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ABSTRACT 

The Anatomy of Porcine and Human Larynges:  Structural Analysis 
and High Resolution Magnetic Resonance Imaging of the 

Recurrent Laryngeal Nerve 

Nena Lundgreen Mason 
Department of Physiology and Developmental Biology, BYU 

Doctor of Philosophy  

The recurrent laryngeal nerve (RLN) innervates all the intrinsic muscles of the larynx that 
are responsible for human vocalization and language. The RLN runs along the tracheoesophageal 
groove bilaterally and is often accidentally damaged or transected during head and neck surgical 
procedures. RLN palsy and vocal cord paralysis are the most common and serious post op 
complications of thyroid surgeries. Patients who suffer from RLN injury can develop unilateral or 
bilateral vocal fold paralysis (BVFP). Theoretically, selective reinnervation of the posterior 
cricoarytenoid muscle would be the best treatment for BVFP. The phrenic nerve has been shown 
in several studies to be the best candidate to anastomose to the distal end of a severed RLN to 
restore glottal abduction. Successful PCA reinnervation has been sporadically achieved in both 
human patients and in animal models. Another notable ramification of recurrent laryngeal nerve 
injury is vocal instability caused by the alteration of mechanical properties within the larynx. In 
phonosurgery, alterations to the position and framework of the laryngeal apparatus are made to 
improve voice quality. Accurate and realistic synthetic models are greatly needed to predict the 
outcome of various adjustments to vocal cord tension and position that could be made surgically. 
Despite the sporadically successful attempts at PCA reinnervation, thus far, there are still several 
deficits in our anatomical familiarity and technological capability, which hinder the regularity of 
successful PCA reinnervation surgeries and our capacity to generate synthetic models of the human 
larynx that are both realistic and functional. We will address three of these deficits in this project 
using the porcine larynx as a model. Firstly, we will identify the anatomical variations of the 
porcine recurrent laryngeal nerve branches. A microscribe digitizer will be used to create three-
dimensional mapping of the recurrent laryngeal nerve branches that are relevant to the posterior 
cricoarytenoid muscle and the abduction of the vocal folds. Secondly, we will develop a magnetic 
resonance imaging technique to correlate recurrent laryngeal nerve branching patterns with high-
resolution MR images that can be used to determine the branching patterns present in a given 
specimen without surgery. Lastly, we will determine the distribution and composition of different 
tissue types found within human vocal folds. High resolution MRI, and Mallory’s trichrome and 
H&E histological staining will be used to distinguish and identify the tissue composition of the 
vocal folds and surrounding laryngeal structures. Detailed information regarding vocal fold tissue 
composition and histological geometry will enable laryngeal modelers to select more sophisticated 
and life-like materials with which to construct synthetic vocal fold models. 

Keywords: recurrent laryngeal nerve, larynx, MRI segmentation, porcine, human larynx model 
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CHAPTER 1: Introduction 

The vocal cords are folds of tough mucus membrane situated within the larynx.  The 

movements of the vocal folds are responsible for several important physiologic functions. The 

abduction and adduction of the vocal folds open and close off the flow of air through the trachea 

to the lungs. The full adduction of the vocal folds closes off the tracheal opening and helps 

prevents aspiration during swallowing, and abduction of the vocal folds opens the trachea and 

allows for deep respirations.  The numerous and complex sounds of human vocalization and 

language production are created by the oscillation of the vocal folds. Vocal fold movement is 

facilitated by a series of muscles that surround the larynx. Abduction is carried out by the 

posterior cricoarytenoid muscle (PCA), and adduction is facilitated by several synergistic 

intrinsic muscles of the larynx.  

Bilateral vocal fold paralysis (BVFP), or the immobilization of both vocal cords, is a 

condition that can be caused by compromise of the bilateral recurrent laryngeal nerves (RLN) or 

the laryngeal muscles that manipulate the voice box. The RLN is often transected or otherwise 

damaged during neck surgery. Damage to the RLN or the laryngeal muscle can be also be caused 

by head and neck injuries, tumors, disease, or stroke.  According to the American Academy of 

Otolaryngology-Head and Neck Surgery, without the innervation of the RLN, the function of the 

vocal folds is lost and patients are subject to respiratory compromise, aspiration, and loss of 

phonation.  

Theoretically, selective reinnervation of the PCA muscle would be the best treatment for 

BVFP. The phrenic nerve has been shown in several studies to be the best candidate to 

anastomose to the distal end of a severed RLN. The phrenic nerve has been shown to be 

compatible in histological, electrophysiological, and anatomical studies for reinnervation of the 
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PCA [1, 2] The Phrenic nerve has been used in several animal studies to reinnervate the PCA 

muscle and successfully re-establish vocal fold abduction [2, 3]. Success with this surgical 

technique has been sporadically achieved in human and animal models throughout the literature 

[2-4] Despite the successful attempts at PCA reinnervation, thus far, there are still several 

deficits in our anatomical familiarity and technological capability, which hinder the regularity of 

successful recurrent laryngeal/phrenic nerve reinnervation surgeries, three of which we will 

address in this proposal using the porcine larynx as a model.   

We have framed our specific aims and experiments to address the following three gaps in 

our current knowledge of the porcine and human laryngeal anatomy. The first gap, which is 

addressed by Specific aim 1, is a lack of modern three-dimensional mapping of the RLN 

showing all the anatomical variations. Accurate mapping is essential to good surgical planning. 

The RLN mapping that is currently available is crude, rudimentary, and does not provide 

adequate information regarding nerve location, variation, and dimension. Secondly, addressed in 

Specific Aim 2, there is a great need for a diagnostic imaging method that can be used to 

determine which anatomical variation of the RLN is present in a particular patient without 

exploratory surgery. Many patients with BVFP undergo exploratory surgery to determine if they 

are candidates for a PCA reinnervation procedure only to discover they don’t have the indicated 

RLN anatomy for surgical anastomosis.  

The third gap addressed in Specific Aim 3 involves determining the 3D histological and 

geometric structure of the human larynx. We propose to determine the distribution and 

composition of different tissue types found within and around the human vocal folds. High 

resolution MR images of porcine vocal folds will be obtained to view tissue composition and 

variation throughout the vocal folds via image contrast. A Mallory’s trichrome histological stain 
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will also be used to locate all cartilaginous structures and view their configuration within the 

vocal folds. H&E histological staining will also be used to distinguish and identify the tissue 

composition of the vocal folds. When analyzed together the histological images and MR images 

will yield a 3D understanding of vocal fold tissue composition. 

Research Strategy and Specific Aims 

Specific Aim 1: 

 We will identify the anatomical variations of the porcine recurrent laryngeal nerve 

branches. A MicroScribe digitizer will be used to create three-dimensional mapping of the 

recurrent laryngeal nerve branches that are relevant to the posterior cricoarytenoid muscle and 

the abduction of the vocal folds. 

The branching patterns of the phrenic nerve and RLN are variable and complex [5, 6]. 

Two dimensional schematics and crude drawings have been published that illustrate the general 

branching patterns of human and animal laryngeal and phrenic nerves. [6-8] Knight et al. 

Another study specifically provided the general pathway of the porcine RLN and the pathways 

taken by the abductor branch to the PCA using Sihler’s stain [9]. However they did not provide 

any information about anatomical variation of porcine RLN branching patterns, nor did they 

show where the other RLN branches, which innervate the adductor muscles, run within the 

larynx. We present preliminary data (figure 2.1) that shows the anatomical variations of 

porcine RLN branching patterns in dissected specimens, and the percent of occurrence of each 

pattern. This data will serve as a valuable first step in producing (3D) models of the RLN and 

its branching patterns. 3D mapping of nerve pathways would enable surgeons to decrease the 

likelihood of unintentional RLN transection during head and neck surgical procedures by 

providing them with more accurate representations of nerve pathways that would include 



4 

valuable information regarding nerve location, variation, and dimension. 3D mapping of the 

RLN would also reveal the best location to ligate and anastomose the RLN and phrenic nerves 

prior to surgery, while decreasing the likelihood of laryngeal synkinesis during reinnervation 

surgeries by clarifying where exactly the branches are located in three dimensions.  

Specific Aim 2:  

We will develop a magnetic resonance imaging (MRI) technique to correlate recurrent 

laryngeal nerve branching patterns with high-resolution MRI images that can be used to 

determine the branching patterns present in a given specimen without surgery. 

A second major deficiency with current BVFP treatment procedures is that the 

anatomical nerve variation of a particular patient is unknown before surgery. There are many 

different procedures for RLN/phrenic nerve anastomosis which are listed by Meng Li et al. in 

their 2013 publication [1]. The best surgical plan to be used for a particular BVFP patient 

depends on the anatomical variation present in that patient. Determining candidacy for a 

particular procedure without surgery is currently not possible. If a method can be developed to 

use high resolution MRI images of the larynx to determine which branching pattern a patient has 

pre-op, more accurate and efficient surgical plans can be made in advance and surgical 

candidacy can be determined without invasive exploratory surgery. 

Porcine anatomy is very similar to that found in humans. [10, 11]  If a diagnostic 

technique can be developed to use MR imaging to determine which branching pattern is present 

in a pig specimen it may be possible to perform a similar method with human patients. Human 

RLN branching patterns have been well studied [5, 6, 7, 12].  We propose to correlate branching 

patterns discovered by dissection with high resolution MRI imaging of our porcine larynges to 

identify which branching pattern is present in a particular specimen. This new MRI technique 
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will serve as in important stepping stone to determining surgical candidacy in humans in a non-

invasive manner. 

Specific Aim 3: 

 We will determine the distribution and composition of the different tissue types found 

within the human vocal folds and surrounding laryngeal tissue. High resolution MR images of 

human vocal folds will be obtained to view tissue composition and variation throughout the 

vocal folds via image contrast. High resolution MR images will be analyzed alongside H&E and 

Mallory’s trichrome histological staining to correlate tissue contrast with specific cell type. 

One ramification of RLN injury is vocal instability caused by the alteration of mechanical 

properties within the larynx.[13]  In phonosurgery, alterations to the position and framework of 

the laryngeal apparatus are made to improve voice quality. Accurate and realistic synthetic 

models are greatly needed to predict the outcome of various adjustments to vocal cord tension 

and position that could be made surgically. Laryngeal models that are currently in use are all 

based on the pig model.  We propose to determine the distribution and composition of different 

tissue types found within porcine vocal folds. High resolution MRI, and Mallory’s trichrome and 

H&E histological staining will be used to distinguish and identify the tissue composition of the 

vocal folds. Detailed information regarding vocal fold tissue composition and histological 

geometry will enable laryngeal modelers to select more sophisticated and life-like materials with 

which to construct synthetic vocal fold models. 



6 

References 

1. Li, Meng, et al. "Reinnervation of Bilateral Posterior Cricoarytenoid Muscles Using the Left Phrenic
Nerve in Patients with Bilateral Vocal Fold Paralysis."PloS one 8.10 (2013): e77233.

2. Crumley, R. L. "Phrenic nerve graft for bilateral vocal cord paralysis." The Laryngoscope 93.4 (1983):
425-428.

3. van Lith-Bijl, Julie T., et al. "Laryngeal abductor reinnervation with a phrenic nerve transfer after a 9-
month delay." Archives of Otolaryngology–Head & Neck Surgery 124.4 (1998): 393-398.

4. Jacobs, I. N., et al. "Reinnervation of the canine posterior cricoarytenoid muscle with sympathetic
preganglionic neurons." The Annals of otology, rhinology, and laryngology 99.3 Pt 1 (1990): 167-174.

5. Maranillo, Eva, et al. "Variability of the nerve supply patterns of the human posterior cricoarytenoid
muscle." The Laryngoscope 113.4 (2003): 602-606.

6. Sanders, Ira, et al. "The innervation of the human larynx." Archives of Otolaryngology–Head & Neck
Surgery 119.9 (1993): 934-939.

7. Damrose, Edward J., et al. "Surgical anatomy of the recurrent laryngeal nerve: implications for laryngeal
reinnervation." The Annals of otology, rhinology, and laryngology 112.5 (2003): 434-438.

8. Mendelsohn, Abie H., et al. "Cervical variations of the phrenic nerve." The Laryngoscope 121.9 (2011):
1920-1923.

9. Knight, Melanie J., Stephen E. McDonald, and Martin A. Birchall. "Intrinsic muscles and distribution of
the recurrent laryngeal nerve in the pig larynx."European Archives of Oto-Rhino-Laryngology and Head
& Neck 262.4 (2005): 281-285.

10. Stavroulaki, P., and M. Birchall. "Comparative study of the laryngeal innervation in humans and animals
employed in laryngeal transplantation research." The Journal of Laryngology & Otology 115.04 (2001):
257-266.

11. Jiang, JACK J., JOSEPH R. Raviv, and DAVID G. Hanson. "Comparison of the phonation-related
structures among pig, dog, white-tailed deer, and human larynges." ANNALS OF OTOLOGY
RHINOLOGY AND LARYNGOLOGY110.12 (2001): 1120-1125.

12. Ardito, Guglielmo, et al. "Revisited anatomy of the recurrent laryngeal nerves."The American journal of
surgery 187.2 (2004): 249-253.

13. Min, Young B., Ingo R. Titze, and Fariborz Alipour-Haghighi. "Stress-strain response of the human
vocal ligament." Annals of Otology, Rhinology & Laryngology 104.7 (1995): 563-569.



7 

CHAPTER 2: 3D Reconstruction and Heat Map of Porcine Recurrent Laryngeal Nerve   
Anatomy: Branching and Spatial Location 

Authors: 
Nena Lundgreen Mason1, Marc Christiansen1, Jonathan J. Wisco, Ph.D.1,2

Affiliations: 
1Department of Physiology and Developmental Biology, Neuroscience Center, Brigham Young 
University, Provo, UT  
2Department of Neurobiology and Anatomy, University of Utah Medical School, Salt Lake City, 
UT 

Corresponding Author:  

Nena Lundgreen Mason 

Department of Physiology and Developmental Biology  
Brigham Young University  
Laboratory for Translational Anatomy of Degenerative Diseases and Developmental Disorders  
4005 LSB Provo, UT 84602-1231 

Phone: 208-249-0558 
Fax: 801-422-0004 
Email: nenalundgreen@gmail.com 



8 

Abstract 

Recurrent laryngeal nerve (RLN) palsy is a common post-operative complication of 

many head and neck surgeries.[1] The best treatment to restore partial function to a damaged 

RLN is reinnervation of the posterior cricoarytenoid (PCA) muscle via anastomosis of the RLN 

and phrenic nerves. The pig is an excellent model of human laryngeal anatomy and 

physiology.[2] A thorough knowledge of porcine laryngeal anatomy is necessary before the pig 

can be used to improve existing surgical strategies, and develop new ones. This study first 

identifies the three most common RLN branching patterns in the pig. Secondly, this study 

presents state of the art three dimensional renderings of the porcine larynx which accurately 

display the structure and location of the RLN within the larynx. Lastly, several heat maps are 

also presented that describe the relative spatial variability of 32 bilateral specimens of the RLN 

trunks and primary branches respectively. We intend this study to be useful to groups using a 

porcine model to study PCA reinnervation techniques. 

Introduction 

Vocal cord paralysis is a common post-operative complication of head and neck 

procedures that is caused by damage to the recurrent laryngeal nerve (RLN).[1] Vocal cord 

paralysis can cause respiratory compromise if innervation to the posterior cricoarytenoid muscle 

(PCA) is compromised. PCA compromise renders the vocal folds unable to abduct, yielding 

respiratory compromise. In theory, the most effective way to correct this problem would be to 

selectively reinnervate the PCA. Reinnervation of the PCA has been achieved via anastomosis of 

the RLN with the phrenic nerve in both human and animal models.[3-6] The phrenic nerve is the 

best choice for anastomosis with the RLN because the two nerves are compatible in histological, 

electrophysiological, and anatomical parameters.[3-6] Because phrenic/RLN anastomosis is the 
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best treatment for vocal cord paralysis but current methods are not consistently successful 

improvements need to be made to this surgical strategy.  

Animal models have long been used to develop and improve surgical strategies for use on 

human patients. Ideal animal model selection for surgical development is generally dependent on 

the how analogous a particular animal is to human anatomy. The pig larynx has the most 

analogous anatomy to that of humans. Pigs have been shown to possess the most similar 

laryngeal anatomy[7], neuroanatomy[8], mucosal histology[7], and phonatory characteristics[2, 

9] to the human larynx of all the various animal models that have been used in past studies. Due 

to these many similarities between human and porcine laryngeal anatomy the pig is the ideal 

choice to employ in the development and improvement of PCA reinnervation surgical 

procedures. As with any surgery a detailed understanding of the anatomy and possible 

anatomical structural variation involved is necessary. Because the pig is the ideal model for PCA 

reinnervation surgeries we must comprehend all the anatomical details of the porcine larynx so 

that effective pre-clinical studies can be developed using the pig model.  

Traditional anatomy atlases contain detailed 2D drawings of body structures. A two 

dimensional atlas does not include vital information that well planned surgeries require such as, 

depth of a particular structure, precise distance from surrounding structures, and spatial 

relationships between different tissue types. 3D anatomical representations of body structures 

reflect true anatomical arrangement and eliminate the risk of misrepresentation of 3D structures 

which is common amongst 2D diagrams. Currently this type of spatial information is available 

through dissection experience, exploratory surgery and a few imaging techniques.  Various 

techniques exist to obtain images of anatomical structures that are accurate in three dimensions 

such as volume rendering[10, 11], but these techniques require expensive CT equipment and are 
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only available to those with access to medical facilities. Surgical planning, anatomical education, 

and preclinical research would be greatly improved by access to accurate 3D representations of 

anatomical structures. In this study we present 3D models of the porcine recurrent laryngeal 

nerve to be used for educational anatomical instruction, and planning for PCA reinervation 

surgical experimentation. Each nerve is shown in accurate relation to surrounding laryngeal 

structures including the thyroid and arytenoid cartilages, posterior cricoarytenoid muscle, 

epiglottis, and trachea. This study is intended to be useful to groups using the pig to develop new 

PCA reinnervation surgical strategies and improve existing ones.  

Materials and Methods 

Animals 

Porcine larynges used in this study were donated by Circle V Meats (Spanish Fork, 

Utah). Larynx specimens were opportunity samples obtained from animals that were sacrificed 

for commercial purposes. 34 cadaveric larynges were dissected to obtain detailed 3D maps of 32 

RLNs. Excess tissue was removed from each specimen leaving only cartilage, trachea, 

esophagus, laryngeal nerves, and intrinsic muscles of the larynx. A 10% formalin solution was 

used to fix and preserve the larynges after a postmortem time of 1 hour.  

Anatomical Variation of the Porcine Recurrent Laryngeal Nerve 

Twenty-eight RLN’s were exposed in 15 embalmed bilateral larynx specimens. One of 

our larynx specimens was damaged bilaterally during dissection. Great care was given during 

dissection to avoid transection and maintain the structural integrity of each RLN in all 

specimens. The RLN trunk was identified in the tracheoesophageal groove just inferior to the 

level of the cricoid cartilage. The trunk of the RLN was followed superiorly using blunt 

dissection until the first three branches of the RLN were clearly visible. For each dissected nerve 
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specimen, the branching pattern was photographed and drawn for subsequent categorical 

analysis.  

Dissection and MicroScribe Digitization 

Thirty-two RLNs were dissected from the level of the posterior inferior border of the 

thyroid cartilage distally until the primary nerve branches were easily observable. During each 

dissection, the utmost care was used to prevent displacement of RLNs from surrounding fascia 

and tissue. This insured that the precise location of each nerve was preserved for the microScribe 

digitization process. With each specimen, the RLN trunk was identified proximal to the point at 

which it enters the tracheoesophageal groove, and tunneled distally exposing the most superficial 

surface of each nerve branch while leaving the lateral and deep aspects of the nerve imbedded in 

fascia. A MicroScribe G apparatus was used to digitize the 3 dimensional location within the 

larynx of each of our 32 RLN specimens. Each RLN trunk was digitized in 1mm increments 

starting at the level of the posterior inferior border of the thyroid cartilage distally through 

primary and in many cases secondary branching. The medial and inferior borders of the 

ipsilateral thyroid cartilage, the epiglottis, and the line of cricoid cartilage visible at the midline 

of the PCA were also digitized along with each nerve specimen to insure accurate spatial 

placement of RLNs during the generation of our 3D models. 

Heat Mapping 

The data points acquired from RLN digitization were imported into Maya software, 

Autodesk, and used to create 3D renderings of each of our 32 nerve specimens. To create 

figure 2.2 data from each nerve was fit onto a rendering of a porcine larynx to show the 3 

dimensional location of the RLN as it relates to other laryngeal structures. The digitized lines 

corresponding to the thyroid cartilage and epiglottis were used as reference structures as each 

nerve was fitted onto the larynx scaffold to insure the accuracy of structure sizes, and spatial 

location ratios. 
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Adobe Photoshop CC was used to overlay images of the superior aspect of each of the 32 3D 

RLN models generated in Maya. As each image was added to the composite image it was 

warped until the reference structures (thyroid cartilage and epiglottis) were lined up to insure 

accurate image placement. The composite image color was then altered to generate a heat map 

which qualitatively shows the likelihood of finding an RLN branch in a given location as seen 

in figure 2.3. 

Results 

Porcine Recurrent Laryngeal Nerve Anatomical Variations 

Twenty eight nerve dissections revealed three common RLN branching patterns in the 

pig. Primary branching varied in location of bifurcation from the RLN trunk and in the total 

number of branches.  The lateral secondary RLN branch innervated the interarytenoid, 

thyroarytenoid, and lateral cricoarytenoid muscles in various terminal distributions to facilitate 

vocal fold adduction. Innervation of the posterior cricoarytenoid muscle was conserved among 

all specimens via projections of the medial primary branch of the RLN trunk but we observed 

substantial distal variation in branching before branch termination into the muscles of the 

larynx. Figure 2.1 exhibits the three main variations of primary RLN branching in the pig.  

Our data suggests that of the three primary porcine branching patterns, A is the most 

common, being found in 44% of larynges dissected. Specimens exhibiting branching pattern A 

all possessed the following attributes; the most proximal branch to diverge from the RLN trunk 

was a medial primary branch which bifurcated into two secondary branches both of which 

clearly went on to innervate the PCA muscle. The second branch to arise from the RLN trunk 

was a lateral primary branch that split into various small terminal branches all of which ran away 
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from the PCA to innervate the laryngeal adductor muscles. Distal to the lateral primary branch 

the middle primary branch and also innervated the intrinsic laryngeal adductor muscles. 

The second most common pattern, B, in which three primary branches (medial, middle, 

and lateral) arose from the RLN trunk simultaneously, occurred in 32% of our specimens. In all 

specimens of pattern B, the medial primary branch innervated the PCA along with half of the 

terminal branches of the middle primary branch. The other half of the terminal branches of the 

middle primary branch ran away from the PCA and targeted adductors along with the lateral 

primary branch. 

Pattern C, was found in 24% of our specimens. RLNs that exhibited branching pattern C 

possessed two primary branches, one medial and one lateral arising from the RLN trunk 

concurrently. The medial of these two branches further diverge into a superior, middle, and 

inferior secondary branches as it projects toward the PCA. The most superior of these secondary 

branches appeared to run supero-laterally and possibly innervated vocal fold adductors, whereas 

the middle and inferior secondary branches clearly innervated the PCA. 

3D Laryngeal Mapping  

Thirty-two RLN specimens and their reference structures were carefully digitized with a 

MicroScribe G robotic arm. The microScribe data for each nerve and reference structures, were 

imported into Maya, Autodesk, and converted into 3D models. After each of the 32 nerves was 

carefully fit onto an individual larynx scaffold rendering three bilateral larynges were selected 

for inclusion in figure 2.2. Each of the three larynges selected represent one of the three major 

RLN primary branching patterns found in the pig. Each row of Figure 2.2 contains three images 

for each of the three major branching patterns. In the first column there is one cadaveric image 

with the trunk and branches of the RLN highlighted, followed by best view images (left and 

right) of our 3D larynx rendering. Please note that the cadaveric image and the rendering images 
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are not of the same specimen but are representative of the same primary RLN nerve branching 

pattern.  Each row of figure 2.2 accurately shows where the recurrent laryngeal nerve sits within 

the larynx. 3D larynx renderings and each of our 31 different RLNs can be freely viewed 

through The National Repository for Laryngeal Data which can be freely accessed at 

www.nrld.org. 

 Heat Maps 

Figure 2.3 A and 2.3B, describe the relative spatial location of each RLN within the 

larynx and represents the probability of finding the RLN in a given area. The left and right 

columns of figure 2.3 represent the right and left RLN specimens respectively. Our data shows 

that the RLNs on the right side of the larynx have a more consistent and predictable medial/

lateral location as indicated by the solid red areas in figure 2.3B. The RLNs on the left side of 

the larynx display higher variability in RLN trunk and branch location. In panels C and D each 

individual distal RLN trunk rendering was overlaid and aligned with one another to show the 

spatial location viability of the RLN primary branches when registered together.  

Discussion 

Figure 2.3 is a heat map showing the relative spatial relationships of 32 RLNs when 

registered together. When considering the entire RLN as a whole our data suggests that the 

medial/lateral position of the nerve is more consistent on the right than the left side of the larynx 

as shown in panels A and B. This information is important in several ways. Firstly, the 

variability of left RLN location could make it more vulnerable to accidental transection during 

head and neck surgery. If the human larynx were to possess a similar dichotomy between the 

right and left RLN it needs to be included in surgical planning to avoid accidental damage.  This 

finding is also relevant when considering phrenic/RLN anastomosis for PCA reinnervation 

surgery. Because the variability of nerve position is greater on the left it could be more difficult 
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to use left RLNs in PCA reinnervation via phrenic nerve anastomosis. It has been shown that the 

left phrenic nerve is the best choice to use in an RLN anastomosis procedure[1].   

Our data suggests the right RLN is an easier choice for anastomosis in porcine 

experimental surgeries because its position is more consistent. Unfortunately the right RLN, 

which is more consistently located is contralateral to the left phrenic nerve. Panels C and D show 

the spatial variations that exist in just the primary branching pattern of the porcine RLN. It is 

interesting to note that although the right RLN as a whole is more consistently found in the same 

place, the primary branches of right RLNs exhibit much more variation in location. The branches 

on the left RLNs are quite congruent. Not only are they consistent in branch location but left 

specimens are often found to display the same anatomical branching pattern. Larynx renderings 

presented in figure 2.2 were created to be useful to those groups studying PCA reinnervation 

techniques in a pig model. If models like those in this study were created using human larynges 

they could be used in surgical planning and may decrease the number of accidental RLN 

transections during surgery.  
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Figure 2.1: The Three Prevailing Branching Patters of the Porcine Recurrent Laryngeal Nerve. 
25 specimens were dissected and analyzed. A. The most common variation of the RLN was 
found in 44% of larynges documented. B. The second most common RLN branching pattern was 
found in 32% of larynges. C. The least common RLN branching pattern was found in 24% of 
larynges. 
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Figure 2.2: Images of Cadaveric Porcine Larynx Specimens that are Representative of the Three 
Major RLN Branching Patterns. Cadaveric images are accompanied by 3D renderings showing 
precise RLN placement in relation to other structures within the larynx .Images of branching 
pattern A, the most common porcine branching pattern (a-c). The nerve has been highlighted for 
clear viewing, with the RLN trunk and primary branching shown in green and secondary 
branches shown in purple. Images of branching pattern B, the second most common pattern (d-f). 
Images of branching pattern C, the least common pattern (g-i) 
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Figure 2.3: A Heat Map Depicting the Relative Spatial Variability from one RLN Specimen to 
the Next, n=28. The left column contains left nerve specimens and the right column contains 
right nerve specimens. The relative spatial location of all the left (a) and right (b) RLN’s. A 
comparison of RLN primary branching patterns amongst left (c) and right (d) RLN’s after the 
trunks were registered together.  
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Abstract 

Recurrent laryngeal nerve (RLN) palsy is a common post-operative complication of 

many head and neck surgeries. RLN damage often occurs because its location in the 

tracheoesophageal groove places it at risk for compression or transection during an anterior 

surgical approach to the cervical spine. Additionally, RLN branching pattern and structure varies 

substantially from patient to patient, with no established location probability. There is great need 

for a diagnostic imaging method that can be used to view the specific anatomy of a particular 

patient for surgical planning in order to minimize complications. Current literature has shown 

that the pig is an excellent model for human laryngeal anatomy and physiology. [20, 21] 

 In this study, porcine cadaveric larynx specimens were used to develop several high-

resolution MR imaging sequences that yield clear images of the RLN and its accompanying 

vasculature, as it courses along the tracheoesophageal groove, and branches to innervate the 

intrinsic muscles of the larynx. The purpose of acquiring these images was to use them to model 

the three-dimensional (3D) structure of each individual specimen’s neurovascular tree using 

segmentation techniques. We present 25 3D models of porcine laryngeal neurovascular structure. 

Models were generated via segmentation of images using Amira (FEI, Inc). We intend to 

optimize our imaging protocols for use on human patients as a diagnostic imaging technique to 

augment surgical planning.  

Introduction 

Recurrent laryngeal nerve (RLN) palsy is a common post-operative complication of 

many head and neck surgeries that has been observed for many years.[10, 19, 20]  A study 

published in 1985 reviewed the cases of 1026 patients that had undergone thyroid gland surgery. 

Out of those patients, 5.9% suffered from either transient or permanent RLN palsy.[20]  A more 

recent study published in 2000 reported on a set of patients that had undergone either full or 
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partial thyroidectomy. Of the patients in this study there were 787 RLN’s that were in danger of 

compression or dissection. Thirty-three of these patients or 6.6% incurred RLN damage 

postoperatively.[21] 

RLN damage often occurs because its location places it in a high risk area for 

compression during an anterior surgical approach to the cervical spine.[22] The RLN is also 

close in proximity to the thyroid gland, and is often transected or compressed during dissection 

of the gland.[23] Additionally, RLN branching pattern and structure varies substantially from 

patient to patient.[7, 11] There are investigators attempting to view the RLN with ultrasound for 

diagnostic purposes[24, 25] but we suggest that MRI will provide much higher quality imaging 

and a more definitive 3D representation of RLN location within the larynx. High resolution MRI 

has been successfully used to clearly view and characterize pathologies of small peripheral 

nerves in many studies as 3T magnets have become more readily available to researchers and 

clinicians.[26-28]   

Magnetic resonance neurography is a well-established technique that has been used for 

many years and many purposes.[29-33] There is great need for a diagnostic imaging method that 

can be used to view the specific laryngeal anatomy of a particular patient prior to surgery to 

minimize complications. In this report, we will show that high resolution MRI can be used in 

such a capacity to identify the exact location of the RLN with its accompanying vasculature and 

generate 3D models to augment surgical planning. Current literature has shown that the pig is an 

excellent model for human laryngeal anatomy and physiology.[13-15] In this study, porcine 

cadaveric larynx specimens were used to develop high-resolution MR imaging sequences that 

yield clear images of the RLN and it’s accompanying vascular tree as it courses along the 

tracheoesophageal groove and branches to innervate the intrinsic muscles of the larynx. 
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The purpose of obtaining these images is to use them to model the three-dimensional 

(3D) structure of each individual neurovascular tree via MR image segmentation. We present 25 

3D models of porcine structure derived from the segmentation of high-resolution MR images. 

Models were generated via segmentation of images using Amira (FEI, Inc.). We establish that 

high resolution MRI is a potential tool that can enable clinicians to augment surgical planning by 

determining the structure of a specific patient’s RLN in a non-invasive manner.   

Materials and Methods 

Imaging protocol 1 (Segmentation, High Resolution): 

Twenty-five cadaveric excised porcine larynx specimens were suspended in 3% agar and 

high resolution images were acquired with a 3 Tesla (T) Siemens MRI scanner, and a standard 

32 channel head coil. The repetition time (TR), echo time (TE), and field of view (FOV) used to 

acquire our images was chosen to yield high signal to noise ratio (SNR) efficiency while 

maintaining maximal contrast between tissues of interest in the larynx, particularly the bilateral 

recurrent laryngeal nerves and accompanying vasculature. Scan parameters were as follows: 

Averages= 4, TR= 14, TE=4.96, FOV= 128, Voxel Size= 0.3x0.3x0.5mm. Acquisition time for 

scan protocol 1 was 28 minutes and 2 seconds. 

Imaging protocol 2 (Imaging Titration, Lower Resolution): 

In order achieve image resolution quality similar to imaging protocol 1 but maintain 

clinically relevant scan parameters, our second lower-resolution scan protocol employed a three-

dimensional (3D) FLASH sequence. Imaging protocol 2 was developed on the same 3T Siemens 

whole-body scanner. The resolution of imaging protocol 2 was lowered by altering the following 

parameters used in imaging protocol 1. The FOV was set at 128 mm (readout) x 84 mm (phase) x 
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96 mm and the acquisition matrix was 256 (readout) x 168 (phase encode) and 240 in slices 

direction (38 slices were acquired for oversample to reduce image aliasing) which yielded the 

voxel size equal to 0.5 x 0.5 x 0.5mm. The TR/TE = 14/4.96 msec, total scan time was 7 minutes 

and 32 seconds, and the flip angle was 25 degrees. Other acquisition parameters were readout 

bandwidth = 180 Hz/pixel, a fast mode slab selective RF pulse was also employed to further reduce 

aliasing.  

Segmentation:  

MR images of each larynx specimen were manually segmented based on signal intensity 

using Amira (FEL, Inc.). The RLN distinguished from surrounding laryngeal tissue via 

differences in image contrast, and was carefully highlighted in each image slice. Vascular trees 

in close proximity to the RLN were also identified and segmented. Highlighted nerve and 

vascular tissue from each slice were used to render a 3D model of each specimen’s unique RLN 

structure along with its accompanying vascular tree.  Please note that both neuro and vascular 

structures found within postmortem laryngeal tissue have similar signal intensity. 

Results 

We have engineered several scanning protocols using a 3T Siemens MRI scanner that 

produce clear images of the RLN and its accompanying vasculature. Both neural and vascular 

tissue are easily distinguishable in images produced with all our scan protocols (see Figure 3.1), 

but have the same signal intensity, and thus difficult to distinguish from one another.  Figure 3.2 

displays the segmented neurovascular tree in situ within the segmented porcine larynx (rendered 

translucent for visualization). It is clear the entire vascular tree, RLN trunk, and branches have 

been captured by our MR imaging sequences. Figure 3.3 shows 3D mapping of the bilateral RLN 

and its accompanying vascular tree in six specimens that highlight the many anatomical 
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variations that occur in porcine RLN and vascular branching. Images in Figure 3.3 were 

generated via careful segmentation of our MR images acquired with imaging protocol 1. Twenty-

five total specimens were segmented successfully and 3D maps of all neurovascular structures 

were generated. The six particular specimens shown in Figure 3.3 were selected because they 

represented the many different pattern variations of porcine neurovascular trees in our sample.  

Figure 3.4 contains two images acquired following a resolution titration of imaging 

protocol 1. The image in panel B was acquired with our lower resolution imaging protocol 2 

following titration. Imaging protocol 2 was designed to maximize nerve and vascular contrast 

from surrounding laryngeal structures, while maintaining scan parameters that yield a clinically 

relevant scan protocol. Both panel A and panel B contain axial slices acquired from the same 

excised porcine larynx specimen at the same vertical level. The image in panel A was acquired 

with our higher resolution imaging protocol 1 (see Methods section). In both panels 3 clusters of 

high intensity voxels are visible. These clusters are indicative of neurovascular structures on the 

right side of the larynx as indicated by white arrows. The partial voluming seen in panel B due to 

the larger voxel size which yields diminished intensity but decreased scan time. 

Discussion 

Our MRI sequences produce images of the laryngeal neurovascular tree with sufficient 

clarity to easily view all neuronal and vascular branching. Although in each of our images 

neuronal and vascular structures have the exact same contrast we suggest that a gadolinium 

contrast agent may be used clinically prior to diagnostic scans to make nerve/vessel 

differentiation clear. Gadolinium has been successfully used in many MR imaging studies to 

produce sharp contrast in vascular structures.[34-36]  In all of the images we acquired the 

relationship between the RLN and its accompanying vasculature and surrounding laryngeal 
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structures could easily be identified bilaterally if a simple contrast agent is employed prior to 

scanning. With the addition of a contrasting agent our images could be used determine which 

anatomical branching pattern is present in a given specimen without dissection. This imaging 

method could serve as a valuable diagnostic technique to determine surgical candidacy and 

augment surgical planning since our results demonstrate a tight spatial correlation between 

nervous and vascular structures.  

MR Image Segmentation and 3D Modeling of Laryngeal Neurovascular Structures 

Figure 3.3 shows six bilateral neurovascular trees that were generated via image 

segmentation of high resolution MR images of six individual porcine larynx specimens. In each 

of our 25 total larynx specimens the intricate detail of neurovascular tree structure was fully 

captured via MR image segmentation. These six particular specimens shown in figure 3.3 were 

chosen for display because they are representative of the many different pattern variants that 

porcine neurovascular trees in our sample population comprise. The level of detail we were able 

to capture in our models (see Figure 3.3) allows us to state with confidence that the entirety of 

primary and in many cases secondary branching of the RLN is fully represented. This 

segmentation technique could easily be used to create individualized models of laryngeal 

neurovascular anatomy for specific patients augment surgical planning if a simple contrast was 

used prior to scanning. 

MRI Contrast and Titration 

The results of our imaging titration experiment (see Figure 3.4) show that clinically 

relevant scan protocols can be used to generate individualized mapping of the RLN and 

accompanying vasculature because both panels A and B offer clear viewing of neurovascular 

structures within the porcine larynx. Our main concerns in the development of imaging protocol 2 
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were shortening the scan time and minimizing the specific absorption rate. In practice, we 

attempted to restrict the scan time to less than 10 minutes to reduce any motion artifacts that may 

arise during an in-vivo scan. We decreased the matrix size which sacrificed some image resolution 

but yielded a shorter scan time. Despite the sacrifices made in resolution imaging protocol 2 still 

maintained a 0.5mm isotropic resolution.  We report that we were still able to track structures of 

interest within the larynx, including the RLN and surrounding vascular structures in sufficient 

detail to generate satisfactory segmentations despite the lower resolution of imaging protocol 2.  

Future Directions 

All of our scan protocols were optimized for use with a 32-channel head coil. We 

acknowledge that a 32-channel head coil could not be used to acquire images of a patient’s 

larynx because its shape won’t allow adequate coverage of the neck. We further acknowledge 

that generating images like the ones acquired in this report on a live patient would result in 

complications such as image aliasing from surrounding structures within the neck. However, we 

suggest that a surface coil could be employed with a similar imaging sequence to our low 

resolution scan protocol on living person with good results. Additionally a surface coil placed on 

the anterior aspect of the neck of a living human subject would be able to move with the patient 

and thus eliminate excessive image noise caused by normal physiologic movements. 

Furthermore, when using a surface coil, longer scan acquisition times may be better 

tolerated since subject movement-generated noise would be decreased which could yield images 

with better image contrast and resolution. We advise any larynx imaging protocol adapted from 

our imaging sequences for use with a surface coil be designed to insure that their new SNR 

mirrors that of our imaging protocols. This could be accomplished by taking the signal intensity 

over the area of interest as obtained with the surface coil and dividing by the standard deviation 
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of any background noise. We plan to explore the use of our imaging sequences on living human 

subjects further with the use of a surface coil in future studies. 
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Figure 3.1: A MR Image of a Porcine Larynx Slice Taken in the Frontal Plane. This image 
displays the clarity with which our MRI scanning protocols can capture the RLN. A large portion 
of the right recurrent laryngeal nerve (circled in red) is easily seen within this single image slice.  
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Figure 3.2: The Segmented Recurrent Laryngeal Neuroanatomy and Accompanying Vasculature 
In Situ within the Tracheoesophageal Groove of the Porcine Larynx Bilaterally.  
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Figure 3.3: Six Models Generated via Segmentation of the RLN and Accompanying Vasculature 
of 6 Bilateral Specimens that Show True In Situ Placement within the Porcine Larynx. The 
neurovascular tree located on the right side of each specimen are indicated in red and the left side 
in blue. These particular six specimens were chosen because they best display the structural 
variation exhibited in porcine RLN and vasculature structure. Each model was rotated to offer 
the best view of both the right and left sides. In each panel the RLN trunk (inferior) begins at the 
bottom of the panel and branches near the top (superior).  
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Figure 3.4: The Results of an Imaging Contrast Titration Experiment. The MR image in panel A 
was acquired using our higher resolution imaging protocol 1. Panel B shows an MR image 
acquired with our lower resolution imaging protocol 2. Both image slices are axial slices of the 
same excised porcine larynx specimen and are taken from the exact same level vertically. In both 
panels A and B the same three neurovascular structures are visible as indicated by three white 
arrows. 
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Abstract 

Many patients that seek treatment from otolaryngologists or speech pathologists are 

afflicted with complications pertaining to the anatomy of the phonatory neuromuscular system. 

In many clinical research scenarios it is appropriate to use a model to understand the anatomy 

and physiology of the body when the particular area of interest is difficult or dangerous to 

access in vivo. The anatomical location of the human vocal apparatus renders it particularly 

difficult to access for the measurement pathological changes, damage assessment, and surgical 

intervention in patients suffering from phonation related pathologies. Because of it’s difficult to 

access location, laryngeal modeling is a valuable tool for the advancement of modern 

phonosurgery.  

To better understand both the 3D geometric structure of human laryngeal anatomy and 

the structural attributes of its many tissue components we have acquired high-resolution 

magnetic resonance (MRI) spatially calibrated images of 9 adult excised human larynx 

specimens. Additionally we have conducted histological analysis of those same 9 larynx 

specimens via H&E and Mallory’s Trichrome staining techniques to distinguish between, 

muscle, cartilage, collagen, elastin, and connective tissue. When analyzed together the MR 

images and the histological slides allow correlation between MR image contrast variation and 

specific tissue composition. Detailed information regarding vocal fold tissue composition and 

histological geometry provided by this study will enable laryngeal modelers to select more 

appropriate and life-like materials with which to construct synthetic vocal fold models. This 

study may also lay early groundwork in the field of voice research, specifically, the engineering 

of voice prostheses to be used in laryngoplasty procedures. 
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Introduction 

The discipline of phonosurgery has two primary goals; to improve voice quality and 

restore lost vocal function. [1] Many patients that seek treatment from otolaryngologists or 

speech pathologists are afflicted with complications pertaining to the anatomy of the phonatory 

neuromuscular system.[2] In many clinical research scenarios it is appropriate to use a model to 

understand the anatomy and physiology of the body when the particular area of interest is 

difficult or dangerous to access in vivo. Where truly accurate life-like anatomical models are 

available it is appropriate to use them to determine the outcome of experimental surgical 

procedures without risking patient safety. The anatomical location of the human vocal apparatus 

renders it particularly difficult to access for the measurement pathological changes, damage 

assessment, and surgical intervention in patients suffering from phonation related pathologies. 

Because of it’s difficult to access location, laryngeal molding would serve as a very valuable 

tool for the advancement of modern phonosurgery. 

There have been many attempts to build both functional computational and physical 

models of the human vocal apparatus [2-10] but so far realistic human phonatory characteristics 

have not been replicated through modeling. One weakness of models generated thus far is the 

vast difference between the physical materials selected for model construction and the physical 

characteristics and complex relationships of the many tissues of the human larynx. The 

morphology of the various cartilaginous and elastic tissues of the larynx determines each 

individual’s intrinsic muscular action of the laryngeal muscles and in turn their vocal fold 

geometry. An individual’s vocal fold geometry determines their vocal register and unique 

phonatory characteristics.[7] 
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Antecedent studies have made progress in identifying specific laryngeal tissue material 

properties. Particularly, emphasis has been placed on characterizing the stiffness of the vocal 

folds themselves as measured by either the Shear modulus or the Young’s modulus. Several 

studies have focused on the vocal fold as whole [11], while others target specific layers of the 

fold itself [12]. There have been numerous other studies that characterize additional laryngeal 

features such as the vocal ligament and muscular structure among others [13-16]. There are still 

more questions to answer regarding laryngeal tissue composition and properties however, much 

less is known about the macroscale geometry of the larynx, and little to no information is 

available that can accurately relate these two important aspects of laryngeal anatomy together.  

To better understand both the 3D geometric structure of human laryngeal anatomy and 

the structural attributes of its many tissue components we have acquired high-resolution 

magnetic resonance imaging (MRI) spatially calibrated images of 9 adult excised human larynx 

specimens. Additionally we have conducted histological analysis of those same 9 larynx 

specimens via H&E and Mallory’s Trichrome staining techniques to distinguish between, 

muscle, cartilage, collagen, elastin, and connective tissue. When analyzed together the MR 

images and the histological slides allow correlation between MR image contrast variation and 

specific tissue composition. Detailed information regarding vocal fold tissue composition and 

histological geometry provided by this study will enable laryngeal modelers to select more 

appropriate and life-like materials with which to construct synthetic vocal fold models. This 

study may also lay early groundwork in the field of voice research, specifically, the engineering 

of voice prostheses to be used in laryngoplasty procedures. 
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Materials and Methods 

Tissue Specimens: 

We acquired all of our human larynx specimens from the University of Utah School Of 

Medicine Body Donor Program. The specimens were fixed using standard cadaver embalming 

procedures with 10% paraformaldehyde. The typical post-mortem interval is 48 hours to 

account for serum testing. Specimens were dissected in the neck and excised using axial 

infrahyoid (C2-3) and infracricoid (C5-6) cuts. In all specimens the hyoid bone, and the 

omohyoid, thyrohyoid, cricothyroid, and sternohyoid muscles were removed. Additionally, the 

trachea was cut away between the first cartilaginous ring and the cricoid cartilage. All 

Specimens were then stored in a 10% formalin solution until decalcification and imaging. Each 

larynx was decalcified in a 14.4% EDTA solution for two weeks to prepare them for both tissue 

processing, and sectioning for histological staining.  

Imaging: 

Following the removal of all exterior excess muscle all 9 larynx specimens were imaged 

using a two-dimensional T2 weighted turbo-spin echo sequence. The sequence was 

implemented on a 3T Siemens whole-body scanner (Siemens Medical Systems, Erlangen, 

Germany) with a 32-channel head coil. The FOV of the scan is 200 mm (readout) x 141.5 mm 

(phase) x 1 mm (slice-thickness) and the acquisition matrix was 896 (readout) x 634 (phase 

encode) and 42 in slices direction with interleave acquisition pattern (12 slices was used for 

oversample) which yields the voxel size equals to 0.22 x 0.22 x 1mm. Because of the small 

voxel size, 9 averages were employed to obtain an adequate SNR which made the total 

acquisition time about 55 minutes. The TR/TE = 5000/89 msec flip angle is 150 degree. Other 

acquisition parameters were; turbo factor =12, and readout bandwidth = 328 Hz/pixel. Fast 

mode RF pulse was selected and the slice distance was 1mm.  
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Segmentation and Modeling: 

MR images of each larynx specimen were manually segmented based on signal intensity 

using Amira (FEL, Inc.). Several laryngeal structures were identified via image contrast and 

were highlighted in each image slice to discover the 3D geometry of each individual structure 

and its spatial relationship with surrounding laryngeal structures. The thyroid, cricoid, and 

arytenoid cartilages were segmented in their entirety in each of our 9 larynx specimens along 

with the esophagus, vocal fold mucosa, vocal ligament, and vestibular space. Following 

segmentation 3D models were generated to view each laryngeal structure and analyze its three-

dimensional geometry.   

Histological Processing and Cutting: 

Specimens were submerged in an EDTA decalcifying solution to remove any 

calcification in the cartilage which would hinder further processing. The decalcifying solution 

protocol was obtained from Leica Biosystems. Our solution consisted of 10% EDTA by volume 

brought to a pH of 7-7.5 by addition of sodium hydroxide pellets. Specimens were submersed for 

10 days with one change of solution after 5 days. Processing revealed that calcium deposits were 

still present, so they were again submersed in decalcifying solution, this time consisting of 10% 

EDTA at a pH of 5-6. Each larynx was sectioned midsagittally to allow better solution 

penetration. The solution was changed every 5-7 days until specimens were deemed soft by 

tactile inspection. Total time in EDTA solution ranged from 1-20 days. Specimens were placed 

in 10% formaldehyde when deemed soft. Each half was cut coronally into 8-11 blocks, 4-6 of 

which typically contained vocal fold tissue. Blocks were then processed overnight using a 

xylene-free Leica protocol, embedded in paraffin wax, sliced at 10 microns, and mounted on 

glass slides for histological staining. 
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Staining and Imaging: 

Slides were stained using either a standard Hematoxylin & Eosin (H&E) or Mallory’s 

trichrome stain. H&E stain timings for the larynx tissue were determined by stain 

experimentation using pig larynx tissue. Our porcine stain experiments indicated that 5 minutes 

in hematoxylin before counterstaining in eosin for 30 seconds produced the best results. The 

Mallory’s trichrome stain was performed as described in the IMEB Inc. kit protocol, hydrating 

through alcohols and skipping steps 2 and 3, as our sections were not fixed in mercuric chloride. 

High resolution images of the slides at 20X magnification were obtained using a Leica SCN400 

scanner at Leavitt Medical.  

Results 

Models: 

Nine 3D models of human laryngeal structure were generated via high resolution MR 

image segmentation. Models of laryngeal structure for two specimens can be seen in figures 4.2-

4.5. Models not published in this study can be viewed through The National Repository for 

Laryngeal Data which can be freely accessed at www.nrld.org. The 3D structure and relative 

spatial location of the vocal fold mucosa, thyroid cartilage, cricoid cartilage, arytenoid cartilage, 

vestibular space, vocal ligament, intrinsic laryngeal muscle, and fascial spaces can be clearly 

observed as well as their positions relative to one another. 

Histological Slides: 

Each larynx was bisected midsagittally into right and left halves. Each half was then 

sectioned into 1cm axial slices of tissue and then sectioned into 10 micron slices, mounted on 

glass histological slides, and stained using either H&E or Mallory’s Trichrome staining 

protocols. Our histological slides show the cellular components of different laryngeal structures 
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at various levels from superior to inferior as they lie in the axial plane. Many types of tissue were 

found to exist within laryngeal structure which can be seen in figure 4.8 such as; mucosal 

epithelial tissue, skeletal muscle and perimysium, mucus glandular cells, hyaline cartilage, and 

some areas of bone produced via endochondral ossification remolding as the specimen aged. 

Each labeled field from the segmented MR images of our larynx specimens proved to 

contain several cell types. The area identified as the vocal fold mucosa by homogenous MRI 

contrast contained a mixture of epithelial, muscular, collagen, elastin, and glandular tissue. 

Specifically ciliated columnar stratified epithelium, sub-mucosal respiratory glands, skeletal 

muscle, perimysium fascial spaces, and chronic inflammatory cells within the lamina propria 

were all seen upon histological analysis of the vocal fold mucosa. Three cartilaginous structures 

are found within the human larynx the thyroid, cricoid, and arytenoid cartilages. All three 

cartilages are composed of hyaline cartilage and dystrophic bone. Muscular tissue was shown to 

contain skeletal muscle and fascial spaces that are mostly perimyseial 

Discussion 

3D Modeling: 

Initially our goal was to capture the whole vocal fold in a single axial slide for 

histological analysis alongside our axial MR images. The axial plane was selected for MRI of the 

larynx because the field of view could be restrained to smaller dimensions which allowed for 

maximal image resolution without losing important structural information. Since our MR images 

display the larynx in an axial plane only we decided to block and section the tissue for 

histological analysis in the coronal plane so that the MR images and the histology together would 

allow a more a 3-dementional analysis of the vocal folds.  
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When examining our larynx models from inferior to superior a certain level of 

discontinuity in shape is observed. The reason for this is that each MR image slice that was 

acquired through our imaging protocol (see methods section) is one millimeter in height and 0.22 

millimeters in width and depth. The MRI slices are asymmetrical in voxel dimension which 

causes the pixels in the models to be 5 times thicker in the X-Y plane as compared to the Z 

plane. A certain amount of discontinuity is to be expected in the coronal and sagittal planes of 

our models due to the fact that when our images were acquired they were designed to sacrifice 

resolution in the coronal plane to maximize resolution and detail in the axial plane.  

In regards to the structures labeled “fascia” we would like to mention that these are areas 

identified via a specific shade of MR image contrast and segmented. Despite the randomness in 

appearance of their location each modeled fascial space represents spaces between the bellies of 

individual intrinsic laryngeal muscles and in some cases perimyseial layers between muscular 

fascicles. Labeled fascial spaces represent the spatial location of intermuscular fascial pockets 

that are sufficiently thick to be identified by MR image contrast alone. These results were 

substantiated by histological analysis of our larynx specimens following imaging. 

Integration of Laryngeal Histological Analysis and 3D Modeling: 

Current MRI technology is not advanced enough to distinguish between distinct tissue 

and cell types that are found close together and in small quantities. However, high resolution 

MRI can be used to successfully identify what groups of general tissue types exist in a structure 

with only image contrast. In this study correlations between our 3D models and histological 

slides allow us to make connections between MR image contrast and tissue types. 

Each colored structure seen on our 3D models was painstakingly segmented in each MR 

image slice based on differences in image contrast. Histological slides of the same larynx 
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specimens were analyzed to determine what tissue and cell types are found in different laryngeal 

structures. Figure 4.1 correlates laryngeal structures identified via image contrast and structures 

seen on histological analysis. It is our intent that our 3D models and histological slides of the 

human larynx be used to correlate 3D structural shape with specific tissue type. This can be 

accomplished by examining the models in panels A-E in figure 4.3, Identifying a specific 

structure using the color key in figure 4.3 panel F, and finally determine the tissue and cellular 

components of that specific laryngeal structure as displayed in Figure4.1. 

For example the green structure shown in figure 4.2 panels A-E is identified in panel F 

as the thyroid cartilage. Table 1 states that the thyroid cartilage is comprised of hyaline 

cartilage and dystrophic bone. In this manner extrapolations can be made to understand the 3D 

histological geometry of human laryngeal structure. It is our intention that the detailed 

information regarding vocal fold tissue composition and laryngeal histological geometry 

provided by this study will enable laryngeal modelers to select more appropriate and life-like 

materials with which to construct synthetic vocal fold models. This study may also lay early 

groundwork in the field of voice research, specifically, the engineering of voice prostheses to be 

used in laryngoplasty procedures. 

Dystrophic Ossification of Laryngeal Cartilaginous Structures: 

During the image segmentation component of this study an interesting incidental finding 

was noted. It has long been known that as a product of the natural aging process the thyroid, 

cricoid, and arytenoid cartilages undergo dystrophic endochondral ossification [17]. In the recent 

past, efforts have been made to document the patterning of ossification in laryngeal cartilages 

using various imaging methodologies [18]. However, as of yet the 3D structure of laryngeal 

cartilage ossification patterning has not yet been shown. During the segmentation process we 
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discovered that we could easily differentiate between cartilaginous and ossified portions of the 

laryngeal cartilages within our high-resolution MR Images. In all our models we used separate 

label fields to indicate ossification patterns. Figures 4.9 and 4.10 show the 3D aspects of the 

patterning of ossification on two larynx specimens. Laryngeal cartilage officiation pattern 

mapping can be useful in several ways such as, identifying osteosarcoma, needle guidance, and 

phonatory evaluation in the aging patient.  
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Structure by MRI Contrast Tissues and Cell Types 

Thyroid, Cricoid, and Arytenoid 
Cartilage 

hyaline cartilage, dystrophic bone 

Vocal Fold Mucosa epithelial, muscular, and glandular tissue 
comprised of collagen, elastin, ciliated 
columnar stratified epithelium, sub-mucosal 
respiratory glands, skeletal muscle, 
perimysium fascial spaces, loose fibrous 
connective tissue, and chronic inflammatory 
cells within the lamina propria 

Vestibular Space  N/A 
Muscle skeletal muscle, perimysium, collagen, elastin 
Fascia Perimysium, loose fibrous connective tissue 
 
Figure 4.1 A Table that Lists Several Laryngeal Tissues and Cell Types which were identified 
via Image Contrast and Histological Analysis. Laryngeal structures identified via MR image 
contrast and their corresponding tissue types as seen on histological analysis  
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Figure 4.2: The 3D Internal Structures of Human Larynx Specimen 1 are Modeled from Several 
Aspects. The yellow indicates the central structure of the vocal fold mucosa within the larynx. 
The darker blue shows the shape of the vestibular opening between the true and false vocal folds 
while the lighter blue indicates the position of the vocal ligament. Panels A-F depict superior, 
anterior, posterior, right, left, and best views of the internal laryngeal structures respectively. In 
panels B-F the top of each panel contains the superior portion of the larynx while the bottom of 
each panel contains the inferior portion.   
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Figure 4.3: Each Panel Displays a 3D Model Depicting the Arrangement of Both the Internal 
and External Structures of Human Larynx Specimen 1 from a Best View Angled Orientation as 
Individual Laryngeal Structures are Added. Panel A depicts the cricoid cartilage, thyroid 
cartilage, vocal fold mucosa, vestibular space, and vocal ligament. Panel B shows the same 
structures as seen in panel A with the addition of the arytenoid cartilage. Panel C adds fascia 
visible between musculature on high-resolution MRI. Panel D adds esophageal structure to the 
model. Finally, intrinsic laryngeal muscles are shown in panel E.  
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Figure 4.4: The 3D Internal Structures of Human Larynx Specimen 2 are Modeled from Several 
Aspects. The yellow indicates the central structure of the vocal fold mucosa within the larynx. 
The blue shows the shape of the vestibular opening between the true and false vocal. Panels A-F 
depict superior, anterior, posterior, right, left, and best views of the internal laryngeal structures 
respectively. In panels B-F the top of each panel contains the superior portion of the larynx while 
the bottom of each panel contains the inferior portion. 
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Figure 4.5: Each Panel Displays a 3D Model Depicting the Arrangement of Both the Internal 
and External Structures of Human Larynx Specimen 2 from a Best View Angled Orientation as 
Individual Laryngeal Structures are Added. Panel A depicts the cricoid cartilage, thyroid 
cartilage, vocal fold mucosa, and vestibular space. Panel B shows the same structures as seen in 
panel A with the addition of the arytenoid cartilage shown in green. Panel C adds fascia visible 
between musculature on high-resolution MRI. Panel D adds esophageal structure to the model. 
Finally, intrinsic laryngeal muscles are shown in panel E.  
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Figure 4.6: A High-Resolution MR Image Slice through a Human Larynx at the Level of the 
Laryngeal Prominence. Individual tissues and structures are identified by image contrast and 
carefully segmented and labeled in different colors. Color labels from these segmented image 
slices are then used to generate 3D models of laryngeal structure with tissue specificity.  
 
 



53 
 

 
 
Figure 4.7:  A Series of Segmented High-Resolution MR Image Slices through a Single Human 
Larynx Specimen. Panels A-L run from the most inferior slice to the most superior. Individual 
tissues and structures are identified by image contrast and carefully segmented and labeled in 
different colors. Color labels from these segmented image slices are then used to generate 3D 
models of laryngeal structure with tissue specificity.  
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Figure 4.8: Histological analysis of Right and Left halves of the posterior larynx Sliced in the 
Coronal Plane. Panels A and B show the left side of the larynx, panels C and D depict the right 
side. Slides shown in panels A and C are H&E stains and panels B and D are Mallory’s 
Trichrome. Tissues of the true and false folds are easily seen in these images. 
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Figure 4.9: A 3D Model Depicting the Pattern of Ossification within the Cricoid, Arytenoid and 
Thyroid Cartilage within Human Larynx Specimen 1. Panel A shows the internal 3D pattern of 
ossification in the thyroid cartilage of human larynx specimen 1 in dark green. Panel B depicts 
the cartilaginous portions of the thyroid cartilage covering the ossification centers in light green. 
Panels C and D show ossification of the cricoid cartilage in purple and cartilaginous portions in 
light blue. 
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Figure 4.10: A 3D Model Depicting the Pattern of Ossification within the Cricoid, Arytenoid 
and Thyroid Cartilage within Human Larynx Specimen 3. Panel A shows the internal 3D pattern 
of ossification in the thyroid cartilage of human larynx specimen 1 in dark green. Panel B depicts 
the cartilaginous portions of the thyroid cartilage covering the ossification centers in light green. 
Panels C and D show ossification of the cricoid cartilage in purple and cartilaginous portions in 
light blue. 
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CHAPTER 5: General Conclusion and Relevance of Research 

Recurrent laryngeal nerve (RLN) palsy is a common post-operative complication of 

many head and neck surgeries. [1-5] RLN palsy is caused by accidental compression or 

transection of the RLN during surgery, or as a result of trauma. When patients become afflicted 

with vocal cord paralysis they are susceptible to a loss of phonation, respiratory compromise, or 

aspiration.[6]  

This project encompasses several translational anatomy studies which serve the purpose 

of increasing our knowledge of, and capability to work with, both the human and the porcine 

larynx. In general our goals are to either prevent RLN damage through surgical augmentation or 

to improve repair strategies if any damage that does occur. Several new high-resolution magnetic 

resonance imaging protocols were developed during these projects that can be utilized to 

generate high quality images of minute structures in both human and porcine larynges. The 

Porcine larynx was selected for inclusion is several of these projects due to its similarity to the 

human larynx [7], and its great potential to serve as a model to improve human laryngeal surgical 

repairs [8, 9]. Several segmentation techniques were also developed that can be used to render 

state of the art 3D models of laryngeal anatomy and neuroanatomy. Additionally, tissue 

processing, sectioning, and staining (H&E and Mallory’s Trichrome) techniques were optimized 

and perfected for use in human and porcine laryngeal tissue. All of these new or optimized 

methodologies will be useful to the scientific community for future studies that utilize human or 

porcine laryngeal tissue. 

Generally speaking this body of work serves the purpose of shortening 3 gaps in our 

current knowledge of, and capability to successfully work with, porcine and human laryngeal 

anatomy. The first gap, which is addressed by chapter 2 of this work, is a lack of modern three-
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dimensional mapping of the RLN which highlights anatomical variation. Accurate mapping is 

essential to good surgical planning.  Chapter 2 details the generation and utilization of state of 

the art 3D modeling of porcine anatomy and neuroanatomy. Those models will make the porcine 

larynx a much more accessible model to use to improve human laryngeal surgical repairs and 

interventions.  

The second gap this project addresses is the fact that there is a great need for a diagnostic 

imaging method that can be used to determine which anatomical variation of the RLN is present 

in a particular patient without exploratory surgery. Unfortunately, many patients with vocal cord 

paralysis undergo exploratory surgery to determine if they are candidates for a PCA 

reinnervation procedure only to discover they don’t have the indicated RLN anatomy for surgical 

anastomosis. Chapter 3 of this work provides new MRI and segmentation strategies that can be 

used to reconstructed laryngeal neurovascular structure in 3 dimensions in a noninvasive manner. 

The third and final gap addressed by chapter 4 is the determination of the 3D histological 

geometric structure of the human larynx. We have presented H&E and Mallory’s Trichrome 

histological analysis of human laryngeal tissue alongside complete 3D models of laryngeal 

structures. A simple correlatory method is suggested to easily extrapolate the 3D histologic 

geometry of laryngeal structure by analyzing our models alongside histological slides. We intend 

this information to be useful to those groups seeking to build functional synthetic models of the 

human vocal apparatus. 

 In conclusion we hope that these new methodologies and models will serve the scientific 

and clinical communities in improving the success of laryngeal surgical repair techniques via 

improved preclinical studies that use the porcine model, augmented surgical planning, and more 

realistic synthetic models of laryngeal anatomy and physiology. 
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