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ABSTRACT 

 
West Antarctic Surface Mass Balance: Do Synoptic Scale Modes of Climate Contribute to 

Observed Variability? 
 

McLean K. Carpenter  
Department of Geological Sciences, BYU 

 Master of Science 
 

 
Western Antarctica has been experiencing significant warming for at least the past fifty 

years. While higher Net Surface Mass Balance (SMB) over West Antarctica during this period of 
warming is expected, SMB reconstructions from ice cores reveal a more complex pattern during 
the period of warming. The mechanisms giving rise to SMB variability over the West Antarctic 
Ice Sheet (WAIS) are not well understood due to lack of instrumental data. The Southern 
Annular Mode (SAM) and El Niño Southern Oscillation (ENSO) are believed to contribute to 
WAIS SMB variability but the assumption has not been rigorously tested. SMB during years 
where SAM and ENSO are in extreme phases is compared to average SMB from the period 
1979-2010. Additionally, atmospheric circulation anomalies are used to assess what circulation 
patterns accompany extreme modes of climate during the same period.  

 

The results suggest that significantly lower SMB occurs when SAM is in an extremely 
positive phase or ENSO is in an extremely negative phase. Additionally, atmospheric circulation 
anomalies show that certain circulation patterns accompany extreme modes of climate, which 
contribute to SMB variability over the WAIS. Ultimately, the location of low and high pressure 
cells is the best predictor for extreme accumulation events over the WAIS. These results are 
verified by assessing observed net SMB trends from a network of firn cores located from the 
central WAIS. Seven new firn cores are added to improve the spatial network of regional net 
SMB measurements. Reconstructed net SMB is calculated from new firn core records, and 
compared to the existing cores. The new suite of preliminary firn core records show the same 
significant decreasing trend that is observed in existing cores. This represents a negative region-
wide SMB trend that is likely in part due to trends in SAM and ENSO.  
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Part 1: Testing synoptic scale modes of climate 

1. Introduction 

 [1] Changes in the mass balance of the polar ice sheets have global implications by 

changing global albedo, global sea level, and thermohaline ocean circulation. The West Antarctic 

Ice Sheet (WAIS), the region west of the Transantarctic Mountains, is a region that has 

experienced many changes in climate over the past 50 years (Thomas et al., 2008).  For example, 

the WAIS has experienced significant warming over at least the past fifty years (Steig et al. 

2009). In addition, the WAIS alone has the sea-rise potential of approximately 5 meters 

(Vaughan and Spouge, 2002). Recent net precipitation, sublimation, snow drift, and melt 

(Surface Mass Balance, SMB) in the Western Antarctica (WA) interior is poorly understood due 

to limited availability of instrumental data, coupled with the remoteness of the region (Naik, 

2010). The variability in mass balance in response to climate variability is therefore of 

significant concern.  

[2] The majority of global climate models simulate increases in SMB in response to 

warmer temperatures, largely due to the Clausius-Clapeyron effect. However, SMB 

reconstructions from ice cores reveal a more complex pattern in SMB over the period of 

warming. For example, SMB reconstruction from the Gomez core located on the southwestern 

Antarctic Peninsula (AP) show a significant increase in accumulation and 100-year warming 

trend (Thomas et al., 2009). A suite of firn cores near the Pine Island Glacier show no change in 

accumulation, while there is a statistically significant decline in accumulation over portions of 

the WAIS interior (Burgener et al., 2013, Medley et al.,2013). This non-uniform pattern may be 

in part due to changes in atmospheric circulation that are giving rise to the observed changes in 

temperature over the WAIS. Therefore, one significant question of interest is how the variability 
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of Southern Hemisphere (SH) atmospheric circulation affects West Antarctic SMB. WA is a 

region known to be affected by strong inter-annual variability that is thought to be at least 

partially related to climate variability in the lower latitudes (Kidson, 1999). Synoptic scale 

modes of climate are believed to be contributing to the SMB variability, although this 

assumption has not been rigorously tested. To better understand the variability of the WAIS 

SMB, it is necessary to assess whether synoptic scale modes of climate are contributing to the 

observed SMB variability.  

2. Objectives 

  [3] The main objective of this research is to assess the influence of synoptic scale modes 

of climate on surface mass balance (SMB) in Western Antarctica. This will be accomplished by 

assessing how SMB varies when synoptic scale modes of climate are in extreme phases and by 

assessing the circulation patterns that accompany these extreme phases. 

3. Background 

[4] Western Antarctica has been warming significantly at a rate of 0.17 ± 0.06 degrees C 

per decade from 1957 to 2006, with the warming being strongest in the winter and spring months 

(Steig et al, 2009). The saturation vapor pressure of air increases rapidly and non-linearly with 

increasing temperatures, so warmer temperatures are expected to correspond to increased 

precipitation. However, recent SMB trends in central WAIS are negative in spite of the observed 

surface warming over the same region (Burgener et al., 2013). This SMB trend is also apparent 

in seven preliminary reconstructed records from the 2011 season (this study). Thus there is 

strong evidence for a region wide decrease in SMB, at least over the central WAIS region.  One 

possible cause of a region wide decrease in SMB could be due to shifts in atmospheric 
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circulation in response to synoptic scale modes of climate. The question that arises is how do 

modes of climate affect SMB in central WAIS?  

[5] The variability of southern hemisphere atmospheric circulation is dominated by the 

Southern Annular Mode (SAM), which was previously referred to as the “high latitude mode” 

and the “Antarctic Oscillation” (Thompson and Wallace 2000). The SAM is the principal mode 

of variability in the atmospheric circulation in the mid and high latitudes of the Southern 

Hemisphere (Naik et al, 2010). It represents the strengthening and weakening of the circumpolar 

vortex, which is the belt of tropospheric westerlies that surround the Antarctic continent, and 

provides a means of linking the Antarctic climate with that of lower latitudes via an atmospheric 

wave train (Turner, 2004). Variations in the SAM are caused by the seasonal shift in the 

subtropical upper level jet and in the intensity changes of the Southern Hemisphere polar jet 

(Carvalho, 2004). The storm track in the southern hemisphere exhibits substantial north-south 

migration associated with variations in the SAM (Ding and Steig, 2012).  

[6] During the positive phase of SAM, extra tropical cyclones tend to stay more pole 

ward and have lower central pressures (stronger storms). During the negative phase of SAM, 

extra tropical cyclones form and move to lower latitudes and tend to have higher pressures in the 

center (weaker storms). The positive phase of SAM is characterized by an area of persistent low 

pressure off the west coast of Antarctica in the Amundsen Sea region (Ding and Steig 2012). 

Two prevailing mechanisms have been proposed to explain variability in the SAM. Long-term 

variability in the SAM has been attributed to the direct impact of radiative forcing (Pezza et al., 

2012, Thompson and Solomon, 2002, Ding and Steig, 2012). The El Niño Southern Oscillation 

(ENSO) has also been dynamically linked to SAM, thus sea surface temperature changes in the 

tropics are thought to influence circulation patterns in the mid to high latitudes.  
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[7] The El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability 

centered in the tropical pacific, and has an influence on weather patterns globally. The location 

of warm sea surface temperature pockets in the tropical Pacific shift depending on the phase of 

ENSO and cause temporary major shifts in global weather patterns. An important link between 

tropical sea surface temperatures (SST) anomalies and circulation variability in the high latitudes 

of the Southern Hemisphere has been recognized for decades (Ding and Steig, 2013). Multiple 

studies (Kwok and Comiso, 2002; Fogt and Bromwich 2006; Fogt et al. 2011) have shown that 

ENSO influences SAM, where the magnitude of the ENSO teleconnection is strongly related to 

the magnitude and phase of SAM. Composites of low-frequency sea surface temperature 

variation, 200-hPa zonal wind, and outgoing longwave radiation (OLR) indicate that positive 

(negative) phases of the Southern Annular Mode (SAM) are dominant when patterns of SST, 

convection, and circulation anomalies resemble the La Niña (El Niño) phase of ENSO, thus 

ENSO is dynamically linked to SAM (Carvalho et al. 2005).  

[8] Interestingly, radiative changes alone are not enough to explain the temperature trends 

over the WAIS. Regional changes in atmospheric circulation are also required to account for the 

magnitude of temperature changes seen. These atmospheric circulation changes are likely 

influencing the SMB as well. This provides motivation to closer examine the role of tropical SST 

variability (ENSO) and mid to high latitude variability (SAM) in influencing the SMB variations 

observed in the WAIS firn cores. 
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4. Data and Methods 

[9] This study uses a combination of reanalysis data, models, and ice core data to test the 

relationship between SMB and synoptic scale modes of climate described in this section. In 

addition, the statistical methods applied to these data, including direct correlations and composite 

analysis will be presented.   

4.1 Compilation of firn cores 

[10] Firn cores are necessary to fill a data gap that exists due to the lack of instrumental 

data on the Antarctic continent. While firn/ice cores provide excellent temporal records of SMB 

for a given location, the cores are severely limited spatially as most firn cores are less than 10 cm 

in diameter. In addition, because of the large degree of small-scale spatial variability found in all 

Antarctic SMB records, a single core is not representative of region-wide SMB (Burgener, 

2012). The spatial limitations of firn cores are compensated for in part by collecting multiple 

cores in a region and averaging the resulting annual SMB observations together (Genthon et al., 

2005). A compact network of SMB consisting of five firn cores from the 2010-2011 SEAT 

(Satellite Era Accumulation Traverse) field season (Burgener et al., 2013) is expanded with nine 

ITASE (International Trans Antarctic Scientific Expedition) firn core records (figure 1). A 

straight stacked record is created from averaging annual SMB for each of the fourteen cores 

(figure 2). A stacked record eliminates noise and reduces the effects of small scale variability in 

the record and provides a representation of average regional SMB. Not included in the stack are 

seven preliminary firn cores from the SEAT 2011-2012 field season as the depth-age scales are 

not yet finalized. 

 

5 
 

 



 

4.12 Compilation of model/reanalysis data 

 [11] Due to SMB being a key term in the mass balance equation of an ice sheet, meso-

scale model simulations of accumulation across the central region of the WAIS are valuable. 

These models provide a means of directly linking atmospheric circulation to predicted SMB in a 

self-consistent way. In other words, these models provide information on the expected SMB 

variability in response to atmospheric circulation variability that can be compared to the ice core 

observations. The SEAT 2010 and 14 core stacked records were compared to output of two 

climate reanalyses generated by the ECMWF (ERA-40 and ERA-interim), two regional climate 

models (RACMO2.1/ANT and Polar MM5), and NASA’s Modern-Era Retrospective Analysis 

for Research and Applications (MERRA). These models/reanalyses employ different methods 

for calculating net SMB and differ in spatial resolution (Bromwich et al. 2011). 

RACMO2.1/ANT uses a complex formula to calculate net SMB that takes into account various 

ablation processes such as sublimation of blowing snow and horizontal transport. MERRA, 

ERA-40, ERA-Interim, and Polar MM5 outputs use a simple formula that only accounts for 

precipitation minus evaporation (P-E). Simulated SMB time series along with the SEAT 2010 

stack and 14 core stack are shown in figure 3. 

 [12] The ERA-40 is a reanalyses of observations from a 45 year period (1957-2002) 

produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-

40 provides a number of improvements over the previous ERA-15 including a higher horizontal 

resolution (2.5 degree latitude x 2.5 degree longitude) and more observations including 

operational data provided by NCEP and the Japan Meteorological Agency, and in situ and 

satellite data from NCAR (Uppala et al. 2005). The ERA-interim reanalysis is the latest global 

atmospheric reanalysis produced by ECMWF, and is the replacement for the ERA-40. This 
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reanalysis covers the period from January 1979 onwards, and continues to be extended forward 

in real time. Improvements over the ERA-40 include higher resolution with a 1.5º latitude by 1.5º 

longitude grid, has better temporal consistency on multiple time scales, and shows better skill at 

representing the hydrological cycle (Dee et al., 2011).  

[13] MERRA is a climate reanalysis developed by NASA with the objectives of placing 

observations from NASA’s Earth Observing System satellites into a climate context and to 

improve upon the hydrologic cycle as represented in earlier analyses (Reineker et al., 2011). 

MERRA focuses on the satellite era, from 1979 to the present day and has achieved its goals by 

significantly improving precipitation and water vapor climatology. MERRA ulililizes the 

3DVAR data assimilation analysis algorithm and its resolution is 1/2 º latitude by 2/3 º longitude 

horizontal grid resolution (Reinker et al., 2011).  

[14] Polar MM5 is a regional atmospheric model based on the fifth-generation 

Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) 

Mesoscale Model, which has been optimized for climate modeling over ice sheets by the Byrd 

Polar Research Center at the Ohio State University (Bromwich et al., 2004). Polar MM5 covers 

the period spanning 1979 to 2001. Polar MM5 has a 60km horizontal resolution and its boundary 

conditions are forced by both ERA-40 and NCEP II (Monaghan et al., 2006b). RACMO2.1/ANT 

is a regional atmospheric climate model combining the dynamics of the High Resolution Limited 

Area Model (HIRLAM) and the physical processes of the ECMWF model. RACMO2.1/ANT 

has been optimized to simulate the climate conditions of large ice sheets. RACMO2.1/ANT 

covers the period spanning from 1979 to 2010. The model has a horizontal grid spacing of 27 km 

and is forced at its boundaries by ERA-Interim. 
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4.2 Climate indices 

[15] Indices of SAM and ENSO are used to select the years where each mode of climate 

was in an extreme positive or negative phase. A climate index is defined as a calculated value 

that can be used to describe the state and the changes in a climate system. Climate indices are 

based on certain parameters and describe only certain aspects of climate. Means, extreme values, 

linear trends, and standard deviations of long time series can be calculated for each of these 

climate parameters. The climate indices chosen for this study are the SAM index and the 

Southern Oscillation Index (SOI) (figure 4), both of which are measures of differences in air 

pressure between two defined locations.  

 

[16] The SAM index is defined as the difference of zonal mean sea level pressure 

between 40ºS and 65ºS (Gong and Wang, 1999). The Southern Oscillation index (SOI), gives an 

indication of the development and intensity of ENSO events in the Pacific Ocean.  The SOI is 

measured as the difference in sea level pressure between Tahiti and Darwin, Australia. Sustained 

negative values generally indicate an El Niño episode, where sustained warming of the central 

Positve Negative El Nino (Positive) La Nina (Negative)

2010 2007 2005 2010
2008 2002 2004 2008
2001 1992 2002 2000
1999 1991 1997 1999
1998 1981 1994 1996
1993 1980 1993 1989
1989 1992 1988
1985 1991 1985
1979 1987 1981

1983 1979
1982

SAM ENSO

Table 1: Extreme negative and positive phase years for SAM and ENSO. An extreme year is 
defined as any year in the SAM index or SOI that is greater or less than 0.75 standard 
deviations above/below the mean in the respective index. 
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and eastern tropical Pacific and decreased trade winds occur. Sustained positive values generally 

indicate a La Niña episode, where warmer sea surface temperatures shift to north of Australia 

and stronger trade winds prevail. From these two indices, mean and standard deviation can be 

calculated from the detrended data and it is possible to define what the benchmark of an extreme 

year is for the SAM and ENSO.  

4.21 Extreme phases of SAM and ENSO 

 [17] For this study an extreme year will be defined as any year where an index (SAM 

Index or SOI) value is ˃0.75 standard deviations above the mean or ˂0.75 standard deviations 

below the mean. The value of 0.75 standard deviations was chosen to capture a representative 

portion of the each phase of SAM and ENSO. While there is no real cutoff for the acceptable 

amount of years to be included for each phase of SAM and ENSO, it is important to have a large 

enough sample size that is representative of each possible case. For the SAM index, any year 

˃0.75 standard deviations above the mean is considered an extreme positive phase and any year 

˂0.75 standard deviations below the mean is considered an extreme negative phase. For the SOI, 

any year that is ˃0.75 standard deviations above the mean is considered an extreme negative 

phase (La Niña) and any year ˂0.75 standard deviations below the mean is considered an 

extreme positive phase (El Niño). Presented in table 1 are all years that qualified as extreme for 

both SAM and ENSO. These identified years where SAM and ESNO were in an extreme phase 

will be used to calculate SMB and atmospheric circulation anomalies.  
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4.3 Direct correlations between synoptic scale modes of climate and SMB 

 [18] To test the strength and direction of the linear relationship between SAM, ENSO, 

and WAIS SMB, a matrix is created by correlating all combinations of SMB and climate index 

data. Two annual stacked SMB records are used to represent regional SMB over the WAIS: The 

SEAT 2010 stack, which consists of five high resolution firn core records, and the 14 core 

regional stack, which is a combination of the five SEAT 2010 firn cores and nine ITASE firn 

cores. The SAM is represented by the SAM index, and ENSO is represented by the SOI. All of 

the aforementioned data covers the 32 year period, 1979-2010. The correlation coefficient (r) and 

accompanying p-value is calculated between each combination of climate index and SMB. While 

correlation is a useful indicator of the strength and direction of the linear relationship between 

two data sets, it does not address why a relationship is poor or strong, the mechanisms giving rise 

to that relationship. 

5. Results and Conclusions 

 [19] This section presents the results of the statistical tests used to assess the relationship 

between synoptic scale modes of climate and SMB records. This includes the direct correlation 

between SMB records and synoptic scale modes of climate, and composite analysis comparing 

SMB, mslp and Z200 data during extreme years of SAM and ENSO to average. Lastly, the 

statistical significance of the resulting correlations and anomalies are presented in this section. 

5.1 Direct correlation between SMB and synoptic scale modes of climate  

[20] The direct correlation between synoptic scale modes of climate and Antarctic SMB 

is poor (table 2). The highest statistically significant correlation is between the SOI and the SMB 

records, but only account for 22% of the variance. Importantly, the correlation with SAM is not 

statistically significant. These results could be due to the influence tropical SST forcing has on 
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the SAM (Fogt and Bromwich, 2006; Ding and Steig, 2012). A poor correlation could be due to 

many circulation patterns giving rise to average SMB in any given year or dating uncertainties in 

reconstructed firn core records. If there is an influence of synoptic scale modes of climate on 

WAIS SMB, the impact should at least be observed in the extreme years of SAM and/or ENSO. 

Therefore, composite analysis is used to assess the influences of SAM and ENSO on WAIS 

SMB and atmospheric circulation patterns during the extreme years.  

 

 

5.2 Composite Analysis of SMB during extreme years of SAM and ENSO 

  [21] Annual SMB from 5 models/reanalyses and a straight stack of 14 SEAT and seven 

ITASE cores are used to compare SMB during extreme years of SAM and ENSO to the average 

of all years. To calculate the anomaly for each scenario, the average SMB for a particular phase 

of either SAM or ENSO (ex: All extreme positive SAM years) is subtracted from the mean SMB 

from the period 1979-2011. Table 3 (part a) contains the anomalies for the positive and negative 

phase of SAM and ENSO for each model/reanalyses and the stacked record. The anomalies show 

that during the negative phases of SAM and ENSO, there is a slight increase in annual 

accumulation for all models/reanalyses and the stacked record. During extreme positive ENSO 

(El Niño) years, the anomalies range from 0.82 to 1.56 w.e. cm/yr above the mean on average, 

while the anomalies during extreme negative SAM years ranged from 0.56 to 3.41 w.e. cm/yr 

above the mean on average. During extreme negative ENSO (La Niña) years, the anomalies 

range from 0.37 to 1.26 w.e. cm/yr below the mean on average, while during extreme positive 

Table 2: a. Correlation Matrix showing correlation of SAM (SAM Index) and ENSO (SOI) against stacked records. Overall 
correlation is low between large scale climate variability and the annual accumulation records. b. P-values from testing the 
significance of r values in the correlation matrix. P-values in red are significant at the 95% confidence level.  

b. a. 

SAM SOI SAM SOI
SEAT 2010 0.15 0.47 SEAT 2010 0.406 0.006

Stack 0.24 0.42 Stack 0.174 0.014
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SAM years, anomalies ranged from 0.30 to 1.20 w.e cm/yr below the mean on average. These 

anomalies suggest that certain extreme phases of SAM or ENSO produce lower than average 

SMB over the central WAIS, but statistical testing is necessary to determine whether the 

calculated differences are significantly different from the mean.  

 

[22] A two sample Welch’s t-test was performed to compare SMB during years where 

SAM/ENSO are extremely negative/positive to annual accumulation for all years with a null 

hypothesis stating there is no significant difference between the extreme years and average SMB. 

Table 3 (part b) contains the p-values for each combination of phase and simulated/actual SMB. 

The p-values show that a majority of the possible combinations are statistically significant at the 

95% confidence level. So while the anomalies are not necessarily large at first glance, the 

difference from the mean during extreme years of SAM/ENSO are suggested by the data to be 

for the most part significantly different from the mean. Snow accumulation is the only way mass 

is added to the WAIS, so even small changes over space and time can lead to significant changes 

Table 3: a) Annual SMB anomalies (w.e. cm/yr) for five models/reanalyses and a 19 core stacked record for the 
extreme years of SAM and ENSO. The five simulated records and the stacked record anomalies show that annual 
accumulation during extreme negative (positive) years of SAM and positive (negative) years of ENSO are higher 
(lower) than average. b) A two sample Welch’s t-test was performed comparing accumulation during extreme years 
to all other years. The differences are significant (p<0.05) for all scenarios but three (PMM5 El Nino anomaly, and 
stacked record anomalies for positive and negative phases of SAM).   
 

a.    Climate Indice Phase ERA-40 ERA-interim MERRA Polar MM5 RACMO
14 core 
stack

El Niño 0.97 1.56 1.17 1.09 0.82 1.32
La Niña -0.44 -1.17 -0.68 -1.26 -0.36 -0.37
Positive -0.43 -1.20 -0.30 -0.56 -0.50 -0.80
Negative 2.64 3.04 1.69 3.41 2.01 0.56

b.    Climate Indice Phase ERA-40 ERA-interim MERRA Polar MM5 RACMO
14 core 
stack

El Niño 0.0096 0.0011 0.0004 0.1143 0.0010 0.1585
La Niña 0.0014 0.0008 0.0017 0.0005 0.0011 0.0381
Positive 0.0389 0.0189 0.0436 0.0257 0.0395 0.0453
Negative 0.0496 0.0071 0.0380 0.0553 0.0376 0.1690

SOI

SAM Index

SOI

SAM Index
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in mass on the ice sheet. The key result of the statistical testing is the significance of the 

anomalies during the extreme positive phase of SAM and the negative phase of ESNO. The 

anomalies for all cases (simulated and actual SMB) during these two phases are statistically 

significant at the 95% confidence level, suggesting that the lower than average SMB during these 

two extreme phases is significantly different from the mean. These anomalies suggest that the 

phase of SAM or ENSO plays an important role in contributing to SMB variability over the 

WAIS. To validate these results, it is necessary to examine atmospheric circulation anomalies to 

better understand the circulation patterns that accompany SAM and ENSO. 

5.3 Atmospheric anomalies during extreme years of SAM and ENSO 

 [23] Annual and seasonal atmospheric anomaly plots are created to show the circulation 

patterns that occur at the surface and high above the surface during a particular phase of SAM or 

ENSO.  Mean sea level pressure (mslp) anomalies and 200-hPa Z200 geopotential height 

anomalies were collected from the ERA-interim from the period 1979-2011. 200-hPa 

geopotential heights Z200 are used because 200 hPa corresponds to the core of the tropospheric 

jet stream (Ding and Steig, 2012), while mslp is used to allow comparison of circulation 

anomalies at the surface and troposphere. A two sample t-test was performed on the imported 

data to test whether the plotted anomalies were significantly different from the mean at the 95% 

confidence level. Significance is represented on each plot with a small black dot for each grid 

point where the anomaly is significantly different from the mean.  
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5.31 Mean annual anomalies 

[24] Mean sea level pressure (mslp) and Z200 anomalies are based off SAM extreme 

years, SOI extreme years, and anomalously high/low SMB years from the stacked record 

consisting of 14 SEAT and ITASE cores. The annual mslp (figure 5) and Z200 (figure 6) anomaly 

plots show a persistent area of low pressure off the coast of West Antarctica over the Amundsen 

Sea during the positive phase of SAM, the negative phase of ENSO, and the years of 

anomalously low SMB from the stacked record. The low pressure anomalies in all three plots are 

statistically significant at the 95% confidence level. The location of the low in all three plots 

would put the Antarctic Peninsula (AP) in a position to receive higher than average SMB, while 

the WAIS interior is in a position to receive lower than average SMB (figure 9). The results 

strongly suggest that the low pressure anomaly associated with the positive phase of SAM and 

the negative phase of ENSO drives anomalously low precipitation in central WAIS.  

[25] The extreme positive phase of ENSO and the extreme negative phase of SAM show 

an area of high pressure over the Amundsen Sea with low pressure cells positioned around the 

rest of the Antarctic continent. This pattern is reminiscent of a Rossby wave train, which is a 

series of high and low pressure cells that follow an arcing path from the tropical pacific to WA. 

This pattern is known to produce warming westerly winds over WA due to the area of high 

pressure that is positioned over the Amundsen Sea (Ding et al., 2011). The mean annual 

anomalies representing years of high SMB from the stacked record is significantly different than 

either phase of SAM and ENSO, with a significant low anomaly centered between the 

Amundsen and Ross seas. Additionally, this low is positioned over the Amundsen Sea in the 

mslp anomaly plot and over the Ross Sea ice shelf the Z200 plot. This offset gives rise to 

baroclinic instability, which drives the generation of cyclones that are steered by the upper 
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atmospheric winds into western and central WAIS.  The mslp and Z200 annual plots suggest that 

there are at least two patterns that can drive higher than average SMB over WA.  

[26] A high pressure anomaly over the Amundsen Sea, or a shift of the low pressure 

system and upper level winds over the Ross Sea are the dominant patterns that drive SMB 

variability over the central WAIS. The seasonal anomaly plots will reveal shifts in circulation 

patterns from season to season. 

5.32 Extreme positive phase of SAM 

 [27] The mslp and Z200 anomalies show seasonal circulation patterns that are associated 

with the extreme positive phase of SAM (Figures 7 and 8). The dominant feature is a persistent 

area of low pressure centered off the coast of WA over the Amundsen Sea. This low persists over 

all seasons, with small variations in location and strength from season to season. The low is 

statistically different from the mean during austral autumn and winter. This pattern shows the 

circumpolar vortex, the belt of tropospheric westerlies, weakens and contracts towards 

Antarctica when SAM is positive (Naik et al., 2010). This results in cooling over much of East 

Antarctica, with WA being the exception. Under this particular flow regime (figure 9), low 

pressure over the Amundsen Sea induces lower than average SMB over western WA, with 

increased westerlies, warming, and higher than average SMB over the Antarctic Peninsula (AP) 

due to moisture advection changes (Genthon, 2005).  

5.33 Extreme negative phase of SAM 

[28] During the extreme negative phase of SAM, the persistent low is replaced by an area 

of high pressure in almost the same location, which is evident during austral autumn and winter. 

There is greater heat exchange between the tropics and the poles with the circumpolar vortex 

strengthening, resulting in an anticyclonic anomaly over the Amundsen-Bellingshausen Sea 

15 
 

 



 

(Turner, 2004). High pressure over the Amundsen Sea with three low pressure anomalies 

surrounding the rest of the Antarctic continent, resembling a Rossby wave, is evident in the 

seasonal mlsp (figure 10) and Z200 (figure 11) anomalies.  The pattern is most evident during 

austral winter and spring, with nearly all of the anomalous high and low centers being significant 

during this period. The largest deviation between the two extreme phases of SAM is that the 

negative phase leads to a greater amount of variability from season to season while the positive 

phase produces a fairly consistent pattern to set up over WA. The distinct circulation patterns 

that accompany both phases of SAM are capable of bringing anomalous accumulation to the 

central WAIS, contributing to the observed variability. With a good idea of what circulation 

patterns accompany SAM, plotting anomalies during years of anomalously low/high SMB from 

the stacked record will reveal what circulation patterns give rise to extreme accumulation events 

over the central WAIS. 

5.34 Anomalously low SMB years from stacked record 

[29] During years where SMB in the stacked record is anomalously low, the mslp (figure 

12) and Z200 (figure 13) seasonal anomalies largely mimic the circulation patterns observed 

during the positive phase of SAM. While the match is not perfect, there is a statistically 

significant persistent area of low pressure off the coast of WA over all seasons, with a high 

pressure anomaly over most of Eastern Antarctica during all seasons except austral spring. This 

low shifts around from season to season, with the low moving closer to the Ross Sea during 

austral winter and moving over the Bellingshausen Sea near the AP during austral spring. The 

change from season to season is minimal, which is quite similar to the extreme positive phase of 

SAM seasonal anomaly plots. While there appears to be a limited number of circulation patterns 
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that give rise to below average SMB over the central WAIS, this does not hold true for years of 

anomalously high SMB from the stacked record. 

5.35 Anomalously high SMB years from stacked record 

[30] While the seasonal anomalies during anomalously low SMB years from the stacked 

record mimicked the positive phase of SAM, the seasonal anomalies from the years of 

anomalously high SMB from the stacked record do not mimic any patterns observed during 

either extreme phase of SAM. There is nearly no continuity from season to season with many 

different patterns that could influence SMB visible in the mslp (figure 14) and Z200 (figure 15) 

seasonal anomalies. The most prominent circulation pattern that appears is an area of low 

pressure over the Ross Sea during austral spring and autumn. The positioning of this low would 

place the central WAIS in position to receive higher than average SMB. The lack of any 

persistent pattern indicates that there are a greater combination of circulation patterns that can 

contribute to higher SMB over the central WAIS. The anomaly plots provide important evidence 

linking circulation patterns associated with phases of SAM and ENSO to WAIS SMB variability.  

5.4 Conclusions 

[31] Previous studies have linked both tropical (ENSO) and mid-latitude (SAM) synoptic 

scale modes of climate to southern hemisphere internal climate variability. Since the 1970’s, a 

positive trend in the SAM index has led to persistent low pressure over the Amundsen Sea, 

which is thought to be a factor in contributing to WAIS SMB variability. While SAM and ENSO 

tend to be viewed as independently driving circulation, temperature, and precipitation changes in 

the southern hemisphere, there is evidence supporting that mid to high latitude climate variability 

is connected to variability in the tropics. ENSO has been known to interact with SAM with 

changes occurring in the tropics due to ENSO have a ripple effect in the high latitudes (Fogt et 
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al., 2011). Synoptic scale modes of climate are believed to be contributors to the SMB variability 

but the assumption has not been rigorously tested.  

[32] With a low direct correlation between SAM, ENSO, and ice core records, the years 

where SAM and ENSO were in an extreme phase were studied with the hypothesis that these 

extreme phases are leading to circulation patterns that contribute to the variability of the WAIS 

SMB. This study performed a composite analysis using ice core data and climate indices to 

assess how synoptic scale modes of climate contribute to SMB variability on the WAIS. 

Statistically significant SMB anomalies reveal that below average SMB occurs when SAM was 

extremely positive or ENSO was extremely negative. Conversely, statistically significant SMB 

anomalies during the years where SAM was extremely negative or ENSO was extremely positive 

produced above average SMB over central WAIS, although there were a few scenarios where the 

difference from the mean was not statistically significant. A composite analysis was also 

performed on annual and seasonal mslp and Z200 atmospheric data over the SH. The anomalies 

were tested for statistical significance using a two-sample t test at the 95% confidence level. The 

annual and seasonal anomalies were plotted, showing circulation patterns that occur during the 

extreme phases of SAM, ESNO, and anomalously high/low SMB from the stacked record.  

[33] The annual and seasonal anomalies show a persistent area of low pressure that is 

positioned over the Amundsen Sea when SAM is in an extreme positive phase or ENSO is in an 

extreme negative phase. This circulation pattern gives rise to lower than average SMB over 

Western WAIS and higher SMB over the AP. This pattern is important as SAM has been shifting 

towards the positive phase with greater frequency over the past few decades (Sigmond et al., 

2010). Seasonal plots focusing on anomalously low years of SMB from the regional 14 core 
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stacked record show similar circulation patterns observed during the negative phase of ENSO 

and the positive phase of SAM, with persistent low pressure over the Amundsen Sea.  

[34] When SAM is in an extreme negative phase, the tropospheric belt of westerlies 

(circumpolar vortex) strengthen and the pattern around Antarctica resembles a Rossby wave 

train, with high pressure positioned over the Amundsen Sea during austral autumn and winter. 

This pattern supports strengthening westerlies and warming over WAIS with the potential for 

higher than average SMB. However, while there is a tendency towards increased SMB during the 

negative phase of SAM, higher SMB is also highly likely when the mslp and Z200 low shifts 

towards the Ross Sea. Therefore, while low SMB has a direct relationship with SAM and ENSO, 

average to high SMB does not. This is the likely cause of the low direct correlation between the 

climate indices and SMB. 

[35] The results suggest that the best predictor for extreme accumulation events is the 

geographical location of regional low and high pressure systems, and not solely the intensity of 

the low pressure systems as has been previously assumed. There is significant evidence that 

synoptic scale modes of climate contribute to observed SMB variability on the WAIS. As seen in 

the anomaly plots, the location of regional low and high pressure systems is tied to circulation 

patterns that accompany a particular phase of SAM or ENSO, though the relationship is 

complicated. In any given year, the phase of SAM or ENSO will play a role in the circulation 

patterns that develop over the high latitudes and regulate the geographical positioning of low and 

high pressure systems, which will contribute to the SMB variability over the WAIS. These 

results have direct implications for paleoclimate reconstructions from ice core data, climate 

model validation, ice sheet modeling, and the future evolution of the WAIS SMB. 
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Part 2: Temporal trends  

6. Introduction to temporal trends 

 [36] There is significant evidence that synoptic scale modes of climate do influence SMB 

in central WAIS, though not in a simple way (Part I). In recent decades, trend of atmospheric 

circulation toward the positive phase of SAM has been observed, manifested as a strengthening 

of the circumpolar westerlies along 60ºS, which has been attributed to both increased greenhouse 

gas concentrations and stratospheric ozone depletion (Thompson and Solomon 2002, Ding and 

Steig 2012, Marshall, 2007). The extreme positive phase of SAM has been shown in this study to 

consistently produce circulation patterns that results in lower than average SMB over the central 

WAIS. Given the results in this study, there might be an expectation that this has given rise to a 

decrease in SMB over the WAIS interior. Five firn cores drilled during the 2010 field season 

(Burgener et al., 2013) show a significant decline in SMB over the past three decades, but these 

firn cores are spatially limited. If the trend towards the positive phase of SAM is driving the 

trend in negative SMB, then the impacts should extend to a larger area. 

[37] This study expands the compact network of high temporal resolution firn cores by 

adding seven new high temporal resolution firn cores extracted from an adjacent region on the 

WAIS interior during the 2011-2012 Antarctic field season (table 4). The first five firn cores 

from the 2010-2011 field season filled a temporal and spatial gap in the central WAIS region. 

The new suite of cores provide new data critical for showing recent region-wide trends in SMB. 

These new firn cores aid the existing cores in overcoming small scale spatial variability and 

providing a more accurate representation of regional SMB over the past three decades. Second, 

with a larger pool of data to work from, a suite of statistical analyses can be performed to test the 
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significance of the observed trends from the firn core records and produce a regional 

representation of how SMB has been changing in the past few decades.  

 

7. Methods 

7.1 Field Methods 

 [38] The 2010-2011 Satellite Era Accumulation Traverse (SEAT) was conducted by a six 

person team traveling from the WAIS Divide Deep Core Camp. Five cores were collected at sites 

~70km apart, ranging across the ice divide. In 2011, nine additional cores were drilled in the 

same area (this study), creating a region wide spatial network of fourteen new shallow firn cores 

(Figure 1).  

 [39] At each drilling location, a snow pit was dug through the top layers of snow and firn 

until a depth was reached where the firn was dense enough to remain intact during drilling, 

which according to (Burgener et al., 2013) was ~1.5 meters. Density measurements for the snow 

Core 
Name

Latitude 
(N)

Longitude 
(E)

Elevation 
(m)

Age Range 
(Years)

SEAT 10-1 -79.383 -111.239 1790.7 1976-2010
SEAT 10-2 -79.407 -111.654 1171.8 NA
SEAT 10-3 -79.042 -111.547 1771.8 1975-2010
SEAT 10-4 -78.488 -111.698 1649.8 1970-2010
SEAT 10-5 -79.123 -113.041 1793.7 1978-2010
SEAT 10-6 -79.751 -114.552 1693.6 1966-2010
SEAT 11-1 -80.009 -119.423 1502.9 1982-2011
SEAT 11-2 -79.348 -116.29 1681.1 1981-2011
SEAT 11-3 -78.728 -114.732 1782.7 1980-2011
SEAT 11-4 -78.311 -113.788 1608.7 1986-2011
SEAT 11-5 -78.312 -113.793 1610.1 NA
SEAT 11-6 -78.424 -115.292 1731 1986-2011
SEAT 11-7 -78.837 -116.307 1739.4 1977-2011
SEAT 11-8 -79.447 -117.963 1618.5 1977-2011
SEAT 11-9 -79.446 -117.969 1618.4 NA

Table 4: SEAT ice cores extracted between the 2010 and 2011 field 
seasons. 
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pit samples were performed at every 2 cm. The firn core sections generally measured ~80 cm 

from the bottom of the snow pit at each drilling site. Due to the youngest firn being poorly 

compacted at several sites, the upper 1 to 2 meters was samples in the field. Each core section 

was measured for bulk weight and length, which later was used for firn density calculations. The 

sampling process included electrical conductivity measurements (ECM) for each core section, 

with the sections being cut into ~2 cm samples. Volume and mass measurements were then taken 

and recorded for every sample. The procedure for the SEAT 2011 cores remained similar to that 

of the previous year with minor exceptions. To increase efficiency of the drilling operations, the 

core was drilled next to the pit wall (Williams et al., 2013).  

7.2 Lab Methods 

 [40] The core sections and snow pit samples were shipped in large insulated boxes to the 

Climate Dynamics Lab at Brigham Young University in Provo, Utah. Temperatures were 

maintained at -20 degrees Celsius throughout transit. The ice cores and snow pit samples were 

stored and processed in a walk in freezer in the Climate Dynamics Lab, where the freezer 

temperature generally varied between -15 and -30 degrees Celsius. The core sections were 

processed from top (near surface) to bottom for each core as the sample numbers from each core 

began at the top and finished at the bottom. Each core was weighed and measured to ensure 

measurements taken in the field were accurate, and to assess the loss of snow on transit. The core 

was then placed beneath a fluorescent light where the cool bulb revealed the stratigraphy of the 

firn core sections, revealing seasonal layers, wind layers, and hoar frost layers. Any interesting 

features of the firn core sections were recorded and high resolution pictures of the stratigraphy 

were taken of each section. The core section was then cut into approximately two centimeter 

samples. Volume measurements were promptly taken for each two centimeter section using 
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digital calipers, with the thickness and width being taken three times and then recorded by a 

scribe.  

[41] After the volume measurements were completed, each sample was bagged in a whirl 

pak sample bag. Samples were placed in a cooler and the samples from each section were 

weighed three times. The volume and density calculations after being entered into excel were 

used to calculate density for each sample and cumulatively for each firn core. Cumulative 

uncertainties for the density calculations are 10% for snowpit samples and 5% for firn core 

samples. The average volume measurement (cm3) is multiplied by the average weight of each 

sample (in grams), providing a slice by slice density through the length of the whole firn core.  

[42] Samples were then stored in the freezer until ready to be melted and decanted. To 

minimize any isotopic shifts during processing, great care was taken. The samples were double 

bagged and hung on a clothesline, and allowed to melt at room temperature (~22 degrees C). 

Once the samples were in a liquid state, they were immediately decanted from the sample bag 

into pre-labeled 20 mL Nalgene bottles with corresponding sample numbers. The bottles were 

sealed tightly to prevent any isotopic interaction between the sample and the atmosphere and 

then frozen until ready for further processing. 

[43] Isotopic analysis (δ18O and δD) of the liquid samples was conducted using a Los 

Gatos Liquid Water Isotope Analyzer (LWIA-24d). Batch sample set up followed the procedure 

outlined in Nelson (2000) and Nelson and Dettman (2001). A small amount (0.7mL) of each 

sample was injected into a vial using a pipette and capped to prevent exchange with the 

atmosphere. The vials were loaded into a tray and samples were run with the liquid isotopic 

analyzer taking eight injections from each vial.  Memory correction was addressed by rejecting 

the first four injections for each sample. The next four injections for each sample were then drift 
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corrected using in house standards (the procedure used was taken from Nelson and Dettman, 

2001). The in house standards (calibrated by Vienna Standard Mean Ocean Water and Standard 

Light Antarctic Precipitation) have isotopic values that are within the range of the SEAT isotopic 

data, thus reducing the influence of memory.  In addition to the aforementioned two standards, a 

quality check sample of similar isotopic values to the WAIS samples (Steig et al., 2013) was 

used to determine the error in the drift corrected samples all through a batch. The final isotopic 

composition of a sample was determined by taking the average of the drift corrected injections 

(Williams et al., 2013). The analytical uncertainties are 0.6 ‰ for δ18O and 0.2‰ for δD. 

 [44] Water-equivalent annual SMB records were created using both the density profiles 

and depth-age scales. Depth-age scales at seasonal resolution were created for each core by 

counting the peaks and troughs in the seasonal signal of the δ18O and δD records. These first and 

preliminary depth-age scales were refined and verified by comparing the isotopic profiles to the 

density profiles and solute concentrations in each core. The solute data was measured using a 

Dionex ICS-90 Ion Chromatography System. Solute data provides definite years in the firn core 

records and serves as a refining tool for the depth age scales. Solute data is still in progress for 

the SEAT 2011 firn cores, thus the new accumulation records (this study) are still considered 

preliminary. The records were reconstructed by multiplying the density of each sample by its 

respective thickness and then summing up all samples that belonged to a particular year, 

according to the method described in Cuffey and Paterson (2010). 

8. Results and Discussion: Trends observed in the SEAT 2010 and 2011 firn core records  

 [45] The trends in the preliminary SEAT-2011 reconstructed firn core records will 

analyzed and compared with the existing SEAT-2010 records. The observed trends in these firn 

cores are similar in magnitude and sign as the SEAT-2010 cores, then this will be indicative of a 
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regional trend that is likely connected atmospheric circulation patterns associated with synoptic 

scale modes of climate. Additionally, the statistical significance of the observed temporal trends 

will be presented in this section.  

8.1 SEAT-2010 and SEAT-2011 SMB Rate  

[46] Figure 16 shows the reconstructed annual SMB for the five SEAT-2010 firn cores 

collected during the SEAT 2010-2011 field season. The records from each core cover different 

timespans with the longest record (SEAT 10-6) extending back to 1966 and the shortest (SEAT 

10-5) extending back to 1976 (Burgener et al., 2013). The trends from each of the SEAT-2010 

cores show a statistically significant decreasing trend in SMB, ranging from a maximum 

decrease of -7.2 cm to a minimum of -1.5 cm w.e per decade.  

[47] Figure 17 shows the reconstructed preliminary SEAT-2011 SMB records. The 

SEAT-2011 cores also show negative SMB trends. The records from each core vary in their 

temporal length, with the longest two records (SEAT 11-7 and SEAT 11-8) spanning from 1977-

2011, and the shortest two (SEAT 11-4 and SEAT 11-6) spanning from 1986-2011. In general 

Core Name Max Mean Min Median StDev Variance Skewness Kurtosis
SEAT 10-1 33.535 21.498 12.653 21.548 5.382 28.965 0.127 -0.614
SEAT 10-3 49.073 21.266 8.152 19.182 9.319 86.849 0.696 0.363
SEAT 10-4 57.694 27.991 6.157 24.666 13.803 190.516 0.451 -0.848
SEAT 10-5 40.911 23.982 6.926 25.416 7.567 57.257 -0.543 0.302
SEAT 10-6 36.741 20.469 10.279 18.047 7.466 55.745 0.677 -0.475
SEAT 11-1 53.632 26.419 9.791 24.573 12.466 155.397 0.660 -0.614
SEAT 11-2 63.487 31.062 7.707 29.673 14.877 221.330 0.436 -0.622
SEAT 11-3 46.411 28.798 8.375 28.905 8.600 73.954 -0.351 0.283
SEAT 11-4 59.310 36.061 6.741 40.900 14.734 217.076 -0.507 -0.745
SEAT 11-6 58.645 35.783 7.115 41.640 14.561 212.024 -0.519 -0.799
SEAT 11-7 50.318 25.516 8.956 22.267 11.562 133.690 0.619 -0.597
SEAT 11-8 64.190 31.085 10.747 29.932 13.397 179.466 0.479 -0.262

Table 5: Simple statistical data for annual accumulation (w.e. cm/yr) data reconstructed from the SEAT 2010 and 2011 
firn cores. The preliminary SEAT 2011 cores in general have higher accumulation rates due to closer proximity to the 
coast.  
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the SEAT-2011 temporal records are shorter than the SEAT 2010 records as shown in table 4.  

The SEAT-2011 records generally show higher mean SMB than what is observed in the SEAT-

2010 records, which can be explained by closer proximity to the coast (figure 18), which is in 

general agreement with previous studies (Kaspari et al., 2004). In addition to mean SMB, 

additional simple statistical relationships were established for each SMB record (table 5).The 

trends from each of the SEAT-2011 cores show a statistically significant decreasing trend in 

SMB, ranging from a maximum decrease of -10.05 cm to a minimum of -1.15 cm w.e per 

decade. These trends are the same magnitude as the SEAT 2010 firn cores. The statistical 

significance of these trends will be discussed further in depth in the next section. 

8.2 Statistical Analysis of Temporal Trends  

[48] Statistical testing is performed on the records to improve understanding of whether 

the observations in the records are significant. In order to evaluate the significance of the SEAT 

2010 and 2011 SMB trends, stacked SMB records are used. Spatially averaging a number of 

SMB records together acts to reduce the amount of small scale perturbations (SSP), which can be 

noise due to wind redistribution, sublimation, etc. (Genthon et al., 2005). Two stacks are created, 

the first consisting of the five SEAT-2010 firn cores and the second consisting of the seven 

preliminary SEAT-2011 firn cores (figure 19). The stacks are created by averaging SMB 

between all cores in the stack for each year.  

 [49] In order to determine the significance of the SMB trends, an ordinary least squares 

(OLS) regression model was fit to each of the five SEAT 2010, seven SEAT 2011 and the two 

stacked SMB records. Table 6 shows the resulting statistics and p-values for each of the records. 

Both the individual and stacked records show a significant negative trends in SMB for the length 

of each record. All but one of the records (SEAT 10-5) are significant when considering the 
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period of 1980-2010, and a majority of the records are significant from the period 1990-2010. 

The results from the period of 1990-2010 are not considered as reliable due to the smaller 

sampling size. Regardless, the results suggest that the observed decrease in annual SMB in all 

SEAT cores is likely a regional trend and not due to noise from within the system.  The declining 

regional trend supports the composite analysis in part 1 of this study which showed that certain 

circulation patterns that gave rise to decreased SMB over the central WAIS were associated with 

the extreme positive phase of SAM or the extreme negative phase of ENSO. 

 

9. Conclusions 

 [50] The addition of seven new reconstructed firn core records to existing records 

continue to show a region wide decreasing trend in SMB. This trend is not expected as Western 

Antarctica is warming, which would lead to the expectation of increased precipitation over the 

WAIS interior.  The decreasing SMB trend observed in the new cores are of similar magnitude 

as the SEAT 2010 cores. Statistical analysis shows that the negative trend is statistically 

significant at the 95% confidence interval for all twelve SEAT cores and the stacked record.   

[51] The decrease in the SEAT cores cannot be easily explained by regional influences, 

such as temperature, topography, or sea ice extent. No clear trends exist in temperature in the 

Table 6: Statistical significance of accumulation trends for a) SEAT 2010 individual firn cores and stacked record and b) SEAT 
2011 individual firn cores and stacked record. All p-values are significant at the 95% confidence level.  

a. b.

t-statistic p-value t-statistic p-value
SEAT 10 Stack 1976-2010 -6.96 <0.0001 SEAT 11 Stack 1977-2010 -4.60 0.0001

SEAT-10-1 1976-2010 -2.69 0.0109 SEAT-11-1 1982-2011 -4.29 0.0002
SEAT-10-3 1975-2010 -4.52 <0.0001 SEAT-11-2 1981-2011 -5.59 <0.0001
SEAT-10-4 1968-2010 -5.17 <0.0001 SEAT-11-3 1980-2011 -5.59 <0.0001
SEAT-10-5 1978-2010 -2.14 0.0402 SEAT-11-4 1986-2011 -2.81 0.0098
SEAT-10-6 1966-2010 -3.21 0.0025 SEAT-11-6 1986-2011 -2.95 0.0073

SEAT-11-7 1977-2010 -3.77 0.0008
SEAT-11-8 1977-2010 -4.24 0.0002

Time Period OLS ModelOLS ModelCore/Period Time Period Core/Period
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isotopic records, which rules out temperature being a significant contributor in the past three 

decades to the decreasing SMB trend. Topography of the SEAT cores lack large surface slopes 

of undulations that could contribute to what is being observed in the records (Burgener et al. 

2013). This suggests that small scale variability is likely not significant contributor to the 

observed trends in the individual cores. It is likely that synoptic scale climate variability in the 

tropics and mid to high latitudes are contributing to the observed trends in the firn core records.  

[52] If synoptic scale modes of climate are a significant contributor to changing 

circulation patterns in the southern hemisphere, then future SMB will likely be strongly tied to 

what phase SAM and ESNO are in. Given the link between ENSO and SMB, any trends in 

ENSO will directly influence central WAIS SMB. In addition, recent warming has been 

explained in part by a positive trend in the SAM, which is attributed to stratospheric ozone 

depletion and increasing greenhouse gases (Ding et al., 2011). If SAM continues to trend more 

towards the positive phase, it is expected that circulation patterns that are conducive for below 

average snowfall and warming over the WAIS interior will become more frequent and persistent. 

This will not only contribute to further mass loss over the WAIS interior, but strongly influence 

climate over all of West Antarctica.  
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Figure 1: Map of the central WAIS showing locations of SEAT cores and ITASE cores that were drilled in the same 
region. The WAIS divide deep core is shown for reference. 
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Figure 2: a) Time series of the 14 core stacked record consisting of 5 SEAT and 9 ITASE cores. Red shaded error bars indicate standard 
error of the stacked record. b) Number of cores in the stacked record over time.  

Figure 3: Time series with SEAT 2010 stack, 14 core stack, and five simulated records from different models/reanalyses. 
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Figure 4: Time series of the Southern Oscillation Index and the Southern Annular Mode Index. These indices are indicators of the phase of SAM 
and ENSO in a given year.  
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Figure 5: Annual plots of mslp anomalies (in hPa) for a) SAM+, b) SAM-, c) extreme negative years of ENSO, d) 
positive years of ENSO, e) Years of anomalously low SMB in stacked record, and f) Years of anomalously high 
SMB in stacked record. Areas shaded with black dots indicate significance at 95% confidence level. Data from 
ERA-interim 
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Figure 6: Annual plots Z200 hPa geopotential height anomalies (in hPa) for a) Years of anomalously high SMB in stacked 
record, b) Years of anomalously low SMB in stacked record, c) extreme positive years of ENSO, d) extreme negative years of 
SAM, e) extreme positive years of SAM, and f) extreme negative years of ENSO. Areas shaded with black dots indicate 
significance at 95% confidence level. Data from ERA-interim 
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Figure 7: Mean sea level pressure (mslp) seasonal anomalies for the years where the extreme positive phase of SAM occurred over the 33 year 
period 1979-2011. Areas shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 8: Z200 seasonal anomalies for the years where the extreme positive phase of SAM occurred over the 33 year period 1979-2011. Areas
shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 9: Modified conceptual image from Genthon et al. (2005) showing the effect a low pressure center (minus sign in circle) over 
the Amundsen Sea has on accumulation rates over WAIS. The low pressure center is associated with the positive phase of the SAM 
or Negative phase of ENSO.  This low results in lower accumulation rates over western WAIS (minus sign in square) and higher 
accumulation rates near the Antarctic Peninsula (plus sign in square). A greater occurrence of the positive phase of SAM leads to 
this persistent pattern with greater frequency.  
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Figure 10: Mean sea level pressure (mslp) seasonal anomalies for the years where the extreme negative phase of SAM occurred over the 33
year period, 1979-2011. Areas shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 11: Z200 seasonal anomaly plots for the years where the extreme negative phase of SAM occurred over the 33 year period, 1979-2011.
Areas shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 12: Mean sea level pressure (mslp) seasonal anomalies for the years where SMB in the stacked record was anomalously low over 
the 33 year period, 1979-2011. Areas shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 13: Z200 seasonal anomalies for the years where SMB in the stacked record was anomalously low over the 33 year period, 1979-
2011. Areas shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 14: Mean Sea Level Pressure (mslp) seasonal anomalies for the years where SMB in the stacked record was anomalously high over 
the 33 year period, 1979-2011. Areas shaded with black dots indicate significance at 95% confidence level. Data from ERA-interim 
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Figure 15: Z200 seasonal anomalies for the years where SMB in the stacked record was anomalously high over the 33 year period, 1979-
2011. Areas shaded with black dots indicate significance at the 95% confidence level. Data from the ERA-interim 
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Figure 16: Reconstructed annual SMB for the SEAT 2010 firn cores. All cores have a negative slope indicating a region wide 
decline in SMB over the past three decades.  
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Figure 17: Preliminary reconstructed annual SMB for the SEAT 2011 firn cores. All cores have a negative slope
further supporting a region wide decline in SMB over the past three decades. 
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Figure 18: Mean annual SMB (w.e. cm/yr) for 19 firn cores used in this study. The cores are arranged by increasing 
distance from the coast (from left to right). The preliminary SEAT 2011 cores (green bars) follow the general trend of 
decreasing accumulation rates as distance from the coast increases.  

Figure 19: Stacked record for the SEAT 2010 and SEAT 2011 firn cores. Stacked records were smoothed using a
five year moving average. 
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