
The third experiment (at 1.08 m/s) exhibited unusual fluid flow patterns which caused the

flame to skirt around the sides and bottom of the shrub and immediately burn the far side (Figure

4-19). This left a diagonal burn strip from which fire split and back-burned towards the top right

(upwind) corner as well as spreading down to the far bottom corner. The top right corner largely

remained unburned. The shrub model predicted some similar burn features. The fire quickly cut

through the shrub, but at a less inclined angle. The fire then split and back-burned towards the

top right corner and the bottom left. However, a larger section of the bottom left corner remained

unburned while nearly all of the top right section burned (see Figure 4-19). The differences

between the physical and simulated fire spread behavior seem to stem from complex fluid

dynamics which the model did not capture. It is interesting to note that though the burn paths

were somewhat different, the burn times were similar. Referring back to the discussion on fire

intensity, this third burn had the highest wind speed and what may have been the fire intensity

most similar to field wildland fires. This supports the conclusion that fire intensity accounts for

slower wind tunnel fire spread and that kinetic modeling could improve model agreement.

Figure 4-19. Run 3 flame path of the wind tunnel experiment (left) and a model simulation (right) viewed

from the side. See figure caption to Figure 4-17.

62

Trends in tburn demonstrated an expected and realistic response (Figure 4-21, a, d and g).

The value of tburn decreased with increasing wind speed. This coincides with faster fire

propagation driven by wind. Between U = 1 m/s and U = 2 m/s, less of the shrub burned, also

contributing to the decrease in tburn. Increases in MC generally caused increases in tburn, in spite

of decreases in Xs with increasing MC. This reflects the longer tig and tbo of the moist fuel

elements. Rc had only a small impact on tburn. For the most part, increases in nL caused increases

in tburn. However, between U = 0-1 m/s and at low MC, the change of nL from a medium to high

level had a mostly negative impact on tburn. Increases in nL most frequently impacted tburn by

facilitating more extensive fire spread, which resulted in longer burn times. However, at low MC

and medium and low U, Xs was approaching its maximum at the medium level of nL, such that

increasing nL to its high level resulted in larger flames and faster fire spread, but less substantial

gains in Xs and a decrease in tburn.

The values of Xs responded as expected to nL, MC, and Rc without exception (see Figure

4-21, b, e and h). The response of Xs to U was somewhat unexpected, though still plausible. As

in Figure 4-19 showing the burn path of wind tunnel experiment three, an ignition in the bottom

upwind corner can easily miss the upper upwind corner as it propagates through the shrub. So,

the burn path may largely be responsible for the response of Xs to U. However, for simulations at

high wind and medium or high MC, Xs is low enough to suggest extinction without burning even

the leaves that would lie directly in the expected fire path. Perhaps this behavior is reasonable,

but wind is generally regarded to enhance wildland fire spread, not extinguish it, as this model

predicts for higher MC. The cause of the current model behavior is best attributed to the flame

merging and flame angle models, which appear to behave poorly in wind-driven conditions.

66

Values of Δzf,max from the full factorial of model simulations are plotted in Figure 4-21 (c,

f and i). The flame height decreased with increases in MC and U, but increased with increases in

Rc and nL. The trend in moisture content reflects the single-leaf behavior measured in

experiments, which is captured in the model. Decreasing flame height with increasing wind

speed goes contrary to expectations, and signals a model deficiency. This deficiency can be

traced to several likely causes. Firstly, the singular flame height was used with the flame angle

correlation. The flame angle correlation balances the effect of buoyant forces (using flame height

as a measure of heat release) and wind momentum. Because the collective heat release of

neighboring flames was not accounted for in the flame angle correlation, heat release was

understated, causing overly tilted flame angle predictions. Second, wind drives more intense fires

which burn at a different temperature than fires in still air. This increases heat release and

upward buoyancy, which counters the horizontal momentum of the wind to yield more upright

and taller flames. These two considerations—choosing a flame angle that reflects the actual local

heat release, and adjusting the kinetic response of burning fuels to different burn conditions—

appear important to improving this model.

The increase of Δzf,max with nL and Rc occurs since both of these factors affect flame

coalescence. Increased nL increased the bulk density of leaves and decreased the space between

leaves, thereby increasing the overlap of flames from adjacent leaves. Increases in the flame

coalescence parameter Rc increased the amount of flame height added in consequence to flame

overlap. Increasing Δzf,max depends on increasing flame overlap to add extra height to the flames,

which also results in more upright flames which reach higher. It also depends on the fire

propagating to the top of the shrub.

67

4.5 Conclusions

A novel semi-empirical approach detailing the properties and location of distinct fuel

elements (manzanita leaves) was developed to model fire spread through a shrub. In the

spectrum of wildland fire models, this approach strikes a unique balance between modeling

detail and computational speed. For example, in the bulk density simulations, the average

computational time on a personal computer was one to two times less than the model time for

shrubs with less than or equal to 855 leaves (3.8 kg/m3). For the heaviest shrub in the bulk

density simulations (2250 leaves, 9.9 kg/m3) computational time was 6.5 times that of the model

time.

The model responded well to wind speed, moisture content and leaf count. Wind tunnel

experiments showed some agreement compared to simulations, but also highlighted model

deficiencies. Several needs were identified, such as improved flame merging, and flame angle

models. The importance of fine-scale fuel placement was also identified. The benefits of

incorporating kinetics into the flame behavior of the fuel elements may resolve many differences

between modeled and measured fire spread behavior in terms of Xs and tburn.

Progress on these suggested improvements and on extending the model to additional

species is detailed in the following chapters. The multi-leaf fire spread simulator is intended to

provide a submodel for landscape scale computational fluid dynamics calculations and to provide

an alternative fire behavior model for operational fire spread predictions.

68

5. DETAILED FUEL PLACEMENT MODELS FOR SPARSE SHRUBS

Fine-scale fuel placement was an important factor in the fire spread model described in

Chapter 4. For shrub species that have concentrated fuel placement near branches, the branching

structure must be modeled to determine appropriate locations of readily-burned fuels. Models

were developed to simulate the branching structure of chamise (Adenostoma fasciculatum) and

Utah juniper (Juniperus osteosperma). Physical measurements of Utah juniper morphology were

performed by Shen (2013). The branching structure was based on a form of fractal theory called

Lindenmayer systems (i.e., L-systems) (Prusinkiewicz and Lindenmayer, 1990). The structure

model was designed to match the specific characteristics of each species, such as branching

angles, the number of stems exiting at ground level, and the fuel element length. Correlations to

predict branch number from crown diameter were made based on data from the literature, to

ensure that the modeled shrubs would have the same bulk density as live shrubs. These models

generate shrub geometries and fuel element placement information which can be directly used in

the semi-empirical fire spread models discussed in Chapters 4 and 8. 1

1 Marianne Fletcher helped with a major portion of the L-systems modeling, especially for chamise.
The results presented have been published: Prince, D. R., M. E. Fletcher, C. Shen and T. H. Fletcher,
"Application of L-Systems to Geometrical Construction of Chamise and Juniper Shrubs," Ecological
Modelling, 273, 86-95 (2014).

69

Figure 7-25. Modeled mass release for CPD dry matter release and temperature-dependent diffusivity water

release compared to measured mass release averaged for all leaves in each group. Separately-
measured moisture data are scaled to the same initial value and shown alongside the moisture
model results.

Figure 7-25 also includes the moisture release data listed in Table 6-2, scaled to the initial

leaf moisture content and superimposed on the modeled dry matter mass release curves. The

initial moisture contents of leaves described in Table 6-2 were mostly in the 70% MC to 80%

MC range. The data of Table 6-2 is therefore most applicable for the fresh live leaves, for which

the model and measured moisture release data points were very similar. The moisture release

data therefore confirms the behavior of the diffusion model and dry matter release models for the

fresh live leaves.

The rehydrated and dehydrated leaves had starting moisture contents which were well

below the moisture contents of the leaves described in Table 6-2. Therefore the moisture release

data points were less applicable to the moisture release behaviors of the dehydrated and

rehydrated leaves. The moisture release data points exceeded the model and measured mass

release curves of the rehydrated and dehydrated leaves. This was expected because the moisture

149

8.2.2 Flame parameter scaling

The physics-based submodel was run for the base case and the targeted fire spread

conditions in order to scale flame parameters (see Equations 4-7 to 4-10) to the targeted fire

spread conditions. Flame parameters were scaled based on the duration and amount of mass

release. The end of mass release tend was considered to occur when at least 25% of each of the six

dry components was released and the total rate of dry matter release was less than 2% of the

starting dry mass per second. If these criteria were not met within 50 s, tend was set to 50 s. The

ratio of tend for the base case (subscript 0) and new case (subscript F) were then used to scale tig,

th, and tbo to the fire spread conditions:

 𝑡𝑥,𝐹 = 𝑡𝑥,0
𝑡𝑒𝑛𝑑,𝐹

𝑡𝑒𝑛𝑑,0
 (8-12)

where the subscript x refers to any of the flame times. The criteria for tend were selected to

approximate time at burn out. The fraction 𝑡𝑒𝑛𝑑,𝐹/𝑡𝑒𝑛𝑑,0 is the physics-based scaling factor of

flame time.

The flame height was scaled similarly. Flame heights are considered to scale by the two-

fifths power of the heat release (Steward, 1970; Sun et al., 2006). Heat release is proportional to

the total mass release (excluding water), which is inversely related to the time over which mass

is released. Therefore, hf,max was scaled by the physics-based scaling factor 𝜑ℎ (Equations 8-13

and 8-14):

 ℎ𝑓,𝑚𝑎𝑥,𝐹 = 𝜑ℎℎ𝑓,𝑚𝑎𝑥,0 (8-13)

𝜑ℎ = ��

𝑡𝑏𝑜,0 − 𝑡𝑖𝑔,0

𝑡𝑏𝑜,𝐹 − 𝑡𝑖𝑔,𝐹
� �

𝛥𝐹𝐹
𝛥𝐹0

��
2 5⁄

 (8-14)

𝛥𝐹𝐹 is the fractional change in dry mass at the new fire condition and 𝛥𝐹0 is the fractional

change in dry mass at the base condition.

162

Figure 8-5. Sensitivity of scaling factors for flame parameters to Tsoot.

8.6.1.3 Sensitivity to wind speed and vertical flame position

The change in the scaling factors due to changes in U (Figure 8-6) were due to the effect

of U on the gas velocity in the flame direction 𝑣𝜃 (see Equation 8-2). As U increased, convective

heat transfer increased, the temperature profile rose more quickly, and less time was required to

burn the leaf out. The scaling factors do not meet at 1 as U approaches zero because the base

case and the fire spread case have different values for both vertical flame height and Tsurr in this

comparison.

The vertical flame position also affects 𝑣𝜃 due to buoyant acceleration of the hot

convective gas plume (Figure 8-7, Equation 8-3). As the vertical flame height approaches zero,

the physics-based scaling factors diverge because 𝑣𝜃 and convective heating approach zero. The

flame height scaling due to U and vertical flame position was mostly a function of flame time

scaling; the amount of mass release was nearly constant (see Equation 8-12).

175

Figure 8-6. Sensitivity of scaling factors for flame parameters to U.

Figure 8-7. Sensitivity of scaling factors for flame parameters to vertical flame position.

Overall, the trends in the physics-based scaling of flame parameters responded as

expected to factors affecting wildland fire spread. Developing the ability to respond

appropriately to the heat transfer conditions of the fire spread scenario of interest was essential to

achieving accurate results for broader fire spread conditions.

True predictive capabilities would also depend on developing methods to predict the fire

scenario before a fire had already occurred. Dependence on user-defined heating conditions

could be eliminated by periodically feeding back the modeled fire state to a model that would

176

Shoemaker, L. H., "Interquantile Tests for Dispersion in Skewed Distributions,"
Communications in Statistics-Simulation and Computation, 28(1), 189-205 (1999).

Silvani, X. and F. Morandini, "Fire Spread Experiments in the Field: Temperature and Heat
Fluxes Measurements," Fire Safety Journal, 44(2), 279-285 (2009).

Smith, S. G., "Effects of Moisture on Combustion Characteristics of Live California Chaparral
and Utah Foliage," M.S., Chemical Engineering, Brigham Young University (2005).

Spyratos, V., P. S. Bourgeron and M. Ghil, "Development at the Wildland-Urban Interface and
the Mitigation of Forest-Fire Risk," Proceedings of the National Academy of Sciences of
the United States of America, 104(36), 14272-14276 (2007).

Stamm, A. J., Wood and Cellulose Science, New York,, Ronald Press Co. (1964).

Stephens, S. L., D. Weise, D. L. Fry, R. J. Keiffer, J. Dawson, E. Koo, J. Potts and P. J. Pagni,
"Measuring the Rate of Spread of Chaparral Prescribed Fires in Northern California,"
Fire Ecology, 4(1), 74-86 (2008).

Steward, F. R., "Prediction of Height of Turbulent Diffusion Buoyant Flames," Combustion
Science and Technology, 2(4), 203-& (1970).

Sugawa, O. and W. Takahashi, "Flame Height Behavior from Multi-Fire Sources," Fire and
Materials, 17, 111-117 (1993).

Sullivan, A. L., "Wildland Surface Fire Spread Modelling, 1990-2007. 1: Physical and Quasi-
Physical Models," International Journal of Wildland Fire, 18(4), 349-368 (2009a).

Sullivan, A. L., "Wildland Surface Fire Spread Modelling, 1990-2007. 2: Empirical and Quasi-
Empirical Models," International Journal of Wildland Fire, 18(4), 369-386 (2009b).

Sullivan, A. L., "Wildland Surface Fire Spread Modelling, 1990-2007. 3: Simulation and
Mathematical Analogue Models," International Journal of Wildland Fire, 18(4), 387-403
(2009c).

Sun, B., L. Jiang, B. Sun and S. Jiang, "Research of Plant Growth Model Based on the
Combination of L-System and Sketch," 9th International Conference for Young
Computer Scientists, ICYCS 2008, November 18, 2008 - November 21, 2008, Zhang Jia
Jie, Hunan, China (2008).

Sun, L., X. Zhou, S. Mahalingam and D. R. Weise, "Comparison of Burning Characteristics of
Live and Dead Chaparral Fuels," Combustion and Flame, 144(1-2), 349-359 (2006).

Theobald, D. M., "Landscape Patterns of Exurban Growth in the USA from 1980 to 2020,"
Ecology and Society, 10(1), - (2005).

Theobald, D. M. and W. H. Romme, "Expansion of the Us Wildland-Urban Interface,"
Landscape and Urban Planning, 83(4), 340-354 (2007).

202

H. L-SYSTEMS FUEL PLACEMENT CODE FOR CHAMISE

This MATLAB code was used to generate chamise geometries discussed in Chapter 5.

% Generates 3-d, stochastic shrub with geometry similar to chamise.
% v1: +/- change theta, */! change phi
% v2: +/- change alpha, */! change beta
% v3: define size of arrays (saves memory and time); calculates volume
% v4: calculates bulk density
% v5: considers primary branch spacing (none overlapping); reorganized
% code to have one big loop instead of several smaller ones;
% strings specific to chamise added
% v6: graphs all points at once (faster); view to match picture for paper
% v7: splits all branches into 4-6 cm segments and assigns thicknesses;
% number of primary branches calculated from correlations
% v8: uses different scripts
% v9: fewer primary branches, new correlations
% v10: fixes primary branch radius, plots segments in different colors
% Based on Prusinkiewicz, "The Algorithmic Beauty of Plants"
% Marianne Fletcher, March 2013

clear
close all

%% INPUTS
d_shrub = 140; % crown diameter (cm)
fuel_len = 4; % length of one fuel segment (cm)

plot_fig = 1; % Plot figure of shrub? 0=No; 1=Yes
save_fig = 0; % Save figure? 0=No; 1=Yes
plot_fuel = 1; % Plot figure of branch segments? 0=No; 1=Yes
save_fig2 = 0; % Save figure? 0=No; 1=Yes
filename = '04-24-d'; % Filename if figures are saved

% Color options
% Case 1: Fuel=green; Non-fuel=brown;
% Case 2: Fuel=light green; Non-fuel=dark green;
% Case 3: Different colors of green;
% Case 4: Black;
% Case 5: Fuel=orange; Non-fuel=green
colors = 1;
%% VARIABLES
n = 3; % number of derivations

MC = .3;

% ANGLES (in radians)

295

max_angle = 77*pi/180; % average primary branch angle
st_dev(1) = 30*pi/180; % standard deviation for primary branch angle
delta = 30*pi/180; % average secondary/tertiary branch angle
st_dev(2) = 0*pi/180; % standard deviation for secondary/tertiary angle

% SCALE
scale = 0.45; % secondary length/primary length

% DISTANCES (cm)
shift = 13.1; % average distance of primary branches from center
dist = d_shrub/(2*sin(max_angle)); % primary branch length
st_dev(3) = 0; % standard deviation for primary branch length

% STRINGS
% Defines shape according to the following key:
% F one step forward
% + turn left by delta in x-plane
% - turn right by delta in x-plane
% * turn left by delta in y-plane
% ! turn right by delta in y-plane
% X location of rewriting
% NOTES ABOUT WRITING STRINGS:
% 'F's make up the main stem, and 'X's are the branches. So if the string
% were 'FFF', there would just be three straight lines connected
% end-to-end. However, 'X's do not connect end-to-end. The next segment
% after and 'X' starts at the same intial point as the 'X' rather than at
% the end point of the 'X' such as with an 'F'.
% The bottom line is:
% DO put +/-/!/* before 'X's
% DON'T put +/-/!/* before 'F's unless you want your branch to be bent
% If you are still confused, look at the document 'F vs. X' that should be
% in this same folder.
X1 = 'F+!XF+*X-*XFFF-!XXF';
X2 = 'F!X*-XF+*X!-XFFF+XX';
X3 = 'F-*X-!XFFF-XFF+*XXFF';
X4 = 'F-*XF+XFF+!X!XFF+*XX';
X5 = 'F!X+XFFF*X!-XFFFX';
% Counts numbers of X's and F's in strings.
X_f=zeros(5,1); X_x=zeros(5,1);
for i=1:5
 if i==1
 X=X1;
 elseif i==2
 X=X2;
 elseif i==3
 X=X3;
 elseif i==4
 X=X4;
 else
 X=X5;
 end
 for j=1:length(X)
 if X(j) == 'F'
 X_f(i,1)=X_f(i,1)+1;
 elseif X(j) == 'X'
 X_x(i,1)=X_x(i,1)+1;
 end

296

 end
end

%% NUMBER OF BRANCHES
height = (dist+dist*scale)/100; % approx. height (m)
fuel_weight = (0.286817639*exp(1.201245975*height))*1000; % total fuel weight
(gm)

% Predicts the fuel weights of each class based on the total fuel weight.
% The fuel classes are:
% 0 - 1/4" "quart"
% 1/4" - 1/2" "half"
% 1/2" - 1" "one"
% 1" - 3" "three"
fw_quart = (0.245570641*fuel_weight/1000+ 0.247667354)*1000; % (gm)
fw_half = (0.214064333*fuel_weight/1000-0.007333108)*1000; % (gm)
fw_one = (0.331204001*fuel_weight/1000-0.032277442)*1000; % (gm)
fw_three = (0.209161025*fuel_weight/1000-0.208056804)*1000; % (gm)
if fw_three < 0
 fw_three = 0;
end

thick_guess = mean(rand(10000,1).^(-1/2.612198509)-.45); % ave. thick from
distribution (mm)

% Dallan's correlation for fuel mass (gm).
m_quart = (-0.13575 + 0.136 * thick_guess + 0.127 * MC + 0.0178 *
fuel_len)/(1+MC);

% Mass of bigger stems, treated as cylinders (gm).
% density of chamise wood, 1.154 gm/cm^3, measured by Victoria Lansinger
2/7/13
m_half = 1.154 * pi * ((.635+1.27)/2*.5)^2 * fuel_len;
m_one = 1.154 * pi * ((1.27+2.54)/2*.7)^2 * fuel_len;
m_three = 1.154 * pi * (3.81/2)^2 * fuel_len;

% Estimated number in each class.
num_quart = round(fw_quart / m_quart);
num_half = round(fw_half / m_half);
num_one = round(fw_one / m_one);
num_three = round(fw_three / m_three);
num_total = num_quart+num_half+num_one+num_three;

% Percent of segments in each class.
quart = num_quart / num_total;
three = num_three / num_total;
half = num_half / num_total;

% Predicts total length of a primary branch (including lengths of all
% secondary and tertiary branches) and divides by fuel length to get the
% approximate number of segments per branch.
c=[-0.000119837 0.08202669 7.137025823 1110.252041];
fuel_branch=(c(1)*dist^3+c(2)*dist^2+c(3)*dist+c(4))/fuel_len;

% Number of primary branches
numb_branches = round(num_total/fuel_branch);

297

%% ARRAYS
% "Branch" refers to the full length of the branch
% "Segment" refers to the pieces of the branch that were cut up according
% to the fuel length
x=zeros(1200,1); % x-coordinate of every branch
y=zeros(1200,1); % y-coordinate of every branch
z=zeros(1200,1); % z-coordinate of every branch
theta=zeros(1200,1);phi=zeros(1200,1); % 3-d angles of every branch
alpha=zeros(1200,1);beta=zeros(1200,1); %2-d angles of every branch
points=zeros(4000,6); % (x,y,z,phi,theta,length) of every segment

% Saves info before moving on the the next derivation
x_n=zeros(n,1);y_n=zeros(n,1);z_n=zeros(n,1);alpha_n=zeros(n,1);
beta_n=zeros(n,1);len_n=zeros(n,1);b_n=zeros(n,1);

dist_a=normrnd(dist,st_dev(3),numb_branches,n); % randomized distance

first_b=ones(1,2);count=0;count1=0;count_p=0; % counts place in arrays

%% PRIMARY BRANCHES
% SHIFT
% Assigns each primary branch a distance from the center of the shrub
shift_r = shift.*rand(numb_branches,1).^(1/3);
shift_x = shift_r*(1/sqrt(2));
shift_y = shift_r*(1/sqrt(2));

% LOCATIONS
% Dallan's code to assign phi and theta values.
branch_sections

%% GEOMETRY
for A = 1:numb_branches
 %% PART A: Sets up parameters for primary branches.
 % Initial coordinates and angles
 x(count+1) = shift_x(A); y(count+1) = shift_y(A); z(count+1) = 0;
 theta(count+1) = theta_primary(A); phi(count+1) = phi_primary(A);
 % Convert theta and phi to alpha and beta
 x0 = sin(phi(count+1))*cos(theta(count+1));
 y0 = sin(phi(count+1))*sin(theta(count+1));
 z0 = cos(phi(count+1));
 alpha(count1+1) = atan2(x0,z0);
 beta(count1+1) = atan2(y0,z0);

 % Last angle of current derivation
 alpha_n(1) = alpha(count1+1); beta_n(1) = beta(count1+1);
 count1 = count1+1;

 choose_X = rand(1,n); % random string for each derivation
 count = count+1; % counts # of points in array
 n_current = 1; % current derivation number
 b = 1; % place in string
 turn = 0; % counts # of +/-/*/! in string
 loop = 1; % runs a continuous loop (until break)

 while loop > 0
 %% PART B: Generates the primary branch.

298

 % String for current derivation
 if choose_X(n_current) <= (1/5)
 X = X1;
 nmb_f = X_f(1); % number of 'F's in string
 nmb_x = X_x(1); % number of X's in string
 elseif choose_X(n_current) <= (2/5)
 X = X2;
 nmb_f = X_f(2);
 nmb_x = X_x(2);
 elseif choose_X(n_current) <= (3/5)
 X = X3;
 nmb_f = X_f(3);
 nmb_x = X_x(2);
 elseif choose_X(n_current) <= (4/5)
 X = X4;
 nmb_f = X_f(4);
 nmb_x = X_x(2);
 else
 X = X5;
 nmb_f = X_f(5);
 nmb_x = X_x(2);
 end

 % Randomizes strings for second and third derivations.
 if n_current==2 && b>length(X)
 choose_X(n_current)=rand(1);
 elseif n_current==3 && b>length(X)
 choose_X(n_current)=rand(1);
 end

 % Length of next step. This length is divided by the number of 'F's
 % in the string (nmb_f), so the TOTAL LENGTH OF THE BRANCH DOES
 % NOT CHANGE WITH THE LENGTH OF THE STRING.
 dist_n = dist_a(A,n_current)/nmb_f*scale^(n_current-1);

 if b <= length(X) % if all commands in string have not been
completed
 if X(b) == 'F' % one step forward
 % Converts alpha and beta to theta and phi
 x0 = sin(alpha(count1));
 if abs(alpha(count1)) > pi/2
 z0 = -sqrt(1-(sin(alpha(count1))^2));
 else
 z0 = sqrt(1-(sin(alpha(count1))^2));
 end
 y0 = z0*tan(beta(count1));
 r = sqrt(x0^2+y0^2+z0^2);
 phi(count+1) = acos(z0/r);
 theta(count+1) = atan2(y0,x0);
 % Next (x,y,z) coordinate using phi and theta from above
 x(count+1) =
x(count)+dist_n*cos(theta(count+1))*sin(phi(count+1));
 y(count+1) =
y(count)+dist_n*sin(theta(count+1))*sin(phi(count+1));
 z(count+1) = z(count)+dist_n*cos(phi(count+1));
 count = count+1; % # of elements in array
 b = b+1; % current step in string

299

 % Separates branch into segments of length "fuel_len"
 num_segs = round(dist_n/fuel_len); % number of segments on
branch
 seg = zeros(num_segs,3); % (x,y,z) of each segment
 seg(1,:) = [x(count-1),y(count-1),z(count-1)]; % starting
point (initial point of branch)
 for i = 1 : num_segs - 1
 seg(i+1,1) =
seg(i,1)+fuel_len*cos(theta(count))*sin(phi(count)); % x
 seg(i+1,2) =
seg(i,2)+fuel_len*sin(theta(count))*sin(phi(count)); % y
 seg(i+1,3) = seg(i,3)+fuel_len*cos(phi(count)); % z
 % Puts all information into a single matrix
 points(count_p+1,1) = seg(i+1,1); % x
 points(count_p+1,2) = seg(i+1,2); % y
 points(count_p+1,3) = seg(i+1,3); % z
 points(count_p+1,4) = phi(count); % angles
 points(count_p+1,5) = theta(count);
 points(count_p+1,6) = fuel_len; % length
 count_p=count_p+1; % counts number of points in array
 end
 % Final point (end point of branch)
 points(count_p+1,1) = x(count);
 points(count_p+1,2) = y(count);
 points(count_p+1,3) = z(count);
 points(count_p+1,4) = phi(count);
 points(count_p+1,5) = theta(count);
 points(count_p+1,6) = (x(count)-
seg(end,1))/(cos(theta(count))*sin(phi(count))); %length
 count_p = count_p+1;
 elseif X(b) == '+' % left in x-plane
 alpha(count1+1) = alpha(count1)-normrnd(delta,st_dev(2),1,1);
 beta(count1+1) = beta(count1);
 b = b+1; count1 = count1+1;
 turn = turn+1; % # of +/-/*/!
 elseif X(b) == '-' % left in x-plane
 alpha(count1+1) = alpha(count1)+normrnd(delta,st_dev(2),1,1);
 beta(count1+1) = beta(count1);
 b = b+1; count1 = count1+1;
 turn = turn+1;
 elseif X(b) == '*' % right in y-plane
 alpha(count1+1) = alpha(count1);
 beta(count1+1) = beta(count1)-normrnd(delta,st_dev(2),1,1);
 b=b+1; count1=count1+1;
 turn=turn+1;
 elseif X(b)=='!' % left in y-plane
 alpha(count1+1) = alpha(count1);
 beta(count1+1) = beta(count1)+normrnd(delta,st_dev(2),1,1);
 b = b+1; count1 = count1+1;
 turn = turn+1;
 elseif X(b) == 'X'
 %% PART C: 'X' Command.
 if n_current < n % for all but last derivation
 % Saves current coordinates, angles, length of string,
and place in string.
 b_n(n_current) = b; % place in string

300

 x_n(n_current) = x(count); % x-coordinate
 y_n(n_current) = y(count); % y-coordinate
 z_n(n_current) = z(count); % z-coordinate
 alpha_n(n_current) = alpha(count1-turn); % x-angle
 beta_n(n_current) = beta(count1-turn); % y-angle
 len_n(n_current) = length(X); %length of current string
 n_current = n_current+1; % move to next derivation
 b = 1; % starts at the beginning of the string
 turn = 0; first_b(n_current-1) = count;
 else % last derivation (does not rewrite)

 % Randomizes segment lengths for last derivation
 dist_n = dist_n*(1+(3-1).*rand(1));

 % Treats 'X' essentially as an 'F'
 % Converts alpha and beta to theta and phi
 % See Amelia Rapp's Lab book p. 38 or "Angles.docx"
 x0 = sin(alpha(count1)); % x-z plane
 if abs(alpha(count1)) > pi/2
 z0 = -sqrt(1-(sin(alpha(count1))^2));
 else
 z0 = sqrt(1-(sin(alpha(count1))^2));
 end
 y0 = z0*tan(beta(count1));
 r = sqrt(x0^2+y0^2+z0^2);
 phi(count+1) = acos(z0/r);
 theta(count+1) = atan2(y0,x0);
 % Next (x,y,z) coordinate using theta and phi above
 x(count+1) = real(x(count)+dist_n*cos(theta(count+1))...
 *sin(phi(count+1)));
 y(count+1) = real(y(count)+dist_n*sin(theta(count+1))....
 *sin(phi(count+1)));
 z(count+1) = real(z(count)+dist_n*cos(phi(count+1)));
 count = count+1; % # of elements in array
 b = b+1; % place in string
 % Separates branch into segments ('leaves')
 num_segs = round(dist_n/fuel_len);
 if dist_n/fuel_len < 1
 num_segs = 1;
 fuel_dist=dist_n;
 else
 fuel_dist=fuel_len;
 end
 seg = zeros(num_segs,3);
 seg(1,:) = [x(count-1),y(count-1),z(count-1)];
 for i = 1:num_segs-1
 seg(i+1,1) =
real(seg(i,1)+fuel_dist*cos(theta(count))...
 *sin(phi(count)));
 seg(i+1,2) =
real(seg(i,2)+fuel_dist*sin(theta(count))...
 *sin(phi(count)));
 seg(i+1,3) =
real(seg(i,3)+fuel_dist*cos(phi(count)));
 points(count_p+1,1) =
seg(i+1,1);%(step(i,1)+step(i+1,1))/2; %#ok<*SAGROW>
 points(count_p+1,2) =

301

seg(i+1,2);%(step(i,2)+step(i+1,2))/2;
 points(count_p+1,3) =
seg(i+1,3);%(step(i,3)+step(i+1,3))/2;
 points(count_p+1,4) = phi(count);
 points(count_p+1,5) = theta(count);
 points(count_p+1,6) = fuel_dist;
 count_p=count_p+1;
 end
 points(count_p+1,1) = x(count);
 points(count_p+1,2) = y(count);
 points(count_p+1,3) = z(count);
 points(count_p+1,4) = phi(count);
 points(count_p+1,5) = theta(count);
 points(count_p+1,6) = real((x(count)-
seg(end,1))/(cos(theta(count))*sin(phi(count))));%fuel_dist;
 count_p = count_p+1;

 % Back track to continue with the next part of the code
 x(count+1) = x(count-1);
 y(count+1) = y(count-1);
 z(count+1) = z(count-1);
 alpha(count1+1) = alpha(count1-turn);
 beta(count1+1) = beta(count1-turn);
 theta(count+1) = theta(count-1);
 phi(count+1) = phi(count-1);
 turn = 0; count = count+1; count1 = count1+1; %b=b+1;
 end
 else % for anything else in the string (spaces, brackets, etc.)
 b = b+1; % moves on to the next command, not infinite loop
 end
 else % if current derivation is complete
 if n_current > 1 && b_n(n_current-1)+1 <= len_n(n_current-1)
 % If it's not the first derivation and if all the commands
 % in the string of the previous derivation are not done.

 % Reload previously saved point to continue
 b = b_n(n_current-1)+1; % place in string
 n_current = n_current-1; % derivation
 x(count+1) = x(first_b(n_current)); % x-coordinate
 y(count+1) = y(first_b(n_current)); % y-coordinate
 z(count+1) = z(first_b(n_current)); % z-coordinate
 theta(count+1) = theta(first_b(n_current)); % angles
 phi(count+1) = phi(first_b(n_current));
 alpha(count1+1) = alpha_n(n_current);
 beta(count1+1) = beta_n(n_current);
 count = count+1; count1 = count1+1;
 first_b(n_current) = count;
 else
 % If it has completed the first derivation or if all the
 % commands in the string of the previous derivation are
 % done.

 % The current derivation number keeps decreasing until
 % there is either a derivation that has not been completed
 % or until all of the derivations have been checked. If
 % all of the derivations are done, then the loop breaks
 % and the code continues done below.

302

 n_current = n_current-2; % tries the next lowest derivation
 if n_current <= 0
 break
 end

 % Checks to see if all the commands in the string are
 % completed.
 b = b_n(n_current)+1;
 while b > len_n(n_current)
 n_current = n_current-1;
 if n_current == 0
 break
 end
 b = b_n(n_current)+1;
 end
 if n_current == 0
 break
 end

 % If the code hasn't reached a break by this point, there
 % is at least one derivation that isn't done yet, so it
 % starts on that derivation where it left off.
 x(count+1) = x_n(n_current); % x-coordinate
 y(count+1) = y_n(n_current); % y-coordinate
 z(count+1) = z_n(n_current); % z-coordinate
 alpha(count1+1) = alpha_n(n_current); % anges
 beta(count1+1) = beta_n(n_current);
 count = count+1; count1 = count1+1;
 end
 continue
 end
 end
 % Output progress
 if round(A/10)*10 == A || A == numb_branches
 clc
 ['Completed primary branch ' num2str(A) ' of '
num2str(numb_branches)] %#ok<NOPTS>
 end
end

%% LEAVES
% MASS, THICKNESS, AND WIDTH
nmb_leaves = count_p;

points = points(1:nmb_leaves,:); % deletes any empty rows
Leaf_thickness = zeros(nmb_leaves,1);
Leaf_width = zeros(nmb_leaves,1);
Leaf_Mass = zeros(nmb_leaves,1);

% Experimentally measured thickness max and min
max_thick = 3*2.54; min_thick = .03; % (cm)

% Sorts leaf properties according to distance from origin
leaf_r=sqrt(points(:,1).^2+points(:,2).^2+points(:,3).^2); % distance from
origin
height_decide=sortrows([leaf_r points],-1); % sorts according to radius
% All leaf coordinates, sorted by distance from origin

303

leaf_x=height_decide(:,2); % x-coordinate
leaf_y=height_decide(:,3); % y-coordinate
leaf_z=height_decide(:,4); % z-coordinate
leaf_angles=height_decide(:,5:6); % angles
leaf_len=height_decide(:,7); % lengths (cm)

% Percentages in each class were determined above. Specific number in each
% class determined by multiplying the percentage by the number of leaves.
quart = round(quart * nmb_leaves);
half = round(half * nmb_leaves);
three = round(three * nmb_leaves);
one = count_p - quart - half - three;

% Assigns thicknesses to each class.
Leaf_thickness(1:quart) = (rand(quart,1).^(-1/2.612198509)-.45); % (mm)
Leaf_thickness(quart+1:quart+half) = 0.635+(1.27-0.635).*rand(half,1).^2;
Leaf_thickness(half+quart+1:half+quart+one) = 1.27+(2.54-1.27).*rand(one,1);
Leaf_thickness(one+half+quart+1:one+half+quart+three) = 2.54+(max_thick-
2.54).*rand(three,1);

Alpha_Leaf_Mass = 0.0116;
Beta_Leaf_Mass = 0.1444;
A1 = 2.5;
A2 = 2;
for i=1:quart
 Leaf_width(i) = Leaf_thickness(i);
 %Dallan's Correlation: Leaf Mass (gm) = a + b * thickness(mm) + c *
MC(decimal) + d * length(cm)
 Leaf_Mass(i) = (-0.13575 + 0.136 * Leaf_thickness(i) + 0.127 * MC +
0.0178 * leaf_len(i))/(1+MC); % g
end
tot_quart=sum(Leaf_Mass); % total dry mass of burnable fuel (< 1/4")

% Bigger stems treated as cylinders
for i=quart+1:length(Leaf_thickness)
 Leaf_Mass(i) = 1.154 * pi * (Leaf_thickness(i) / 2) ^ 2 * leaf_len(i);
end

bush_mass=sum(Leaf_Mass);

% VOLUME
% Splits into 100 boxes in z-direction and adds volume
height_cut=max(leaf_z)/100; % height of each of the 100 boxes
volume=0;
min_x_temp=max(leaf_x); max_x_temp=min(leaf_x);
min_y_temp=max(leaf_y); max_y_temp=min(leaf_y);
for i=1:100
 min_z_temp=height_cut*(i-1); % bottom of current box
 max_z_temp=height_cut*i; % top of current box
 for j=1:nmb_leaves
 % Checks which segments are within the current box, and finds the
 % max/min of x and y.
 if leaf_z(j) >= min_z_temp && leaf_z(j) < max_z_temp
 if leaf_x(j) > max_x_temp
 max_x_temp = leaf_x(j);
 end
 if leaf_x(j) < min_x_temp

304

 min_x_temp = leaf_x(j);
 end
 if leaf_y(j) > max_y_temp
 max_y_temp = leaf_y(j);
 end
 if leaf_y(j) < min_y_temp
 min_y_temp = leaf_y(j);
 end
 end
 end
 volume=volume+((max_x_temp-min_x_temp)*(max_y_temp-min_y_temp)*...
 (max_z_temp-min_z_temp));
 max_x_temp = min(leaf_x);
 min_x_temp = max(leaf_x);
 max_y_temp = min(leaf_y);
 min_y_temp = max(leaf_y);
end

% BULK DENSITY
bulk_density=bush_mass/volume;
bulk_density_kg=bulk_density/1000*100^3;
['Predicted: ' num2str(fw_quart) ' g; Actual: ' num2str(tot_quart) '
g.']%#ok<NOPTS>

%% PLOT
% Defines colors for plots.
if plot_fig == 1

 %COLORS
 switch colors
 case 1 % fuel=green; non-fuel=brown;
 fuel_color = 1/255 * [0 128 0];
 branch_color = 1/255 * [102 51 0];
 case 2 % fuel=light green; non-fuel=dark green;
 fuel_color = 1/255 * [0 255 0];
 branch_color = 1/255 * [0 96 0];
 case 3 % different colors of green;
 fuel_color = 1/255 * [104 137 59];
 fuel_color1 = 1/255 * [99 168 74];
 fuel_color2 = 1/255 * [82 120 72];
 branch_color = 1/255 * [86 91 51];
 case 4 % black
 fuel_color = [0 0 0];
 branch_color = fuel_color;
 case 5 % fuel=orange; non-fuel=green;
 fuel_color = 1/255 * [255 153 51];
 branch_color = [0 128 0];
 end

 figure
 hold on
 axis equal
 grid on

 %Plotting matrices: the first column in the initial point;
 % the second column is the end point
 a=1; b=quart;

305

 plotx1=[leaf_x(a:b) leaf_x(a:b)-
leaf_len(a:b).*cos(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))];
 ploty1=[leaf_y(a:b) leaf_y(a:b)-
leaf_len(a:b).*sin(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))];
 plotz1=[leaf_z(a:b) leaf_z(a:b)-leaf_len(a:b).*cos(leaf_angles(a:b,1))];

 a=quart+1; b=count_p;
 plotx=[leaf_x(a:b) leaf_x(a:b)-
leaf_len(a:b).*cos(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))];
 ploty=[leaf_y(a:b) leaf_y(a:b)-
leaf_len(a:b).*sin(leaf_angles(a:b,2)).*sin(leaf_angles(a:b,1))];
 plotz=[leaf_z(a:b) leaf_z(a:b)-leaf_len(a:b).*cos(leaf_angles(a:b,1))];

 if colors == 3
 fc=randi(3,quart,1); % assigns random number to every fuel element
 color=sortrows([fc plotx1 ploty1 plotz1],-1); % sorts leaves by
random number
 % Splits fuel elements into three groups and plots those in
 % different colors.
 a=1; b=round(quart/3);

plot3(color(a:b,2:3)',color(a:b,4:5)',color(a:b,6:7)','Color',fuel_color,'lin
ewidth',1)
 a=b+1; b=round(quart*2/3);

plot3(color(a:b,2:3)',color(a:b,4:5)',color(a:b,6:7)','Color',fuel_color1,'li
newidth',1)
 a=b+1; b=quart;

plot3(color(a:b,2:3)',color(a:b,4:5)',color(a:b,6:7)','Color',fuel_color2,'li
newidth',1)
 plot3(plotx',ploty',plotz','Color',branch_color,'linewidth',1) %
segments > 1/4"
 else
 cmap = [fuel_color; branch_color];
 colormap(cmap);
 plot3(plotx1',ploty1',plotz1','Color',fuel_color,'LineWidth',1)
 plot3(plotx',ploty',plotz','Color',branch_color,'LineWidth',1)
 end

 xlim([-d_shrub/2-20 d_shrub/2])
 ylim([-d_shrub/2-30 20+d_shrub/2])
 zlim([0 height*100])

 camorbit(10,-80,'data')
 camorbit(90,0,'data')

 set(gca,'FontName','Times New Roman')
 set(gca,'FontSize',25)

 if save_fig == 1
 saveas(gcf,[filename '.jpg']);
% saveas(gcf,filename,'tif')
 close
 end
end

306

% PLOT 2
if plot_fuel == 1
 figure
 hold on
 grid on
 axis equal
 red=[1 0 0];
 yellow=[1 1 0];
 green=[.0980 .5922 .1804];
 blue=[0 0 1];
 purple=[153/255 0 204/255];
 red_points=[leaf_x(1:quart) leaf_y(1:quart) leaf_z(1:quart)];
 yellow_points=[leaf_x(quart+1:quart+half) leaf_y(quart+1:quart+half)
leaf_z(quart+1:quart+half)];%zeros(nmb_leaves,3);
 green_points=[leaf_x(quart+half+1:quart+half+one)
leaf_y(quart+half+1:quart+half+one)
leaf_z(quart+half+1:quart+half+one)];%zeros(nmb_leaves,3);
 blue_points=[leaf_x(quart+half+one+1:quart+half+one+three)
leaf_y(quart+half+one+1:quart+half+one+three)
leaf_z(quart+half+one+1:quart+half+one+three)];%zeros(nmb_leaves,3);

plot3(red_points(:,1),red_points(:,2),red_points(:,3),'.','Color',red,'Marker
Size',5)

plot3(yellow_points(:,1),yellow_points(:,2),yellow_points(:,3),'.','Color',ye
llow,'MarkerSize',8)

plot3(green_points(:,1),green_points(:,2),green_points(:,3),'.','Color',green
,'MarkerSize',8)

plot3(blue_points(:,1),blue_points(:,2),blue_points(:,3),'.','Color',blue,'Ma
rkerSize',8)

 xlim([-d_shrub/2-20 d_shrub/2])
 ylim([-d_shrub/2-30 20+d_shrub/2])
 zlim([0 height*100])

 camorbit(10,-80,'data')
 camorbit(90,0,'data')

 set(gca,'FontName','Times New Roman')
 set(gca,'FontSize',25)

 if save_fig2 == 1
 saveas(gcf,[filename 'dot.jpg']);
 close
 end
end

307

