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Reliable Mode Tracking in Gradient-Based Optimization
Frameworks with Flutter Constraints

Taylor McDonnell∗ and Andrew Ning†

Brigham Young University, Provo, UT, 84602, USA

In order to construct mode-specific flutter constraints for use in gradient-based multidisci-
plinary design optimization frameworks, mode tracking must be used to associate the current
iteration’s modes with the modes corresponding to each constraint function. Existing mode
tracking methods, however, do not provide a method by which to ensure the accuracy of mode
associations, making them unsuitable for use in situations where obtaining correct mode as-
sociations is critical. To remedy this issue, a new mode tracking method is presented which
incorporates backtracking logic in order tomaintain an arbitrarily high degree of confidence in
mode correlations during gradient-based optimization and/or during aeroelastic analyses. This
mode tracking method is then applied to the aeroelastic analysis of a linear two-dimensional
aeroelastic system and a nonlinear three-dimensional aeroelastic system. Using this mode
tracking method in the context of a gradient-based optimization framework eliminates the
need to use constraint aggregation to construct flutter constraints appropriate for gradient-
based optimization, allows mode shapes to be prescribed, and allows easily controllable modes
to be excluded from flutter constraint formulations.

I. Introduction
As wing aspect ratio increases, dynamic aeroelastic effects such as flutter become increasingly important design

drivers, due to increased structural flexibility. Despite the increasing importance of flutter computations, it is still
common practice in industry to delay flutter computations until after the initial detailed aircraft design process,
since flutter computations require access to aircraft aerodynamic, stiffness, and mass matrices[1]. Delaying flutter
computations can lead to costly and time-consuming redesigns if flutter is found within the flight envelope of a proposed
aircraft. In addition to being costly and time consuming, this redesign process often results in the development of
aircraft that perform worse than originally anticipated.

One commonly proposed method to consider flutter in the initial detailed aircraft design process is to use
multidisciplinary design optimization (MDO) to optimize an aircraft’s geometry and structure while constraining flutter.
MDO with flutter constraints allows the creation of designs that are aeroelastically tailored to be both dynamically stable
and highly efficient. MDO without flutter constraints can lead to highly efficient, but ultimately infeasible designs[2, 3].

Since flutter analyses must be performed repeatedly in the context of a MDO, it is necessary that flutter constraints
are constructed in a computationally efficient manner. Frequency domain, rather than time-domain analyses are therefore
preferred when constructing flutter constraints. Additionally, since gradient-free optimization is computationally
intractable when large numbers of design variables are used[4], flutter constraints should be constructed in a manner
appropriate for gradient-based optimization. Since gradient-based optimizers are typically designed to work with �1

continuous objective and constraint functions, flutter constraints should be �1 continuous.
In order to construct �1 continuous flutter constraints, the flutter speed cannot be directly constrained, because

the identity of the critical aeroelastic mode may switch between design iterations. This phenomenon is known as
mode-switching and results in a �0 discontinuity if the new mode is a hump mode, and a �1 discontinuity otherwise[5].
Mode-switching can be partially prevented through the use of frequency-separation constraints[6, 7], however this
approach imposes artificial constraints which can needlessly decrease the performance of the optimized design and
does not prevent hump modes. Another approach is to the constrain the real part of each eigenvalue associated with
each aeroelastic mode to lie below a preset bounding curve[8–11]. This mitigates the continuity issues, but creates
#A#* constraints where #A is the number of modes and #* is the number of speed increments. To reduce the
number of constraints, these #A#* constraints are often aggregated using a constraint aggregation function such as the
Kreisselmeier-Steinhauser (KS) function[12–15].
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Even when the stability of each aeroelastic mode is constrained individually, �0 discontinuities are possible if the
ordering of the eigenvalues associated with each mode is not consistent across design iterations. These discontinuities
result from the misassociation of modes with constraint functions from design iteration to design iteration. For flutter
constraints derived from linear flutter analyses, a consistent ordering may be defined by ordering aeroelastic modes
based on their corresponding structural modes (assuming the ordering of the structural modes is preserved from iteration
to iteration)[9]. For flutter constraints based on nonlinear flutter analyses, the relationship between the aeroelastic and
structural modes is often not readily apparent and/or easily derived, therefore flutter constraints for nonlinear aeroelastic
systems typically use constraint aggregation to achieve�1 continuity [3, 16]. The downside of the constraint-aggregation
approach, however, is that it precludes the use of mode-specific flutter constraints, as their use would re-introduce
dependencies on the ordering of the eigenvalues back into the flutter constraint formulation.

While in many cases, the constraint-aggregation based approach to constructing flutter constraints is sufficient,
there are contexts in which modes cannot be consistently ordered based on their corresponding structural modes and
mode-specific flutter constraints are desired. Mode-specific flutter constraint functions may be desired, for example, in
coupled rigid-body and aeroelastic mode stability analyses, where constraining the phugoid and spiral stability modes to
be stable to the same degree as aeroelastic modes could result in over-constrained designs. A mode-specific flutter
constraint may also be desired to increase the stability margin on certain modes deemed particularly critical and/or to
constrain a mode to match a prescribed shape. Therefore, there exists a need to be able to construct �1 continuous
mode-specific flutter constraints without ordering aeroelastic modes based on their corresponding structural modes.

To satisfy this need, we develop a new mode-tracking method that can be employed to accurately track modes across
design iterations without relying on an aeroelastic mode’s relationship with its corresponding structural mode. A salient
feature of this mode tracking method is its ability to correlate modes with an arbitrarily high level of confidence, which
allows it to avoid generating false mode associations, unlike many other mode tracking methods. To demonstrate our
mode tracking method, we apply it to the aeroelastic analysis of a linear two-dimensional aeroelastic system and a
nonlinear three-dimensional aeroelastic system, but employ a process that may be used to track modes across the design
iterations of a multidisciplinary design optimization.

II. Theoretical Basis
This section is divided into three parts. First, we review various mode tracking methods. Then we propose a new

mode tracking method which is designed for use in gradient-based optimization frameworks, but is also applicable to
standard aeroelastic analyses. Finally, we present the theory associated with the models we use to test our new mode
tracking method.

A. Mode Tracking Methods
The purpose ofmode tracking is to establish a correspondence between two ormore point solutions to an eigenproblem

that are generated using discrete parameter values. Mode tracking is necessary to establish a correspondence between
two or more point solutions to an eigenproblem because of the inherently arbitrary ordering of modes resulting from
an eigenanalysis. A common application of mode tracking is to relate aeroelastic modes in aeroelastic analysis to
structural modes. Correctly establishing the relationship between a mode and its associated structural mode leads to a
greater understanding of the specified mode, which can help to inform the design process. Incorrectly establishing the
relationship between a aeroelastic mode and its associated structural mode leads to an incorrect understanding of the
mode, which may lead to misguided attempts to improve performance.

A variety of mode tracking methods exist with various degrees of complexity. The simplest method to perform
mode-tracking is to do so by hand using the judgment of the analyst. While this method seems straightforward,
the process becomes challenging and prone to error when correlating modes with similar damping and frequency
characteristics. For this reason automatic mode-tracking methods are useful, even outside of optimization frameworks.
The simplest automatic mode tracking method is to correlate modes based on complex eigenvalue similarity. This
method, however, is prone to errors when eigenvalues associated with different modes occupy similar locations in the
complex plane. A more advanced mode tracking method was proposed by Desmarais and Bennett which uses the
shape of the characteristic polynomial and Laguerre iteration to converge from a root of the characteristic polynomial
for the current iteration to the closest root of the characteristic polynomial for the next iteration[17]. This mode
tracking method replaces the eigenproblem reanalysis, potentially resulting in reduced computational expenses, but will
result in incorrect correlations if the closest root of the characteristic polynomial does not correspond to the correct
mode. Another mode tracking method was presented by Chen[18]. In this method, eigenvalues and their associated
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derivatives for the current iteration are used to predict eigenvalues for the next iteration. Predicted eigenvalues are
then used to sort computed eigenvalues based on complex eigenvalue similarity. The error between the predicted and
computed eigenvalues is then used to measure the accuracy of the mode tracking and reduce the step size if more
accurate results are requested. Unfortunately, similar to the previous two mode tracking methods, the robustness of
this method cannot be guaranteed, even with the correction step, since incorrect mode-associations could result when
modes have nearly identical eigenvalues. Van Zyl proposed that mode-tracking can be performed by correlating modes
based on the similarity of their shapes as measured by the complex inner product between previous and current (right)
eigenvectors (essentially an application of the modal assurance criterion to the problem of mode tracking)[19]. Since
this method compares eigenvectors rather than eigenvalues it alleviates the mode association issue which occurs when
eigenvalues occupy similar locations in the complex plane, but may still fail to choose a correct association if mode
shapes change significantly from one step to the next. The method proposed by Van Zyl was improved upon by Eldred et
al. by making use of the mass-orthogonality of left and right eigenvectors[20]. This improved method was named the
complex cross-orthogonality check method (C-CORC) and was recently extended to the standard eigenvalue problem
and demonstrated on a wide variety of aeroelastic problems by Hang et al[21]. Eldred et al. also proposed the complex
higher-order eigenpair perturbation (C-HOEP) algorithm for mode tracking[20]. This mode tracking method replaces
the eigenproblem reanalysis and is based on the perturbation expansion of the generalized eigenvalue problem. Eldred
found C-HOEP to be more robust than C-CORC, but more complicated to implement than C-CORC and therefore
recommended either based on the priorities of the designer.

B. New Mode Tracking Method
Our new mode tracking method modifies C-CORC to incorporate backtracking logic which reduces proposed step

sizes if mode correlations are poor. By using an adaptive step size, our mode tracking method is able to maintain an
arbitrarily high degree of confidence in mode correlations throughout an aeroelastic analysis or optimization. This new
mode tracking method consists of the following core steps:

1. Generate mode correlations using C-CORC
The key idea behind C-CORC is to use the biorthogonality of the left and right eigenvectors to recorrelate modes

after a parameter perturbation. Given the solutions to the left and right general eigenproblems (5� � = _5�� and
�7 = _�7) at steps 8 and 8 + 1 in an iterative process, we can construct the correlation matrix

� = Φ�8 �8+1Ψ8+1 (1)

where Φ and Ψ are matrices of left and right eigenvectors, respectively. For standard eigenproblems � = � and the
correlation matrix reduces to

� = Φ�8 Ψ8+1 (2)
Due to the biorthogonality of the left and right eigenvectors, the correlation matrix will be diagonal if the parameters
used to define � and � are identical at steps 8 and 8 + 1 (assuming the ordering of the modes is the same at steps 8 and
8 + 1). If we instead apply a small perturbation to the parameters at step 8 to obtain the parameters at step 8 + 1, the
correlation matrix will be diagonally dominant in magnitude, assuming mode-switching has not occurred between steps
8 and 8 + 1. If the correlation matrix is not diagonally dominant in magnitude, mode-switching has occurred and the
modes corresponding to each of the columns in Ψ8+1 should be rearranged to create a diagonally dominant matrix (if
possible) in order to avoid mode-switching.

In practice, sufficiently large step sizes may yield correlation matrices that cannot be reordered to be diagonally
dominant. In this case, the correlation matrix may still be used to find mode correlations on a row by row or column by
column basis, but the best correlation for each mode might not be unique. To determine correlations row by row, the
largest magnitude in each row of the correlation matrix may be assumed to correspond to the best mode correlation at
step 8 + 1 for each mode at step 8. To determine correlations column by column, the largest magnitude in each column of
the correlation matrix corresponds to the best mode correlation at step 8 for each mode at step 8 + 1. While in principle
the row by row or column by column approach to establishing mode correlations is similar, the results from each may
differ. Additionally, since the best mode correlation for each mode might not be unique, either approach may fail to
yield a one-to-one relationship between previous and current modes, and therefore fail to track some modes in future
iterations.

In order to ensure that modes are tracked throughout all iterations, we suggest that a one-to-one correspondence
should always be used between the modes at step 8 and 8 + 1. This means that if the best mode correlation for a mode at
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step 8 is a mode at step 8 + 1 that already has a mode correlation, the next best unassigned mode correlation should be
used. This ensures that the number of modes that are tracked does not decrease when the best mode correlation for two
(or more) different modes at step 8 is the same mode at step 8 + 1.

C-CORC can also be applied to situations where only a subset of eigenvalues/eigenvectors for a given eigenproblem
are calculated for computational efficiency. In this case, the eigenvector matrices Φ and Ψ will be non-square, but the
correlation matrix will still be square, assuming the same number of eigenvalues/eigenvectors are computed at steps 8
and 8 +1. The only requirement when using only a subset of eigenvalues/eigenvectors is that the eigenvalues/eigenvectors
of interest are computed at steps 8 and 8 + 1 so that proper mode correlations can be established. Often, more eigenval-
ues/eigenvectors must be computed than one is actually interested in, in order to ensure that the eigenvalues/eigenvectors
of interest are included in the computed subset of eigenvalues/eigenvectors.

2. Calculate the corruption index for each mode correlation
The assurance with which a given mode correlation is correct may be measured in C-CORC by using the corruption

index, defined as the second largest magnitude in a given row/column of the correlation matrix divided by the largest
magnitude in the same row/column (i.e. the best mode correlation excluding the chosen mode correlation divided by the
chosen mode correlation). Using this definition, the corruption index varies between zero and one, with values close to
zero indicating high confidence in the chosen mode association and values close to one indicating low confidence in the
chosen mode association. It may therefore be interpreted as the likelihood of an incorrect mode association. As the
magnitude of the parameter perturbations between step 8 and 8 + 1 decrease, the corruption index approaches zero due
to the biorthogonality of the left and right eigenvectors. As a result, the corruption index can always be reduced to
an arbitrary level by reducing the magnitude of the parameter perturbations, assuming a one-to-one correspondence
between previous and current modes exists.

Special consideration must be taken for situations in which multiple correct mode associations exist. Such situations
occur, for example, at the point during a parameter sweep where two real eigenvalues transition into a complex conjugate
pair of eigenvalues and/or vice versa. If we force a one to one correspondence as suggested previously, modes will still
be tracked correctly, but the corruption index will approach one rather than zero as the step size is reduced. In order
to ensure that the corruption index decreases as the step size decreases in these scenarios, we redefine the corruption
index as the magnitude of the correlation matrix entry corresponding to the : + 1 best mode correlation divided by
magnitude of the correlation matrix entry corresponding to chosen mode correlation where : is the number of entries
in the given row or column of the chosen correlation matrix entry that are approximately equal in magnitude to the
correlation matrix entry of the chosen mode correlation.

3. Reduce the step size if any corruption index is too high
Once proposed mode correlations have been established and the corruption index has been calculated for each mode

correlation, we can use this information to determine whether the step size should be reduced in order to improve
the quality of the mode-correlations. This reduction in step size helps maintain mode-correlations even when small
parameter changes result in large changes in the mode shapes. A lower corruption index tolerance will decrease the
likelihood of an incorrect mode association, but increase computational costs. A higher corruption index tolerance will
have the opposite effect.

Since backtracking is an essential part of many gradient-based optimizers, this mode tracking technique may be
easily implemented with many existing gradient-based optimizers without any modifications. For example, for the
optimizer SNOPT, one may trigger backtracking by passing a flag indicating that constraint functions are undefined. For
the MATLAB® function fmincon, one may trigger backtracking by returning one or more NaNs from the corresponding
constraint functions when mode-correlations fail.

C. Models
To test our mode tracking method, we use a linear two-dimensional model constructed by coupling an unsteady

aerodynamic model based on Wagner’s function with the typical section model and a nonlinear three-dimensional model
constructed by coupling Peter’s finite state unsteady aerodynamics model with a geometrically exact beam theory model.
We first present the theory underlying each model and then present a general method by which any number of models
may be coupled together into a single model.
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Fig. 1 Classic two degree of freedom typical section model

1. Typical Section Model
The equations of motion for the classic typical section model shown in fig. 1 are

<
( ¥ℎ + 1G\ ¥\) + :ℎℎ = −L
�% ¥\ + <1G\ ¥ℎ + : \ =M

(3)

where :ℎ is the linear spring constant, : \ is the torsional spring constant, < is the mass per unit span, 1 is the semi-chord,
G\ is the x-displacement from the reference point to the center of mass, �% is the moment of inertia about the reference
point, L is the lift per unit span, andM is the moment about the reference point.

2. Quasi-Steady Model
This model is a quasi-steady aerodynamic model derived from thin airfoil theory with inputs and outputs defined

as shown in fig. 2. While we don’t directly use this model for testing our mode tracking method directly, it forms the
foundation for the two other aerodynamic models we use in this paper. The equations for the normal force and moment
per unit span at the reference location for this model are:

N = 00d∞D
21Ueff + cd12 ( ¤E + Dl − 01 ¤l)

M = −cd∞13
[
1
2
¤E + Dl + 1

(
1
8
− 0

2

)
¤l
]
+ 1

(
1
2
+ 0

)
N

(4)

where 0 is the normalized distance from the semi-chord to the reference point, 1 is the semichord length, 00 is the lift
curve slope, d∞ is the air density, D is the local freestream velocity in the chordwise direction, E is the local freestream
velocity in the normal direction, l is the local freestream angular velocity, and Ueff is the effective angle of attack. The
effective angle of attack Ueff for this model is given by

Ueff =
E

D
+ 1

(
1
2
− 0

)
l

D
− U0 (5)

where U0 is the zero lift angle of attack. When coupled with the typical section model, the local freestream velocity
components are

D = *∞

E = *∞\ + ¤ℎ
l = ¤\

(6)
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Fig. 2 Inputs and outputs for two-dimensional aerodynamic models

where*∞ is the freestream velocity.

3. Wagner’s Function Model
Wagner’s function models the indicial response of aerodynamic loads under a sudden change in downwash F at the

three-quarter chord. The exact expression for Wagner’s function is

q(C) = 2
c

∫ ∞

0

<(� (l)) sin(l(D/1)C)
l

3l (7)

where � (l) is Theodorsen’s function. In many cases, approximate versions of Wagner’s function are used rather than
the exact expression, of which one of the most common is the approximation of Wagner’s function provided by Jones[22]

q(C) = 1 − �14
−Y1 (D/1)C − �24

−Y2 (D/1)C (8)

where �1 = 0.165, �2 = 0.335, Y1 = 0.455, and Y2 = 0.3.
Wagner’s function may be used to model arbitrary airfoil motion using Duhamel’s integral. We start by modeling

the increment in the circulatory force XN2 (C) at time C due to an increment in downwash XF(C) at earlier time g as

XN2 (C)
00d∞D1

= q(C − g)XF(g) (9)

where q(C) is the impulse response function, which in this case is R. T. Jones’ approximation of Wagner’s function.
Superimposing all previous impulse responses using Duhamel’s integral yields the following expression for the
circulatory force.

N2
00d∞D1

=

∫ C

−∞

mF(g)
mg

q(C − g)3g = F(0)q(C) +
∫ C

0

mF(g)
mg

q(C − g)3g (10)

We can transform this equation using integration by parts, yielding

N2
00d∞D1

= F(C)q(0) −
∫ C

0
F(g) mq(C − g)

mg
3g (11)

The integral in this expression may be expressed as a function of the aerodynamic states _1 and _2.

_1 = �1Y1
D

1

∫ C

0
F(g)4−Y1 (D/1) (C−g)3g (12)

_2 = �2Y2
D

1

∫ C

0
F(g)4−Y2 (D/1) (C−g)3g (13)
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_1 + _2 = −
∫ C

0
F(g)3q(C − g)3g (14)

The expression for circulatory force then reduces to

N2
00d∞D1

= F(C)q(0) + _1 + _2 (15)

where the downwash at the three-quarter chord is given by

F(C) = E + 1
(

1
2
− 0

)
l − DU0 (16)

and the aerodynamic state variables _1 and _2 are described by the ordinary differential equations

¤_1 = −Y1
D

1
_1 + �1Y1

D

1
F(C)

¤_2 = −Y2
D

1
_2 + �2Y2

D

1
F(C)

(17)

The same lift and moment expressions are used as in the quasisteady model, but with a new effective angle of attack

Ueff =

(
E

D
+ 1

(
1
2
− 0

)
l

D
− U0

)
q(0) + _1

D
+ _2
D

(18)

4. Peters Finite State Model
For Peter’s finite state model, an additional term is added to the expression for the effective angle of attack from the

quasi-steady model to account for the induced velocity from the wake.

Ueff =
E

D
+ 1

(
1
2
− 0

)
l

D
− U0 +

_0
D

(19)

The induced velocity _0 is approximated from a set of N induced-flow states _1, _2, . . . , _# as

_ ≈ 1
2

#∑
==1

1=_= (20)

The set of N first-order ordinary differential equations which govern the N finite aerodynamic states are derived by
Peters et al.[23] as

�̄_ + D
1
_ = 2̄

[
¤E + Dl + 1

(
1
2
− 0

)
¤l
]

(21)

where

�̄ = �̄ + 3̄ 1̄) + 2̄3̄) + 1
2
2̄1̄)

�̄=< =


1

2= = = < + 1
−1
2= = = < − 1
0 = ≠ < ± 1

1̄= =

{
(−1)=−1 (#+=−1)!

(#−=−1)!
1
(=!)2 = ≠ #

(−1)=−1 = = #
2̄= =

2
=

3̄= =

{
1
2 = = 1
0 = ≠ 1

(22)

5. Geometrically Exact Beam Theory Model
This model is a beammodel designed to analyze highly-flexible slender structures made of composites. We developed

this model based on the mixed formulation of geometrically exact beam theory presented by Wang and Yu[24, 25]
and have made it freely available at https://github.com/byuflowlab/GXBeam.jl. As it is a geometrically exact
beam model, it is capable of capturing all geometric nonlinearities due to large deflections and rotations, subject to the
restriction that strains are small. Applied loads or deflections can be applied at any number of key points, and distributed
loads may be applied on each beam element. The governing equations for this model form a set of differential algebraic
equations which may be solved using any standard differential algebraic equation solver.
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6. Lifting Line Model
Two-dimensional aerodynamic models may be applied in the context of a three-dimensional analysis by applying

these models at multiple sections along the span of one or more lifting surfaces. This type of model is applicable when
spanwise flow effects are negligible, which is often the case for high aspect ratio wings. For this paper, we use this
model in order to extend Peter’s finite state model to three dimensions so that it can be coupled with the geometrically
exact beam theory model.

The lifting line model we implemented for this paper assumes that the aerodynamics of each section is independent
of the aerodynamics of the other sections, except as coupled through structural models. The governing equations for this
model are therefore simply the governing equations for each cross-section, concatenated. When coupled with a structural
model, local freestream velocities/accelerations are obtained by combining global freestream velocities/accelerations
with the velocities/accelerations of the structure at each lifting section. These velocities/accelerations may then
be transformed into the local frame of reference using an appropriate transformation matrix. Local aerodynamic
forces/moments may then be calculated using a two-dimensional aerodynamic model and transformed back into the
reference frame used by the structural model.

7. Coupling Models
The governing equations for any number of first order differential equations may be combined by introducing a set

of coupling variables H8 to the governing differential equations for each model.

¤G8 = 58 (G8 , H8 , C) (23)

Assuming the coupling variables for each model may be defined as functions of the state variables of any/all of the
coupled models, the following governing equations may be derived for the coupled system.

¤G = 5 (G, C) (24)

where

5 (G, C) =


51 (G1, H1, C)
52 (G2, H2, C)

...

5= (G=, H=, C)


H1 = 61 (G, C)
H2 = 62 (G, C)

...

H= = 6= (G, C)

G =


G1

G2
...

G=


(25)

Let us now suppose that the governing equations for the any/all of the models is an ordinary differential equation or
differential algebraic equation in mass matrix form

"8 (G8 , H8 , C) ¤G8 = 58 (G8 , H8 , C) (26)

The coupled system of equations are then
" (G, C) ¤G = 5 (G, C) (27)

where

" (G, C) =


"1 (G1, H1, C) 0 0 0

0 "2 (G2, H2, C) 0 0

0 0
. . . 0

0 0 0 "= (G=, H=, C)


5 (G, C) =


51 (G1, H1, C)
52 (G2, H2, C)

...

5= (G=, H=, C)


H1 = 61 (G, C)
H2 = 62 (G, C)

...

H= = 6= (G, C)

G =


G1

G2
...

G=



(28)

If we now add a linearly dependency on the state rates to the definition of the coupling variables, the coupled system of
equations become

" (G, C) ¤G = 5 (G, C) (29)
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where

" (G, C) =


"1 (G1, H1, C) 0 0 0

0 "2 (G2, H2, C) 0 0

0 0
. . . 0

0 0 0 "= (G=, H=, C)


+



m 51
mH1
m 52
mH2
...
m 5=
mH=


[
"H1 (G, C) "H2 (G, C) . . . "H= (G, C)

]

5 (G, C) =


51 (G1, H1, C)
52 (G2, H2, C)

...

5= (G=, H=, C)


H1 = 61 (G, C) − "H1 (G, C) ¤G
H2 = 62 (G, C) − "H2 (G, C) ¤G

...

H= = 6= (G, C) − "H= (G, C) ¤G

G =


G1

G2
...

G=


(30)

Note that in deriving this final system of equations we have assumed that the state rates for each model are linearly
dependent on the coupling parameters, at least for the coupling parameters whose values are dependent on the state
rates. This condition must be satisfied in order for the definitions of the mass matrix in eq. (30) to be strictly correct.

III. Numerical Studies
In this section, we perform several aeroelastic analyses in order to demonstrate the effectiveness of our mode tracking

method. The governing equations for the aeroelastic systems we use to perform these analyses may all be expressed as

" (G) ¤G = 5 (G) (31)

where " (G) is the system mass matrix, which is defined as a function of the state variables, 5 (G) is a vector-valued
function of the state variables which returns the mass matrix multiplied state rates, and G is a vector of state variables.
Linearizing this equation about steady state operating conditions GBB produces the following system of equations.

�G̃ = � ¤̃G (32)

where
G̃ = G − GBB � =

m 5

mG

����
BB

� = " (GBB) (33)

The eigenvalues and eigenvectors corresponding to the linearized system may be found by solving the generalized
eigenvalue problem.

�E = _�E (34)

A. Linear 2D Aeroelastic Analyses
The first system upon which we test our mode tracking technique is the linear two-dimensional aeroelastic system

constructed by coupling the unsteady aerodynamics model based on Wagner’s function with the typical section model.
To be able to apply the general coupling approach described in this paper, the typical section model is expressed as a first
order differential equation with state variables ℎ, \, ¤ℎ, ¤\ and coupling variables L,M. For the unsteady aerodynamics
model based on Wagner’s function, we chose to use the freestream parameters D, E, and l as coupling parameters, which
may be defined as functions of the structural state variables as expressed in eq. (6).

We perform the aeroelastic analysis over a reduced velocity range from 0 to 2 and use the non-dimensional parameters

0 = −0.3 ` =
<

dc12 = 10 G\ = 0.05

A2
\ =

�\

<12 = 0.06 f =
lℎ

l\
= 0.5

00 = 2c U0 = 0

(35)

The resulting normalized frequency and damping, without any eigenvalue sorting applied, is plotted in fig. 3. Some
mode switching may be observed due to the inherently arbitrary ordering of the eigenvalues.
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Fig. 3 Frequency and damping of the 2D aeroelastic system without sorting
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Fig. 4 Frequency and damping of the 2D aeroelastic system with sorting using C-CORC

If we apply C-CORC to track modes as velocity is increased, occurrences of mode switching are greatly reduced,
as shown in fig. 4. A false mode association, however, appears to present for the velocity increment from 1.2 to 1.4,
since the damping of multiple modes appear to drastically change their trajectories over the corresponding velocity
increment. With a sufficiently small velocity increment, all occurrences of mode switching may be eliminated, so we
can test whether this mode association is correct or not by using a smaller step size. Unfortunately, the exact step size
necessary to eliminate mode switching is problem dependent.

The corruption index associated with each mode association in fig. 4 is shown in fig. 5. Note that in order to ensure
that multiple tracked modes don’t coalesce into a single tracked mode when mode tracking is applied, we assigned each
mode their best unassigned mode correlation rather than allowing modes to be correlated with their best correlated
mode. Corruption indices greater than one therefore indicate that two modes shared the best mode correlation, so one of
them had to be assigned its next best correlated mode. In this case, two modes share the best same mode correlation for
the velocity increment from 1.2 to 1.4 resulting in a corruption index with a magnitude greater than one. Regardless, the
high corruption index for the velocity increment from 1.2 to 1.4 indicates that a false mode association likely occurred
during that velocity increment, which agrees with our assessment based on our inspection of fig. 4.

Figure 6 shows the result of applying the new mode tracking technique presented in this paper, with a corruption
index tolerance of 0.5 and simple backtracking logic that halves the step size if the corruption index tolerance is exceeded.
As may be observed, the suspected occurrence of mode switching has been eliminated. Additionally, the smooth
behavior of the frequency and damping plots suggest that no additional cases of mode switching are present. As might
be expected, additional refinement has been added to the analysis at the reduced velocities for which mode switching is
likely to occur, which for this case is near the frequency crossing and the transition from complex to real eigenvalues.
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Fig. 5 C-CORC corruption indices for each tracked aeroelastic mode of the 2D aeroelastic system
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Fig. 6 Frequency and damping of the 2D aeroelastic system with sorting using the new mode tracking method
presented in this paper
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Fig. 7 New mode tracking method corruption indices for each mode association of the 2D aeroelastic system

Table 1 Highly Flexible Slender Wing Properties

Property Value
Span 16 m
Chord 1 m
Spanwise ref. axis location (from l.e.) 50% of chord
Center of gravity (from l.e.) 50% of chord
Flat bending rigidity 2 × 104 N m2

Chord bending rigidity 4 × 106 N m2

Torsional rigidity 1 × 104 N m2

Mass per unit span 0.75 kg/m
Rotational inertia per unit span 0.1 kg m

The corruption index associated with each mode association in fig. 6 is shown in fig. 7. The corruption indices for
all velocity increments remain below the tolerance of 0.5, indicating that the mode associations are likely correct. The
low corruption indices shown in fig. 7 also confirm that our mode tracking method is able to reduce corruption indices
to an arbitrary level.

B. Nonlinear 3D Aeroelastic Analysis
For this case, we test the performance of our new mode tracking method when modeling the stability of a highly

flexible slender wing with properties as specified in table 1. For the beam’s structure, we use the geometrically exact
beam model described previously with eight beam elements. To calculate the distributed aerodynamic loads on each
beam element, we use Peter’s finite state model with six aerodynamic state variables for each section. We assume the
wing is cantilevered at a 2° angle of attack and subjected to a freestream velocity ranging from 1 m/s to 35 m/s with a
default velocity increment of 1 m/s. We assume the air density for the analysis is 0.088 kg/m. These properties match
the properties given for a similar analysis performed by Hang et al.[21]

The frequency and damping ratio, with eigenvalue sorting applied using C-CORC, is plotted in fig. 8. The
corresponding corruption indices for the aeroelastic mode correlations are plotted in fig. 9. Some mode-switching may
is observed in the post-flutter region (at velocities greater than 22 m/s) as evidenced by the rapidly changing plotted
frequency and damping. The presence of mode switching is also evidenced by the high corruption index values in
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Fig. 8 Frequency and damping of the 3D aeroelastic system with sorting using C-CORC
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Fig. 9 C-CORC corruption indices for each aeroelastic mode association for the 3D aeroelastic system
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Fig. 10 Frequency and damping of the 3D aeroelastic system with sorting using the newmode tracking method
presented in this paper

the same post-flutter region, with many corruption indices exceeding one. On the other hand, low corruption indices
at lower velocities suggest that larger velocity increments could have been used at lower velocities while maintaining
correct mode associations.

Figure 10 and fig. 11 show the result of applying the new mode tracking technique presented in this paper, with a
corruption index tolerance of 0.5 and simple backtracking logic that halves the step size if the corruption index tolerance
is exceeded. Note that the corruption index tolerance in this case is applied only to the aeroelastic modes, as identified at
a velocity of 1 m/s. In addition to fixing all issues associated with mode switching, our mode tracking method confirms
that some of the rapidly changing frequency and damping values in the post-flutter region are in fact a characteristic of
the system, and not just an artifact of the mode tracking step size.

IV. Conclusions
In this paper, a new mode tracking method was presented which incorporates backtracking logic in order to generate

mode correlations with an arbitrarily high degree of confidence. This mode tracking method was demonstrated on both
linear two-dimensional and nonlinear three-dimensional aeroelastic systems, but is applicable to all systems whose
governing equations may be expressed as a set of first-order ordinary differential equations. By maintaining an extremely
high degree of confidence in calculated mode correlations, this mode tracking method is able to be used in scenarios
in which obtaining correct mode associations are critical, such as when constructing mode specific flutter constraints
and/or objectives for gradient-based optimization frameworks.

The new mode tracking method presented in this paper is based on the complex cross-orthogonality check method
(C-CORC) presented by Eldred et al.[20], but uses an adaptive, rather than fixed, step size based on the measured
accuracy of the mode correlations. In this new mode tracking method, mode correlations are generated based on the
creation of a correlation matrix, generated using the left and right eigenvectors and the system mass matrix, if applicable.
Then the corruption index, a measure of the likelihood of a false mode association, is determined based on entries in the
correlation matrix for each mode association. Finally, the proposed step size is reduced if the corruption index exceeds a
user-specified tolerance, which may be arbitrarily small. Since the mode tracking method presented in this paper is able
to prescribe an arbitrarily small maximum corruption index tolerance, it is able to generate mode correlations with an
arbitrarily high degree of confidence.

For both the linear two-dimensional and nonlinear three-dimensional aeroelastic analyses considered in this paper,
C-CORC was able to eliminate most occurrences of mode switching, whereas the new mode tracking method was
able to eliminate all occurrences of mode switching. The new mode tracking method was also found to be capable of
identifying and tracking rapidly changing modes, even when used with a large default step sizes (relative to the gradient
of the changing modes). The insensitivity of the new mode tracking to the default step size allows it to be accurate even
in contexts in which the sensitivity of the aeroelastic modes to a step size change is unknown, which makes it extremely
useful when applied to track modes during aeroelastic analyses and multidisciplinary design optimizations.
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Fig. 11 New mode tracking method corruption indices for each mode association of the 3D aeroelastic system
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