
The third experiment (at 1.08 m/s) exhibited unusual fluid flow patterns which caused the 

flame to skirt around the sides and bottom of the shrub and immediately burn the far side (Figure 

4-19). This left a diagonal burn strip from which fire split and back-burned towards the top right 

(upwind) corner as well as spreading down to the far bottom corner. The top right corner largely 

remained unburned. The shrub model predicted some similar burn features. The fire quickly cut 

through the shrub, but at a less inclined angle. The fire then split and back-burned towards the 

top right corner and the bottom left. However, a larger section of the bottom left corner remained 

unburned while nearly all of the top right section burned (see Figure 4-19). The differences 

between the physical and simulated fire spread behavior seem to stem from complex fluid 

dynamics which the model did not capture. It is interesting to note that though the burn paths 

were somewhat different, the burn times were similar. Referring back to the discussion on fire 

intensity, this third burn had the highest wind speed and what may have been the fire intensity 

most similar to field wildland fires. This supports the conclusion that fire intensity accounts for 

slower wind tunnel fire spread and that kinetic modeling could improve model agreement. 

   
Figure 4-19. Run 3 flame path of the wind tunnel experiment (left) and a model simulation (right) viewed 

from the side. See figure caption to Figure 4-17. 
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Trends in tburn demonstrated an expected and realistic response (Figure 4-21, a, d and g). 

The value of tburn decreased with increasing wind speed. This coincides with faster fire 

propagation driven by wind. Between U = 1 m/s and U = 2 m/s, less of the shrub burned, also 

contributing to the decrease in tburn. Increases in MC generally caused increases in tburn, in spite 

of decreases in Xs with increasing MC. This reflects the longer tig and tbo of the moist fuel 

elements. Rc had only a small impact on tburn. For the most part, increases in nL caused increases 

in tburn. However, between U = 0-1 m/s and at low MC, the change of nL from a medium to high 

level had a mostly negative impact on tburn. Increases in nL most frequently impacted tburn by 

facilitating more extensive fire spread, which resulted in longer burn times. However, at low MC 

and medium and low U, Xs was approaching its maximum at the medium level of nL, such that 

increasing nL to its high level resulted in larger flames and faster fire spread, but less substantial 

gains in Xs and a decrease in tburn. 

The values of Xs responded as expected to nL, MC, and Rc without exception (see Figure 

4-21, b, e and h). The response of Xs to U was somewhat unexpected, though still plausible. As 

in Figure 4-19 showing the burn path of wind tunnel experiment three, an ignition in the bottom 

upwind corner can easily miss the upper upwind corner as it propagates through the shrub. So, 

the burn path may largely be responsible for the response of Xs to U. However, for simulations at 

high wind and medium or high MC, Xs is low enough to suggest extinction without burning even 

the leaves that would lie directly in the expected fire path. Perhaps this behavior is reasonable, 

but wind is generally regarded to enhance wildland fire spread, not extinguish it, as this model 

predicts for higher MC. The cause of the current model behavior is best attributed to the flame 

merging and flame angle models, which appear to behave poorly in wind-driven conditions. 
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Values of Δzf,max from the full factorial of model simulations are plotted in Figure 4-21 (c, 

f and i). The flame height decreased with increases in MC and U, but increased with increases in 

Rc and nL. The trend in moisture content reflects the single-leaf behavior measured in 

experiments, which is captured in the model. Decreasing flame height with increasing wind 

speed goes contrary to expectations, and signals a model deficiency. This deficiency can be 

traced to several likely causes. Firstly, the singular flame height was used with the flame angle 

correlation. The flame angle correlation balances the effect of buoyant forces (using flame height 

as a measure of heat release) and wind momentum. Because the collective heat release of 

neighboring flames was not accounted for in the flame angle correlation, heat release was 

understated, causing overly tilted flame angle predictions. Second, wind drives more intense fires 

which burn at a different temperature than fires in still air. This increases heat release and 

upward buoyancy, which counters the horizontal momentum of the wind to yield more upright 

and taller flames. These two considerations—choosing a flame angle that reflects the actual local 

heat release, and adjusting the kinetic response of burning fuels to different burn conditions—

appear important to improving this model. 

The increase of Δzf,max with nL and Rc occurs since both of these factors affect flame 

coalescence. Increased nL increased the bulk density of leaves and decreased the space between 

leaves, thereby increasing the overlap of flames from adjacent leaves. Increases in the flame 

coalescence parameter Rc increased the amount of flame height added in consequence to flame 

overlap. Increasing Δzf,max depends on increasing flame overlap to add extra height to the flames, 

which also results in more upright flames which reach higher. It also depends on the fire 

propagating to the top of the shrub. 
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4.5 Conclusions 

A novel semi-empirical approach detailing the properties and location of distinct fuel 

elements (manzanita leaves) was developed to model fire spread through a shrub. In the 

spectrum of wildland fire models, this approach strikes a unique balance between modeling 

detail and computational speed. For example, in the bulk density simulations, the average 

computational time on a personal computer was one to two times less than the model time for 

shrubs with less than or equal to 855 leaves (3.8 kg/m3). For the heaviest shrub in the bulk 

density simulations (2250 leaves, 9.9 kg/m3) computational time was 6.5 times that of the model 

time.  

The model responded well to wind speed, moisture content and leaf count. Wind tunnel 

experiments showed some agreement compared to simulations, but also highlighted model 

deficiencies. Several needs were identified, such as improved flame merging, and flame angle 

models. The importance of fine-scale fuel placement was also identified. The benefits of 

incorporating kinetics into the flame behavior of the fuel elements may resolve many differences 

between modeled and measured fire spread behavior in terms of Xs and tburn. 

Progress on these suggested improvements and on extending the model to additional 

species is detailed in the following chapters. The multi-leaf fire spread simulator is intended to 

provide a submodel for landscape scale computational fluid dynamics calculations and to provide 

an alternative fire behavior model for operational fire spread predictions. 
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5. DETAILED FUEL PLACEMENT MODELS FOR SPARSE SHRUBS 

Fine-scale fuel placement was an important factor in the fire spread model described in 

Chapter 4. For shrub species that have concentrated fuel placement near branches, the branching 

structure must be modeled to determine appropriate locations of readily-burned fuels. Models 

were developed to simulate the branching structure of chamise (Adenostoma fasciculatum) and 

Utah juniper (Juniperus osteosperma). Physical measurements of Utah juniper morphology were 

performed by Shen (2013). The branching structure was based on a form of fractal theory called 

Lindenmayer systems (i.e., L-systems) (Prusinkiewicz and Lindenmayer, 1990). The structure 

model was designed to match the specific characteristics of each species, such as branching 

angles, the number of stems exiting at ground level, and the fuel element length. Correlations to 

predict branch number from crown diameter were made based on data from the literature, to 

ensure that the modeled shrubs would have the same bulk density as live shrubs. These models 

generate shrub geometries and fuel element placement information which can be directly used in 

the semi-empirical fire spread models discussed in Chapters 4 and 8. 1 

1 Marianne Fletcher helped with a major portion of the L-systems modeling, especially for chamise. 
The results presented have been published: Prince, D. R., M. E. Fletcher, C. Shen and T. H. Fletcher, 
"Application of L-Systems to Geometrical Construction of Chamise and Juniper Shrubs," Ecological 
Modelling, 273, 86-95 (2014).  
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Figure 7-25. Modeled mass release for CPD dry matter release and temperature-dependent diffusivity water 

release compared to measured mass release averaged for all leaves in each group. Separately-
measured moisture data are scaled to the same initial value and shown alongside the moisture 
model results. 

 

Figure 7-25 also includes the moisture release data listed in Table 6-2, scaled to the initial 

leaf moisture content and superimposed on the modeled dry matter mass release curves. The 

initial moisture contents of leaves described in Table 6-2 were mostly in the 70% MC to 80% 

MC range. The data of Table 6-2 is therefore most applicable for the fresh live leaves, for which 

the model and measured moisture release data points were very similar. The moisture release 

data therefore confirms the behavior of the diffusion model and dry matter release models for the 

fresh live leaves.  

The rehydrated and dehydrated leaves had starting moisture contents which were well 

below the moisture contents of the leaves described in Table 6-2. Therefore the moisture release 

data points were less applicable to the moisture release behaviors of the dehydrated and 

rehydrated leaves. The moisture release data points exceeded the model and measured mass 

release curves of the rehydrated and dehydrated leaves. This was expected because the moisture 
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8.2.2 Flame parameter scaling 

The physics-based submodel was run for the base case and the targeted fire spread 

conditions in order to scale flame parameters (see Equations 4-7 to 4-10) to the targeted fire 

spread conditions. Flame parameters were scaled based on the duration and amount of mass 

release. The end of mass release tend was considered to occur when at least 25% of each of the six 

dry components was released and the total rate of dry matter release was less than 2% of the 

starting dry mass per second. If these criteria were not met within 50 s, tend was set to 50 s. The 

ratio of tend for the base case (subscript 0) and new case (subscript F) were then used to scale tig, 

th, and tbo to the fire spread conditions: 

 𝑡𝑥,𝐹 = 𝑡𝑥,0
𝑡𝑒𝑛𝑑,𝐹

𝑡𝑒𝑛𝑑,0
 ( 8-12 ) 

 

where the subscript x refers to any of the flame times. The criteria for tend were selected to 

approximate time at burn out. The fraction 𝑡𝑒𝑛𝑑,𝐹/𝑡𝑒𝑛𝑑,0 is the physics-based scaling factor of 

flame time. 

The flame height was scaled similarly. Flame heights are considered to scale by the two-

fifths power of the heat release (Steward, 1970; Sun et al., 2006). Heat release is proportional to 

the total mass release (excluding water), which is inversely related to the time over which mass 

is released. Therefore, hf,max was scaled by the physics-based scaling factor 𝜑ℎ (Equations 8-13 

and 8-14): 

 ℎ𝑓,𝑚𝑎𝑥,𝐹 = 𝜑ℎℎ𝑓,𝑚𝑎𝑥,0 ( 8-13 ) 
 

 
𝜑ℎ = ��

𝑡𝑏𝑜,0 − 𝑡𝑖𝑔,0

𝑡𝑏𝑜,𝐹 − 𝑡𝑖𝑔,𝐹
� �

𝛥𝐹𝐹
𝛥𝐹0

��
2 5⁄

 ( 8-14 ) 
 

𝛥𝐹𝐹 is the fractional change in dry mass at the new fire condition and 𝛥𝐹0 is the fractional 

change in dry mass at the base condition.  
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Figure 8-5. Sensitivity of scaling factors for flame parameters to Tsoot. 

8.6.1.3 Sensitivity to wind speed and vertical flame position 

The change in the scaling factors due to changes in U (Figure 8-6) were due to the effect 

of U on the gas velocity in the flame direction 𝑣𝜃 (see Equation 8-2). As U increased, convective 

heat transfer increased, the temperature profile rose more quickly, and less time was required to 

burn the leaf out. The scaling factors do not meet at 1 as U approaches zero because the base 

case and the fire spread case have different values for both vertical flame height and Tsurr in this 

comparison. 

The vertical flame position also affects 𝑣𝜃 due to buoyant acceleration of the hot 

convective gas plume (Figure 8-7, Equation 8-3). As the vertical flame height approaches zero, 

the physics-based scaling factors diverge because 𝑣𝜃 and convective heating approach zero. The 

flame height scaling due to U and vertical flame position was mostly a function of flame time 

scaling; the amount of mass release was nearly constant (see Equation 8-12). 
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Figure 8-6. Sensitivity of scaling factors for flame parameters to U. 

  
Figure 8-7. Sensitivity of scaling factors for flame parameters to vertical flame position. 

 

Overall, the trends in the physics-based scaling of flame parameters responded as 

expected to factors affecting wildland fire spread. Developing the ability to respond 

appropriately to the heat transfer conditions of the fire spread scenario of interest was essential to 

achieving accurate results for broader fire spread conditions. 

True predictive capabilities would also depend on developing methods to predict the fire 

scenario before a fire had already occurred. Dependence on user-defined heating conditions 

could be eliminated by periodically feeding back the modeled fire state to a model that would 
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H. L-SYSTEMS FUEL PLACEMENT CODE FOR CHAMISE 

This MATLAB code was used to generate chamise geometries discussed in Chapter 5. 

% Generates 3-d, stochastic shrub with geometry similar to chamise. 
%   v1:  +/- change theta, */! change phi 
%   v2:  +/- change alpha, */! change beta 
%   v3:  define size of arrays (saves memory and time); calculates volume 
%   v4:  calculates bulk density 
%   v5:  considers primary branch spacing (none overlapping); reorganized 
%         code to have one big loop instead of several smaller ones; 
%         strings specific to chamise added 
%   v6:  graphs all points at once (faster); view to match picture for paper 
%   v7:  splits all branches into 4-6 cm segments and assigns thicknesses; 
%         number of primary branches calculated from correlations 
%   v8:  uses different scripts 
%   v9:  fewer primary branches, new correlations 
%   v10: fixes primary branch radius, plots segments in different colors 
% Based on Prusinkiewicz, "The Algorithmic Beauty of Plants" 
% Marianne Fletcher, March 2013 
 
clear 
close all 
 
%% INPUTS 
d_shrub = 140; % crown diameter (cm) 
fuel_len = 4; % length of one fuel segment (cm) 
 
plot_fig = 1; % Plot figure of shrub?  0=No; 1=Yes 
save_fig = 0; % Save figure? 0=No; 1=Yes 
plot_fuel = 1; % Plot figure of branch segments? 0=No; 1=Yes 
save_fig2 = 0; % Save figure? 0=No; 1=Yes 
filename = '04-24-d'; % Filename if figures are saved 
 
% Color options 
%  Case 1: Fuel=green;        Non-fuel=brown; 
%  Case 2: Fuel=light green;  Non-fuel=dark green; 
%  Case 3: Different colors of green; 
%  Case 4: Black; 
%  Case 5: Fuel=orange;       Non-fuel=green 
colors = 1; 
%% VARIABLES 
n = 3;  % number of derivations 
 
MC = .3; 
 
% ANGLES (in radians) 
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max_angle = 77*pi/180;  % average primary branch angle 
st_dev(1) = 30*pi/180;  % standard deviation for primary branch angle 
delta = 30*pi/180;  % average secondary/tertiary branch angle 
st_dev(2) = 0*pi/180;  % standard deviation for secondary/tertiary angle 
 
% SCALE 
scale = 0.45;  % secondary length/primary length 
 
% DISTANCES (cm) 
shift = 13.1;  % average distance of primary branches from center 
dist = d_shrub/(2*sin(max_angle));  % primary branch length 
st_dev(3) = 0;  % standard deviation for primary branch length 
 
% STRINGS 
%  Defines shape according to the following key: 
%   F  one step forward 
%   +  turn left by delta in x-plane 
%   -  turn right by delta in x-plane 
%   *  turn left by delta in y-plane 
%   !  turn right by delta in y-plane 
%   X  location of rewriting 
% NOTES ABOUT WRITING STRINGS: 
%  'F's make up the main stem, and 'X's are the branches. So if the string 
%   were 'FFF', there would just be three straight lines connected 
%   end-to-end. However, 'X's do not connect end-to-end. The next segment 
%   after and 'X' starts at the same intial point as the 'X' rather than at 
%   the end point of the 'X' such as with an 'F'. 
%  The bottom line is: 
%   DO put +/-/!/* before 'X's 
%   DON'T put +/-/!/* before 'F's unless you want your branch to be bent 
%  If you are still confused, look at the document 'F vs. X' that should be 
%   in this same folder. 
X1 = 'F+!XF+*X-*XFFF-!XXF'; 
X2 = 'F!X*-XF+*X!-XFFF+XX'; 
X3 = 'F-*X-!XFFF-XFF+*XXFF'; 
X4 = 'F-*XF+XFF+!X!XFF+*XX'; 
X5 = 'F!X+XFFF*X!-XFFFX'; 
% Counts numbers of X's and F's in strings. 
X_f=zeros(5,1); X_x=zeros(5,1); 
for i=1:5 
    if i==1 
        X=X1; 
    elseif i==2 
        X=X2; 
    elseif i==3 
        X=X3; 
    elseif i==4 
        X=X4; 
    else 
        X=X5; 
    end 
    for j=1:length(X) 
        if X(j) == 'F' 
            X_f(i,1)=X_f(i,1)+1; 
        elseif X(j) == 'X' 
            X_x(i,1)=X_x(i,1)+1; 
        end 
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    end 
end 
 
%% NUMBER OF BRANCHES 
height = (dist+dist*scale)/100; % approx. height (m) 
fuel_weight = (0.286817639*exp(1.201245975*height))*1000; % total fuel weight 
(gm) 
 
% Predicts the fuel weights of each class based on the total fuel weight. 
%  The fuel classes are: 
%   0 - 1/4"        "quart" 
%   1/4" - 1/2"     "half" 
%   1/2" - 1"       "one" 
%   1" - 3"         "three" 
fw_quart = (0.245570641*fuel_weight/1000+ 0.247667354)*1000; % (gm) 
fw_half = (0.214064333*fuel_weight/1000-0.007333108)*1000; % (gm) 
fw_one = (0.331204001*fuel_weight/1000-0.032277442)*1000;  % (gm) 
fw_three = (0.209161025*fuel_weight/1000-0.208056804)*1000;  % (gm) 
if fw_three < 0 
    fw_three = 0; 
end 
 
thick_guess = mean(rand(10000,1).^(-1/2.612198509)-.45); % ave. thick from 
distribution (mm) 
 
% Dallan's correlation for fuel mass (gm). 
m_quart = (-0.13575 + 0.136 * thick_guess  + 0.127 * MC + 0.0178 * 
fuel_len)/(1+MC); 
 
% Mass of bigger stems, treated as cylinders (gm). 
% density of chamise wood, 1.154 gm/cm^3, measured by Victoria Lansinger 
2/7/13 
m_half = 1.154 * pi * ((.635+1.27)/2*.5)^2 * fuel_len; 
m_one = 1.154 * pi * ((1.27+2.54)/2*.7)^2 * fuel_len; 
m_three = 1.154 * pi * (3.81/2)^2 * fuel_len; 
 
% Estimated number in each class. 
num_quart = round(fw_quart / m_quart); 
num_half = round(fw_half / m_half); 
num_one = round(fw_one / m_one); 
num_three = round(fw_three / m_three); 
num_total = num_quart+num_half+num_one+num_three; 
 
% Percent of segments in each class. 
quart = num_quart / num_total; 
three = num_three / num_total; 
half = num_half / num_total; 
 
% Predicts total length of a primary branch (including lengths of all 
%  secondary and tertiary branches) and divides by fuel length to get the 
%  approximate number of segments per branch. 
c=[-0.000119837 0.08202669  7.137025823 1110.252041]; 
fuel_branch=(c(1)*dist^3+c(2)*dist^2+c(3)*dist+c(4))/fuel_len; 
 
% Number of primary branches 
numb_branches = round(num_total/fuel_branch); 
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%% ARRAYS 
% "Branch" refers to the full length of the branch 
% "Segment" refers to the pieces of the branch that were cut up according 
%   to the fuel length 
x=zeros(1200,1); % x-coordinate of every branch 
y=zeros(1200,1); % y-coordinate of every branch 
z=zeros(1200,1); % z-coordinate of every branch 
theta=zeros(1200,1);phi=zeros(1200,1); % 3-d angles of every branch 
alpha=zeros(1200,1);beta=zeros(1200,1); %2-d angles of every branch 
points=zeros(4000,6); % (x,y,z,phi,theta,length) of every segment 
 
% Saves info before moving on the the next derivation 
x_n=zeros(n,1);y_n=zeros(n,1);z_n=zeros(n,1);alpha_n=zeros(n,1); 
beta_n=zeros(n,1);len_n=zeros(n,1);b_n=zeros(n,1); 
 
 
dist_a=normrnd(dist,st_dev(3),numb_branches,n); % randomized distance 
 
first_b=ones(1,2);count=0;count1=0;count_p=0; % counts place in arrays 
 
%% PRIMARY BRANCHES 
% SHIFT 
% Assigns each primary branch a distance from the center of the shrub 
shift_r = shift.*rand(numb_branches,1).^(1/3); 
shift_x = shift_r*(1/sqrt(2)); 
shift_y = shift_r*(1/sqrt(2)); 
 
% LOCATIONS 
% Dallan's code to assign phi and theta values. 
branch_sections 
 
%% GEOMETRY 
for A = 1:numb_branches 
    %% PART A: Sets up parameters for primary branches. 
    % Initial coordinates and angles 
    x(count+1) = shift_x(A); y(count+1) = shift_y(A); z(count+1) = 0; 
    theta(count+1) = theta_primary(A); phi(count+1) = phi_primary(A); 
    % Convert theta and phi to alpha and beta 
    x0 = sin(phi(count+1))*cos(theta(count+1)); 
    y0 = sin(phi(count+1))*sin(theta(count+1)); 
    z0 = cos(phi(count+1)); 
    alpha(count1+1) = atan2(x0,z0); 
    beta(count1+1) = atan2(y0,z0); 
     
    % Last angle of current derivation 
    alpha_n(1) = alpha(count1+1); beta_n(1) = beta(count1+1); 
    count1 = count1+1; 
     
    choose_X = rand(1,n);  % random string for each derivation 
    count = count+1;  % counts # of points in array 
    n_current = 1;  % current derivation number 
    b = 1;  % place in string 
    turn = 0;  % counts # of +/-/*/! in string 
    loop = 1;  % runs a continuous loop (until break) 
     
    while loop > 0 
        %% PART B: Generates the primary branch. 

298 
 



        % String for current derivation 
        if choose_X(n_current) <= (1/5) 
            X = X1; 
            nmb_f = X_f(1);  % number of 'F's in string 
            nmb_x = X_x(1);  % number of X's in string 
        elseif choose_X(n_current) <= (2/5) 
            X = X2; 
            nmb_f = X_f(2); 
            nmb_x = X_x(2); 
        elseif choose_X(n_current) <= (3/5) 
            X = X3; 
            nmb_f = X_f(3); 
            nmb_x = X_x(2); 
        elseif choose_X(n_current) <= (4/5) 
            X = X4; 
            nmb_f = X_f(4); 
            nmb_x = X_x(2); 
        else 
            X = X5; 
            nmb_f = X_f(5); 
            nmb_x = X_x(2); 
        end 
         
        % Randomizes strings for second and third derivations. 
        if n_current==2 && b>length(X) 
            choose_X(n_current)=rand(1); 
        elseif n_current==3 && b>length(X) 
            choose_X(n_current)=rand(1); 
        end 
         
        % Length of next step. This length is divided by the number of 'F's 
        %  in the string (nmb_f), so the TOTAL LENGTH OF THE BRANCH DOES 
        %  NOT CHANGE WITH THE LENGTH OF THE STRING. 
        dist_n = dist_a(A,n_current)/nmb_f*scale^(n_current-1); 
         
        if b <= length(X)  % if all commands in string have not been 
completed 
            if X(b) == 'F'  % one step forward 
                % Converts alpha and beta to theta and phi 
                x0 = sin(alpha(count1)); 
                if abs(alpha(count1)) > pi/2 
                    z0 = -sqrt(1-(sin(alpha(count1))^2)); 
                else 
                    z0 = sqrt(1-(sin(alpha(count1))^2)); 
                end 
                y0 = z0*tan(beta(count1)); 
                r = sqrt(x0^2+y0^2+z0^2); 
                phi(count+1) = acos(z0/r); 
                theta(count+1) = atan2(y0,x0); 
                % Next (x,y,z) coordinate using phi and theta from above 
                x(count+1) = 
x(count)+dist_n*cos(theta(count+1))*sin(phi(count+1)); 
                y(count+1) = 
y(count)+dist_n*sin(theta(count+1))*sin(phi(count+1)); 
                z(count+1) = z(count)+dist_n*cos(phi(count+1)); 
                count = count+1;  % # of elements in array 
                b = b+1;  % current step in string 
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                % Separates branch into segments of length "fuel_len" 
                num_segs = round(dist_n/fuel_len); % number of segments on 
branch 
                seg = zeros(num_segs,3); % (x,y,z) of each segment 
                seg(1,:) = [x(count-1),y(count-1),z(count-1)]; % starting 
point (initial point of branch) 
                for i = 1 : num_segs - 1 
                    seg(i+1,1) = 
seg(i,1)+fuel_len*cos(theta(count))*sin(phi(count)); % x 
                    seg(i+1,2) = 
seg(i,2)+fuel_len*sin(theta(count))*sin(phi(count)); % y 
                    seg(i+1,3) = seg(i,3)+fuel_len*cos(phi(count)); % z 
                    % Puts all information into a single matrix 
                    points(count_p+1,1) = seg(i+1,1); % x 
                    points(count_p+1,2) = seg(i+1,2); % y 
                    points(count_p+1,3) = seg(i+1,3); % z 
                    points(count_p+1,4) = phi(count); % angles 
                    points(count_p+1,5) = theta(count); 
                    points(count_p+1,6) = fuel_len; % length 
                    count_p=count_p+1; % counts number of points in array 
                end 
                % Final point (end point of branch) 
                points(count_p+1,1) = x(count); 
                points(count_p+1,2) = y(count); 
                points(count_p+1,3) = z(count); 
                points(count_p+1,4) = phi(count); 
                points(count_p+1,5) = theta(count); 
                points(count_p+1,6) = (x(count)-
seg(end,1))/(cos(theta(count))*sin(phi(count))); %length 
                count_p = count_p+1; 
            elseif X(b) == '+' % left in x-plane 
                alpha(count1+1) = alpha(count1)-normrnd(delta,st_dev(2),1,1); 
                beta(count1+1) = beta(count1); 
                b = b+1; count1 = count1+1; 
                turn = turn+1;  % # of +/-/*/! 
            elseif X(b) == '-' % left in x-plane 
                alpha(count1+1) = alpha(count1)+normrnd(delta,st_dev(2),1,1); 
                beta(count1+1) = beta(count1); 
                b = b+1; count1 = count1+1; 
                turn = turn+1; 
            elseif X(b) == '*' % right in y-plane 
                alpha(count1+1) = alpha(count1); 
                beta(count1+1) = beta(count1)-normrnd(delta,st_dev(2),1,1); 
                b=b+1; count1=count1+1; 
                turn=turn+1; 
            elseif X(b)=='!' % left in y-plane 
                alpha(count1+1) = alpha(count1); 
                beta(count1+1) = beta(count1)+normrnd(delta,st_dev(2),1,1); 
                b = b+1; count1 = count1+1; 
                turn = turn+1; 
            elseif X(b) == 'X' 
                %% PART C: 'X' Command. 
                if n_current < n  % for all but last derivation 
                    % Saves current coordinates, angles, length of string, 
and place in string. 
                    b_n(n_current) = b;  % place in string 
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                    x_n(n_current) = x(count);  % x-coordinate 
                    y_n(n_current) = y(count);  % y-coordinate 
                    z_n(n_current) = z(count);  % z-coordinate 
                    alpha_n(n_current) = alpha(count1-turn);  % x-angle 
                    beta_n(n_current) = beta(count1-turn);  % y-angle 
                    len_n(n_current) = length(X);  %length of current string 
                    n_current = n_current+1;  % move to next derivation 
                    b = 1;  % starts at the beginning of the string 
                    turn = 0; first_b(n_current-1) = count; 
                else  % last derivation (does not rewrite) 
                                       
                    % Randomizes segment lengths for last derivation 
                    dist_n = dist_n*(1+(3-1).*rand(1)); 
                     
                    % Treats 'X' essentially as an 'F' 
                    % Converts alpha and beta to theta and phi 
                    % See Amelia Rapp's Lab book p. 38 or "Angles.docx" 
                    x0 = sin(alpha(count1)); % x-z plane 
                    if abs(alpha(count1)) > pi/2 
                        z0 = -sqrt(1-(sin(alpha(count1))^2)); 
                    else 
                        z0 = sqrt(1-(sin(alpha(count1))^2)); 
                    end 
                    y0 = z0*tan(beta(count1)); 
                    r = sqrt(x0^2+y0^2+z0^2); 
                    phi(count+1) = acos(z0/r); 
                    theta(count+1) = atan2(y0,x0); 
                    % Next (x,y,z) coordinate using theta and phi above 
                    x(count+1) = real(x(count)+dist_n*cos(theta(count+1))... 
                        *sin(phi(count+1))); 
                    y(count+1) = real(y(count)+dist_n*sin(theta(count+1)).... 
                        *sin(phi(count+1))); 
                    z(count+1) = real(z(count)+dist_n*cos(phi(count+1))); 
                    count = count+1;  % # of elements in array 
                    b = b+1;  % place in string 
                    % Separates branch into segments ('leaves') 
                    num_segs = round(dist_n/fuel_len); 
                    if dist_n/fuel_len < 1 
                        num_segs = 1; 
                        fuel_dist=dist_n; 
                    else 
                        fuel_dist=fuel_len; 
                    end 
                    seg = zeros(num_segs,3); 
                    seg(1,:) = [x(count-1),y(count-1),z(count-1)]; 
                    for i = 1:num_segs-1 
                        seg(i+1,1) = 
real(seg(i,1)+fuel_dist*cos(theta(count))... 
                            *sin(phi(count))); 
                        seg(i+1,2) = 
real(seg(i,2)+fuel_dist*sin(theta(count))... 
                            *sin(phi(count))); 
                        seg(i+1,3) = 
real(seg(i,3)+fuel_dist*cos(phi(count))); 
                        points(count_p+1,1) = 
seg(i+1,1);%(step(i,1)+step(i+1,1))/2; %#ok<*SAGROW> 
                        points(count_p+1,2) = 
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seg(i+1,2);%(step(i,2)+step(i+1,2))/2; 
                        points(count_p+1,3) = 
seg(i+1,3);%(step(i,3)+step(i+1,3))/2; 
                        points(count_p+1,4) = phi(count); 
                        points(count_p+1,5) = theta(count); 
                        points(count_p+1,6) = fuel_dist; 
                        count_p=count_p+1; 
                    end 
                    points(count_p+1,1) = x(count); 
                    points(count_p+1,2) = y(count); 
                    points(count_p+1,3) = z(count); 
                    points(count_p+1,4) = phi(count); 
                    points(count_p+1,5) = theta(count); 
                    points(count_p+1,6) = real((x(count)-
seg(end,1))/(cos(theta(count))*sin(phi(count))));%fuel_dist; 
                    count_p = count_p+1; 
                     
                    % Back track to continue with the next part of the code 
                    x(count+1) = x(count-1); 
                    y(count+1) = y(count-1); 
                    z(count+1) = z(count-1); 
                    alpha(count1+1) = alpha(count1-turn); 
                    beta(count1+1) = beta(count1-turn); 
                    theta(count+1) = theta(count-1); 
                    phi(count+1) = phi(count-1); 
                    turn = 0; count = count+1; count1 = count1+1; %b=b+1; 
                end 
            else  % for anything else in the string (spaces, brackets, etc.) 
                b = b+1;  % moves on to the next command, not infinite loop 
            end 
        else  % if current derivation is complete 
            if n_current > 1 && b_n(n_current-1)+1 <= len_n(n_current-1) 
                % If it's not the first derivation and if all the commands 
                %  in the string of the previous derivation are not done. 
                 
                % Reload previously saved point to continue 
                b = b_n(n_current-1)+1; % place in string 
                n_current = n_current-1; % derivation 
                x(count+1) = x(first_b(n_current)); % x-coordinate 
                y(count+1) = y(first_b(n_current)); % y-coordinate 
                z(count+1) = z(first_b(n_current)); % z-coordinate 
                theta(count+1) = theta(first_b(n_current)); % angles 
                phi(count+1) = phi(first_b(n_current)); 
                alpha(count1+1) = alpha_n(n_current); 
                beta(count1+1) = beta_n(n_current); 
                count = count+1; count1 = count1+1; 
                first_b(n_current) = count; 
            else 
                % If it has completed the first derivation or if all the 
                %  commands in the string of the previous derivation are 
                %  done. 
                 
                % The current derivation number keeps decreasing until 
                %  there is either a derivation that has not been completed 
                %  or until all of the derivations have been checked. If 
                %  all of the derivations are done, then the loop breaks 
                %  and the code continues done below. 
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                n_current = n_current-2; % tries the next lowest derivation 
                if n_current <= 0 
                    break 
                end 
                 
                % Checks to see if all the commands in the string are 
                %  completed. 
                b = b_n(n_current)+1; 
                while b > len_n(n_current) 
                    n_current = n_current-1; 
                    if n_current == 0 
                        break 
                    end 
                    b = b_n(n_current)+1; 
                end 
                if n_current == 0 
                    break 
                end 
                 
                % If the code hasn't reached a break by this point, there 
                % is at least one derivation that isn't done yet, so it 
                % starts on that derivation where it left off. 
                x(count+1) = x_n(n_current); % x-coordinate 
                y(count+1) = y_n(n_current); % y-coordinate 
                z(count+1) = z_n(n_current); % z-coordinate 
                alpha(count1+1) = alpha_n(n_current); % anges 
                beta(count1+1) = beta_n(n_current); 
                count = count+1; count1 = count1+1; 
            end 
            continue 
        end 
    end 
    % Output progress 
    if round(A/10)*10 == A || A == numb_branches 
        clc 
        ['Completed primary branch ' num2str(A) ' of ' 
num2str(numb_branches)] %#ok<NOPTS> 
    end 
end 
 
%% LEAVES 
% MASS, THICKNESS, AND WIDTH 
nmb_leaves = count_p; 
 
points = points(1:nmb_leaves,:); % deletes any empty rows 
Leaf_thickness = zeros(nmb_leaves,1); 
Leaf_width = zeros(nmb_leaves,1); 
Leaf_Mass = zeros(nmb_leaves,1); 
 
% Experimentally measured thickness max and min 
max_thick = 3*2.54; min_thick = .03; % (cm) 
 
% Sorts leaf properties according to distance from origin 
leaf_r=sqrt(points(:,1).^2+points(:,2).^2+points(:,3).^2); % distance from 
origin 
height_decide=sortrows([leaf_r points],-1); % sorts according to radius 
% All leaf coordinates, sorted by distance from origin 
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leaf_x=height_decide(:,2); % x-coordinate 
leaf_y=height_decide(:,3); % y-coordinate 
leaf_z=height_decide(:,4); % z-coordinate 
leaf_angles=height_decide(:,5:6); % angles 
leaf_len=height_decide(:,7); % lengths (cm) 
 
% Percentages in each class were determined above. Specific number in each 
%  class determined by multiplying the percentage by the number of leaves. 
quart = round(quart * nmb_leaves); 
half = round(half * nmb_leaves); 
three = round(three * nmb_leaves); 
one = count_p - quart - half - three; 
 
% Assigns thicknesses to each class. 
Leaf_thickness(1:quart) = (rand(quart,1).^(-1/2.612198509)-.45); % (mm) 
Leaf_thickness(quart+1:quart+half) = 0.635+(1.27-0.635).*rand(half,1).^2; 
Leaf_thickness(half+quart+1:half+quart+one) = 1.27+(2.54-1.27).*rand(one,1); 
Leaf_thickness(one+half+quart+1:one+half+quart+three) = 2.54+(max_thick-
2.54).*rand(three,1); 
 
Alpha_Leaf_Mass = 0.0116; 
Beta_Leaf_Mass = 0.1444; 
A1 = 2.5; 
A2 = 2; 
for i=1:quart 
    Leaf_width(i) = Leaf_thickness(i); 
    %Dallan's Correlation: Leaf Mass (gm) = a + b * thickness(mm) + c * 
MC(decimal) + d * length(cm) 
    Leaf_Mass(i) = (-0.13575 + 0.136 * Leaf_thickness(i) + 0.127 * MC + 
0.0178 * leaf_len(i))/(1+MC); % g 
end 
tot_quart=sum(Leaf_Mass); % total dry mass of burnable fuel (< 1/4") 
 
% Bigger stems treated as cylinders 
for i=quart+1:length(Leaf_thickness) 
    Leaf_Mass(i) = 1.154 * pi * (Leaf_thickness(i) / 2) ^ 2 * leaf_len(i); 
end 
 
bush_mass=sum(Leaf_Mass); 
 
% VOLUME 
% Splits into 100 boxes in z-direction and adds volume 
height_cut=max(leaf_z)/100; % height of each of the 100 boxes 
volume=0; 
min_x_temp=max(leaf_x); max_x_temp=min(leaf_x); 
min_y_temp=max(leaf_y); max_y_temp=min(leaf_y); 
for i=1:100 
    min_z_temp=height_cut*(i-1); % bottom of current box 
    max_z_temp=height_cut*i; % top of current box 
    for j=1:nmb_leaves 
        % Checks which segments are within the current box, and finds the 
        %  max/min of x and y. 
        if leaf_z(j) >= min_z_temp && leaf_z(j) < max_z_temp 
            if leaf_x(j) > max_x_temp 
                max_x_temp = leaf_x(j); 
            end 
            if leaf_x(j) < min_x_temp 
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                min_x_temp = leaf_x(j); 
            end 
            if leaf_y(j) > max_y_temp 
                max_y_temp = leaf_y(j); 
            end 
            if leaf_y(j) < min_y_temp 
                min_y_temp = leaf_y(j); 
            end 
        end 
    end 
    volume=volume+((max_x_temp-min_x_temp)*(max_y_temp-min_y_temp)*... 
        (max_z_temp-min_z_temp)); 
    max_x_temp = min(leaf_x); 
    min_x_temp = max(leaf_x); 
    max_y_temp = min(leaf_y); 
    min_y_temp = max(leaf_y); 
end 
 
% BULK DENSITY 
bulk_density=bush_mass/volume; 
bulk_density_kg=bulk_density/1000*100^3; 
['Predicted: ' num2str(fw_quart) ' g; Actual: ' num2str(tot_quart) ' 
g.']%#ok<NOPTS> 
 
%% PLOT 
% Defines colors for plots. 
if plot_fig == 1 
        
    %COLORS 
    switch colors 
        case 1 % fuel=green; non-fuel=brown; 
            fuel_color = 1/255 * [0 128 0]; 
            branch_color = 1/255 * [102 51 0]; 
        case 2 % fuel=light green; non-fuel=dark green; 
            fuel_color = 1/255 * [0 255 0]; 
            branch_color = 1/255 * [0 96 0]; 
        case 3 % different colors of green; 
            fuel_color = 1/255 * [104 137 59]; 
            fuel_color1 = 1/255 * [99 168 74]; 
            fuel_color2 = 1/255 * [82 120 72]; 
            branch_color = 1/255 * [86 91 51]; 
        case 4 % black 
            fuel_color = [0 0 0]; 
            branch_color = fuel_color; 
        case 5 % fuel=orange; non-fuel=green; 
            fuel_color = 1/255 * [255 153 51]; 
            branch_color = [0 128 0]; 
    end 
     
    figure 
    hold on 
    axis equal 
    grid on 
     
    %Plotting matrices: the first column in the initial point; 
    %  the second column is the end point     
    a=1; b=quart; 
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    plotx1=[leaf_x(a:b) leaf_x(a:b)-
leaf_len(a:b).*cos(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))]; 
    ploty1=[leaf_y(a:b) leaf_y(a:b)-
leaf_len(a:b).*sin(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))]; 
    plotz1=[leaf_z(a:b) leaf_z(a:b)-leaf_len(a:b).*cos(leaf_angles(a:b,1))]; 
     
    a=quart+1; b=count_p; 
    plotx=[leaf_x(a:b) leaf_x(a:b)-
leaf_len(a:b).*cos(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))]; 
    ploty=[leaf_y(a:b) leaf_y(a:b)-
leaf_len(a:b).*sin(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))]; 
    plotz=[leaf_z(a:b) leaf_z(a:b)-leaf_len(a:b).*cos(leaf_angles(a:b,1))]; 
     
    if colors == 3  
        fc=randi(3,quart,1); % assigns random number to every fuel element 
        color=sortrows([fc plotx1 ploty1 plotz1],-1); % sorts leaves by 
random number 
        % Splits fuel elements into three groups and plots those in 
        %  different colors. 
        a=1; b=round(quart/3); 
        
plot3(color(a:b,2:3)',color(a:b,4:5)',color(a:b,6:7)','Color',fuel_color,'lin
ewidth',1) 
        a=b+1; b=round(quart*2/3); 
        
plot3(color(a:b,2:3)',color(a:b,4:5)',color(a:b,6:7)','Color',fuel_color1,'li
newidth',1) 
        a=b+1; b=quart; 
        
plot3(color(a:b,2:3)',color(a:b,4:5)',color(a:b,6:7)','Color',fuel_color2,'li
newidth',1) 
        plot3(plotx',ploty',plotz','Color',branch_color,'linewidth',1) % 
segments > 1/4" 
    else 
        cmap = [fuel_color; branch_color]; 
        colormap(cmap); 
        plot3(plotx1',ploty1',plotz1','Color',fuel_color,'LineWidth',1) 
        plot3(plotx',ploty',plotz','Color',branch_color,'LineWidth',1)         
    end 
     
    xlim([-d_shrub/2-20 d_shrub/2]) 
    ylim([-d_shrub/2-30 20+d_shrub/2]) 
    zlim([0 height*100]) 
     
    camorbit(10,-80,'data') 
    camorbit(90,0,'data') 
     
    set(gca,'FontName','Times New Roman') 
    set(gca,'FontSize',25) 
     
    if save_fig == 1 
        saveas(gcf,[filename '.jpg']); 
%         saveas(gcf,filename,'tif') 
        close 
    end 
end 
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% PLOT 2 
if plot_fuel == 1 
    figure 
    hold on 
    grid on 
    axis equal 
    red=[1 0 0]; 
    yellow=[1 1 0]; 
    green=[.0980 .5922 .1804]; 
    blue=[0 0 1]; 
    purple=[153/255 0 204/255]; 
    red_points=[leaf_x(1:quart) leaf_y(1:quart) leaf_z(1:quart)]; 
    yellow_points=[leaf_x(quart+1:quart+half) leaf_y(quart+1:quart+half) 
leaf_z(quart+1:quart+half)];%zeros(nmb_leaves,3); 
    green_points=[leaf_x(quart+half+1:quart+half+one) 
leaf_y(quart+half+1:quart+half+one) 
leaf_z(quart+half+1:quart+half+one)];%zeros(nmb_leaves,3); 
    blue_points=[leaf_x(quart+half+one+1:quart+half+one+three) 
leaf_y(quart+half+one+1:quart+half+one+three) 
leaf_z(quart+half+one+1:quart+half+one+three)];%zeros(nmb_leaves,3); 
     
    
plot3(red_points(:,1),red_points(:,2),red_points(:,3),'.','Color',red,'Marker
Size',5) 
    
plot3(yellow_points(:,1),yellow_points(:,2),yellow_points(:,3),'.','Color',ye
llow,'MarkerSize',8) 
    
plot3(green_points(:,1),green_points(:,2),green_points(:,3),'.','Color',green
,'MarkerSize',8) 
    
plot3(blue_points(:,1),blue_points(:,2),blue_points(:,3),'.','Color',blue,'Ma
rkerSize',8)   
     
    xlim([-d_shrub/2-20 d_shrub/2]) 
    ylim([-d_shrub/2-30 20+d_shrub/2]) 
    zlim([0 height*100]) 
     
    camorbit(10,-80,'data') 
    camorbit(90,0,'data') 
     
    set(gca,'FontName','Times New Roman') 
    set(gca,'FontSize',25) 
     
    if save_fig2 == 1 
        saveas(gcf,[filename 'dot.jpg']); 
        close 
    end 
end 
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