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Abstract 

Assembly permits the integration of different materials and manufacturing processes to increase system 
functionality.  It is an essential step in the fabrication of useful systems across size scales from buildings to 
molecules. However, at the microscale, traditional “grasp and release” assembly methods and chemically inspired 
self-assembly processes are less effective due to many scaling effects. Many methods have been developed for 
improving microscale assembly. Often these methods include fluidic forces or the use a fluidic medium in order to 
enhance their performance. This paper reviews basic assembly theory and modeling methods. Three basic assembly 
strategies (tool-directed, process-directed, and part-directed) are proposed for categorizing these methods.  It then 
summarizes progress in using fluidic forces (surface tension, viscous) and external fields (magnetic, electric, light) 
to aid microscale assembly.  Applications of recent advances in both continuous flow and digital microfluidics in 
microscale assembly are also addressed.   
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I. Introduction	
Typically assembly processes have been the domain of manufacturing, kinematics, and mechanics.  However, at the 
microscale, traditional assembly techniques are not as effective for reasons described below.  In the search for 
alternative approaches, fluid-mediated assembly methods have provided many promising methods.  As these 
methods progress from basic demonstrations toward implementation, it becomes increasingly important for the 
practitioners of fluid assembly to be aware of the theory and methods for traditional assembly.  Therefore, this 
review article provides a short introduction to the literature in assembly and assembly modeling in addition to 
reviewing advances in fluidic assembly. 

Assembly connects physically distinct parts into a system.  For most of history, assembly has been done by hand.  
While we have built-in visual and force feedback, dexterous manipulators, and intelligence; human ability to 
replicate precise motion is limited.  With the advent of robots in the 1970s and 1980s, interest grew in using robots 
to automate assembly processes.  However, engineers quickly realized that many apparently simple assembly 
processes were not easily performed by robots.  For example, with limited degrees of freedom, careful design of 
fixtures was required to reliably grasp many parts (Dechev et al. 2005; Yeung and Mills 2004).Additionally, art 
insertion can be very sensitive to the system compliance and the assembly trajectory (Meitinger and Pfeiffer 1997; 
Meitinger and Pfeiffer 1994; Whitney et al. 1983; Whitney 1982; Whitney and Nevins 1982).  This has spurred 
many studies of assemblies, assembly design, and assembly processes (Boothroyd et al. 2002; Whitney 2004).   

The traditional approach to assembly could be defined as “grasp and release”.  Each component is located, grasped, 
positioned, and then released.  At the macroscale, these processes are executed easily with little thought.  However, 
each of these tasks becomes more difficult at the microscale.   

When people assemble macroscale objects, part location is a simple visual task.  As part size decreases, visual 
location of parts becomes more challenging due to the limited depth of focus and resolution of optical observations.  
Assembly has been done inside an SEM (Kasaya et al. 1999) and using novel optical imaging systems (Potsaid et al. 
2006; Potsaid et al. 2005) to address this challenge.  Additionally, grippers can block views of the parts (Enikov and 
Lazarov 2001).   

One solution is to use sensorless systems that can reliably orient and locate a part so that it can be grasped for 
assembly (Erdmann and Mason 1988; Liu et al. 2011a). These techniques use a series of forces or system changes 
that can either orient and locate a single part or filter out all mis-oriented components with minimal information 
about its initial position and orientation.  These methods include vibratory, mechanical, gravity, and pneumatic 
feeders (Boothroyd 2005; Goemans et al.). Similarly, robots can also be designed to locate themselves with limited 
number of sensors (O’Kane and LaValle 2005).  These results are not directly applicable to the microscale due to 
scaling effects  and manufacturing limits (Moll et al. 2002), but they are similar in some respects to self-assembly 
(SA) processes.  Both systems decrease the location uncertainty of the parts without direct manipulation. 

At the macroscale, parts are typically grasped by friction due to compressive grasping forces.  However, small parts 
can also be grasped using vacuum (Chen et al. 2010b),  freezing  (Lopez-Walle et al. 2008), and capillary forces 
(Vasudev et al. 2009). Force sensing and grasp compliance have been investigated for their potential to reduce part 
damage from rigid grasping techniques (Kim et al. 2004; Zubir et al. 2009).  The grasping process itself may also be 
used to improve the location of the parts relative to the grippers (Ellekilde and Petersen 2006).   

Once the parts are grasped, they must be moved to the desired position.  Microscale manipulators often have very 
limited range—perhaps just a few part diameters—while the grippers and actuators are much larger than the parts.  
Often, microscale systems require more expensive equipment to move less valuable parts slower than their 
millimeter to centimeter scale counterparts (Das et al. 2007; Dechev et al. 2006; Dechev and Cleghorn 2002).  The  
relatively large size of the manipulators and the limits of 2D micro-manufacturing methods complicate the 
simultaneous use of multiple manipulators.      
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However, at the microscale, the biggest challenge of “grasp and release” assembly may be the release.  At 
microscale dimensions, the gravitational forces are often too small to reliably overcome other forces including 
capillary, and Van der Waals forces (Fearing 1995).  Work has been done to overcome these effects using air 
pressure (Chen et al. 2010b), vibrations (Chen et al. 2009; Chen et al. 2010a), impact (Chen et al. 2009), and the 
exploitation of directional variation of the forces (Feddema et al. 2001; Kasaya et al. 1999); but this still remains a 
challenging problem in practice.  Additional discussion of microscale “grasp and release” assembly is found in 
(Cecil et al. 2005). 

If we look at manmade systems across the size scales, microscale systems are the only area where we regularly 
attempt to fabricate devices without assembly.  Macroscale assembly is readily done by people with increasing 
support from robots.  Many nanoscale assemblies are still quite challenging as well, but chemical synthesis is a 
highly-developed area of nanoscale assembly. Biological growth consists of nanoscale assembly of molecules to 
form cells, tissues, and entire organisms. Despite the many challenges, reliable assembly of microscale components 
is critical to achieve high performance micro and nanoscale systems. 

System performance depends on both material and geometry.  Both are limited without the ability to assemble.  
Without assembly, devices must be made in-situ through a series of compatible processes and materials.  This 
imposes significant limitations on the types of materials that can be integrated.  Photolithographic fabrication often 
requires the successive deposition and patterning of many separate layers.  Additionally, the predominately 2D 
nature of most microfabrication processes imposes additional design constraints.  Creativity has permitted the 
fabrication of some remarkable devices without requiring assembly. Moreover,  manufacturing and folding methods 
have overcome some of the limits of 2D manufacturing  (Arora et al. 2006; Leong et al. 2010; Leong et al. 2007; 
Nichol et al. 2007).However, current micro-assembly systems still impose limitations on product design and 
performance.   

 

Morris et al. (2005) considered the changing rates of assembly processes with size of the objects being assembled as 
illustrated in Fig. 1.  Large objects are assembled relatively slowly—probably due to their large inertia and the 
customized nature of most large scale assembly.  However, as parts decrease in size, their assembly rate increases 
tremendously until they reach a peak at the millimeter size scale.  Below this size, assembly becomes progressively 
slower using traditional, directed approaches.  It is clear that alternative methods are needed. Challenges arise from 
the physics of the microscale world that make it difficult to scale macro-assembly techniques to micro-sized 
components (Bang et al. 2005; Bos et al. 2008; Menciassi et al. 2004).   

Significant efforts have been undertaken to develop new assembly methods that can circumvent some or all of the 
challenges of “grasp and release” assembly.  These include alternative part-grasping techniques and processes that 
eliminate the need to locate individual parts, such as sensorless assembly and SA. Assembly methods that rely on 
fluidic forces and fluidic mediums show particular promise at the microscale.   

This review article focuses on assembly processes that use fluidic forces or require a fluidic medium.  The first 
section reviews the motivation and challenges of microscale assembly in more detail and then summarizes key 
information on assembly theory that remains relevant to microscale assembly processes.  The remainder of the 
article reviews progress in developing fluidic assembly systems for devices and features at the microscale.  
Microscale is defined roughly as having dimensions between 100 nm and 5 mm.  It is in this general range where 
fluidic forces have been most widely used.  One of the key methods of fluidic assembly at the microscale is self-
assembly (SA).  However, several excellent review articles have been published on this subject in recent years 
(Boncheva et al. 2003; Elwenspoek et al. 2010; Mastrangeli et al. 2009; Morris et al. 2005; Syms et al. 2003; 
Whitesides and Grzybowski 2002; Xia et al. 2000).  In this review, we will confine ourselves to a discussion of how 
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SA fits into the range of possible assembly methods, and focus the article on methods for directed assembly at the 
microscale. 

   

 

Fig. 1  Variation in assembly rates with part size.  Declining rates for submillimeter parts suggest the needs 
for alternative processes such as self-assembly (SA).  Figure reproduced with permission from IEEE. (Morris 
et al. 2005) 

II. Assembly	Strategies	
Assembly methods can be divided into three main strategies as summarized in Table 1.  These strategies are 
independent of the assembly size scale.  Each has their particular advantages and disadvantages that are worth 
noting.  To address these compromises, hybrids of these basic categories have also been developed.  These basic 
strategies are discussed below. 

Tool Directed Assembly:  Tool-directed assembly is the traditional approach in which control over the assembly is 
primarily external to the parts.  External agents such as people, robots, or programmable tools decide what is 
assembled from the parts and how it is accomplished.  This is the dominant method of assembly at the macro and 
mesoscale.  Since the controls are external to the parts, the parts are simplified and the parts are readily reused to 
make different parts and assemblies. If programmable tools are used, then adjustments to the assembly output can be 
made quickly.  The assembly outcomes are relatively insensitive to the environmental conditions at the time of 
assembly.  Common design for assembly strategies would try to (1) reduce the number of parts and (2) redesign the 
parts to reduce the number of ways that the parts can be mis-assembled (Boothroyd et al. 2002).  Due to the cost and 
complexity of the tools, assemblies are often done predominately in series (i.e. assembly line). 

Process-Directed Assembly:  In process-directed assembly, the assembly outcome depends on the parts and the 
conditions under which they are brought together.  This is the dominant assembly method at the nanoscale and it is 
common in chemistry.  In these processes, the outcomes depend on environmental variables such as temperature and 
pressure as well as the reactants and their concentrations.  It is often characterized by multiple assembly products.  
These assembly processes are massively parallel and relatively simple to execute.  However, sometimes the various 
products must be separated (purified) to eliminate the undesired assemblies (products).  The challenge of process-
directed assembly is in identifying the conditions under which desirable assemblies can be created.  In chemistry, 
centuries of experiments and theory have been devoted to understanding the conditions under which a relatively 
small number of building blocks can be assembled into desired products.   
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Table 1.  Summary of three key assembly strategies. 

 Tool-directed Assembly Process-Directed Assembly 
(Self-Assembly) 

Part-Directed Assembly 

Illustration 

Assembly 
Control 

-Embedded in tooling 
-Tooling can be 

reprogrammed 
-Deterministic 

- Embedded in part/process 
design 

-Limited flexibility 
-Stochastic 

- Computation occurs in parts 
-Extreme Flexibility 
-Deterministic 

Parts 

-May be used in multiple 
assemblies 

-Optimized for use 
performance 

-Assembly specific 
-May be constrained by 

requirements of the 
assembly process 

-Actuation, computation, and 
sensing embedded in every 
element 

- Reusable for multiple 
assemblies 

Product Design 
-Some coupling with tool 

design 
-Tightly coupled with 

process design 
-Only need to specify desired 

outcome  
Product 

Performance 
-Minimal constraints from 

the assembly process 
-Likely limited by assembly 

process constraints 
-Compromised for flexibility in 

assembly 
 

When this approach is applied to manmade objects, it is often called self-assembly.  While chemistry is limited to 
the reactions of a finite set of elemental building blocks, self-assembly building blocks are infinite in number.  
While this offers new flexibility and possibilities, it also creates enormous challenges in designing the parts and the 
process to produce the desired assemblies.  Due to the interest in and particular challenges of self-assembly at the 
microscale, it is discussed separately below.  Design-for-assembly strategies modify the parts or assembly 
conditions to reduce assembly errors and/or increase assembly speed.  The part design is heavily impacted by the 
nature of the assembly process. 

Part-Directed Assembly:  If intelligence and control can be built into the parts themselves, the parts could 
assemble themselves.  Such a system would not need a complicated machine in order to complete the assembly.  Nor 
would the assembly outcome have to be determined a priori as in process-directed assembly.  The parts could 
assemble in response to external messages, pre-programmed missions, or in response to environmental stimuli.  This 
is the essential concept of swarm robots, particularly those that can link together to accomplish specific tasks.  The 
basic concepts of modular, reconfigurable, cooperative, and self-replicating robots have been demonstrated (Gro et 
al. 2006; Gross and Dorigo 2008; Klavins et al. 2006; Wei et al. 2011), but full implementation requires additional 
theory and technology.  (Yim et al. 2007)  

In order to realize this approach, actuators, sensors, and computational capability all need to be embedded in the 
parts.  This strategy is particularly effective for applications in which reconfiguration is required.  Otherwise, there 
is significant performance and cost penalty to incorporate all of the required actuation functions, communications 



6 
 

and computations into each individual component.  Thus, this approach may only be implemented in specialized 
applications.  At the microscale, cells are prototypical smart parts that can respond to the environment and 
cooperatively accomplish tasks.  Future advances may permit similar functionality to be achieved using manmade 
systems.   

III. Assembly	Theory	Background	
Automated assembly systems have been studied since the earliest days of robotics.  However, as researchers 
attempted to apply the early robots to assembly tasks, they quickly discovered many complexities in the assembly 
tasks that made automation difficult.  After more than 30 years, a substantial body of literature is now available that 
addresses many issues relevant to microscale assembly.  However, many researchers working on microscale fluidic 
assembly may be unaware of this body of knowledge from traditional manufacturing practice. As the complexity of 
the assemblies increases, these theoretical underpinnings become increasingly important.  Therefore, key concepts, 
findings, and techniques from this body of literature are summarized below, as many are applicable to all scales and 
methods of assembly. 

A. Assembly	Modeling	Methods	
Assembly is the joining of physically separate components to perform desired functions.  Initially, each part has six 
independent degrees of freedom.  As the parts are joined together, the spatial degrees of freedom are reduced by the 
connections between components.  Typically, the spatial relationship between the parts is important to the function 
that they perform.  For example, holes must align in order to insert a bolt, optical components must have a common 
axis, and electrical connections must line up with the correct wires.  While the spatial relationships receive the 
greatest focus in assembly processes, other properties such as thermal and electrical resistivity of connections can 
also be critical.   

The design of the system to be assembled and the process that assembles it are closely linked (Sprumont and Muller 
1997).  In fact, several authors have focused on assembly as the focal point for integrated product development 
processes (Boothroyd et al. 2002; Whitney 2004).  Integrated product development processes simultaneously 
consider all aspects of the design and production to shorten design time and generate higher performance designs.  
This requires the use of a variety of assembly models with varying levels of fidelity for different design stages.    

Modern solid modeling software permits accurate representation of component geometry and the connections 
between the components.  This software commonly includes the ability to check for interferences and can evaluate 
issues of maintenance and assemblability (Boyse 1979; Jayaram et al. 2004; Seth et al. 2010).  However, an accurate 
solid model requires detailed component knowledge that is not available in early design steps when many of the 
important configuration choices are made.  Thus, there is great value in alternative methods for representing 
assemblies that capture key aspects of the assembly performance without requiring as much detail.  The simplest 
model of a mechanical assembly is a network diagram in which the parts are nodes and the nodes representing 
touching parts are connected by lines as illustrated in Fig. 2.  (Whitney 2004).  These simple diagrams can be helpful 
in comparing different schemes for accomplishing the assembly function, and identifying the parts that play a role in 
delivering important spatial relationships in the assembly.   
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Fig. 2.  a) Liaison diagrams of a stapler represent the connections between the components.   Lines show 
connections between parts.  Double lines identify a key characteristic (KC) that affect system function. b) 
Simplified liaison diagram that shows the connections that deliver one of the KCs. (Whitney 2004) By 
permission of Oxford University Press, Inc. 

While the network diagrams are easily constructed, they contain relatively limited information.  Datum flow chains 
augment these models with directional arrows on the connecting lines to represent the path of the constraints as 
illustrated in Fig. 3.  Each arrow is labeled with the degrees of freedom that are constrained by the connection 
between the two parts.  Double lines are used to represent key relationships between parts that affect the assembly 
function.   Datum flow chains provide a concise way of representing the transmission of spatial relationships 
between parts and can be very helpful in exploring different assembly configurations during the early stages of 
design and in diagnosing the causes of assembly problems.  (Mantripragada and Whitney 1998).      

 

Fig. 3.  Datum flow chain of an electric motor.  Arrows show how constraint in different degrees of freedom is 
passed through different components and features within the components.  Used with permission from 
(Whitney 2004). 

Datum Flow Chains reveal two basic assembly strategies (Mantripragada and Whitney 1998).  In most assemblies, 
the part positions are completely constrained by features on the mating parts.  However, in some assemblies, the 
parts are placed in a fixture to position them for assembly.  With proper design, the fixture achieves assemblies with 
smaller variation than the parts.  The datum flow chains can be combined with tolerance information and coordinate 
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transformations to predict the effect of manufacturing variation on the spatial relationships in the assembly (Chase 
and Greenwood 1987; Gao et al. 1998; Whitney et al. 1994). 

Two of the biggest sources of assembly problems are under- and over-constraint.  When parts are under-constrained, 
one or more degrees of freedom are free and desired spatial relationships cannot be maintained.  In contrast, over-
constrained assemblies have multiple features trying to locate the same degree of freedom.  This results in conflicts 
between the features.  Assembly then requires highly precise components, large clearances, and/or deformation of 
one or more parts in the assembly.  Over-constraint errors cause sensitivity to assembly sequence, the use of large 
force for assembly, and unexplained part failures (Whitney 2004). 

Awareness of these issues and heuristics such as the 3-2-1 location principle are sufficient to eliminate constraint 
problems in many assemblies (Whitney 2004) .  However, to design complex assemblies or automate the process for 
simpler assemblies, screw theory provides a more rigorous method to assess the system constraint level (Adams and 
Whitney 1999; Shukla and Whitney 2005; Shukla and Whitney 2001).  Screw theory provides an elegant 
mathematical framework for describing the transfer of forces and motions through a mechanical system (Davies 
2006; Davies 1983a; Davies 1983b; Davies 1983c). Using screw theory, complex assemblies can be readily 
analyzed for under- and over-constraint (Whitney 2004).   

Application of these methods to practical connections requires some idealizations of the contact type.  Often, 
connections are open to multiple interpretations.  Whitney ( 2004) has prepared a library of twist matrices for 
common connection types.  While microscale assembly uses many similar connection types, there may also be new 
connection types and new characteristics to be considered such as larger relative tolerances that merit additional 
consideration.  In particular, some microscale bonding methods, such as by surface tension, may not be well-
approximated as rigid connections.  At the macroscale, elastic averaging is sometimes used to reduce random errors 
by averaging a number of elastic bonds (Awtar and Sevincer 2006; Culpepper et al. 2004; Slocum and Weber 2003). 
Such principles may also be applicable to many microscale fluidic assemblies. 

B. Gross	and	Fine	Assembly	Motions	
The process of assembly is commonly broken into two steps (Whitney 2004).  In the first, “gross positioning,” the 
part is positioned in the vicinity of the assembly position.  This can be done easily with open loop controls.  The 
required distances and tolerances are large relative to the part dimensions.  In the second step, “fine positioning,” the 
parts are brought into their final assembled positions.  This second step imposes stringent alignment and accuracy 
demands on open-loop positioning systems.  For example, inserting a pin in a hole frequently requires angular 
alignment within a fraction of a degree and positioning within a small fraction of the pin diameter.  Visual and force 
feedback have both been used to improve the assembly process.  However, visual feedback is complicated by the 
limited line of sight during final assembly.  Force feedback is also difficult because there is not a unique mapping 
between the forces and the assembly condition (Whitney 1987).  Substantial progress has been made in overcoming 
these challenges to feedback-based positioning systems (Conant-Pablos et al. 2003; Du et al. 2008). 

Other techniques used in place of or to complement feedback-based systems include increased clearances, generous 
chamfers, and specialized gripping.  Underlying these methods is a body of literature on the force-position 
relationships during common assembly tasks (Whitney 2004).  These methods can be used to identify a range of 
conditions under which problems such as jamming and wedging can be avoided.  One particularly effective 
approach is to adjust the gripping method to improve the force-insertion characteristics.  A remote centered 
compliance (Bang et al. 2005; Whitney 1982) creates an effective center of rotation near the tip of the part being 
inserted.  Under these conditions, the normal forces of the hole on the part act to improve the alignment so that 
insertion can be accomplished without force or visual feedback.  It may be possible to develop analogous methods 
for fluidic assembly processes that improve alignment such as the semi DUO-SPASS method which uses a 
mechanical aperture to provide initial alignment with surface tension acting to increase the accuracy(Fang and 
Bohringer 2006a). 
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At the microscale, the forces are different as are many of the relative tolerances.  However, analogous techniques 
could be applied to improve the ability of parts to assemble.  For example, Cappelleri, et al. ( 2011) considered 
strategies under which mesoscale parts could be assembled successfully by pushing them.  Popa et al. (Popa et al. 
2007) addressed these problems by integrating compliance into the parts that dramatically reduce the positioning 
accuracies required for assembly as seen in Fig. 4. 

a)  b)  
Fig. 4.  Part compliance can simplify alignment requirements for assembly.  a) Compliant microparts inserted 
into mating holes. b) Series of assembled parts with the assembly tool used to insert them. Parts in both 
figures are 800μm x 1300μm x 100μm.  (Das et al. 2007) 
 

C. Design	of	Assemblies	
Assembly design has many facets.  At its most basic level, liaison diagrams and datum flow chains can be used to 
evaluate alternative ways of positioning components to achieve the required relationships in the assembled system.  
These high level models support top-down assembly design in which high level assembly requirements are 
identified and the constraint relationships are then used to define the lower level requirements for individual 
subassemblies, parts, and features on the parts.   

One area of assembly design that has received particular attention is the selection of features that can accurately and 
repeatedly locate the parts.  The ideal constraint type is termed “exact” or “kinematic” constraint (Furse 1981; Hale 
and Slocum 2001; Schouten et al. 1997; Slocum 1988; Slocum and Donmez 1988).  Lord Kelvin and J. C. Maxwell 
identified the unique benefits of this constraint approach in the late 1800s.  (Slocum 1992) In this method, each 
individual positioning feature removes independent degrees of freedom.  These features are often formed from 
special grooves that mate with spheres as illustrated in Fig. 5. Another approach to high accuracy positioning from 
lower accuracy components is to use elastic averaging.  Elastic averaging uses multiple flexible features that 
elastically deform during mating (Awtar and Sevincer 2006; Marentis et al. 2009).  The assembled position is the 
one with the minimum energy.  If a large number of mating pieces with random errors come together, the assembled 
position reaches a repeatable mean with less error than that of the individual mating components.  In many practical 
constraints separate features are used to determine the part position (groove/sphere pair) and to hold it there (glue, 
bolt). 
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Fig. 5.  Illustration of kinematic couplings for repeatable location of components.  a) Three grooves each 
locate two independent degrees of freedom. b) 3-2-1 principle is applied to the kinematic coupling.  From left 
to right, the first mate constrains three degrees fo freedom, the second constrains two, and the third, one 
degree of freedom.  (Hale and Slocum 2001) 

Due to the impacts of assembly processes on the design, performance, and cost of the final system, significant 
efforts have been made to develop methods for assessing the assemblability of parts and components at early stages 
of the design process.  For example, Sony utilized a method that emphasized the drawing of exploded views of 
assemblies at the earliest stages of design to force engineers to consider assembly (Whitney 2004).  Hitachi 
developed a more formal assembly design system termed Extended Assembly Evaluation Method (AEM) in which 
comparative methods are used to develop a relative assemblability score that can provide a standard of comparison 
between designs (Ohasi et al. 2002).  Boothroyd et al. (2002) developed a system based on empirical data that 
predicts assembly times based on simple part features such as size, symmetry, and tools required.  They further 
identified other assembly criteria including assembly efficiency and guidelines for reducing the number of parts in 
an assembly.  Different assembly techniques favor different designs (Boothroyd and Dewhurst 1990). 

An important part of the assembly process is the assembly sequence.  In many cases, there are many feasible 
sequences while in others there may not be any.  Many methods have been developed for identifying and 
representing feasible sequences (Fazio 1987; Gu and Liu 2008; Lanham and Dialami 2001).  Important 
considerations include the assembly directions, reorientation requirements, and the stability of the parts that are 
inserted.  Assembly sequence also affect production metrics such as the assembly cycle time, equipment required, 
cost of fixing errors, and the lead time required to customize a product.  Thus, there is a great interest in integrating 
many of the different assembly design issues into a single optimization system (Fazio 1987; Lanham and Dialami 
2001; Sprumont and Muller 1997; Udeshi and Tsui 2005).  The planar nature of microscale fabrication may simplify 
the identification and selection of sequence for microscale assemblies.  However, the ability to control assembly 
sequence is still vitally important.  This is currently an obstacle to the fabrication of complex assemblies via SA. 

D. Macro	Assembly	and	Micro	Assembly	
Some of the macro-assembly techniques are directly applicable to microscale assemblies.  For example, liaison 
diagrams and datum flow chains can be used to compare microscale system designs.  Screw theory could be used to 
assess the constraint status of micro assemblies and matrix transforms used to study the impact of tolerances on the 
assembly accuracy.  However, in many areas, adaptations and/or extensions are required to increase the usefulness 
of these techniques.  For example, how can kinematic constraint and/or elastic averaging be applied given the 
manufacturing constraints of photolithography techniques?  How can fluidic bonds be used for kinematic constraint?  
How does design for assembly apply to novel assembly techniques such as the ones described below? 

Microscale assemblies produced to date have focused on the fabrication of relatively simple systems that 
demonstrate individual assembly concepts.  As microscale assembly systems mature, methods for modeling 
assemblies, designing assembly processes, and designing parts for assembly will become increasingly important. 
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IV. Self‐Assembly		
Self-assembly (SA) is an assembly method in which the parts are designed to assemble spontaneously when they are 
brought together—typically by random interactions such as by stirring or vibrating the components.  SA has more in 
common with chemical reactions than traditional “grasp and release” assembly.  Thus SA eliminates many 
challenges of “grasp and release” as the parts are never grasped.  The resulting equipment could be much cheaper as 
many assemblies can be produced in parallel to increase the process speed.  The early SA work of Yeh and Smith 
(Yeh and Smith 1994a) with Fluidic Self Assembly sparked significant interest in SA of microscale components. SA 
processes have been demonstrated with high rates and >98% accuracy (Knuesel and Jacobs 2010; Zheng et al. 2004) 
and 3D capabilities (Breen 1999; Oliver et al. 2001). However, SA requires a process-directed strategy that links the 
assembly process and part/system design in new ways.  As SA relies on stochastic interactions to assemble the 
components, new types of stochastic assembly errors are introduced that require different design strategies.  Fluids 
are often used in SA in order to provide a medium for the assembly.  The fluid reduces friction and can be used to 
circulate the components until they contact.  Additionally, fluids can provide the bonding force either through 
pressure (Tolley et al. 2008) or capillary affects (Syms et al. 2003).  When the carrier fluids evaporate, the adhesion 
forces can bond components together (Yeh and Smith 1994b). 

Perhaps, the biggest challenge of SA is the design of parts and processes that can achieve the desired outcome.  The 
parts must be designed to have an energy minimum in their assembled condition.  Many different types of forces 
have been used including capillary, electrostatic, magnetic, viscous, and chemical bonds (Pelesko 2007).  Bond 
models have been developed for many bond types (Bohringer et al. 2001; Harsh and Lee 1998; Shetye et al. 2007; 
Xiong et al. 2004) that can be used to design parts for SA.  However, if multiple types of parts must be assembled, it 
is much greater challenge to design parts that will bond without errors (Pelesko 2007).  This can be addressed 
through the use of different bonding types (Wu et al. 1999), integrated controls (Krishnan et al. 2008), and multi-
batch assembly (Crane et al. 2009; Xiong et al. 2001).  However, most of these techniques only permit the assembly 
of a small number of part types.  Significant work is necessary in order to extend these methods to the assembly of 
more complex systems.  Due to these challenges, most current SA systems are relatively simple structures consisting 
of a large number of identical parts assembled to one substrate (Jacobs et al. 2002; Knuesel and Jacobs 2010; Shetye 
et al. 2009) or in a repeating structure (Gracias et al. 2000).  Electrically conductive bonds have been demonstrated 
with low melting point solders and through capillary-driven bonds between metallic plates, followed by subsequent 
annealing (Arscott et al. 2010; Cannon et al. 2005; Gracias et al. 2000; Zheng et al. 2004) . Additional work is 
needed in creating more types of functional bonds with improved performance. 

While laboratory demonstrations of SA for simple structures are promising, there is relatively little progress in 
industrial implementation at the microscale.  One key challenge is the lack of process-level modeling to guide 
scaling from laboratory to factory.  Current process models are based on experimentally measured quantities that 
don’t provide insight into simple changes such as the size of the container, the velocity of the fluid, or the patterns of 
stirring (Hosokawa et al. 1994; Napp et al. 2006; Zheng et al. 2004).  Better understanding of such key parameters is 
needed to guide the scaling of self-assembly processes to production scale. 

SA faces an additional scaling problem at the microscale.  This is illustrated by looking at basic assembly 
relationships.  A basic expression for the assembly rate ( ሶܽ ) is 

ሶܽ ∝  ௔ Equation 1݌݂݊

where n is the number of parts, f frequency of assembly attempts per part and pa	is the probability of assembly per 

attempt.  Consider the case of a cubic part of length l and density  assembled by capillary forces with surface 

tension .  For successful bonding, the part bonding energy (ܧ௕ ∝  ଶ) must be larger than its agitation energy݈ߛ
஺ܧ) ∝  ,ଶ) where ‘v’ is the part velocity. If the ratio of bonding to agitation energy remains constant with scalingݒଷ݈ߩ

then the velocity for a given bonding ratio decreases with݈ିଵ ଶ⁄ .  If the average distance between parts (d) scales with 
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the part size, then the distance that the parts travel to contact the substrate increases with part size.  The attempt 

frequency–expressed as the average velocity divided by the average distance—is then decreasing with ݈ିଷ ଶ⁄ .  As a 
result, the attempt frequency of a 1 nm part is 106 times that of a 10 micron part.   

Additional scaling factors could further reduce the assembly rate.  Thus, SA processes that work well at the 
molecular levels become much slower at larger size scales.  Successful assembly must focus on achieving a high 
assembly probability and/or very high levels of parallel assembly.  Many SA processes increase the assembly 
probability by reducing the spatial degrees of freedom either by assembling from a liquid interface (Bowden et al. 
2001; Knuesel and Jacobs 2010; Whitesides and Grzybowski 2002; Wolfe et al. 2003) or by folding the parts from 
an initial configuration (Arora et al. 2007; Harsh and Lee 1998; Leong et al. 2007).  Mechanical techniques to 
improve alignment before final assembly offer another alternative (Fang and Bohringer 2006b). 

V. Position/Actuation	via	Capillary	Forces	
Capillary forces deserve considerable emphasis within the topic of microscale assembly. They are large relative to 
gravitational forces at the microscale. Hence, they must be taken into consideration when designing any microscale 
assembly mechanism. This section provides a brief theoretical background on capillarity, as well as a review of 
efforts that utilize capillary interactions as a mechanism for assembly. 

Capillary force exists at the interface of two or more immiscible fluids. All surfaces possess a certain free energy 
different from their bulk characteristics. It is especially apparent for liquids because they readily deform to minimize 
the free energy. This free energy (J/m2) is often referred as surface tension (N/m).  This creates a pressure difference 
(ΔP) across a liquid interface given the Laplace equation ܲ߂ ൌ ሺ1ߛ ܴଵ⁄ ൅ 1 ܴଶ⁄ ሻ where R1 and R2 are the principle 
radii of curvature of the surface. The pressure difference is called the Laplace pressure. As the drop’s size decreases, 
the Laplace pressure increases.  At the macro scale, capillary forces are small compared to gravitational force. As 
the length scale of assembly decreases, capillary force becomes more dominant. At the microscale, force magnitudes 
are adequate enough for manipulating components. At nanoscale however, capillary forces can be strong enough to 
cause unwanted deformations.  The large free energy of small droplets also makes it difficult to form sub-micron 
fluid patterns. Thus, capillary forces are primarily used for microscale applications. 

For many assembly applications, it is essential to modulate the capillary forces, spatially and/or temporarily. Surface 
tension can be readily manipulated by a variety of methods. Below are some commonly used methods and their 
operating principles: 

 Thermal - Surface tension is sensitive to temperature changes. For most liquids, surface tension decreases 
when temperature increases. When there is a temperature gradient present (either due to local heat transfer or 
evaporation), surface tension gradient causes the liquid to flow from the area of lower surface tension to that of 
higher surface tension (Lappa 2010). “Thermocapillary convection” or Marangoni effect can be used to 
manipulate floating or suspended parts (Adachi et al. 1995; Hu and Larson 2006; Di Leonardo et al. 2009).    

 Surfactants - Many materials and even solid particles segregate to interfaces where they lower the interfacial 
energy.  Organic surfactants (or surface active materials) usually consist of two ends: one lyophobic and one 
lyophilic end. Once in a solution, surfactant molecules migrate to and align on the surface with the lyophobic 
ends facing away from the solvent.  This phenomenon change the surface energy of the liquid (Gennes et al. 
2004; Myers 1991). Surfactants prevent coalescence in droplet based microfluidics and control protein 
adsorption on liquid-liquid interfaces (Baret et al. 2009; Roach et al. 2004). Surfactants are very effective but 
the surface energy changes are not easily reversible.   

 Coatings - Spatial modulation of capillary forces is readily obtained by applying different coatings to the 
surfaces.  One useful approach is to pattern self-assembled monolayers (SAM) on a substrate via soft 
lithography (Kumar and Whitesides 1993; Rogers and Nuzzo 2005). Both hydrophobic and hydrophilic surfaces 
can be created by selecting an appropriate SAM. A wide variety of SAM molecules are commercially available 
for many common surfaces.  It is also possible to apply coatings that change their wetting properties in response 
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to environmental conditions such as pH and temperature (Dong et al. 2006; Vidyasagar et al. 2008). Although 
the monolayer thickness of a SAM may be convenient for many applications, these coatings can be delicate, and 
environmentally sensitive. Therefore in many cases, thicker coatings are more favorable. Metals, organic- and 
fluoro- polymer coatings can also change the surface energy. Deposition processes such as spin coating, dip 
coating, PVD and CVD are quite standard (Kim et al. 2006; Xu et al. 2012). 

 Surface roughness - Micro fabrication techniques such as DRIE (deep reactive ion etching), laser etching and 
polymer micro molding enable the control of surface roughness by creating micro/nanoscale structure (Cansoy 
et al. 2011; Ding et al. 2009; Forsberg et al. 2011; Sun et al. 2008). In the presence of a surface texture, multiple 
wetting states are possible that are distinguished by the degree to which the fluid penetrates into the recesses of 
the texture.  The two wetting extremes are the Cassie-Baxter state and the Wenzel state.  In the Cassie-Baxter 
state, the liquid does not penetrate into the texture. The reduced liquid-solid contact area reduced the apparent 
solid/liquid interfacial energy and increases the apparent contact angle. In contrast, liquid has lower apparent 
contact angle in the Wenzel state because it fills all of the recesses. Although the two wetting states can co-
exist, there is usually an energy barrier to overcome to transition from one to the other (Koishi et al. 2009). 
External excitations such as pressure, vibration, thermal energy and electrowetting have been used to overcome 
this energy barrier (Bahadur and Garimella 2007; Boreyko and Chen 2009; Bormashenko et al. 2007; Forsberg 
et al. 2011; Krupenkin et al. 2007; Liu et al. 2011b; Manukyan et al. 2011; Ni et al. 2011). Changing the 
ambient fluid can also initiate wetting transitions (Dhindsa et al. 2006). Textured surfaces not only allow precise 
control of fluid patterning on the parts and assemblies, but also manipulation of discrete droplets (Shastry et al. 
2007; Sun et al. 2008). 

 Electrowetting - is an electromechanical phenomenon where an electric field applied across a fluid interface 
changes the equilibrium contact area of a droplet on a substrate (Jones 2005). Electrowetting is a powerful 
method to manipulate fluidic interfaces that is also reversible.  While it does not change the actual surface 
energy, it does change the apparent contact angle and equilibrium shapes.   The apparent contact angle 
decreases with increasing voltage (DC or AC) until it reaches a limiting saturation voltage. Most commonly, it 
is used with a dielectric layer between the fluid and the electrode (Electrowetting on Dielectric (EWOD) to 
reduce electrochemical reactions (Baret 2005; Nelson and Kim 2012).  Electrowetting applications have been 
demonstrated in optics, medical diagnostics, displays, and cooling (Baret 2005; Jones 2005).  While it is 
typically characterized by contact angle, it can also be characterized by capacitance (Verheijen and Prins 1999) 
or force measurements (Crane et al. 2010). 

A. Droplet	Positioning	and	Actuation	
Multiple steps are needed in directed assembly processes. Parts have to be grasped, moved to the desired location, 
and then released. Finally, a bond has to be formed between the parts.  Capillary force is a versatile tool which can 
perform all of these tasks.   

1. Grasp	and	Release	
As discussed above, grasp and release assembly encounters many difficulties at the microscale. Replacing 
mechanical grasping with capillary grasping can overcome many of these limitations. A droplet can easily grasp 
micro scale parts using surface tension and Laplace pressure. Also, the gripper is not confined by the part’s 
geometry. More importantly, the actuation force can be controlled by the size of the droplet so the gripper will not 
damage fragile parts. Lambert and Delchambre (2005) studied the capillary gripper design parameters including 
surface tension, part geometry and grasp/release strategies. Biganzoli et al.(2005) demonstrated a capillary gripper 
using hydraulic pressure and an elastic membrane. In their study, grasping was achieved by depositing a droplet on 
the part. A micro syringe tip with an elastic membrane on one end was brought into contact with the drop (Fig. 6a). 
Part release was accomplished by increasing the pressure inside the syringe tip. Vasudev et al.(2008) used 
electrowetting to manipulate the gripping droplet. In their experiment, a droplet was suspended from an EWOD 
substrate, and a voltage potential was applied before the droplet contacts the part. The part was grasped as it was 
wetted by the droplet.  The voltage was then decreased to reduce the grasping force and release the part (Fig. 6b). 
The same principle is also applied using ionic liquids for high temperature and vacuum applications (Zhe 2011). 
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Fig. 6. (a) Capillary gripper whit a elastic membrane (Biganzoli et al. 2005). (b) Electrowetting oprated 
gripper (Vasudev and Zhe 2008). Reprinted with premission. 

For micro scale assembly, capillary grippers can be more cost effective than traditional mechanical grippers.  
However, the release of parts can still be challenging for capillary micro-gripper as the wetting process is not 
completely reversible.  The performance of these grippers could be improved by incorporating additional methods of 
modulating the capillary forces as described above.   

Another type of fluidic micro gripper uses thermal energy to freeze the surrounding fluid for grasp and release.  
Yang et al. (2008) cooled the gripper tip with low temperature gas to nucleate ice and form a solid bond between the 
tip and the part.  Lopez-Walle et al. (2008) created ice bonds at the gripper tip to capture and release a micro part 
(0.6x0.6x0.1 mm) in an aqueous environment using a thermo-electric cooler. 

A very intriguing example of using capillary force to grasp and release parts are demonstrated by Hu et al. (2011). 
In their experiment, an air bubble was introduced into a fluidic environment, and a laser is focused onto the air 
liquid interface. Thermal-capillary flow generated by the laser causes the bubble to follow the laser. Micro-beads 
can be either pushed or pulled by the bubble. 

2. Alignment		
As part size decreases, the positioning accuracy requirements increase and the cost of “grasp and release” assembly 
often grows.  One solution is to mechanically position parts near the desired location and then utilize a second 
method for fine positioning.  Capillary force is a promising fine-positioning method because it has a clear minimum 
energy position.  Additionally, it can operate at many sites simultaneously.    

Originally developed by IBM in the 60’s, surface mounted technology (SMT) is a widely employed industrial 
process that uses capillary force for integrated circuitry assembly. SMT technologies such as flip chip (FC) and Ball 
grid array (BGA) places solder paste or  small balls (bumps) of solder on the interconnects and then heats them to 
reflow the solder. The interconnects are designed so the solder wets the metal only. During solder reflow, solder 
surface tension aligns the mating contact pads achieving accuracies in the micrometer range (Lu and Bailey 2005; 
Nasiatka and Karim 1995).  The large numbers of solder bonds average out the variations in individual bonds in a 
type of capillary analogy to elastic averaging.  The static capillary forces are commonly modeled using the software 
Surface Evolver (Brakke 2008; Brakke 1992; Greiner et al. 2002; Harsh and Lee 1998).  Knuesel et al. (2012) 
reported recent progresses in using solder based fluids to align and self-assemble solar cells. For a more detailed 
review on flip chip technology and fabrication techniques, see references (Krishnamoorthy and Goossen 1998; 
Puttlitz and Totta 2001; Zenin et al. 2011). 

In optoelectronics, one key aspect of the fabrication process is the alignment of components for improved 
performance --- whether it’s the optic fiber to the wave guide or the optical chip to the electronic chip. In the case of 
aligning optical fiber to the wave guide, Wale and Edge (1990) achieved alignment accuracy of 1 micrometer in the 
early 90’s.  High precision V-grooves are etched into the silicon first; the optical fibers are then filled into the 
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groves. Then solder are placed on the contact pads. Finally, another substrate which contains the wave guides is 
mated with the one with optical fibers. Hayashi (1992) investigated the long term stability of the alignment accuracy  
of optical chips. He found a variation of less than 0.5 micrometer after 1000 hours (over 300 thermal cycles).  

A fluid-fluid interface can also align parts that are too small to grasp.  Salalha and Zussman (2005) showed that gold 
nanowires with 0.5 µm diameter and 5 µm length can be aligned to the bottom of a micro-channel using a fluid-fluid 
interface through thermocapillary flow. In a similar study, Katz et al. (2006) also aligned rods-shaped bacteria 
(length~2-6 µm) using the advancing contact line motion of a single droplet. 

3. Bonding	
Aside from SMT chip bonding, other liquids and/or ambient fluids are also used for temporary and permanent 
capillary bonding between parts (Srinivasan et al. 2001). The effect of the composition of both the bonding alloy and 
the ambient fluid was studied by Morris and Parviz (2008). They concluded that molten alloy works well with parts 
down to 40 µm size scale. Batch assembly of 5000 micro sized parts (40µm) was successfully accomplished within 
2.5 minutes.  The bonding and alignment forces were sensitive to the volume of the fluids (Greiner et al. 2002).  
However, a combination of capillary bonding with physical alignment features can be used to improve the accuracy 
(Ramadoss and Crane 2008; Zheng and Jacobs 2006).    

Most of these methods require the deposition of fluids before assembly—limiting the ability to control assembly 
sequence and uniquely bond particular parts.  Jiang and Erickson (2011) developed an alternative method in which 
fluid interface was created in-situ. In their study, a bubble was generated by focusing a laser on a free floating tile.  
The capillary force between the bubble and the surrounding liquid latched the tiles and a planar structure was built 
inside a chamber (Fig. 7).  This method permitted the assembly of a variety of structures from simple building 
blocks. 

 

Fig. 7. A laser locally heats the material to a bubble (left).  The surface energy of the bubble interface can 
align and connect SU-8 tiles (right). Reprinted with premission from (Jiang and Erickson 2011). 

4. Folding	
Folding is a special case of assembly in which a single object is reconfigured by actuating on one or more degrees of 
freedom in the object.  While this is sometimes considered a self-assembly process, the initial connections between 
parts reduce the potential errors and speed the process compared to self-assembly processes that do not have any 
initial connections.  Additionally, folding processes leverage the substantial body of techniques for planar 
fabrication to make functional 3D objects.   To actuate parts along limited degrees of freedom, fluids can not only 
provide a microgravity environment, but the fluid itself can also be used as an actuator or even a ‘hinge and lock’ 
mechanism.  Originally developed by Syms and Yeatman (1993), folding of a planar template into three dimensional 
structures has numerous applications in micro fabrication.  Demonstrations include microscale inductors and 
capacitors (Dahlmann et al. 2001; Harsh et al. 1999a), precise 3D alignment of blades for a micro rotary fan 
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(Linderman et al. 2002), and  a self-folding/unfolding capsule to deliver drugs or cells (Fig. 8d) (Azam et al. 2011). 
Furthermore, a tissue scaffold could be folded to provide the building block for “bottom up” assembly of living cells 
(Fig. 8e)(Jamal et al. 2010; Randall et al. 2012). Conventional folding techniques include applying thermal energy to 
a memory alloy; introducing stress to thin films and via external force fields such as magnetic and pneumatic (Leong 
et al. 2010).   

Two different capillary approaches are commonly used.  The first uses the surface tension of a droplet to fold a thin 
elastic membrane (elasto-capillarity or Capillary Origami) (Fig. 8a)(Guo et al. 2009; Py et al. 2007). The elastic 
substrate can be designed to have different final shapes (spherical, cubic or square). When a droplet of water 
contacts the substrate, surface energy overcomes bending energy of the elastic sheet and spontaneously folding take 
place.   

The second folding technique, which is more common in MEMS fabrication, involves a material ( solder, glass or 
polymer) that goes through a phase transformation from solid to liquid. Usually, substrates with desired feature are 
processed by surface micromachining --- planar parts with overhang or suspend structures--- with or without hinge. 
Solder is deposited during the surface micromachining processes. Heat is applied to reflow the solder. When in the 
liquid state, the minimization of free energy from the solder causes planar parts to rotate out of plane to form 3D 
structures. The rotating torque can be specified by a combination of the amount of solder used and the wettable area 
on the substrate. Other constrains can also be introduced by adding additional limiting mechanism (Harsh et al. 
1999b; Syms 1999; Syms and Yeatman 1993). An additional releasing step can be performed to create free standing 
3D structures (Brittain et al. 2000; Gracias et al. 2002).  For example, Harsh et al. (1999a) demonstrated folding of a 
thin plate with limiting kick stands (Fig. 8b). Azam et al. (2011) created all polymer containers with windows for 
bio-applications (Fig. 8c).  Capillary force has the advantage of easy fabrication using lithography, and the potential 
to sequence folds using different chemical, thermal triggers and/or gradients. Much effort has been devoted to 
surface tension enabled self-assembly including micro fabrication, modeling and applications, which are beyond the 
scope of this article. For a more detailed review, see ref (Syms 2003).Interfacial Positioning and Actuation 

The methods described above utilize droplets that are of similar dimensions to the parts or smaller.  Below are 
several methods that use capillary force on an interface to position and actuate parts/objects.  In these cases, the 
interface is much larger than the parts.  The processes show particular potential for programmability and 
directionality. 

Many assemblies take place at an interface.  Traditionally, this may be a solid interface such as the surface of a 
table.  However, at the microscale, surface tension can support objects at a liquid interface.  Deformations of the 
interface due to the object buoyancy, wetting properties of submerged objects, and/or external inputs can be used to 
actuate objects on the surface.  When parts are placed on a fluid-fluid interface, lateral capillary force arises due to 
the curved interface. Two classic scenarios are illustrated in Fig. 9.  When gravity causes the interface to deform, it 
is defined as “flotation force” (Fig. 9a) When curvature of the interface from the wetting properties of the parts 
deforms the interface, an “immersion force” (Fig. 9b) is created.  
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(a)  (b)  

(c)  (d)  (e)  

Fig. 8. (a) Varies shapes of elasto-capillary folding (Guo et al. 2009; Py et al. 2007). (b) Solder assembled 
MEMS with kickstand (Harsh et al. 1999a). (c) All polymeric container self-folding (Azam et al. 2011). 
(d)Container encapsulating Artemia eggs (top) and fibroblast cells (bottom), scale bars are 250 μm (Azam et 
al. 2011). (e) Bio-scaffold self-assembly (top) and fluorescently stained fibroblasts cultured on a cylindrical 
scaffold with its growth progression, scale bar is 200 μm (Jamal et al. 2010). Reprinted with permission. 

Minimization of the free energy on the interface results in an attractive/repulsive force between the parts.  Parts that 
cause the same surface curvature experience an attractive force while parts with different surface curvature are 
repelled.  Drawing an analogy to the Coulomb’s law, a “capillary charge” can be introduced to approximate the 
attractive/repulsive force between part/body (Kralchevsky and Nagayama 2001).  The force (F) is 

ܨ ൌ െ2ߛߨ
ܳଵܳଶ
ܮ

 Equation 2 

where γ is the interfacial tension, Q1 and Q2 are the capillary charge, and L is the separation distance. Detailed 
derivation of the capillary charge Q can be found in (Kralchevsky and Nagayama 2001). The scaling of these two 
force types with part size differs because of their different physical origins. For spherical parts with radius of R, the 
floatation force ∝ ܴ଺/ߛ ; and the immersion force ܨ ∝ ܴଶ/ߛ . As the size of the parts decreases, the floatation force 
reduces at a much faster rate than the immersion force. For particle size less than 5µm, the floatation force is usually 
negligible. 
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(a)  (b)  

Fig. 9. (a) Capillary floatation force where the density ρ1 <ρ2 < ρ3 < ρ4. (b) Capillary immersion force. Adapted 
from (Kralchevsky and Nagayama 2001). 

The “assembly by shape” method utilizes above-mentioned attractive force to assemble three dimensional parts in 
space. Different wetting properties can be specified and parts on the interface can self-assemble accordingly (Fig. 
10a,b). Clark et al. (2002) assembled hexagonal shaped plates into a template.  Bowden et al. (2001) assembled 
chains on a fluid-fluid interface (Fig. 10a).  Zamanian et al. (2010) showed that different shapes of microgel can be 
shaped into a tissue-like structure assembled chains on a fluid-fluid interface (Fig. 10a).  Most often, shape 
assemblies are done in a batch process; the wetting properties of the parts determine the process. But there are also 
other methods that can be applied to control the curvature of the interface to achieve directed assembly process. 
Crane et al. (2011) used electrowetting to alter the surface curvature and moved individual parts along desired path, 
as illustrated in Fig. 10c,d. 

 

(a)  (b)  (c) (d)  

Fig. 10. (a) Pre-specified wetting properties drive assemblies into chains, the dark sides are hydrophobic and 
light sides are hydrophilic (Bowden et al. 2001). (b)Close-packed assemblies of triangular, square, and 
hexagonal shaped microgel parts at fluid/fluid interface(Zamanian et al. 2010). (c) Electrowetting can be used 
to change curvature around hydrophobic metal rods (Crane et al. 2011), (d) 4mm square plate floating on a 
water/hexadecane interface is moved between four rods according to the voltage applied to the rod (Crane et 
al. 2011). Reprinted with permission. 

Parts can also be moved along a solid surface by attaching them to individual droplets.  This approach builds on the 
techniques of digital microfluidics that have received particular attention in the area of medical diagnostics.  Several 
examples have been published using electrowetting. Moon and Kim (2006) demonstrated a liquid conveyer system 
in which four droplets carried a thin glass plate (Fig. 11a). Nelson et al. (2011) developed a continuous 
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electrowetting method which eliminated multiple electrodes to reduce the fabrication and programming complexity.  
This technique could be readily applied to the actuation of solid objects over long distances.  Crane et al. (2011) 
demonstrated the idea with a 9 x 9 mm glass plate carried by a droplet (Fig. 11b). These techniques could form the 
basis of micro scale conveyors and positioning systems for assembly. 

(a)   (b)  

Fig. 11. (a) Electrowetted droplet moving a glass plate (Moon and Kim 2006). (b) Continuous electrowetting 
carrying a 4mm square glass (Crane et al. 2011). Reprinted with permission. 

VI. Assembly	via	Viscous	Forces	
The advantages of fluid-based assembly systems have been discussed above. Additionally, capillarity has been 
reviewed as an assembly mechanism. This section will review the use of fluid pressure, shear forces, and fluid 
manipulation techniques for microscale assembly.  

A. Characteristics	of	Systems	Based	on	Fluid	Forces	
Design for microscale fluid-solid interactions has different conditions and limitations than at the macroscale. For 
example, buoyancy forces significantly diminish the effects of gravity and friction, which tend to restrict motion of 
microscale bodies.  Due to the large surface area, drag forces become more significant.  Additionally, the ability to 
create complex microfluidic systems with integrated valves and pumps facilitates complex fluidic processes.  Fluid 
viscous forces also offer flexibility on material selection. Desired functional properties (such as magnetic and 
electrical affinities) do not conflict with fluid-driven assembly process. Viscous forces primarily considered here are 
most sensitive to size, shape, and density of the microscale components. 

Several studies have combined fluid forces, with other manipulation techniques. The fluid forces provided gross 
positioning after which other forces provided fine motion for final placement and alignment. Singh et al. (2005) 
employed a pipette-method to transfer a fluid dispersion of assembly components onto an assembly sites substrate. 
A solid mask helped to physically guide the components towards the assembly sites. Assembly sites were recessed, 
and their shape matched that of the incoming components. Fine alignment was promoted by agitating the system 
with fluid shear forces, and allowing for components to fall, by their own weight, into place. Srinivasan et al. (2001) 
used the pipette method for transporting parts, and then capillary forces to generate bonding. Stauth and Parviz 
(2006) showed how fluid flow carries precursor parts across assembly sites, until capillary forces provided bonding.  

Besides providing gross motion, fluid forces can also facilitate stochastic based processes through agitation, by 
providing large numbers of part-site interactions. Stochastic based processes rely on these interactions to obtain high 
assembly yields. Verma et al. (1995) used fluid buoyancy and fluid flow to recover non-assembled parts, hence 
recycling part-site interactions and enhancing process yield. Several studies relied on fluid agitation (Jacobs et al. 
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2002; Soga et al. 2003; Zheng et al. 2006; Zheng and Jacobs 2004) and Marangoni flows (Morris and Parviz 2006) 
to enhance the number of favorable interactions between binding surfaces in SA.  

B. Assembly	with	Microfluidic	Technology	
At the macroscale, object conveying and sorting has been done with fluidics (Gluskin 1970), but it is not practical in 
many applications. However, at the microscale, microfluidic devices provide a wide variety of microfluidic 
techniques for particle sorting applications.  See for example (Zhu and Nguyen 2010). Sorting could be viewed as a 
gross positioning step in assembly processes, by bringing a disordered dispersion of components into a desired 
arrangement. Therefore, current techniques for sorting particles and immiscible fluid droplets could be applied for 
assembling precursor components instead. While these are often spherical components, methods are available to sort 
components with orientation control. For example, railed microfluidic channels were employed for orientation-based 
sorting of pre-fabricated components (Park et al. 2009). 

Besides sorting components, microfluidic channels have been employed for aligning assembly precursor 
components. Many macroscale assembly processes, aligning parts as they are transported. Concurrent transport and 
alignment allow for simplifying an assembly process, and increasing production rate. At the microscale, microfluidic 
channels can be used as an assembly line conveyor. Fluid flow can collect parts from a disordered array into a 
microfluidic channel. A channel’s physical confinement allows for aligning conveyed components in a desired way, 
while fluid forces provide source for motion. At the end of a channel (or conveyor), assembly can then begin with 
oriented components.  

Dendukuri et al. (2006) employed a microfluidic channel as an assembly line, based on stop-flow lithography 
method. A flow of a photo-curing polymer was exposed locally to external UV light. The resultant solid objects of 
pre-defined geometries were conveyed, and then assembled, via fluid-motion into aggregates of simple geometries. 
As a complement to a stop-flow lithography system, Chung et al. (2008) designed microfluidic channels with rail-
features that constrain component orientation. Rails within a microfluidic channel can remove all but one degree of 
freedom. Another study applied this mechanism into 3D assembly (Chung et al. 2011). There are limitations, 
however, in geometric complexity and material diversity in this process. For example, component design must 
include features that make a component fit into a railed channel. 

Assembly has also been performed within microfluidic channels themselves. Vapanalli et al.  (Vanapalli et al. 2008) 
demonstrate how spherical particles (of few tenths of μm in size) are assembled into ordered chains. Particles are fed 
through a microfluidic channel up to a confined section along the channel. The confinement is activated by a 
particular membrane valve design. This constraint is just large enough for only fluid to flow, thus jamming particles 
within the channel. This causes particles to closely pack into pre-defined structures. The size of the microchannel 
relative to the particle size determines the packing structure of the assembled particle chains (i.e. angle formed 
between particles and unit structure of chain array). Such method can generate desired chain structures, resembling a 
synthesized polymer chain. Through simulation and analytical modeling, authors demonstrate the feasibility of 
applying this assembly method at the nanoscale. Potential microscale applications may include assembled 
components, delivered in the form of dispersions, for either direct implementation, or subsequent assembly. 
Examples of these implementations can be reviewed elsewhere (Huck et al. 1998; Randall et al. 2012). 

Microfluidic channels facilitate the use of fluids to exert motion upon solid components. However, component 
motion is limited to 1D manipulation. Efforts based in microfluidic channels are mostly process-directed strategies. 
In other words, components are designed around the process, and once they are inserted in the system, there is not 
much room for reconfiguration. 

Microfluidic chambers, on the other hand, have shown capable for controlling reconfigurable 2D fluid force fields. 
Schneider et al. (2011) studied laminar flow fields within a microfluidic chamber analytically. Flow fields were 
defined by the flow status at each inlet and outlet. The number of ports and the relative chamber size directly 
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controlled the number of nodes at which different field vectors converge. These convergence nodes would then 
provide equilibrium locations for components present within the chamber. See Fig. 12 for illustrations of generated 
component arrays modeled through this concept.  

 

Fig. 12. Model sketches representing controllability of flow fields, capable of arranging solid particles in 
several configurations (Schneider et al. 2011). Reprinted with permission. 

Tolley et al. (2008) used a microfluidic chamber equipped with several inlet and outlet ports. Systematic use of 
valves controlled flow through each port individually. This turned the chamber flow field into translation and 
rotation forces for component manipulation. Fig. 13 shows how sequential control of valves would drive a 
component through several paths, up to a successfully assembled state. Krishnan et al. (2008) have modeled fluid-
solid interactions for the above mentioned system. Component motion was achieved by a combination of pressure 
and shear forces. While a general flow direction achieved gross motion of the component, orthogonal force vectors 
achieved fine motions for final component placement. Optimum combination of flow parameters and part geometry 
were selected for accomplishing successful assembly sequences. 

 

 
Fig. 13. Microscale, 2D assembly of micro tiles within a microfluidic chamber (a-d) (Tolley et al. 2008). Fluid 
sinks are created through the outer walls of the chamber, or even through the assembled components (e-j) 
(Krishnan et al. 2009). Reprinted with permission. 

The approaches discussed above used viscous forces from 2D flow as an assembly tool. In other words, these fluid-
driven assembly systems adopted a tool-directed assembly strategy. These efforts are inherently limited in assembly 
rate, as they are serial (components are assembled one by one). However, complex geometries are achievable if the 
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concept is extended to create more elaborate systems. Assembly components can also be designed with convenient 
geometries and features, which would enhance process efficiency. 

Krishnan et al. (2009) have offered a potential solution for a part-driven assembly system, based on fluid forces. 
Assembly precursor components had internal valves with the ability of guiding fluid flow through.  Fig. 13 (e-j) 
illustrates how valves can manipulate component position and orientation. While a general flow field was necessary 
for actuating gross motion, valves allowed control of fine motion of each component individually. This work 
demonstrated assembly through both simulation and experiment. The same strategy was expanded to 3D assembly, 
yet with much larger components with a few centimeters in size (Kalontarov et al. 2010; Neubert et al. 2010). As 
described in Section II, part-directed assembly systems have the benefits of being re-programmable, completely 
deterministic, and requiring no complex fixtures. One drawback was that permanent bonding required secondary 
mechanisms, such as mechanical latches (Kalontarov et al. 2010; Tolley et al. 2008) and bubble latches (Jiang and 
Erickson 2011). 

The importance of microfluidic valve technology has been evidenced by the above-cited efforts. First, many 
applications would involve small components, which would require smaller valves.  Moreover, remote-control was 
required for valves inside the components. Such valves imposed a constraint on minimum component size. Current 
solutions involve thermo-rheological fluid response for switching flows on and off (Krishnan et al. 2009). When 
heated, these fluids increase their viscosity considerably.  This eliminates the need for additional fabrication steps to 
form valves. However, this imposes limitations on the environments that can be utilized for assembly. 

The above-mentioned examples demonstrate how current microfluidic technology for fluid-flow control is used for 
component transport, orientation, and assembly. Additionally, a variety of solutions among microfluidic channels 
and chambers offer a balance between simple part manipulation, and assembly structure complexity. Further 
development of valve technology and permanent bonding techniques is still needed. 

C. Assembly	of	Colloidal	Particles	within	Microscale	Fluid	Bodies	
The previous discussion considered the assembly of components submerged in a fluid medium. For these cases, 
deterministic control of individual objects is possible. Colloidal assembly systems offer a different set of assembly 
strategies, which are process-directed. The typical particles are of sub-micrometer size and are readily manipulated 
by fluid flows created by external inputs. While colloidal assembly systems generally offer process-directed 
assembly strategies, very useful assembly structures can be produced at the nanoscale (Huck et al. 1998; Xia et al. 
2000). .  Colloidal assembly systems can be controlled by relatively accessible inputs to create a variety of structures 
(Denkov et al. 1992). These systems can be less expensive than currently employed systems. 

Among many examples of early approaches to colloidal array deposition include that of  Deckman, Fisher, and 
Pieranaski et al. (Deckman 1982; Fischer 1981; Pieranski et al. 1983). One strategy for assembling colloidal 
particles into crystals relies on fluid flow through a fine mesh, which retains the colloidal particles (Park and Xia 
1999). Upon retention, particles arrange themselves into a crystal structure. Solvent evaporation has also been 
investigated for achieving ordered arrangement of colloidal particles. Denkov et al. (1992) have provided 
experimental rationalization on how capillary forces drive crystalline formation order upon solvent evaporation  
Deegan et al. (1997; 2000) have provided a comprehensive study for the case of droplets or narrow patterns (e.g. 
stripes). In this case, internal convective flows transport particles towards the pinned contact line, so that ring 
patterns, and stripe patterns are naturally formed (Park and Moon 2006).  
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Fig. 14. Solid deposit distributions created by evaporation method using different substrate wetting 
conditions. a) When contact line pinning occurs deposits concentrate near the contact line. b) Nonwetting 
droplet (contact angle > 90˚)favors a more uniform deposit  (Joshi and Sun 2010). Reprinted with permission. 

Colloidal assembly has become attractive because of the various approaches that can control the assembled 
structures.  Dimitrov and Nagayama (Dimitrov and Nagayama 1996; Dimitrov and Nagayama 1995) have developed 
the “Convective Assembly” strategy, capable of forming monolayer and bi-layer (and thicker) crystals, as well as 
covering large areas (>1 cm2). Here, control of the liquid meniscus geometry defines evaporation rate as well as 
layer thickness. As a result, relatively inexpensive systems can deposit  crystal layers with desired parameters, and 
precise thickness. Control variables of such a system include ambient humidity and temperature, solvent surface 
tension, substrate-interface alignment, colloidal suspension concentration, particle size and rate of substrate 
withdrawal. Recent works in convective assembly have achieved additional capabilities. For example, 2D patterns 
were generated by combining convective assembly with pre-patterned substrate topography (Yin et al. 2001) and 
surface energies (Bae et al. 2007; Watanabe et al. 2009), and stick-slip motion of the meniscus (Huang et al. 2005),  

 

Fig. 15. Solid particle distribution from ink-jet printed features showing a large concentration at the edges. a) 
Droplets can generate ring-like patterns, with internal nanoscale patterns. b) Dispensed fluid lines can 
generate multiple collinear stripes, which also contain nanoscale patterns within.  (Park and Moon 2006). 
Reprinted with permission. 
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A different approach, originally called “natural lithography” was first introduced by Deckman and Dunsmuir 
(Deckman 1982)) and then further developed by Hulteen and Van Duyne ((Hulteen 1995)) under the name 
“Nanosphere Lithography”. This method was capable of depositing defect free colloidal crystal layers over large 
coverage areas, by using spin coating. The use of spin coating allows spreading a thin suspension film before 
evaporation, thus allowing for a more uniform particle distribution. More recent efforts have utilized this method for 
patterning colloidal crystals via pre-processing of substrate surface topography (Xia et al. 2004).  

A wide variety of applications have been targeted by colloidal assembly systems (Xia et al. 2000). Recent work has 
developed the above mentioned approaches for more specific purposes. Patterning of colloidal crystals have been 
utilized for data storage (Springer and Higgins 2000; Sun 2000) and as templates for patterning proteins (Yuan et al. 
2007). Furthermore, the nanometer size of colloidal particles and the highly uniform crystalline colloidal layers 
allowed fabrication of optical elements (Dimitrov et al. 1999; Maenosono et al. 1999; Matsushita et al. 2000) and 
nanoscale lithography masks (reviews on this topic can be found elsewhere (Burmeister et al. 1997)). Furthermore, 
3D growth of colloidal crystals has allowed for fabricating porous, and composite nano-structures (Velev and Kaler 
2000; Velev and Lenhoff 2000), and free-standing 3D structures have been explored (Huck et al. 1998).  

Colloidal assembly systems provide a set of strategies, similar to that of nature, for fabricating larger (micro and 
macro) structures; i.e., building large objects out of extremely small building units. More importantly, as 
development of colloidal assembly systems matures, hybrid fabrication systems can be designed in order to merge 
previously incompatible capabilities.  

 

VII. External	Field	Mediated	Assembly	
In the previous sections, microscale assembly mediated by fluid forces including capillary, and viscous forces were 
discussed.  This section discusses the assembly processes that take place in fluids, but that utilize non-fluidic forces 
for process control. Typically, fluids supply critical aspects of the assembly environment such as buoyancy force, 
reduced adhesion, and electrical insulation.  These methods are tool-directed assembly strategies, but using external 
field and force inputs rather than physical grippers has many advantages. Directed assembly permits assembly of 
more complex systems through improved sequence control and fabrication of multiple systems from a single set of 
parts.  There are several types of external fields, forces, and methods reported in the literature; including, but not 
limited to electric, magnetic, and acoustic fields.  These forces can be used for both process-directed (SA) and tool-
directed assembly.  In some processes both aspects can even be used.  For example, long range forces could be used 
to achieve gross-positioning as a tool-directed strategy.  Then a stochastic, SA process driven by short-range 
interactions could be used for the fine positioning. 

This section focuses on external field-mediated fluidic assembly.  It also addresses bio-mediated assembly with 
forces exerted by bacteria swarms that are directed using external fields such as light and magnetic field.  In this 
section, the methods and driving mechanisms of each of these external fields are discussed, and corresponding 
applications are presented.  Additional information on SA processes utilizing external fields is found in review 
papers by Whitesides and Grzybowski (2002), Morris (2005) and Mastrangelli et al. (2009). 

A. Magnetically	Controlled	Assembly	
Magnetic forces have the advantages of non-contact and long-distance action, high energy density; independence 
from the medium and the surface chemistry; and favorable scaling at the microscale (Mastrangeli et al. 2009). 
Magnetic interactions can be attractive or repulsive depending on polarization, magnet geometry and materials. 
Magnetic forces can be employed for short range (fine positioning) and/or in the long range (gross positioning) for 
assembly purposes. Short range magnetic forces, which involve attractive and/or repulsive interactions between 
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individual components, are used to manipulate micro-particles. Long range magnetic forces, which are usually 
obtained by strong external fields, are used to manipulate or move particles through relatively longer paths. They are 
suitable for tool-directed assembly, as both part transport and bonding are achievable. Magnetic forces scale with 
strength of the magnetic field (either external or components’ internal fields), and the volume of the components. 
Orientation control can be achieved by changing the direction of the external magnetic field (by rotating permanent 
magnets or multi-coil electromagnets), or adjusting the magnetic characteristics of individual components and/or the 
shape of the components (Tottori et al. 2011).  

Short range magnetic forces can be used to assemble parts via magnetic interaction between individual parts. A pre-
requisite to some magnetic assembly methods is the assembly of magnetic particles into microscale magnetic 
domains. Fonstad (2002)  and Perkins (2002) were among the first to use short range magnetic forces for the 
assembly of hetero-structures on electronic substrates. A short-range magnetic force was utilized in a fluidic 
medium to position the devices in shallow cavities of the target substrate. A highly magnetic cobalt-platinum alloy 
was patterned at the bottom of the cavities and magnetized in the direction normal to the substrate. Two different 
assembly methods were tested. In the first method, the substrate was tilted and vibrated for the particles to fill the 
cavities where the particles were trapped by the magnetic interaction. In the second method, the particles were 
sedimented on the substrate, and then the substrate was tilted and topped with remaining unassembled particles 
repeatedly until all cavities were filled. The assembly was finalized by filling the voids with a polymer followed by 
planarization. The technique was extended by Shet et al. (Shet et al. 2004) with an external magnetic field induced 
in the substrate accompanying the short range magnetic forces in the cavities. A continuous oscillatory magnetic 
field was applied to the back side of the patterned substrate wafer.  

The interaction between magnetic objects can also be employed in the absence of an external field with short range 
magnetic interactions. Love et al. demonstrated the use of magnetic interactions between ferromagnetic objects to 
direct and stabilize the objects in the absence of an external magnetic field (Fig. 16 a-b) (Love et al. 2003). Lateral 
assembly of 3D structures was obtained by suspending nickel/gold rods in a solution and applying ultrasonic 
excitation. Hexagonally close-packed structures were formed.  It was observed that, the rods were assembled only 
side-by-side, rather than more desirable head-to-tail configuration. The side-by-side assembly of small number of 
components, instead of the preferable tail-to-head assembly was due to insufficient global magnetic dipole. 

Magnetic structures can self-assemble into several different geometries. The particles acting as a short magnetic 
dipoles were composed of cylindrical shaped permanent Neodymium–Terbium magnets, encapsulated within 
styrofoam disks (Fig. 16 c-d) (Golosovsky et al. 1999). Two-dimensional hexagonal lattices with lattice properties 
tunable by the external magnetic field were formed.  Three-dimensional crystals were successfully assembled by 
stacking the 2D lattices. Microstructure formation using magnetic nanoparticles and patterned magnetic beads on a 
commercial CD was presented by Ozdemir et al. (Ozdemir et al. 2010). Fe3O4 nanoparticles were assembled into 
cylindrical structures during solvent evaporation. Similarly, linear and spherical assembly of magnetic nanoparticle-
loaded micro scale hydrogels was also reported (Fig. 16 e-h) (Xu et al. 2011b). A static magnetic field generated by 
parallel sheet magnets was utilized for row assembly and the tip of a magnetic rod was used for 3D spherical 
assembly. Cells encapsulated by the micro gels were also successfully assembled in the same study.  
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Fig. 16. Various magnetic field-mediated micro assembly applications: (a) Scanning electron micrograph 
(SEM) of magnetically assembled bundles of rods. (Love et al. 2003). Scale bar: 5µm (b) SEM image of a 
single bundle demonstrating the alignment of ferromagnetic sections (Love et al. 2003). Scale bar: 500nm (c) 
Magnetic particles in a stack of six square troughs in the absence of external field with square ordering at the 
walls and hexagonal ordering in the middle (Golosovsky et al. 1999). (d) Magnetization direction alternates 
between the layers. (Golosovsky et al. 1999). (e) Multilayer spherical assembly of single layer microscale 
hydrogels using five different concentrations (0.003, 0.005, 0.010, 0.015, and 0.020 g/mL). Scale bar: 1mm (Xu 
et al. 2011b). (f–h) Merged fluorescent images and cross sections of three-layer spheroids. Scale bar: 500µm 
(Xu et al. 2011b) (i) Magnetically SA of rotating gears with magnetic and capillary interaction. The schematic 
diagram shows different types of assembled gears interacting through overlap of menisci. Gears 1 and 3 are 
hydrophobic and have physical teeth driving the gear. Gear 2 is diamagnetic and does not have physical 
teeth. The gears are stable in aligned configuration when the linear velocities of the rims do not match, since 
the interface between the gears allows slip. (Ng et al. 2003) (j) Magnetically self assembled rotating gear 
mechanical system with gear 2 having teeth, the system does not allow slip. Scale bar: 5mm. (Ng et al. 2003)  
Reprinted with permission. 

 

Assembly capabilities can be improved by integrating magnetic forces with hydrodynamic effects. Grzybowski et al. 
reported several magnetic field-driven SA studies utilizing the interactions between magnetic and hydrodynamic 
effects (Grzybowski et al. 2004; Grzybowski et al. 2001; Grzybowski et al. 2000; Grzybowski and Campbell 2004; 
Grzybowski and Whitesides 2002; Grzybowski and Whitesides 2001; Ng et al. 2003). Sets of magnetically doped 
PDMS disks placed on the liquid–air or liquid–liquid interfaces were self-assembled by magnetic forces. The 
magnetic field was induced by a rotating permanent magnet positioned at the bottom of the beaker. It forced the 
PDMS disks to spin around their axis at the same angular velocity as the rotating magnet. The relative strength of 
attractive and repulsive interactions led to the formation of various patterns by altering the number, size and shape of 
the disks and the magnet rotation speed. The group conducted several experiments using variants of the set-up to 
further investigate the phenomena associated with dissipative structures , as illustrated in (Grzybowski and 

a) b) 

c) d) 

e)

f) g) h) 

i) j) 

0.003g/ml         0.005g/ml         0.010g/ml         0.015g/ml         0.020g/ml



27 
 

Whitesides 2002), including particle shape and vortex interactions, and dynamic SA (Grzybowski et al. 2004; 
Grzybowski and Campbell 2004; Ng et al. 2003).  

Magnetic-field-actuated microrobots permit direct control of programmable assembly, even when the assembled 
parts are not magnetic. These microrobots function as assembly tools.  External magnetic actuation is effective at the 
microscale because it eliminates the need to integrate power and actuation mechanisms into a microscale mobile 
device (Diller et al. 2011).  The first systems proposed by Gauthier (Gauthier and Piat 2002) and Yesin (Yesin et al. 
2006) relied on field gradients to propel the robots. Wireless resonant magnetic microactuator or microrobots were 
later introduced by Vollmers et al. (2008) for assembly of microscale devices. Based on the proposed magnetic 
microrobot concept, microfabrication of the devices and their application were demonstrated as illustrated in Fig. 17 
(Frutiger et al. 2010; Frutiger et al. 2009). Magnetic force-driven microrobots with control on position, speed and 
orientation were also investigated. They presented tool-directed assembly with closed loop control of various micro-
objects such as biological entities in aqueous environments on unstructured surfaces. Diller et al. (2011) proposed 

using sub-millimeter scale untethered permanent magnet microrobots (Mag-μ-Bots) which were actuated by 

external magnetic fields for both assembly and disassembly. They utilized a grid of cells with addressable 
electrostatic traps capable of anchoring individual microrobots.  

 

Fig. 17. (a) Magnetic micro-robot image sequences illustrating pushing micro-objects with an asymmetrical 
07v6b-MH robot manually pushing a 150µm by 20µm gold disk over the dry SiO2 surface (Frutiger et al. 
2009). (b) an asymmetrical 07g2-MH robot in a fully automated operation (Frutiger et al. 2009). (c)Robot of 
type 07tj-SH is pushing a glass bead about 50µm in diameter under water over a polished silicon wafer (scale 
bar is 500µm) (Frutiger et al. 2009). Reprinted with permission. 

Similarly, an untethered electromagnetically actuated magnetic NdFeB micro-robot was reported by Pawashe et al. 
(2009). The micro robots were fabricated by laser cutting of a magnetized NdFeB material. Controllable, varying 
magnetic fields were induced by a 3D coil assembly. The micro-robot was tested by pivoting the micro-robot about 
an edge to surmount a non-planar, microscale obstacle. Actuation was demonstrated on several substrates with 



28 
 

different surface properties. More recently, rolled Ti/Fe/Pt thin films used as self-propelled micro-robots capable of 
selectively assembling micro and nanoscale components were reported (Solovev et al. 2010). Self-propulsion was 
achieved by ejecting micro-bubbles into the solution by platinum catalytic decomposition of hydrogen peroxide into 
oxygen and water. The micro-robots were controlled wirelessly by adjusting the external magnetic field. High 
propulsion power was achieved enabling the transportation of up to 60 particles by one robot. Electromagnetically 
controlled micro-robots capable of swimming in 3D were also reported by (Yamazaki et al. 2004). Helical micro-
robots were demonstrated with applied rotating magnetic fields (Fountain et al. 2010; Kim et al. 2011; Tottori et al. 
2011).  

Kim et al. (2011) utilized a rotating magnetic field for the spiral swimming micro-robot capable of travelling or 
swimming in low Reynolds number regimes. The micro-robot was composed of a three-axis Helmholtz coil with a 
NdFeB spherical magnet, artificial spine, and ribs. The proposed mechanism was based on obtaining a snake-like 
undulatory and skeletal motion. Tottori et al. (2011) investigated different designs of helical robots with bar-shaped 
and T-shaped heads with rotating magnetic field to manipulate and orient helical micro-robots. An analysis of torque 
showed that the torque induced on a helical micro robot increases with component volume and magnetic field 
strength. Fountain et al. (2010) demonstrated the use of a single rotating permanent magnet rather than an 
electromagnet for manipulating helical micro-robots. Most magnetic micro-robots reported to-date were designed 
for dry applications. However, they can be easily employed in wet assembly; ensuring magnetic field is not affected. 
Furthermore, magnetic micro-robots can be used in electric-field-mediated assembly of more complex systems. 

B. Electric‐field‐mediated	Assembly	
Static and dynamic electrical fields can easily be induced, controlled and employed for manipulation and assembly 
of microscale particles/components. Levitation and handling of particles and cells were the first reported 
applications of using electric field in microscale assembly, with the help of a feedback control systems (Jones and 
Kraybill 1986; Kaler and Tai 1988). Since its introduction, electric field has been widely used in assembly for 
various applications. Electric field mediated assembly will be reviewed under two main branches: electrophoresis 
and dielectrophoresis. 

1. Electrophoretic	Assembly		
Electrophoresis (EP) utilizes electrostatic fields to manipulate charged particles in liquids of moderate viscosity. EP 
is widely used in biomedical sciences and microfluidics, and has been proven to be effective in SA of microscopic 
devices with several successful applications that will be discussed in this section. In the literature, electrophoresis 
has been employed mostly for SA to form microscale features. Assembly of Indium Gallium Arsenide (InGaAs) and 
GaAs LEDs were the first reported works for electrophoretic SA in fluids (Edman et al. 2000; O’Riordan et al. 
2004). Edman et al. (2000) utilized electrophoresis to assemble LEDs on top of Sn/Pb-coated electrodes. The LEDs 
were forced to move toward the electrodes with a fluid flow induced by a negative current in the low conductivity 
fluid. Self-alignment and precise assembly of the LEDs on electrodes were obtained by reversing the current after 
LEDs were properly positioned on the electrodes. Similarly, an array of electrodes, capable of producing a 
programmable and switchable electrostatic field was used by O’Riordan et al. (2004) for assembly of mesoscale 
LEDs. GaAs based LEDs were precisely manipulated across the array and assembly was achieved at selected 
electrodes by switching field configurations accordingly (Fig. 18). In both of these LED assembly efforts, the 
process was finalized by solder reflow to establish metal contacts to the electrodes.   
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Fig. 18. Manipulation of 50μm diameter LED using EP: (a) Simulation of on-chip electrical field distribution 
following addressing of a single receptor electrode location versus the counter electrodes. (b) Video image 
frame of a LED pre-localized at a selected receptor electrode site.  (c)-(j) Video image frames showing that the 
LED may be manipulated or “driven” around the receptor array in a programmed manner by sequential 
electrical addressing of each target receptor electrode in turn. Scale bar is 100μm.  (O’Riordan et al. 2004). 
Reprinted with permission. 

2. Dielectrophoretic	Assembly	
Dielectrophoresis (DEP) can manipulate and assemble both charged and uncharged particles (as opposed to only 
charged particle manipulation with EP). In DEP, an object with different conductivity and dielectric constant relative 
to the fluid medium acts as an electric dipole when a field is applied with charges accumulating at interfacial regions 
(Mastrangeli et al. 2009).  

The idea of DEP was first intruduced at early 1950's by Pohl with motion of suspenoid particles by polarization 
forces produced by an inhomogeneous electric field (Pohl 1951). The concept was applied to remove solid particles 
from polymer solutions. Later, it was found out that biological materials such as cells also have different dielectric 
properties, enabling biological dielectrophoretic manipulation (Pethig 1979). In DEP, the object experiences a force 
and resulting displacement upon application of a spatially non-uniform, dynamic electric field. The force, is 
independent of field direction, is proportional to the gradient of the square of the magnitude of the electric field. The 
components are forced to move towards higher field intensity regions.  The object is attracted if its polarizability is 
higher than that of the surrounding medium (positive DEP); and repelled if it is lower (negative DEP) (Hughes 
2000). The direction of the dielectrophoretic forces depends on the dielectric properties of the particle, frequency of 
the applied field and conductivity of the medium. Particles with different dielectric properties can be actuated 
simultaneously in different directions by carefully selecting the component material, the medium, and the electrical 
frequency.  

In positive DEP, the field’s energy maxima represent potential minima for the assembling particles. Non-contact 
manipulation requires closed-loop control, which may be challenging to implement for microscale elements 
(Mastrangeli et al. 2009). On the other hand, open-loop, non-contact operations are feasible with negative DEP. 
Rotation of the objects can also be induced with a rotating electric field potentially enabling control of both position 
and orientation of parts. Several other effects may arise as a result of the rotating electric field such as heat 
generation leading to electro-thermal forces, convection flow and other electro-hydrodynamic effects. These effects 
might be favorable or unfavorable depending on the application. Their influence can be comparable with DEP forces 
for high intensity fields (Castellanos et al. 2003).  
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Fig. 19. Use of both negative DEP and positive DEP with the help of capillary effects for assembly of silicon 
resistors on Au electrodes. a) Arrangement of silicon blocks vertically on the oxide in between the open 
windows due to negative DEP. b) Schematic of the fluid flow lines due to electro-thermal effects leading to 
alignment of the silicon blocks.  c) Positive DEP moves the resistors to the contact openings across two 
adjacent metal electrodes. d) Close-up of the assembled resistors after the solution is dried (Lee and Bashir 
2003).  Reprinted with permission. 

Lee and Bashir (2003) used negative DEP and electro-thermal effects for the assembly of microscale silicon 
resistors between Au/Cr-coated electrodes as illustrated in Fig. 19. The authors also reported self- assembly of 15 
µm by 2 µm size, three-terminal silicon metal oxide semiconductor field-effect transistors both by utilizing DEP 
only, and with DEP in combination with SAMs of 1, 9-nonanedithiol (Lee and Bashir 2005). Negative DEP was 
used to position particles on top of metal electrodes.  Positive DEP between resistors and metals led to assembly.  
Nonanedithiol was used to improve the stability of the final assembly. Cohn (1997) combined positive and negative 
DEP, in which a long-range attractive force and a repulsive force at short range resulted in a stable equilibrium at a 
fixed distance from the electrodes. In the same study, they presented another approach, in which the medium used 
was a mixture of two liquids with different dielectric constants. The balanced DEP forces levitated the parts at stable 
equilibrium points. Stable levitation was achieved easily by DEP, but it usually requires a carefully designed 
standing wave pattern or application of multiple types of external fields using alternative methods. Dielectrophoretic 
levitation of particles at stable equilibrium points using DEP could  be employed for vertical positioning while other 
type of fields were used for planar manipulation.  

A more recent study on electrical field mediated SA on fluid-fluid interfaces was reported by Janjua et al. (2011). 
Particles trapped at a liquid–fluid interface assembled under an electric field normal to the interface. The field 
caused dipole–dipole electrostatic repulsion, as well as an electrostatic force normal to the interface. Under these 
forces, the particles were rearranged to form 2D hexagonal arrays of long-range order and rods were aligned parallel 
to each other. The method relied on the electrostatic force caused by the change in the dielectric properties at the 
interface. Because the force increased with the square of the particle radius, this electrostatic force on small particles 
was more significant than the buoyancy and dielectrophoretic forces. 

Nanowire and nanorods (typically microscale in length) are of recent interest due to their exceptional thermal and 
electrical characteristics. Nanoparticles and nanowires can be fabricated, assembled and integrated by DEP. For 
example, Kumar et al. (2009) reported assembly of ZnO nanoparticles into nano-gap electrodes by DEP. They also 
noted that positive DEP is active at frequencies less than 500 KHz and negative DEP starts dominating at 1 MHz. 
EP and DEP can be used in the same assembly by adjusting electric field frequency accordingly to the application.  
The exact frequencies for EP or DEP dominance should be identified either theoretically or experimentally for each 
application. The time-averaged dielectrophoretic force scaling was noted in this work as shown in Equation 3, where 
a is the radius of the particle, K(ω) is the Clausius–Mosotti factor, Erms is the root mean square value of the electric 
field, εp and εm are the permittivities of the particle and medium, σp and σm are the conductivities of the particle and 
medium, and ω is the angular frequency. 
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Burgarella et al. (2010) reported a modular multistage micro-fluidic platform for selective separation (Fig. 20a), 
caging (or trapping) (Fig. 20b), focusing (Fig. 20c) and steering cells (Fig. 20d), all based on dielectrophoresis. All 
of these functions were obtained only by excitation of carefully designed metal electrode array elements with 
different phase shifts at different frequencies. Saccharomyces cerevisiae cells (WBC) and sheep red blood cells 
(RBC) were used for preliminary experimental verification. The effect of the dielectrophoretic force was clearly 
shown in Fig. 20a-e, with top and bottom rows corresponding to electric field turned off and on respectively. 

Electrophoresis and dielectrophoresis for assembly has a wide design space with the capability for applying 
attractive and repulsive effects, even simultaneously. The key parameters include electrical properties of 
components and the liquid, design of electrode geometry and configuration, and frequency of the applied electric 
field. These effects can be tailored to manipulate, position, and assemble microscale components using only 
electrodes and applied fields. Orientation control is not easy to achieve in either EP or DEP. Thus, other methods 
should be employed if orientation control is required. High electrical fields involved may potentially interfere with 
and damage cells and other biological assemblies.   

 

Fig. 20. Modular multistage microfluidic platform for separation, focusing, caging and deviating cells by 
dielectrophoresis: a) Separation based on cell type by positive DEP of RBC cells. b) Focusing for caging. c) 
Cell caging using a quadruple for optical analysis. d) Steering of WBC cells marked with CD4+ for final 
separation (Burgarella et al. 2010).   Reprinted with permission. 

C. Acoustic	&	Vibration	Field	Mediated	Assembly 
Acoustic and vibration fields are easily generated by transducers or actuators in the form of pressure waves in 
fluidics. Pressure waves are low power waves (compared with stress waves), which can be used when the 
components of the assembly are sensitive to electrical charges or magnetism. Pressure wave fields can be formed 
easily by coupling the fluidic environment with bulk piezoelectric transducers, surface acoustic wave devices, and 
vibration modes (or mode shapes) of vibrating surfaces.  They can be used to levitate or manipulate single 
components, or they can be used to generate standing wave patterns to manipulate groups of components in the 
nodes and antinodes, depending on component properties such as size and density (Guldiken et al. 2012). 

a) b) c) d) 
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Sturctural mode shapes are frequently used to control micro assembly patterns. They are easy to form by vibrating 
structures at specific resonant frequencies to obtain specific mode shapes. For example, microscale hydrogels were 
assembled by acoustic excitation as illustrated in Fig. 21 (Xu et al. 2011a). The hydrogels are capable of 
encapsulating cells and proteins to create biological assemblies. The microgels and microbeads of various sizes in a 
droplet were successfully assembled into regular structures when the droplet was excited by a piezoelectric 
transducer at various frequencies and intensities. The vibrational mode shapes of the liquid droplet were excited, 
which generated the required acoustic force to assemble particles at the vibration nodes of the droplet, depending on 
the frequency. While this method can concentrate particles at the nodes, there is no precise control over the number 
or orientation of particles in each node.  Both single- and double-layer structures (with a second assembly on top of 
the first assembly) were reported in this study. Another application of acoustic field along with vibration on SA of 
colloidal solution droplets was presented by Rudenko et al. (2010). The assembly was achieved by standing wave 
patterns of surface acoustic waves. The assembly was controlled by modulating the frequency and intensity of the 
acoustic wave and by varying the properties of the particles and the solvent. They showed that the smaller particle 
sizes and higher surface acoustic wave (SAW) frequencies led to assemblies with better defined boundaries.  

Standing wave patterns were also used for controlled pick up of micro-particles from a planar surface (Jia et al. 
2012). Acoustic radiation forces on particles near a rigid surface were experimentally and theoretically analyzed. 
Individual silica, zirconium and aluminum particles of ~400 µm size were levitated and transported to desired 
locations on a substrate submerged in water using acoustic radiation forces in the nano-Newton range. The standing 
wave field composed of two obliquely incident plane waves and their reflectors were investigated and optimized by 
varying the size and position of the sound source. Instant particle levitation was observed when a threshold acoustic 
radiation was reached.  The threshold varied with particle size and type permitting independent control. Trapping 
and manipulation were also possible by using focused ultrasound for particles in microfluidic channels (Jeong et al. 
2011) and for droplets on 2D surfaces (Lee et al. 2010a; Lee et al. 2010b). The acoustic trapping forces were 
investigated theoretically and experimentally by Lee et al. (2010a) for the droplet case and it was reported that the 
force required for trapping was increased with increasing liquid viscosity, droplet size, and flow velocity.  

 

Fig. 21. Acoustic assembly of microbeads. Images of (a) distributed 50 m microbeads before acoustic 
excitation, and (b) after acoustic excitation. Images of (c) distributed 100 m microbeads before acoustic 
excitation, and (d) after acoustic excitation. Bead concentration was 50 mg/mL (Xu et al. 2011a).  Reprinted 
with permission. 
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Faraday waves, which are nonlinear surface acoustic waves, were also employed for fluidic assembly by Park et al. 
(2011) to assemble Cr/Au particles on a silicon substrate. The assembly was achieved by tilting the substrate for 
bringing micro particles in proximity to substrate; thus allowing assembly. Faraday waves were generated at the 
fluid surface by a magnetic shaker.  Bernassau et al. (2011)  reported another acoustic particle manipulation system 
with an array of heptagon shaped bulk piezoelectric transducers. The heptagonal array was utilized specifically to 
get rid of standing wave pattern. The acoustic field was controlled and manipulated by varying the output phases of 
the individual acoustic elements. They were able to position particles in straight lines with different angles and in 
heptagons with different morphologies.  

An untethered micro-robot system utilizing both magnetic and acoustic fields was presented by Kwon et al. (2011). 
Manipulation of a magnetic micro-robot was performed by an external magnetic field formed by an electromagnet 
array. An 800µm air bubble was carefully injected into to the micro channel, placed just below the micro robot. 
After moving the micro-robot next to the 80µm diameter glass beads, an acoustic radiation field was applied at the 
frequency corresponding to the resonance frequency of the air bubble. The excitation forced the bubble to oscillate 
at its resonance, allowed it to capture the glass bead with surface tension. The captured bead was then manipulated 
with the magnetic robot. The authors also presented manipulation of an 800µm fish egg using the same method. 

Particle manipulation and handling is relatively easy to achieve by using acoustic fields; however, orientation and 
position control is a formidable task. The reported advancements to-date are primarily stochastic assemblies of part 
clusters using standing wave fields and mode shapes, with limited control on the assembly. Manipulation of 
individual particles or components is also feasible, but complex assembly systems and part designs are essential. 
This necessitates combining magnetic or electric fields with acoustic fields, when more precise control over 
orientation and position is needed. Acoustic waves can also be highly dissipated or attenuated in propagation, which 
limits the use of acoustic forces for short range assembly only, especially for standing SAWs. Even with the 
aforementioned limitations, the noninvasive nature of the pressure waves and mode shapes makes acoustic fields 
favorable because they do not electrically or magnetically interfere with components.  

D. Bacteria	Swarm	Assembly	
Bacterial swarming is an example of dynamic system in which the interaction of a population of bacterial cells 
collectively lead to emergent behavior and structures (Copeland and Weibel 2009). It was first developed for 
microbiological purposes. Bacteria swarm as an assembly tool was first suggested by Martel (Martel 2005). Swarm 
of magnetotactic bacteria (MTB), which respond to magnetic forces, was proposed as the driving force for tool-
directed assembly method. The proof of concept of the idea was experimentally performed by manipulation of micro 
beads attached to the MTBs in an aqueous medium with externally applied magnetic field as illustrated in Fig. 22 
(Martel 2006). An open loop control mechanism was employed with optical monitoring. The method was then 
employed to assemble pyramid-like structures from SU-8 micro beads. The swarm was composed of ~5000 MC-1 
flagellated bacteria, to which the micro beads were attached (Martel and Mohammadi 2010).  
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Fig. 22. Swarm or aggregate of several thousand MC-1 flagellated bacteria: (a). Example of a formation of a 
swarm. (b). Image of a larger swarm where each dot in the swarm is a MC-1 bacterium shown on the right. 
The two flagella bundles used for propulsion and the chain of magnetosomes used for directional control are 
easily visible on the photograph of the bacterium. (c) Assembly process (Martel and Mohammadi 2010).  
Reprinted with permission. 

Flagellated bacteria swarms, directed by ultraviolet light were also reported for directed assembly of microscale 
components (Steager et al. 2007). Serratia Marcescens bacteria inoculated on an agar plate were used as the swarm 
to manipulate triangular micro structures with 50µm edge length. The motion of the bacteria swarm was controlled 
externally with optical feedback. The bacteria translation was stopped by local UV exposure and continued upon 
turning off the UV source.  

Bacteria swarm mediated assembly is a relatively new and promising tool-directed assembly technology, which will 
potentially gather more interest especially for biological assemblies. Bacteria with possible attachment of various 
proteins, cells, tissues and inorganic components can be manipulated without necessitating external power input, 
which is especially attractive where power transmission is a problem.    

VIII. Future	of	Microfluidic	Assembly	
Fluidic media, along with fluidic, and non-fluidic forces have proven to be very effective for the assembly of 
microscale devices. Many types of assemblies have been created with a wide variety of methods. While there will 
certainly be new assembly methods; the more critical area of progress is in increasing the capability of current 
methods.   

A. Key	Challenges	
In comparing the mature processes used for macroscale assembly to current capabilities at the microscale, 
developments are needed in key areas such as  

 Part Orientation Control – Many processes have little or no control over the orientation of the assembled 
parts.  However, assemblies often require functionally asymmetric parts that must be oriented in particular 
ways. 
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 Increased Part Variety – Most current assemblies use 1-5 different types of parts, often in repeating arrays.  
Functional systems will require the integration of more parts.   

 Assembly Sequence Control – Multipart assembly usually requires components to be assembled in a certain 
order. Several strategies have been (or are currently being) developed, such as shape matching, and the use 
of sequentially activated bonds. While these techniques are effective solutions for some cases, they are too 
complex for other cases. Closed loop control systems could become ideal solutions for this issue. 

 Functional Connections between Parts – Current assemblies produce predominately structural connections 
with some demonstrations of electrical connectivity.  However, working assemblies will require more 
connection types with improved thermal, optical, and structural properties. 

 Part Design for Assembly – As assembly processes mature and are standardized, designers will need 
guidelines to help them design parts that will assemble with high accuracy and speed.  

 Process Design – In process-directed assembly, the assembly conditions are central to determining the 
assembly structure, accuracy, and speed.  However, models are not currently available to relate most of the 
process variables to these important assembly process parameters. 

The first three areas all relate to the ability to control the assembly process.  This will favor the inclusion of active 
elements and will likely require monitoring and feedback systems.  The seeds of potential solutions for many of 
these challenges have already been demonstrated. Solutions to many of these challenges may be found through the 
integration of existing concepts. For example, the integration of multiple types of forces in a single process will 
facilitate orientation control and increased part variety. Additionally, incorporation of active materials such as 
magnetorheological or thermorheological materials could enable additional control (Krishnan et al. 2009). These 
systems will also benefit from the incorporation of more closed-loop feedback control systems. It is likely that some 
advances will come from applying other technologies for microsystem assembly. Some interesting examples include 
the use of digital microfluidic systems with droplets as micro actuators, microfluidic “assembly chambers” (Tolley 
et al. 2010), and stop-flow lithography (Chung et al. 2008).  

B. Potential	Applications	
As these processes mature, the application space for these assemblies will increase.  Micro/nano robotics would 
benefit greatly from these capabilities.  Micro-robots utilize small scale components to create active robotic 
assemblies. An inexpensive method for integrating smaller components could dramatically decrease the size and/or 
increase the functionality of the components.  Moreover, this technology could significantly contribute to the 
development of part-directed assembly processes.  This type of assembly has recently been proposed through the 
concept of “smart dust” (Gorder 2003).  This concept opens a whole new approach in microscale assembly in which 
parts could be controlled, and even programmed directly.  Although of great complexity, “smart” components would 
offer significant flexibility for assembly of elaborate structures. When assembly of excessive number of parts is 
required, manual control of micromanipulator and microrobots becomes unfeasible due to increased assembly time 
and effort. Closed loop control systems, and/or artificial intelligence will be required to identify, grasp and 
manipulate parts to achieve complex assemblies.Fluid-driven assembly techniques show promising results at 
positioning components into pre-determined configurations. Similarly, capillary forces are capable of performing 
assembly without the need of tool-intervention.  While these techniques have been used for many years in SMT 
alignment, they have the potential to provide the primary alignment means as well in many assembly applications.  
Fluid-flow control methods, such as the use of microfluidic technology and fluid evaporation, provide a wide variety 
of positioning strategies (e.g. arrangement into ordered structures and gross positioning within confined spaces).  
The fast pace of advancements in microfluidics will certainly open more opportunities for adaption to assembly in 
the future. Additionally, since fluid forces can be applied to components, regardless of functional properties (e.g. 
magnetic and electric), these fields  could form a complementary part of any assembly system that could increase 
control over the assembly structures. 
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External field mediated assembly techniques offers easy and robust control of micro components in fluidic systems. 
The low interactions between different fields will enable simultaneous use of these fields in the same application to 
utilize the advantages of each.  For example, orientation control problems may possibly be solved by employing 
external fields and designing components to respond differently to each field.  Magnetic field is most promising for 
orientation control with its controllable directionality, non-invasive nature and quick response times.  The assembly, 
then, can be accomplished by interactions between individual components or by secondary methods such as solder 
reflow or evaporation of the liquid.  

Biology applications such as tissue engineering and organ printing represent a very challenging assembly problem 
but also a very exciting opportunity. These systems typically require fluidic environment to sustain the biological 
activity of the cells and so fluidic assembly is a natural option.  Yet, these tissues have significant complexity in 
both cell types and structures that must be replicated.  Additionally, the cells respond to their environment in 
complex ways and the environmental conditions that can sustain life are limited.      The final performance of the 
system is sensitive to both the chemical and the mechanical environment in which they reside.  While biological 
growth might be able to achieve complete regeneration under the right circumstances, this is too slow for many 
applications in regenerative medicine.   

Techniques from additive manufacturing could be integrated with fluidic assembly. Layers of different cells could 
be added sequentially to provide a basic template to facilitate cell growth and effectively reduce regeneration time.  
Additionally, there is added value for tissues that are made from the patient’s own cells.  Thus, there is a great 
opportunity for a system that can programmably assemble components into a functional system that is customized 
for a particular patient, or even in vivo assembly of those components/cells to eliminate surgery. There is also a 
great interest in processes that can bring together the strengths of both organic and inorganic materials to create 
hybrid systems that function together.  Bio-mediated assembly techniques, such as bacteria swarm and DNA 
mediated assembly are also becoming more popular with the recent advancements in bioscience.  They show great 
importance for future biological and biomedical assembly applications for bioengineering and tissue engineering, in 
which noninvasive micro assembly and manipulation is essential. 

SA, digitization and parallel synthesis capabilities of DNA have inspired scientist as a programmable assembly 
platform. Base to base hybridization acting as the binding and driving force to assemble components such as 
nucleotides, DNA strands or structures (Mastrangeli et al. 2009).  Programmability of the DNA mediated assembly 
relies on synthetic DNA technology to specifically conjugate sequences with the components attached to them. 
Electrical connections can be obtained by metallization of DNA’s and more complex DNA assemblies can be 
obtained by patterning of the metalized DNA (Mastrangeli et al. 2009).  DNA can further be designed, tailored and 
assembled to form DNA nano-robots that are capable of mechanical manipulation.  The driving force and motion of 
hybridization between DNA can be employed to manipulate micro- and nanoscale components, attached to DNA. 
Molecular tweezers capable of opening and closing (Yurke et al. 2000), directional DNA tracks for moving or 
transporting walker DNA (Shin and Pierce 2004; Yin et al. 2004), and DNA robotic arms (Ding and Seeman 2006) 
have been reported to-date.  DNA nano-robots can possibly be utilized in micro scale assembly with stronger and 
controllable interfaces between DNAs and microscale components and for 3D biological assembly on scaffolds for 
cell cultures and tissues. Bio-mediated assembly techniques also suffer from limitations similar to microrobotic 
assembly, as the mechanisms are relatively complex, expensive and not very suitable for assemblies composed of 
numerous parts. These methods are still at the proof-of-concept level with promising capabilities, however 
programmability of the synthetic DNAs is especially very promising for assemblies that require very specific nano 
and microscale sequences. 
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