce practical results in isolation. As a result, the fill-

ing hybrid system was capable of producing recall results comparable to state-of-the-art

language-specific tokenizers, without any consideration of specific language knowledge in the

construction of the tokenizer beyond inclusion of an independently-developed and reusable

morphological model.

As noted, the simplified statistical models employed for these experiments did prove

useful for improving the performance of a hybrid tokenizer in a limited domain. More

complex models, however, are needed to precisely identify unknown words whose boundary

statistics are too similar to other words for MI scores to reliably distinguish. Additional

research is also warranted on higher-recall statistical models that maintain reasonable pre-

cision to improve filtering efficiency. In principle, separate statistical models tuned for the

different use cases could be employed for simultaneous filtering and filling, with an effective

filter providing more opportunity for filling model to act by removing spurious morphological

analyses and thus correctly identifying more spans as unknown.

41

While I achieved good results on Arabic, English, and Korean, these three languages

do not cover the whole spectrum of variation seen in scripts for natural languages. A better

picture of the generalizability—or limits thereof—of these algorithms could be obtained by

testing on additional languages like Turkish (which is highly agglutinative and alphabetic),

Thai (which uses an alphasyllabary with no spaces), Japanese, and Chinese. Japanese is par-

ticularly interesting for the use of multiple scripts simultaneously, with transitions between

kanji and hiragana providing significant token-boundary clues which may be easily picked up

by a statistical model. Similarly, it would be useful to test on English corpora which include

tokens that contain spaces, such as open compounds, borrowings, and idiomatic phrases.

ENGLEX has some of these in its lexicon, but the answer keys derived from OANC anno-

tations do not recognize them. Being able to evaluate the morphological tokenizer against

an answer key whose tokenization conventions more closely match those of the analyzer’s

lexicon would improve the case for using this method over simple whitespace splitting even

in languages (like English) which do use whitespace for the majority of token boundaries.

Additional small improvements to recall could be made by addressing the problem of

overlapping tokens. This is most easily demonstrated by ambiguity in English periods—in a

sentence like “The Peloponnesian War concluded in 404 B.C.”, the final period is both a part

of the token “B.C.”, and an independent token marking the end of the sentence—two tokens

overlap by a single character. Various forms of non-concatenative morphology or sandhi

can create other cases where it is clear that there are multiple tokens, but not clear where

precisely one token ends and another begins. This is difficult to handle when tokens are

tied to specific positions in the input stream, but would be sidestepped if the data structure

used to represent a lattice could preserve the logical ordering of tokens independent of their

positions in the input stream.

The precision results are not as encouraging as those for recall. However, this is

entirely to be expected in the absence of a path-selection step, which is present in the

best language-specific systems with which this new approach can be compared. The low

precision scores, and correspondingly reduced F-scores, do not therefore diminish the utility

of the filling hybrid approach for lattice generation. Having identified a cross-linguistically

useful lattice generation algorithm, the next step in the pipeline is, therefore, identifying a

42

cross-linguistically useful path selection algorithm to match with it. Building on the work of

Suzuki et al. in Japanese [14], it should be possible to design a generic on-line probabilistic

parser which would then only require input of a language-specific syntactic model to do

simultaneous tokenization, morphanalysis, part-of-speech tagging, and parsing, employing

both bottom-up and top-down information at every stage. This would be more complicated,

but still doable, given a lattice in which tokens are topologically sorted, but missing a

consistent connection to input indices. Given the relative complexity of developing usefully-

complete syntactic models, however, there is of course room for exploring the cross-linguistic

applicability of shallower statistical models, like the smoothed token n-grams used by Norvig

[9] or POS-tagging models (which, like syntactic models, would also assist in disambiguation

of tokens with multiple morphological analyses). A slightly more exotic approach would

be determining most-likely paths based on word association models like those produced by

word2vec [31]. This would pair particularly well with the morphological algorithm’s ability

to extend recognition to logical tokens like idiomatic phrases and open compounds which

contain spaces.

43

Bibliography

[1] S. Ager. (1998) Thai language, alphabet, and pronunciation. [Online]. Available:
http://www.omniglot.com/writing/thai.htm 1

[2] ——. (1998) Written and Spoken Japanese. [Online]. Available: http://www.omniglot.
com/writing/japanese.htm 2

[3] R. De Mori and F. Brugnara, “HMM Methods in Speech Recognition,” in
Survey of the State of the Art in Human Language Technology, R. Cole, Ed. New
York, NY, USA: Cambridge University Press, 1997, pp. 21–30. [Online]. Available:
http://dl.acm.org/citation.cfm?id=278696.278713 4

[4] X. Aubert, C. Dugast, H. Ney, and V. Steinbiss, “Large vocabulary continuous speech
recognition of Wall Street Journal data,” in IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), vol. 2. IEEE, 1994, pp. 129–132. 4

[5] D. B. Paul, “The Lincoln large-vocabulary stack-decoder based HMM CSR,” in Proceed-
ings of the Workshop on Human Language Technology. Association for Computational
Linguistics, 1994, pp. 399–404. 4

[6] J. R. Van Aken, “A statistical learning algorithm for word segmentation,” arXiv preprint
arXiv:1105.6162, 2011. 5, 6, 7, 10, 12

[7] “Treebank tokenization,” http://www.cis.upenn.edu/˜treebank/tokenization.html,
1999. 5

[8] M. A. Islam, D. Inkpen, and I. Kiringa, “A generalized approach to word segmentation
using maximum length descending frequency and entropy rate,” in Computational Lin-
guistics and Intelligent Text Processing, A. Gelbukh, Ed., 2007, vol. 4394, pp. 175–185.
6, 8, 11, 14

[9] P. Norvig. (1999) Statistical Natural Language Processing in
Python. [Online]. Available: http://nbviewer.jupyter.org/url/norvig.com/ipython/
HowtoDoThingswithWords.ipynb 7, 10, 15, 19, 43

[10] F. Peng, F. Feng, and A. McCallum, “Chinese segmentation and new word detection
using conditional random fields,” in Proceedings of the 20th International Conference
on Computational Linguistics. COLING, 2004, pp. 562–568. 8, 15

[11] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying Conditional Random Fields
to Japanese Morphological Analysis,” in Proceedings of Empirical Methods on Natural
Language Processing (EMNLP), vol. 4. Association for Computational Linguistics,
2004, pp. 230–237. 8, 9, 14, 15

44

http://www.omniglot.com/writing/thai.htm
http://www.omniglot.com/writing/japanese.htm
http://www.omniglot.com/writing/japanese.htm
http://dl.acm.org/citation.cfm?id=278696.278713
http://nbviewer.jupyter.org/url/norvig.com/ipython/How to Do Things with Words.ipynb
http://nbviewer.jupyter.org/url/norvig.com/ipython/How to Do Things with Words.ipynb

[12] M. Asahara and Y. Matsumoto, “Extended models and tools for high-performance part-
of-speech tagger,” in Proceedings of the 18th Conference on Computational Linguistics,
vol. 1. Association for Computational Linguistics, 2000, pp. 21–27. 9

[13] K. Uchimoto, S. Sekine, and H. Isahara, “The unknown word problem: a morphological
analysis of Japanese using maximum entropy aided by a dictionary,” in Proceedings
of Empirical Methods on Natural Language Processing (EMNLP). Association for
Computational Linguistics, 2001, pp. 91–99. 9

[14] H. Suzuki, C. Brockett, and G. Kacmarcik, “Using a broad-coverage parser for word-
breaking in Japanese,” in Proceedings of the 18th Conference on Computational Lin-
guistics, vol. 2. Association for Computational Linguistics, 2000, pp. 822–828. 9, 14,
43

[15] L. R. Kearsley, “Stream-KIMMO: On-line Morphological Analysis and Applications to
Tokenization,” 2013, Unpublished. 9, 10, 23

[16] K. Koskenniemi, “A general computational model for word-form recognition and produc-
tion,” in Proceedings of the 10th International Conference on Computational Linguistics
and 22nd Annual Meeting of the ACL. Association for Computational Linguistics, 1984,
pp. 178–181. 9, 23

[17] R. Daland, “Word segmentation, word recognition, and word learning: a computational
model of first language acquisition,” Ph.D. dissertation, Northwestern University, 2009.
11, 12

[18] C. A. Rytting, “Segment predictability as a cue in word segmentation: Application to
modern Greek,” in Proceedings of the 7th Meeting of the ACL Special Interest Group
in Computational Phonology: Current Themes in Computational Phonology and Mor-
phology. Association for Computational Linguistics, 2004, pp. 78–85. 12, 13, 15, 25,
33

[19] M. R. Brent, “An Efficient, Probabilistically Sound Algorithm for Segmentation and
Word Discovery,” Machine Learning, vol. 34, no. 1, pp. 71–105, 1999. [Online].
Available: http://dx.doi.org/10.1023/A:1007541817488 12, 13, 15, 25

[20] M. R. Brent and T. A. Cartwright, “Distributional regularity and phonotactic con-
straints are useful for segmentation,” Cognition, vol. 61, no. 1, pp. 93–125, 1996. 12

[21] L. R. Kearsley, “Unsupervised Statistical Word Boundary Prediction With Character
Bigram Mutual Information,” 2014, Unpublished. 13, 14, 25, 32, 33

[22] N. Ide and K. Suderman. (2002) The Open American National Corpus (OANC).
[Online]. Available: http://www.anc.org/data/oanc/download/ 13, 17

[23] J. H. Cloe Jr., “An Evaluation of Electronic Annotated Readers for First Graders in Chi-
nese Dual Immersion to Improve Reading Comprehension and Character Recognition,”
Master’s thesis, Brigham Young University, 2012. 14

45

http://dx.doi.org/10.1023/A:1007541817488
http://www.anc.org/data/oanc/download/

[24] E. C. Todd, “The Use of Dictionaries, Glosses, and Annotations to Facilitate Vocabulary
Comprehension for L2 Learners of Russian,” Master’s thesis, Brigham Young University,
2014. 14

[25] S. Ager. (1998) Arabic alphabet, pronunciation, and language. [Online]. Available:
http://www.omniglot.com/writing/arabic.htm 17

[26] ——. (1998) Korean alphabet, pronunciation, and language. [Online]. Available:
http://www.omniglot.com/writing/korean.htm 18

[27] M. Maamouri, A. Bies, T. Buckwalter, and H. Jin, “Arabic Treebank: Part 1 v 3.0
(POS with full vocalization + syntactic analysis),” LDC2005T02, 2005, Linguistic Data
Consortium. 17

[28] N.-R. Han, “Klex: Finite-state lexical transducer for Korean,” LDC2004L01, 2004,
Linguistic Data Consortium. 17

[29] A. Pasha, M. Al-Badrashiny, M. Diab, A. E. Kholy, R. Eskander, N. Habash,
M. Pooleery, O. Rambow, and R. Roth, “MADAMIRA: A Fast, Comprehensive Tool for
Morphological Analysis and Disambiguation of Arabic,” in Proceedings of the Ninth In-
ternational Conference on Language Resources and Evaluation (LREC’14). European
Language Resources Association (ELRA), 2014, pp. 1094–1101. 22

[30] E. L. Antworth, “ENGLEX: an English lexicon for PC-KIMMO version 1.0,” 1991, SIL.
23

[31] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” in Proceedings of the
Twenty-seventh Annual Conference on Advances in Neural Information Processing Sys-
tems (NIPS), 2013, pp. 3111–3119. 43

46

http://www.omniglot.com/writing/arabic.htm
http://www.omniglot.com/writing/korean.htm

	A Hybrid Approach to Cross-Linguistic Tokenization: Morphology with Statistics
	BYU ScholarsArchive Citation

	Title Page
	ABSTRACT
	Abstract
	ACKNOWLEDGMENTS
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Relevant Literature
	2.1 Tokenization of English
	2.2 Orthographies Traditionally Lacking Whitespace
	2.3 Psychological Modeling
	2.4 Simplified Statistical Models
	2.5 Path Selection Methods
	2.6 Lattice Generation with Morphology & Statistics

	3 Methodology
	3.1 Data Collection & Formatting
	3.2 Morphological Tokenization
	3.2.1 Arabic
	3.2.2 English
	3.2.3 Korean

	3.3 Statistical Tokenization
	3.4 Hybrid Tokenization
	3.5 Evaluation

	4 Results & Discussion
	4.1 Morphological Tokenization
	4.2 Statistical Tokenization
	4.2.1 Zero-Threshold
	4.2.2 Gap Threshold

	4.3 Hybrid Tokenization
	4.3.1 Filtering
	4.3.2 Filling

	5 Conclusions & Future Work
	Bibliography

