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ABSTRACT 

The Effects of Inhibiting Wnt Secretion and Activity on Cranial  
and Neural Development 

Julie Louise Hulet 
Department of Physiology and Developmental Biology, BYU 

Master of Science 

Wnt signaling has been shown to have several roles in the development of sensory 
neurons, particularly in the ophthalmic portion of the trigeminal nerve. Many of these studies 
have relied on the conclusion that Wnt is necessary but not sufficient for the induction and 
maintenance of the neural precursor cells that develop in the ophthalmic placode. Wnt had been 
inhibited in the ophthalmic placode using a dominant negative t-cell factor (TCF) and resulted in 
the loss of Pax3 expression (indicative of undifferentiated placode cells) in all targeted cells, 
suggesting a loss of specification/commitment of these cells to the sensory neuron fate. This 
study aimed to build on that conclusion by identifying the source of Wnt signaling that allowed 
for the maintenance of these placode cells. To investigate this, chick embryo ex ovo cultures 
were used and treated with small molecule chemical Wnt inhibitors to globally knock out Wnt 
signaling. The embryos were then sectioned and stained for cell markers of undifferentiated 
placode and differentiated neural cells (Pax3 and Islet1, respectively). Also used was a 
conditional knockout of Porcn, a gene critical to post-transcriptional modification of the Wnt 
ligand, using Wnt1-cre as a driver; this allowed for the knockout of Wnt secretion from the 
dorsal neural tube as well as neural crest cells. The data showed a decrease in placode cell 
differentiation but did not indicate a necessity for Wnt in maintenance of the ophthalmic placode 
cells—there was no loss of Pax3 expressing cells in the ectoderm. This suggested that 
maintenance of the ophthalmic placode could be through alternate pathways. Data is also 
presented describing how loss of Porcn in Wnt1 expressing cells impacts craniofacial 
development, where the mouse mutant used in this study displayed the absence and 
underdevelopment of cranial neural crest structures.  

 Keywords: wnt, ophthalmic, placode, craniofacial defects, Pax3, trigeminal 
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INTRODUCTION 

Cranial development and neural development in embryogenesis are both intricate 

processes guided by a variety of pathways and signaling gradients. In addition to various 

divisions, invaginations, folding, and other cell movements, there is very specific induction and 

differentiation of cell populations to correctly develop each structure. Because of the many 

factors involved in proper development, it’s hard to know what is responsible when 

abnormalities occur. While there are many pathways that are active in and manage the specific 

development of both general cranial and cranial neural structures, my goal was to examine the 

source and roles of Wnt family members specific to cranial neuron development. 

The major research focus of the Stark Lab at BYU has been to study sensory neuron 

formation in vertebrates. Several studies from the group examined the role of various pathways, 

such as FGF, Notch, and Wnt, to see how they contributed to the development of sensory 

neurons (Lassiter et al., 2007, Voelkel et al., 2013, Lassiter et al., 2009). One particular study 

that was surprising was that of the Wnt pathway and its role in the development of the 

ophthalmic trigeminal placode; Wnt was seen to be necessary for not only induction but also 

maintenance of the placode structure. While Wnts from the midbrain region have been 

implicated in trigeminal placode cell development, they have additionally been seen to be critical 

in the formation of the neural crest (NC) from this region (Lassiter et al., 2007, Adams 2012, 

Canning et al., 2008, Brault et al., 2001; Chang and Hemmati-Brivanlou, 1998; Dorsky et al., 

1998; Garcia-Castro et al., 2002; Ikeya et al., 1997; LaBonne and Bronner-Fraser, 1998; Lewis 

et al., 2004; Saint-Jeannet et al., 1997)). As you will see in this thesis, I happened upon a 

potentially important NC phenotype while investigating Wnt function in sensory neuron 

formation. 
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Wnt family members are generally segregated into two categories: the canonical/β-

catenin-dependent and the non-canonical/β-catenin-independent pathway. Wnt is a paracrine 

pathway and thus a ligand is prepared and secreted from one cell and, in the canonical pathway, 

binds to co-receptors frizzled and low-density lipoprotein receptor-related protein (LRP) on 

another cell. This results in the phosphorylation and translocation of disheveled to the membrane 

and Axin binding to LRP5/6, thus dissociating the destruction complex (which normally targets 

β-catenin for degradation in the absence of Wnt). β-catenin then enters the nucleus and associates 

with t-cell factor (TCF)/lymphoid-enhancing factor (LEF) receptors to activate transcription (Fig 

1).  

In past experiments, various methods have been used to interrupt the Wnt pathway and 

determine how it’s involved in neural development (Lassiter et al., 2007, Adams 2012).  A prime 

area to study and isolate development of sensory neurons in particular has been the trigeminal 

ganglion (cranial nerve V), which mediates touch, pain, and temperature of the face. It forms 

from neural crest cells and two overlapping placodes: the ophthalmic (opV) and maxillo-

mandibular (mmV) placodes (D'Amico-Martel and Noden, 1983; Hamburger, 1961). The 

ophthalmic lobe of the trigeminal nerve specifically innervates the skin of the head as well as the 

eye muscles and nose (Baker and Bronner 2001). The earliest expressed marker of these 

specified cells (Pax3) was pinpointed and used to define important stages of development in the 

opV placode—induction, specification, commitment, and differentiation (Stark et al., 1997). 

Pax3 expression was then used as evidence of induction and maintenance of the opV placode in 

response to inhibiting various signals. Lassiter et al. looked at the effects on Pax3 expression 

when all neural tube (NT) signals were blocked and found that NT signaling was necessary in 

opV placode induction (2007).  
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Figure 1: Canonical Wnt Pathway. 

When the Wnt ligand is present, it binds to co-receptors frizzled, a 7-pass transmembrane G-
protein coupled receptor, and low-density lipoprotein receptor-related protein (LRP) 5/6. 
Disheveled (Dsh) is then phosphoryled and translocated to the membrane and Axin binds to 
LRP5/6; this dissociates the destruction complex (normally composed of GSK3, APC, CK1 and 
Axin) and allows for β-catenin to persist. β-catenin enters the nucleus and associates with t-cell 
factor (TCF)/lymphoid-enhancing factor (LEF) receptors to activate transcription 
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Several Wnt family members had been shown to be expressed throughout the neural tube, 

some as early as 3 somite stage (ss), with corresponding Frizzled receptor expression in the 

cranial ectoderm and thus were used as candidates for induction of the opV placode (Lassiter et 

al., 2007, Stark et al., 2000). By misexpressing a dominant negative (DN) TCF4 in placodal 

ectoderm at various stages, Lassiter et al. found that placode cell formation was disrupted, 

suggesting a requirement for Wnt in placode cell induction and maintenance (indicated by loss of 

Pax3 expression) (2007). They also tested for sufficiency of the Wnt pathway by blocking all 

NT/ectoderm interaction while at the same time adding in dominant active B-catenin and 

observed no rescue, thus concluding that Wnt was necessary but not sufficient in opV placode 

development. Recent work produced by Jason Adams investigated the role of specific Wnts—

Wnt1 and Wnt3a—in opV placode development by producing knockouts of each, individually, 

in mice. Neither mutant strains showed any decrease in Pax3 expression. However, a double-

knockout of Wnt1 and Wnt3a showed diminished expression of Pax3 as well as diminished 

development of the trigeminal nerve (Adams 2012, Ikeya et al., 1997). This was an important 

discovery, since it left open the possibility that other Wnts were involved in the maintenance of 

the opV placode.   

Thus I looked at the manipulation of the gene Porcupine (Porcn) which codes for a 

membrane-bound O-acyl transferase required for the post-transcriptional modification of all Wnt 

proteins and thus ligand secretion. Mice from a Sox1-cre driver line were bred with Porcn 

mutant mice to create a conditional knockout of Porcn in the NT (based on the expression of 

Sox1). These mice showed no significant change in Pax3 expression. Upon investigation, it was 

shown that, while Porcn was eliminated from the majority of NT cells, it was not knocked out in 

all cells in the NT, particularly in a few cells in the dorsal neural folds where Wnt1 is expressed 
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(Adams, 2012). The results left a few questions: what is the source of Wnt expression required in 

maintenance of the opV placode? Is Wnt diffusing from the NT or is it expressed endogenously 

(i.e. within the ectoderm) to maintain the opV placode? 

Our aim was to broaden our inhibition of Wnt and observe the effects in vitro to define if 

it is an endogenous signal or not. I did so by using two different chemical inhibitors (IWP-2 and 

XAV939) in embryo tissue and explant culture: Inhibitor of Wnt Processing (IWP)-2 inactivates 

Porcn, inhibits palmitoylation of Wnt, and prevents Wnt-dependent phosphorylation of Lrp6 and 

disheveled in addition to causing accumulation of B-catenin (Chen et al., 2009); XAV939 

inhibits Tankyrase, a Poly-ADP-ribosyltransferase, resulting in a prolonged half-life for Axin2 

and increased degradation of B-catenin (Karlberg et al., 2010, Huang et al., 2009).  While no 

gross morphological effects were observed, the treatments led to a decrease in differentiated 

placode cells. This might suggest that Wnt expression is not required in maintenance of the opV 

placode as previously thought, but rather plays a role in allowing the cells to differentiate. 

Alternatively it could provide the foundation of a new model of sensory neuron differentiation 

wherein Pax3 is regulated by an alternate TCF-mediated pathway. 

To clarify these potential models, I sought to more severely remove Wnt secretion in the 

NT by using a new cre driver line, Wnt1-cre, and crossing it with a Porcn mutant. This knocked 

out Wnt secretion from the NT as well as neural crest cells (NCC). While placode cell 

differentiation did not seem to be disrupted, severe craniofacial abnormalities were observed. 

These results led us to propose that Wnt, secreted from NCC, is required in craniofacial 

development, specifically those derivative structures from the first, second, and third pharyngeal 

arches.  
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MATERIALS AND METHODS 

 

Obtaining of Chicken Embryos and Incubation 

Fertilized chicken eggs were obtained from Dunlap Hatchery in Caldwell, ID and were 

incubated without rotation at 38 ̊C from 30-40 h to the 8-10 and 10-12 somite stage. When the 

embryos had developed to the desired stage, an adapted version of the chick whole-embryo 

culture developed by Susan Chapman et al. was used (Chapman 2001).  

 

Explant Preparation 

The eggs were cracked into a petri dish with the embryo top of the yolk. About 30 ml of 

thin albumin was removed from the petri dish with a 10 ml syringe. The thick albumin that 

surrounds the embryo and blastoderm was carefully moved away with a Kimwipe and a ring of 

Whatman no 2 filter paper with an outer diameter of 1.0 inch and an inner hole cut to be about 

0.5 inch in diameter. The ring was placed around the embryo so that the embryo was centered in 

the ring. Scissors were used to cut out the vitelline membrane around ring’s circumference. After 

the vitelline membrane has been detached from the yolk, it was removed and a second ring was 

placed on the ventral side of the embryo creating a sandwich of two rings with the embryo and 

vitelline membranes in the center. 

 

Agar-Albumin Culture Dishes with Chemical Inhibitor 

Agar culture dishes were prepared per Darnell and Schoenwolf’s protocol (2000). 0.72 g 

of Bacto-Agar was mixed with boiling saline solution (7.19 g NaCl into 1 L distilled autoclaved 

water) and put in a water bath at 45 ̊C for 20 min. Meanwhile, 120 mL of thin albumin was 

collected from fertilized chicken eggs and Wnt antagonist XAV939, dissolved in 
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dimethylsulfoxide (DMSO) was added in order to achieve a concentration of 100 µM while an 

equivalent amount of DMSO was added to the control culture solution. After 20 min, the Bacto-

Agar/saline solution was removed from the water bath and mixed with 120 µL 

Penicillin/Streptomycin by swirling for 30-60 sec in a flow hood. This solution was then 

aliquoted into separate tubes and mixed thoroughly with the previously measured DMSO or 

XAV939 in the respective individual tubes. Thin albumin (2:1 ratio with the agar/saline solution) 

was added and mixed well but gently enough to prevent the formation of bubbles. 2 mL of the 

solutions was placed in separate wells in 6-well dishes. Each well was then covered and allowed 

to set up for 3 h prior to use. The rings containing the embryos were laid gently in the separate 

agar wells containing DMSO or Wnt-antagonist. These embryos were allowed to incubate at 

37 ̊C for a total of 24 h. 

 

Collection 

Following the incubation period embryos were cut out of the ring and vitelline membrane 

in a solution of 1X PBS. These same embryos were fixed in 1ml of 4% formaldehyde for one 

hour at room temperature or at 2-8 ̊C over night. Following fixation, embryos were washed three 

times with PBS, placed in 5% sucrose/PBS for 4h at room temperature, and then stored in 15% 

sucrose/PBS at 2-8 ̊C until sectioning. 

 

Cryosectioning  

Embryos were prepared for cryosectioning by embedding them in gelatin consisting of 

7.5 g gelatin (Sigma) and 15 g sucrose filled to a volume of 100 ml with 1xPBS. Each embryo, in 

15% sucrose/PBS, was heated alongside the 15% gelatin to 37.5 ̊C for 20-30 min to equilibrate 

temperatures. The embryo was then removed from the 15% sucrose/PBS with tweezers or a 
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capillary pipette and placed into the warmed gelatin to sit for 2-3 h. Warmed gelatin was then 

placed in a mold and the embryos were removed again with tweezers or a capillary pipette and 

placed into a gelatin-filled mold. After positioning the embryo, the gelatin block was allowed to 

sit for at least 30 min at room temperature and then stored in the refrigerator or taken and 

prepared for sectioning. Each gelatin block was flash frozen in liquid nitrogen and sectioned at 

10 µM with a cryostat, with the sections mounted in sequence on Superfrost Plus glass slides.  

 

Immunohistochemistry 

Embryo sections were rehydrated by placing them in PBS at room temperature for 30 

min. Gelatin surrounding the embryo sections was removed by placing slides in 37 ̊C PBS for 5-

10 min and then switching the slides to a new slide bath with warmed PBS for another 5-10 min, 

or until gelatin was dissolved and no longer visible. The cryosections were then stained for the 

expression of molecular markers Pax3, Islet1, and DAPI. Pax3 was used to mark cells that had 

been specified to the opV cell fate (Stark et al., 1997). In addition, Islet1 was used to stain cells 

that have undergone cell fate and committed to specify sensory neurons in the trigeminal 

ganglion (Sun et al., 2008). Pax3 primary antibody (mouse IgG2a 488 secondary ) is diluted to a 

1:500 concentration with PBS/BSA/Tween and Islet1 (mouse IgG2b 546 secondary) to a 1:500 

concentration with the same mixture. Each antibody solution was allowed to sit at room 

temperature for 10 min before application. 300μl was applied to each slide and stored at 25 ̊C for 

4 h or overnight at 4 ̊C. Each slide was then washed with PBS and covered with 300μl of 

secondary antibody diluted (1:1000) in PBS/BSA/Tween and stored for one hour at 25 ̊C. 

Following the application of the secondary antibody, the slides were again washed with PBS and 

cover-slipped. Fluorescent images of the staining were taken with an Olympus BX61 

microscope. 
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Collagen Matrix Cultures 

After incubating the eggs to somite stage 8-10, the eggs were cracked and placed into a 

petri dish. The embryo was cut out and placed into PBS with 1% penicillin-streptomycin. The 

head of the embryo was removed and placed on ice in DMEM with 1% penicillin-streptomycin. 

Explants were stored on ice in medium until ready to be placed in collagen gel culture. Collagen 

matrix gels were prepared as previously described (Artinger and Bronner-Fraser, 1993) except 

commercially produced collagen was used (Collaborative Research). The bottom layer 

(20µLcollagen) was allowed to set for 5-7 min at room temperature before the explants were 

added. The top layer (4µLcollagen) was allowed to set for 10 min at room temperature before 

addition of medium plus N-2 supplements (Gibco-BRL). Wnt inhibitors XAV939 and IWP-2 

were added to N-2 supplement media in concentrations from 5µM to 100µM. A corresponding 

concentration of 0µM of DMSO was added to N-2 supplement media for the control. Cultures 

were incubated at 38 ̊C, 5% CO2 for 24 h.  

 

 Preparation and Collection of Mouse Embryos 

  The Wnt1-cre driver line was obtained from the Jackson Labs (stock #022137) and was 

cared for and breeded here with help from the Barrow Lab at Brigham Young University. A 

conditional knock-out had been made using a female mouse heterozygous for a X-linked Porcn 

knock-out obtained from the University of Utah (Barrott et al., 2011). When bred with the Cre 

driver lines, it created a conditional knock-out of Porcn where Wnt1 is expressed (namely, in the 

dorsal folds of the neural tube).  The embryos were allowed to grow until embryonic day 8.5 

(E8.5) and embryonic day 9.5 (E9.5). Then, the mother was sacrificed and the embryos were 

removed from the uterus and fixed in paraformaldehyde. Sections of yolk sac were cut from each 

embryo and placed in a tube with 2µLproteinase K and 100µLear lysis buffer, incubated 
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overnight and then boiled. These were used to genotype the mouse embryos. Whole mount 

imaging was done using bright field microscopy.   

 

Genotyping 

PCR was done on the yolk sac DNA (preparation described above) to determine the sex 

of the embryos. Previously designed primers were used to amplify the SRY region of the 

prepared DNA. Presence of the SRY and Cre genes indicated mutants in the litters. 

 

Whole Mount In Situ Hybridization 

A dioxygenin (DIG)-labeled RNA antisense probe was synthesize from a plasmid of 

Axin2 (obtained from Clare Baker, Cambridge University, England). Whole mount in situ 

hybridization was performed in chick embryos described Henrique et al. (1995). Briefly, 

formaldehyde fixed embryos of appropriate developmental stages were buffered and exposed to 

a DIG-labeled antisense RNA probe, which recognized the Axin2 mRNA transcripts. After 

removal of the nonspecifically adhering probe, the embryos were incubated with an alkaline 

phosphatase (AP) -labeled anti-DIG antibody, followed by a chromogenic substrate for AP. The 

embryos were removed and washed in with 1%Tween/PBS and imaged with bright-field 

microscopy.  

 

Skeletal Preps 

Fetuses were obtained at 18.5 days post conception (dpc) by caesarean section, 

eviscerated, and fixed in 95% alcohol for 5 days. The fat pads are dissolved by incubating the 

fetuses in acetone for 48 h. The fixed fetuses were then incubated in alizarin red/alcian blue stain 

solution at 37 ̊C for 7-9 days and then washed 3 times in water. The fetuses were then incubated 
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with Sodium tetra-borate with Trypsin (30% Sodium Borate, 1% trypsin) at 37 ̊C for 5-6 h. They 

were cleared in grades KOH:glycerol solution--80% KOH:20%glycerol, 50% KOH: 50% 

Glycerol, 20% KOH: 80% Glycerol, and lastly 100% glycerol for 48 h each. 

 

Statistical Analysis 

Sections were randomly selected using Research Randomizer Form 4.0V 

(http://www.randomizer.org/form.htm) and cell counts were done using Olympus Cellsens 

software. The populations of cells counted included Pax3 antibody expressing cells, Islet1 

antibody expressing cells, and Pax3/Islet1 antibody coexpressing cells in the ectoderm and 

mesenchyme.  SAS software, version 9.4 (SAS Institue Inc., Cary, NC), was used to do a One-

way ANOVA and Tukey-Kramer test. One-way ANOVA was used to determine if the means of 

all of the groups were equal or not. Tukey-Kramer test was used to show if and which means 

differed significantly in the ANOVA. P-values of ≤0.05 were used to indicate statistical 

significance.   
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RESULTS 

Global Inhibition of Wnt Activity Points to Wnt Involvement in Differentiation/Delamination 
Only 

In chicken embryos, placode induction occurs as early as the 4 ss (Stark et al., 1997, 

McCabe et al., 2009). Past research has shown that opV placode cells are generally committed 

over a protracted period beginning at about the 7-8ss and peaking h later at the 10-15ss (Stark et 

al., 1997). Lassiter et al., found that Pax3 expression was strongly reduced in the placode when 

electroporated with DN-TCF4, so I attempted to duplicate the result by chemically and globally 

inhibiting Wnt and looking at Pax3 expression in the ectoderm and mesenchyme in the midbrain 

region of the head.  

I explanted chick embryos at the 8-10ss onto an agar/albumin (EC) culture medium 

treated with DMSO or XAV939. The embryos were then incubated for 24 h and observed for 

viability and morphological defects. All embryos were still alive but no obvious morphological 

differences were observed between the Wnt-antagonist treated embryos and the control embryos. 

Embryos were then cut out of the vitelline membrane and fixed in 4% formaldehyde. After 

embedding the embryos in 15% sucrose gelatin, I cryosectioned them coronally through the 

region of interest and stained them using antibodies to Pax3 (marker for placode cells) and Islet1 

(marker for differentiated neural cells). Total cell counts from five random sections through the 

placode region of embryos from each treatment type were compared and analyzed for statistical 

significance. Those embryos that showed unhealthy morphology were not included in cell 

counts/analysis.  The experimental samples showed a decreasing trend in the number of cells 

expressing both Islet1 and Pax3 in the mesenchyme (Fig 2C, 2F, Fig 3B). While the difference 

was not statistically significant (Table 1), it did seem to support previous findings that Wnt was 

involved in the delamination and differentiation of the placode cells, as seen by a reduction in the 
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number of delaminated Pax3/Islet1 expressing cells (Lassiter et al., 2007). These results did not 

replicate the previous findings that Wnt was required to maintain Pax3. 
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Figure 2: Inhibition of Wnt Signaling Via XAV939 in the Trigeminal Placode. 
 
The sections are of the opV placode from embryos collected at 8-10ss and cultured on Agar-
albumin dishes for 24 h. The sections were then stained for Pax3 and Islet1. (A-C) 20X 
magnification of placode ectoderm and underlying mesenchyme of control embryos. (G-I) 20X 
magnification of placode ectoderm and underlying mesenchyme of XAV939-treated embryos. 
Many Pax3+/Islet1+ cells can be observed in both the treated and control embryos. 
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Figure 3: Average Cell Counts Of Pax3+ (Undifferentiated Placode Cells), Islet1+  
(Differentiated Cells), Pax3+/Islet1+ (Differentiated Placode Cells) and Total Cells Counted.  
 
(A) Cell counts in the placodal ectoderm. (B) Cells counts in the mesenchyme. While there is a 
trend toward a reduced number of Pax3+/Islet1+ cells in the mesenchyme between the control 
and experimental embryos, this reduction is not statistically significant (p-value = 0.0695). Error 
bars represent the standard error of the mean. DMSO (n=5), XAV939 (n=5). 
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Table 1: Analysis Of Variance of Pax3+/Islet1+ Cells in the Mesenchyme. 
 
Source DF SS MS F-value p-value 

Model 1 1556.82 1556.82 3.45 0.0695   

Error 48 21669.68 451.45    

Corrected Total 49 23226.50 
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Collagen Cell Culture Confirms Trend Suggesting Wnt’s Role in Differentiation and 
Delamination 

To control for the possibility that our technical approach did not effectively deliver the 

Wnt inhibitor to the dorsal embryo, I repeated the experiment using the collagen matrix tissue 

culture (CMC) method and an additional Wnt inhibitor, Inhibitor of Wnt Processing (IWP-2). I 

chose to use the two inhibitors in this experiment to establish whether the drug delivery was 

successful, hoping to see specific phenotypes. I collected embryos from 8-10ss and removed 

them from the vitelline membrane. I removed the heads, making an incision right above the first 

somite, and placed them in tissue culture media. A mound of collagen was placed in the middle 

of each well in a 12-well culture plate and allowed to set up. The embryo heads were then 

carefully placed on the center of the collagen mound and covered with more collagen (treated 

with 10x DMEM and pH balanced with sodium bicarbonate). The embryos were then surrounded 

with 2 ml of N-2 supplemented DMEM culture media treated with either DMSO, 20 µM 

XAV939, or 5 µM IWP-2. These were then incubated for 24 hours. These embryos were 

processed as described previously with the EC culture embryos and analyzed for the number of 

cells expressing Pax3 and Islet1 in the ectoderm and mesenchyme (Fig 4).   

There were no distinct morphological differences between any of the embryo heads. 

However,  immunohistochemistry and statistical analysis showed that there was a significant 

difference (p≤ 0.05) in dual Pax3 and Islet1 expression in the mesenchyme in both experimental 

treatments (XAV939 and IWP-2) versus the control embryos, following the trend established 

with the EC cultured embryos (Fig 4C, 4F, 4I, Fig 5, Table 2). These results only hint at the 

previous conclusion that Wnt is involved in differentiation and delamination; Lassiter et al. 

observed a complete loss of Pax3 expression (ophthalmic placode cells) in both the ectoderm and 

mesenchyme, whereas I observed only a reduction in the number of differentiated placode cells 



18 
 

that had delaminated into the mesenchyme (2007). This leaves open the possibility that some 

other signal is involved in differentiation and delamination or that Wnt was not being sufficiently 

inhibited. Since there was no difference in the results between IWP-2 and XAV939, I opted to 

move forward using XAV939.  
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Figure 4: Inhibition of Wnt Signaling Via XAV939 and IWP-2 in the Trigeminal Placode. 
 
The two different Wnt inhibitors used showed that inhibiting Wnt secretion and activity 
throughout the embryo head prevented the differentiation of the placode cells. The sections are 
of the opV placode from embryo heads collected at 8-10ss and cultured in collagen matrix and 
tissue culture media for 24 h. The sections were then stained for Pax3 and Islet1. (A-C) Control 
embryos treated with DMSO (20µM). (D-F) Experimental embryos treated with 5 µM XAV939. 
(G-I) Embryos treated with 20µM IWP-2. There appears to be a reduced number of 
Pax3+/Islet1+ cells in the mesenchyme between the control and both sets of experimental 
embryos (C, F, I).  
 

 

 

 



20 

Figure 5: Average Cell Counts Of Pax3+ (Undifferentiated Placode Cells), Islet1+ 
(Differentiated Cells), Pax3+/Islet1+ (Differentiated Placode Cells), and Total Cells Counted.  

Average cell counts in the mesenchyme. There was a significant reduction of differentiated 
placode cells found in the mesenchyme. *, **, ^, ^^ indicates p ≤ 0.05 for the specified groups. 
Error bars represent the standard error of the mean. DMSO (n=5), IWP-2 (n=4), XAV939 (n=2). 
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Table 2: Analysis of variance of Pax3+/Islet1+ cells in the mesenchyme (groups include DMSO, 
IWP, and XAV939 treatment) 

Source DF SS MS F-value p-value 

Model 2 1291.37 645.68 4.79 0.0123   

Error 52 7006.34 134.74    

Corrected Total 54 8297.71 
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We checked the effectiveness of the inhibitor XAV939 by performing whole mount in situ 

hybridization. The embryos used were heads that had been collected at 8-10ss and cultured in 

XAV939 through the CMC and compared with embryos that were incubated for 2 days (to 

mimic the same stage at which the cultured heads were collected). I used Axin2 as an antisense 

probe to indicate the activity of Wnt. XAV939 specifically targets Axin2 protein, rather than 

mRNA, so while the Axin2 protein levels would normally be increased if it was effective, the 

mRNA levels should decrease as Wnt has been seen to be a transcriptional inducer of Axin2 

(Chen et al., 2009, Jho et al., 2002).  

The in situs showed that there was little to no Axin2 mRNA in the treated embryos 

qualitatively compared to the control embryos (Fig 6A-D) suggesting little Wnt canonical 

activity. Even in the control embryos, however, it seemed that there was scant Wnt activity in the 

placode region, as indicated by Axin2 levels. Sections of the embryo in the opV placode region 

showed good expression however of Axin2 in the dorsal ectoderm (Fig 6H) and in the otic 

placode region (6E, 6F) in the controls. The embryos treated with XAV939 showed no staining 

at all (Fig 6G, 6H). This indicates the inhibitor effectively blocked Wnt signaling in our 

experimental approach. Synthesizing these data with what was found by Lassiter et al. yields the 

possibility that Pax3 expression and placode identity is regulated independent of Wnt/β-catenin 

through TCF at both the induction and maintenance stages.  

Overall, these experiments showed that inhibition of Wnt activity throughout the entire 

head of the embryo still only resulted in a decrease of differentiated placode cells in the 

mesenchyme and no difference in the undifferentiated (Pax3-expressing) cells in the ectoderm, a 

different result from what had been previously reported (Lassiter et al., 2007).   
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Figure 6: Staining of Axin2 Expression Showing Spatiotemporal Activity of Wnt Signaling on 
Experimental and Treated Chicken Embryos 
 
In situ hybridization staining for the scaffold protein Axin2, which is often used as a readout for 
canonical Wnt signaling, appears to be scant in the experimental embryos versus the control 
embryos. Axin2+ ectoderm can be seen in the dorsal head ectoderm of the controls, especially in 
specific regions near the otic vesicles. 48-hr embryos were collected as controls (A,B, E, F, H) to 
compare with 8-10ss embryos treated with XAV939 and culture as per the CMC protocol for 24 
h (C, D, G I). Axin2 staining in sections of wild type otic region (E) and the anterior edge of the 
otic region (F). Axin2 staining in a section of the otic region in the treated embryos (G). Axin2 
staining in a section of the dorsal ectoderm in the midbrain in a wildtype embryo (H).  Axin2 
staining in a section of the dorsal ectoderm in the midbrain in a treated embryo (I). 
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Wnt Secretion from NCCs an Important Factor in Developing Structures from NCC Streams 1, 
2, and 3  

Our other goal conditionally knockout Wnt secretion from the dorsal NT to see if it was 

the source of Wnt signals affecting the opV placode. This was a follow-up to work done by Jason 

Adams but was more specifically and severely knocking out Wnt secretion in the NT and NCCs. 

I crossed a Wnt1-cre male with a Porcn mutant female; Wnt1-cre:Porcn mutants were identified 

by the presence of  the Sry and Cre genes in their genotypes. Mice were collected at E8.5 and 

E10.5 and observed for morphological differences but none were observed and there were 

relatively few mutants produced in each litter. These embryos were also processed through 

cryosectioning and immunohistochemistry but little to no differences were seen in Pax3 and 

Islet1 expression (data not included). At this time, I was using a Wnt1-cre driver line from Dr. 

Fuhrmann (University of Utah) and it wasn’t known to be the most effective Wnt1-cre available, 

which could have contributed to the lack of defects seen early on.  I wanted to check to see if any 

abnormal morphologies could be observed at birth or whether it was a lethal mutation, so I let the 

embryos go to birth. One mutant was obtained that showed micrognathia and abnormal 

presentation of the ears that seemed consistent with phenotypes of craniofacial disorders.  

We obtained a new Wnt1-cre male and female from Jackson Labs (Stock # 022137), due 

to new facility requirements. After breeding the new Wnt1-cre line with our Porcn knockout 

mice, I continued to find mutants who presented the previously observed phenotype. Mice were 

collected as newborns. Skeletal preps were then performed on these fetuses to compare bone and 

cartilage formation between the mutant and wildtype mice. The abnormalities in the mutant mice 

were very similar to those seen in Wnt1-cre conditional knockouts of β-catenin from Brault et al. 

(2001). The trunk skeleton, it seemed, had no abnormal structures or malformations compared to 

the wild type; this included limbs and vertebral structures up until the atlas bone. In the head 
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region, however, most of the bone structures that were derived from cranial NCCs were absent in 

the mutant mice. In fact, there was almost no ossification in the head except for the exooccipital 

bones (compare Fig 7A and 7B). Cartilage from the mandible was present but other structures 

from pharyngeal arch 1—the maxilla, incus, malleus, and tympanic ring—were missing (Fig 7A-

D, 7E, 7F). The stapes and the lesser horn of the hyoid bone from pharyngeal arch 2 (Fig 7E-7H) 

and pharyngeal arch 3 structures, the lower rim and greater horn of the hyoid bone, were missing 

as well (Fig 7G-7J). All that was evident of the hyoid bone in the mutant was cartilage from the 

body of the hyoid (Fig 7H). These results suggested a strong necessity for Wnt secretion either 

from the NCCs or the dorsal NT.    
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Figure 7: Alizarin Red/Alcian Blue Staining of the Collagen and Bone Structures in Wnt1-cre: 
Porcn Mice  
 
Skeletal preparations of 18.5 dpc wild-type (A, C, E, G, I) and Porcn mutant (B, D, F, H, J) 
fetuses stained with Alizarin Red and Alcian Blue. (A,B) Lateral views of the full skeleton. (C-J) 
Zoomed-in views of the head and neck region to show defects. In the mutant, most of the skeletal 
structures derived from cranial NCCs are missing except the exoccipital (e) bones and 
cartilaginous templates for the mandible (d), the maxilla (x), the frontal bone (f), the parietal 
bone (p) the body of the hyoid (b-hy), the malleus (ma), and the otic capsule (o). The tympanic 
ring (tr), lesser (lh-hy) and greater horns of hyoid bone (gh-hy), stapes (sa), and incus (i) all seem 
to be missing from the mutant. b-hy, body of the hyoid bone; d, mandible; e, exoccipital bones; f, 
frontal bone; gh-hy, greater horn of the hyoid bone; i, incus; lh-hy, lesser horn of hyoid bone; m, 
malleus; mc, Meckel’s cartilage; nc, nasal capsule;o, optic capsule; p, parietal bone; px, incisive 
(premaxillary) bone; sa, stapes; tr, tympanic ring; x, maxilla. 
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DISCUSSION 

Wnt is an important factor in sensory neurogenesis as has been seen in past research 

(Lassiter et al., 2007, Canning et al., 2008, Litsiou et al., 2005, Shigetani et al., 2008). It is 

thought to be a potential inducing signal from the NT, although this source of Wnt is no longer 

required after the initial induction of the opV placode. Wnt has been suggested to be required for 

maintenance of Pax3 expression and thus opV placode cells (Lassiter et al., 2007). There have 

also been several studies that have linked canonical Wnt signaling to Pax3 expression through 

the caudal-related homeobox (Cdx) family and msh homeobox 1 (Msx1) acting on various 

enhancers for the Pax3 gene (Miller et al.,. 2007, Bang et al., 1999, Moore et al., 2013, Zhao et 

al., 2014, Sanchez-Ferras et al., 2014). In this study, however, global inhibition of Wnt signaling 

by known Wnt inhibitors surprisingly did not eliminate Pax3 expression or neuronal 

differentiation in the opV placode. While prior studies point to Wnt being an upstream regulator 

of Pax3 expression, the results presented here have made the role of Wnt unclear.  

In considering how the seemingly contradictory data sets might be reconciled, the 

regulation of TCF/Lef was more closely evaluated. It is perhaps possible that the previous 

studies, which have focused heavily on the activity of transcription activator TCF/Lef, have not 

examined the possibility of Wnt/β-catenin-independent regulation of TCF.  There have been a 

few studies that have seen activation of TCF/Lef in other developmental processes and systems 

through alternate routes other than Wnt signaling (Fuhrmann et al., 2009, Sprowl and Waterman 

2013, Grumolato et al., 2013). They have demonstrated a few connections between the TCF 

family and the activating transcription factor (ATF) family. Interestingly, ATF5 has been found 

to be expressed highly in the ventricular zone of the developing central nervous system and has 

known roles in the progression of neural progenitor cells to become neurons (Angelastro et al., 



28 
 

2003, Mason et al., 2005). It has also been seen to modulate signals required for the development 

of other neural structures such as oligodendrocytes and astrocytes (Mason 2005, Angelastro et 

al., 2005). More specifically, there has been evidence provided showing specific binding 

interactions of ATF1 and TCF1 in hematopoietic tumor cells as well as a proven interaction 

between ATF5 and TCF4 (Grumolato et al., 2013, Xiongjun et al., 2013). Thus, future studies 

could investigate the maintenance of Pax3 via TCF regulation without contributions from Wnt 

signaling, or Wnt-independent regulation of TCF target genes.  

The other interesting experimental result was the presentation of severe abnormalities in 

NC structures from the Porcn knockout mice. The novel part of the work was that the Wnt1-

cre:Porcn mouse would be suppressing secretion of all Wnt ligands rather than activity of just 

the canonical Wnt pathway (as was done with the β-catenin conditional knockout). It provides a 

novel approach (inhibiting Wnt secretion via a Porcn knockout) that validates the predominant 

hypothesis that Wnt from the dorsal NT is required for induction and expansion of NCCs (Brault 

et al., 2001; Chang and Hemmati-Brivanlou, 1998; Dorsky et al., 1998; Garcia-Castro et al., 

2002; Ikeya et al., 1997; LaBonne and Bronner-Fraser, 1998; Lewis et al., 2004; Saint-Jeannet et 

al., 1997). It also raises the possibility that Wnt secretion from the NCCs themselves (targeted by 

using Wnt1-cre as a driver) plays a role in the formation of these structures, especially since 

there were a few differences in abnormal structures between our Wnt1-cre:Porcn mutants and 

the Wnt1-cre:β-catenin knockouts (Brault et al., 2001).  

Follow-up work on the Wnt1-cre:Porcn mice could also provide good evidence on the 

neural development in those embryos as well as further elucidating the role of Wnt in 

craniofacial development. Work has been done in which Wnt1-cre was used as a driver line to 

inactivate β-catenin; it resulted in a more extreme phenotype of craniofacial defects as well as 
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abnormal development of the trigeminal ganglion—all connecting parts with the hindbrain were 

lost in the mutants and the mutant ganglion appeared to be much smaller than the wildtype 

(Brault et al., 2001). The interesting point is that, in spite of the loss of canonical Wnt activity as 

early as E9 in the β-catenin knockout mice, the ganglion was still able to develop, which could 

be due to the continued activity of other Wnts outside of the dorsal neural tube. An in vivo study 

of the Porcn knockout and the trigeminal nerve could provide additional comparative 

information regarding the differential effects of Wnt activity versus Wnt secretion. It could also 

shed more light on the result in our chicken tissue cultures that there was no significant 

difference between the two different Wnt inhibitor treatments; secretion and activity of Wnt 

seemed to affect the embryos similarly in the placode. 
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