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High-fidelity Modeling of Multirotor
Aerodynamic Interactions for Aircraft Design

Eduardo J. Alvarez ∗ and Andrew Ning.†
Brigham Young University, Provo, Utah, 84602

Postprint version of the article published by AIAA Journal, Aug 2020, DOI: 10.2514/1.J059178.
The content of this paper may differ from the final publisher version.

The code used in this study is available at github.com/byuflowlab/FLOWUnsteady.

Electric aircraft technology has enabled the use of multiple rotors in novel concepts for
urban air mobility. However, multirotor configurations introduce strong aerodynamic and
aeroacoustic interactions that are not captured through conventional aircraft design tools. In
this paper we explore the capability of the viscous vortex particle method (VPM) to model
multirotor aerodynamic interactions at a computational cost suitable for conceptual design.
A VPM-based rotor model is introduced along with recommendations for numerical stability
and computational efficiency. Validation of the individual rotor is presented in both hovering
and forward-flight configurations at low, moderate, and high Reynolds numbers. Hovering
multirotor predictions are compared to experimental measurements, evidencing the suitability
of the proposed model to capture the thrust drop and unsteady loading produced by rotor-on-
rotor interactions.

I Introduction

Technology convergence in the past ten years has opened a new design space in electric aircraft, enabling the use of
distributed propulsion and electrical vertical takeoff and landing (eVTOL) for urban air mobility [1–4]. The concept of
eVTOL in an urban setting is forecasted to evolve into a $1.5 trillion “flying car" industry by the year 2040 [5]. However,
this unconventional aircraft configuration poses technical challenges that still remain to be solved [6]. A strong noise
signature [7, 8] and a complicated transition maneuver [9, 10] are examples of the challenges encountered in eVTOL
aircraft, both stemming in some degree from the aerodynamic interactions between rotors and lifting surfaces [11].
Furthermore, these interactions are common across quadrotor, tilt-rotor, tilt-wing, and distributed propulsion concepts
making use of multiple rotors. As an example of eVTOL configuration, Fig. 2 shows NASA’s GL-10 tilt-wing prototype
aircraft during vertical takeoff, prior to transitioning into wing-borne forward flight.

The use of multiple rotors operating in close proximity introduces strong aerodynamic interactions that are not well
understood, are not captured through conventional design tools, and need to be addressed in the conceptual design
stage [12–15]. Experimental studies of side-by-side rotors in hover show a drop in thrust of 3–4% [16–19] due to
rotor-on-rotor interactions. More remarkably, Zhou et al. [20] and Ning [21] measured a noise increase of 3 dB
associated with unsteady loading as the distance between rotors is decreased. In edgewise forward flight, Stokkermans
et al. [22] found that the interactions can become as drastic as to drop the thrust by 30%. Wake mixing and the unsteady

Fig. 2 NASA GL-10 eVTOL prototype aircraft during vertical takeoff. Credits: NASA Langley/David C.
Bowman.

∗Doctoral Candidate, Department of Mechanical Engineering, ealvarez@byu.edu, AIAA Member.
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dynamics responsible for these effects are not captured through low-fidelity models used in conventional design tools.
Multiple panel and filament methods have been developed for the modeling of unsteady free wakes, but experience
shows that the requirement of preserving wake connectivity makes them ill-conditioned for the modeling of wake mixing
[23]. These interactions can be analyzed through conventional computational fluid dynamics (CFD) approaches, like
Reynolds-averaged Navier-Stokes (RANS) or large-eddy simulations (LES) [24–29], but computational cost makes
them prohibitive for design space exploration. Hence, the ability to rapidly assess the performance of these design
concepts, with sufficient fidelity, is a current weakness of the nascent eVTOL industry.

In this study we investigate the accuracy of the viscous vortex particle method [31, 32] (VPM) in modeling
rotor-on-rotor aerodynamic interactions in a side-by-side configuration as encountered in tilt-wing, quadrotor, and
distributed propulsion aircraft. The viscous VPM is a mesh-free CFD method for the numerical solution of the
Navier-Stokes equations in their vorticity form. The VPM is a direct numerical simulation that efficiently preserves
vortical structures in a Lagrangian scheme, eliminates the complexities of mesh generation, is absent of the numerical
dissipation associated with mesh-based CFD, and is one to three orders of magnitude faster than RANS or LES∗. This
method has been shown to achieve a continuum of fidelity levels across resolved scales, from medium fidelity apt
for conceptual-design [33–40] to high fidelity apt for fundamental fluid dynamics research [41–43]. Fig. 3 shows a
mid-fidelity simulation of a full-aircraft configuration and a high-fidelity simulation of wake mixing in side-by-side
propellers from previous work by the authors [30]. Furthermore, the method has been shown to be CPU and GPU
parallelizable, and scalable in heterogeneous systems for high performance computing [44–46]. In previous work by
the authors, the computational speed of the VPM has been demonstrated in a parametric study comprised of 1000+
multirotor simulations, requiring a wall-clock time of less than four days on a desktop computer with an average of four
minutes per simulation [47]. Thus, coupled with an acoustics solver, the VPM approach could enable high-fidelity
aerodynamic and aeroacoustic predictions capturing multirotor interactions during conceptual design.

The viscous VPM has been used in the rotorcraft community for the past two decades [48–52] demonstrating its
efficiency in modeling wake-dominated problems, especially in the cases of coaxial rotors [53–55] and edgewise forward
flight [42, 50, 56–60]. More recently, Tan et al. modeled the interactions between tandem rotors subjected to ground
effect [61] and simulated the interactions between a tilt-rotor aircraft and a tandem-rotor helicopter while simultaneously
landing on a ship deck [62], demonstrating the capacity of the VPM to capture intricate aerodynamic interactions.
When coupled with the acoustic Ffowcs Williams-Hawkings equation, VPM-based simulations of isolated rotors have
shown good agreement between experimental and predicted noise radiated from unsteady airloads, high-speed impulsive
effects, and blade-vortex interactions [49, 63, 64].

Even though VPM has been extensively used in coaxial rotors and rotorcraft forward flight, little work has been
done in modeling the side-by-side multirotor configuration encountered in eVTOL. This case is especially challenging
because it needs to capture rotor-on-rotor interactions across the entire flight envelope of the eVTOL aircraft, from
hover during takeoff to low and high advance ratios during transition and cruise, at both low and high Reynolds
numbers [10]. In addition to performance predictions, it is also crucial to capture the unsteady loading introduced by
rotor-on-rotor interactions in order to lay the groundwork for future noise predictions [65]. In this study we introduce

Fig. 3 Mid-fidelity VPM simulation of eVTOL aircraft (left) and high-fidelity VPM simulation of multirotor
wake mixing [30] (right).

∗In the author’s experience, a RANS simulation of two side-by-side rotors in STAR-CCM+ requires about 1000 processor hours. Meanwhile, a
VPM simulation with FLOWVPM, at a comparable resolution, requires only 3 processor hours.
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a VPM-based multirotor model and present extensive validation across the flight envelope. A summary of VPM
theory and the numerical schemes used in this study are presented in Section II. The multirotor model is introduced in
Section III along with a convergence study and recommendations for numerical stability and computational efficiency. In
Sections IV.B and IV.C, validation of the individual rotor is presented in both hovering and forward-flight configurations
at low, moderate, and high Reynolds numbers. Validation of the hovering multirotor is presented in Section IV.D,
comparing predictions to experimental measurements of thrust drop and unsteady loading associated with rotor-on-rotor
interactions.

Alongside the multirotor model validation, this paper presents the following contributions to the viscous vortex
particle method:

• A simplistic, efficient, and accurate approach for the computation of vortex stretching through a complex-step
derivative approximation embedded in the fast multipole method (Section II.E).

• A procedure for wake trimming, achieving numerically-stable hover simulations that avoid the instabilities arising
in the wake from under-resolved length scales after turbulent breakdown (Section III.B).

• Decoupling of temporal and spatial resolutions encountered in VPM-based rotor simulations (Section III.C). We
also present a detailed convergence study on four parameters characterizing temporal and spatial resolutions that
is used for quantification of numerical error (Section III.D).

II Viscous Vortex Particle Method

By a way of introduction to the viscous vortex particle method, Sections II.A and II.B present a concise development
of the equations governing the method. For a more involved description, the reader is referred to the literature [31, 66].
As part of this study, a VPM code was developed for the simulation of flight vehicles and design optimization, called
FLOWVPM (FLight, Optimization, and Wind VPM). Sections II.C through II.F describe the numerical schemes
implemented in FLOWVPM.

II.A Governing Equations

The Navier-Stokes equations of an incompressible flow can be formulated into its vorticity form by taking the curl over
the momentum equation

∇ ×

(
∂u
∂t
+ (u · ∇)u

)
= ∇ ×

(
−

1
ρ
∇p + ν∇2u

)
,

leading to an expression that is not dependent on the pressure field:
Dω
Dt
= (ω · ∇)u + ν∇2ω. (1)

The material derivative expressed in Eq. (1), and the material-conservative nature of the vorticity makes the ω field
especially fit for a Lagrangian description. In order to do so, the field is discretized into Lagrangian elements (called
vortex particles) using a radial basis function approximation of basis ζσ and coefficients Γp:

ω(x, t) ≈
∑
p

Γp (t)ζσ (x − xp (t)). (2)

Each particle represents a volume of fluid that travels with the local velocity as in Eq. (3), where xp is the position
of the p-th particle. The coefficient Γp, termed vectorial circulation or vortex strength, is defined as Γp ≡

∫
volp

ω dV

and approximated as Γp ≈ ωpvolp , where ωp is the vorticity associated to the p-th particle of volume volp . Applying
this particle discretization to Eq. (1), it is obtained that the vectorial circulation of each particle evolves as in Eq. (4),
where the first right-hand-side term introduces vortex stretching, while the second represents a scheme for modeling the
viscous diffusion ν∇2ω. Thus, Eqs. (3) and (4) are the governing equations of the evolution of vorticity-governed flow
in a Lagrangian scheme.

d
dt

xp (t) = u(xp (t), t) (3)

d
dt
Γp (t) = (Γp (t) · ∇)u(xp (t), t) +

d
dt
Γp (t)

����visc
(4)
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II.B Velocity Kernel

By the Helmholtz Decomposition Theorem, an incompressible velocity field u dominated by vorticity is described by
some vector potential field ψ as u(x, t) = ∇ × ψ (x, t). From the definition of the vorticity field, ω = ∇ × u, we obtain
the three-dimensional unbounded Poisson’s problem

∇2ψ = −ω,

which can also be rewritten using the particle approximation from Eq. (2) as

∇2ψ (x) ≈ −
∑
p

Γpζσ (x − xp).

The Poisson’s problem yields that the velocity induced by the field of vortex particles is calculated as

u (x) =
∑
p

gσ
(
x − xp

)
K

(
x − xp

)
× Γp, (5)

where gσ is a normalized smoothing function derived from the chosen basis function ζσ , and K (x) = − x
4π ‖x‖3 is the

singular Newtonian kernel resulting from the three-dimensional Green’s function of the unbounded Poisson’s problem.

II.C Kernel Regularization

The velocity kernel shown in Eq. (5) involves the Newtonian kernel with norm ‖K(r)‖ = 1
4πr2 , introducing a singularity

as r → 0. In order to regularize this singularity, the vortex particle is defined as a vortex “blob” with a smoothing
radius σ that forces its influence to decay inside this radius. This is achieved by choosing a basis ζσ that will end up
generating a smoothing function gσ that decays faster than the growth of the singular term, leading to a regularized
kernel Kσ (x) = gσ (x) K (x).

Multiple kernels have been proposed in the literature meeting different algebraic properties and computational
complexity [31]. A Gaussian-based kernel simplifies the calculation of higher derivatives due to the recursive behavior
of the exponential, and enables the use of the core spreading viscous scheme (explained in the next section). Thus, in
FLOWVPM, we implement the Gaussian basis function ζσ (x) = 1

σ3 ζ
(
‖x‖
σ

)
with ζ (r) = 1

(2π)3/2 exp
(
− r2

2

)
, leading to

gσ (x) = erf *
,

√
‖x‖2

2σ2
+
-
−

√
4
π

√
‖x‖2

2σ2 exp
(
−
‖x‖2

2σ2

)
.

II.D Fast Multipole Acceleration

The governing equations—Eqs. (3) and (4)—coupled with the velocity kernel in Eq. (5) require the calculation of all
particle interactions, posing a N-body problem with computational complexity O(N2), where N is the number of
particles. This complexity is prohibitive as the number of particles readily escalates to the order of the hundreds of
thousands in mid-fidelity simulations. An alternative to the direct calculation of particle interactions is the clustering of
particles and approximation of direct interactions between well-separated particles with the interactions between clusters.
A popular and simple implementation of this concept is the Treecode method [67] that reduces the computational effort
to O(N log(N )). An even more efficient implementation is the fast multipole method (FMM) introduced by Greengard
and Rokhlin [68–70]. Selected as one of the top ten algorithms of the 20th century, FMM reduces the original quadratic
complexity to a linear problem, O(N ), while controling the error of the approximation down to any arbitrary precision.
However, this method is often avoided due to its considerable conceptual and implementation intricacy.

In this study, FMM is applied in the computation of velocity and vortex stretching using a modified version of the
open-source code ExaFMM developed by Barba and Yokota [46, 71, 72]. Fig. 4 shows the wall-clock time during the
computation of velocity and vortex stretching through the FMM, evidencing linear scaling up to problems with millions
of particles. The calculation of higher derivates for vortex stretching is explained in the following section.
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Fig. 4 Wall-clock time of velocity and vortex stretching computation, showing the linear scaling achieved
through the FMM.

II.E Vortex Stretching Through Complex-step Derivative Approximation

The classic FMM [70] was originally formulated to calculate interactions of the form 1/r , as is the vectorial potential ψ.
However, we are interested in determining the vorticity-induced velocity u and vortex stretching (Γ · ∇)u rather than the
vector potential ψ calculated by the classic FMM. These fields can be obtained from the derivatives of ψ as

u = ∇ × ψ

and

(Γ · ∇)u =



∂2ψ3
∂x1∂x2

−
∂2ψ2
∂x1∂x3

∂2ψ3
∂x22 −

∂2ψ2
∂x2∂x3

∂2ψ3
∂x3∂x2

−
∂2ψ2
∂x32

∂2ψ1
∂x1∂x3

−
∂2ψ3
∂x12

∂2ψ1
∂x2∂x3

−
∂2ψ3
∂x2∂x1

∂2ψ1
∂x32 −

∂2ψ3
∂x3∂x1

∂2ψ2
∂x12 −

∂2ψ1
∂x1∂x2

∂2ψ2
∂x2∂x1

−
∂2ψ1
∂x22

∂2ψ2
∂x3∂x1

−
∂2ψ1
∂x3∂x2





Γ1

Γ2

Γ3



.

Hence, the FMM implementation must also include the computation of first and second derivatives of ψ. For first-order
derivatives, most authors derive and implement the analytical expression from local and multipole expansions [36].
However, for second-order derivatives, authors have differed between implementing an analytical calculation [45, 56],
or computing the derivates through finite difference [36]. The former approach is carried out with exact precision, with
the drawback of further complicating the FMM implementation. On the other hand, the latter approach offers simplicity
while forfeiting numerical accuracy. For the work presented in this paper, we introduce a new approach: the calculation
of vortex stretching through a complex-step derivative approximation (CSDA) [73]. This approach is conceptually
simple and easy to implement, while achieving machine precision without increasing the computational cost.

Let the real-variable analytic function f : R → R be generalized to its complex-variable form f ∗ : C → C, and
x0 ∈ R an arbitrary point where we desire to evaluate the first derivative of f . Let h ∈ R be an arbitrarily small step, the
function f ∗ can be Taylor-expanded around x0 + ih to obtain the derivative of f as

d f
dx

(x0) =
Im( f ∗(x0 + ih))

h
+O(h2).

Let us now choose an h sufficiently small—say h = 10−30 for double floating point precision—, and we have obtained a
numerical approximation of the derivative of f that is as accurate as machine precision.

CSDA can be directly applied to any real-variable real-valued function f : R→ R by generalizing the function to the
complex plane f ∗ : C→ C and using this plane for carrying on the numerical differentiation. However, multipole and
local expansions of the FMM are computed through complex-valued functions Y : R→ C already using the complex
plane, requiring the formulation of CSDA in a multicomplex space. Hence, we will now define the multicomplex
arithmetic needed for implementing CSDA into the FMM.

Let the complex set C1 with imaginary unit i1 be C1 = {x + i1y / x, y ∈ R}, and let us define the multicomplex set
C2 with imaginary unit i2 as C2 = {z + i2w / z,w ∈ C1}, any complex-valued analytical function Y : R→ C will then
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be generalized into the multicomplex space C2 as Y ∗ : C1 → C2. In this generalization we have transformed the set R
into C1, and C into C2; meaning that a variable x originally in R now becomes x∗ = x + i10, and a variable z = a + ib
originally in C now becomes z∗ = a∗ + i2b∗ = (a + i10) + i2(b + i10) = a + i2b. With this definition, the axis i1 will
carry the CSDA computation and is not intended to interact with the axis i2—hence, the products i1i2 and i2i1 will
purposefully remain undefined as to avoid any unintended arithmetic. The derivative of Y is then computed as

dY
dx

(x) ≈
Im1(Y ∗(x + i1h))

h
.

Since multipole and local expansion are computed through spherical harmonic functions Ym
n : R2 → C of the form

Ym
n (θ, φ) =

√
(n − |m |)!
(n + |m |)!

· P |m |n (cos θ)eimφ, (6)

where P |m |n are the associated Legendre functions, we now show how this multicomplex transformation applies to
the complex exponential and complex product in Eq. (6). Let the complex-valued function Y : R → C be defined
as Y (x) = eix , the derivative is easily determined analytically as dY

dx (x) = ieix . On the other hand, its multicomplex
generalization Y ∗ : C1 → C2 is defined as

Y ∗(z) = ei2z,

and the derivative dY
dx (x) is computed through CSDA as

dY
dx

(x) ≈
Im1(Y ∗(x + i1h))

h

=
1
h

Im1

(
ei2x (cos i2h + i1 sin i2h)

)
= i2ei2x

sinh h
h

, where lim
h→0

sinh h
h
= 1

h→0
= i2ei2x,

obtaining the same result than the analytical derivation in the limit h → 0.
Now we show how CSDA is carried on the scalar-complex product. Let Y : R → C be defined as Y (x) = cx =

(c1 + ic2)x with c1, c2 ∈ R, the derivative is trivially dY
dx (x) = c. Defining its multicomplex generalization Y ∗ : C1 → C2

as

Y ∗(z) = c∗z,

with c∗ ∈ C2 / c∗ = c∗1 + i2c∗2 = (c1 + i10) + i2(c2 + i10), the derivative dY
dx (x) is then computed through CSDA as

dY
dx

(x) ≈
Im1(Y ∗(x + i1h))

h

=
1
h

Im1

(
(c1 + i2c2)(x + i1h)

)
=

1
h

(c1 + i2c2)h

= c∗.

The complex exponential and the complex product are not only good example cases of multicomplex arithmetic,
but they are also the only two multicomplex operations needed for carrying the CSDA through multipole and local
expansions of the FMM.

In order to compare accuracy between finite difference and CSDA, vortex stretching was computed through direct
calculation, FMM with finite difference, and FMM with CSDA in 1000 randomly-generated particles. The error relative
to the direct calculation at each particle is shown in Fig. 5, evidencing the subtractive and round-off error introduced
by the finite difference, meanwhile CSDA approaches floating-point precision. Furthermore, the CSDA is applied
only in the local-to-particle translation step of the FMM, which takes less than 2% of the computational time of the
overall FMM algorithm [74]. Thus, vortex stretching calculated through CSDA increases the computational cost only
marginally compared to the analytical calculation, while offering a much simpler implementation.
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Fig. 5 Error of vortex stretching computed through finite difference (red markers) and CSDA (black markers).

II.F Viscous Diffusion and Other Schemes

In this study, the viscous diffusion term in Eq. (4) is solved through the core spreading method [75] coupled with the
radial basis function (RBF) interpolation approach developed by Barba [32, 76, 77], which avoids the need for particle
splitting while allowing the viscous VPM to be a truly meshless method. In the core spreading method, a Gaussian
radial basis allows the viscous diffusion term in Eq. (1) to be solved by spreading the smoothing radius as

dσ2

dt
= 2ν.

Core sizes σ are reset to their initial value after they have overgrown, while new vectorial circulations Γp are calculated
through an RBF interpolation preserving the vorticity field ω.

In FLOWVPM, vortex stretching is solved in the transposed scheme as explained in Winckelmann’s thesis [66], and
the divergence of the vorticity field is treated through the relaxation scheme developed by Pedrizzeti [78]. The time
integration of the governing equations is done through a low-storage third-order Runge-Kutta scheme [79].

III VPM-based Rotor Simulation

III.A Propeller Model

The propeller model developed for this study is formulated in the same numerical scheme of the VPM, capturing
unsteady dynamics and viscous effects while benefiting from the computational speed and linear scaling of the VPM.
Each rotor blade is modeled as a rotary lifting surface, and the physics of interest are broken down into three aspects:
load distribution, blade-induced velocity, and wake-induced velocity. The load distribution is calculated using blade
elements, and is used to derive the circulation along the lifting surface. In turn, the blade-induced velocity is obtained
from the circulation distribution by embedding vortex particles along the surface that preserve such circulation, as
shown in Fig. 6. As the blade moves, vorticity is shed off the trailing edge as free vortex particles stemming from both
unsteady loading and trailing circulation. Thus, blade and wake-induced velocities are all computed through the FMM,
achieving an efficient scaling of the simulation to the order of millions of particles, while all unsteady dynamics are
resolved as the VPM steps in time. Fig. 7 shows the computation diagram of the simulation.

In the setup stage (blue block in Fig. 7), the user specifies the rotor geometry and blades are discretized into
elements. Two-dimensional aerodynamic characteristics of each blade element are precomputed through XFOIL at the
corresponding local Reynolds number (considering rotational and freestream velocity), thus capturing viscous effects.
A Prandtl-Glauert compressibility correction is applied to lift curves, capturing compressibility effects. Both lift and
drag curves are then treated to capture three-dimensional drag and stall-delay effects encountered in rotor blades [80]
and the Viterna method [81] is applied to obtain post-stall ±180◦ extrapolations of these curves.

In the first time step of the simulation, the effective angle of attack (AOA) of every element is calculated from the
freestream and local rotational velocity. The effective AOA is then used to calculate the load distribution from the
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precalculated airfoil lift and drag curves. In all subsequent time steps, the propellers are rotated and vortex particles
are shed from trailing edges. The Navier-Stokes equations are solved in their vorticity form (Eq. (1)) as convection,
stretching, and viscous diffusion terms (Eqs. (3) and (4)) are calculated at the position of each vortex particle. The
velocity induced by the wake and lifting surfaces is then added to the freestream and rotational velocities in order to
calculate the new effective angle of attack and dynamic pressure, and the load distribution is updated (gray block in
Fig. 7). The process is then iterated until the end of the simulation, t f , as shown in the green block. This algorithm
is analogous to the method developed by Jo and Lee [51, 82], except that we omit the minor iterations and let load
distributions converge in time as the wake is deployed. Also, we model all lifting surfaces using embedded vortex
particles in order to perform all computation through the VPM, which allows us to efficiently scale the simulation in
order O(N ). Fig. 8 shows the simulation of two side-by-side rotors in hover, exemplifying the unsteady dynamics and
wake mixing achieved with this propeller model.

Fig. 6 Blade and wake deployment in the propeller model. Particles are colored by their respective source of
vorticity; arrows indicate the direction of vortex strength Γp .

Fig. 7 Computation diagram of single and multi-rotor simulation.
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Fig. 8 Simulation of hovering multirotor, with particles and vortex strengths shown as dots and arrows
respectively, superimposed with isosurfaces of the vorticity field.

III.B Wake Trimming Achieving Stable Simulations

The main strength of the VPM lies in its low numerical dissipation enabling accurate preservation of vortical structures
at a low computational cost. For instance, Fig. 9 shows the wake resulting from a coarse simulation, demonstrating
that VPM is able to characterize the evolution of the wake—from near to far field and turbulent breakdown capturing
all mechanisms of transition (i.e., short-wave instabilities, leapfrogging, and vortex pairing [83, 84])—even with a
coarse spatial resolution. However, a low numerical dissipation also means that some numerical instabilities may not
be properly damped. The VPM is a direct-numerical simulation approach, meaning that it does not use a turbulence
model but rather resolves all length scales down to the spatial resolution of the simulation. Since VPM is free of the
artificial viscosity introduced by numerical dissipation in mesh-based CFD, we have observed that the unresolved length
scales give rise to numerical instabilities that require an increased spatial resolution to ensure stability after turbulent
breakdown. As an example, Fig. 10 shows the history of thrust coefficient CT in a hover simulation (red markers).
During the first three revolutions, CT converges to a steady value once the near field has fully developed. However, as
the wake transitions from far field to breakdown regime, numerical instabilities start to arise at the head of the wake,
leading to numerical blowup after nine revolutions. We have observed that the turbulent breakdown regime can be
further resolved by increasing the spatial resolution, achieving a longer simulation at the tradeoff of an ever-increasing
computational cost.

In order to bring about numerical stability within a feasible computational cost, the wake is trimmed off as it moves
further into the turbulent breakdown regime. This is done by defining a downstream threshold after which particles
in the wake are removed. At the beginning of the simulation, such threshold is defined close to the plane of rotation
since the wake tends to breakdown while is being deployed. As the simulation advances, the threshold is progressively
moved further away until the wake becomes fully developed. As an example, Fig. 11 shows the simulation of a rotor in
hover where the wake is being trimmed at six and ten revolutions, moving the threshold away from the plane of rotation.
Fig. 10 shows in blue the history of CT with wake trimming at six, ten, fourteen, and seventeen revolutions. During the
early stages of the simulation, trimming tends to perturb the near field as noted by the jumps in CT . However, as the

Fig. 9 Simulation of propeller at J = 0.35 showing evolution of wake from near to far field and transition to
turbulent breakdown.
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Fig. 10 History of thrust coefficient CT in hovering single-rotor simulation with and without wake trimming
(blue and red markers, respectively). Solid black line shows experimental mean thrust and dashed lines enclose
the standard deviation as reported in Zhou et al. [20] and Ning [21].

Fig. 11 Evolution of wake of rotor in hover with wake trimming at 6 and 10 revolutions.

wake develops and the threshold is moved further away, the trimming has less of an effect on the near field and the jump
eventually disappears once the wake becomes fully developed. Thus, with this trimming procedure, an indefinitely-long
simulation is obtained. For hover simulations, we have observed that the trimming threshold can be set as far as one
diameter downstream into the turbulent breakdown region, obtaining a completely stable simulation while still capturing
all the dynamics of vortex breakdown.

III.C Decoupled Temporal and Spatial Resolutions

In VPM-based rotor simulations, spatial resolution is dictated simultaneously by the particle density and the smoothing
radius σ, with the former giving the spatial discretization, and the latter giving the smallest resolved length scale.
Studies have pointed out that numerical stability is conditioned to a spatial discretization smaller than the smoothing
radius (discussed in the next section), meaning that as the smoothing radius is decreased, the frequency that particles
are shed off the blade must in turn be increased to obtain a larger particle density. A common practice in VPM-based
simulations is to shed particles at every time step, inevitably coupling temporal and spatial resolutions: if the shedding
of particles is controlled by the time stepping, a finer spatial resolution is only achieved by also increasing the temporal
resolution. This coupling not only increases the computational cost unnecessarily, but it also embroils any convergence
study as the numerical error will not decrease monotonically with the coupled spatio-temporal resolution.

One approach to control the spatial resolution independently of temporal resolution is to generate a background
mesh that projects and resets all particle positions after convection. This approach, called the vortex particle-mesh or
vortex-in-cell method [85, 86], also provides the mechanisms for LES turbulence filtering and control of Lagrangian
distortion [41, 43]. However, the introduction of a background mesh forfeits some of the benefits of a purely Lagrangian,
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meshless simulation.
In order to decouple temporal and spatial resolutions without a mesh, we introduce a procedure for the shedding

of particles independent of time stepping. Let Nsteps and Nsheds be the number of time steps and particle sheds in one
rotor revolution, we impose Nsteps and Nsheds to be multiples of each other. Let m ∈ Z+ be such multiple. If the target
number of time steps is larger or equal to the number of sheds (Nsteps ≥ Nsheds), particles are simply shed every m time
steps as shown in Fig. 12a (the case Nsteps > Nsheds is not shown as it is analogous to the case Nsteps = Nsheds). If the
number of sheds is to be increased independently of time stepping, even becoming larger than the number of time steps
(Nsteps < Nsheds), particles are shed m times in every time step, as shown in Fig. 12b (where m = 4). Thus, the frequency
of particles sheds can be controlled independently of the time stepping. However, this procedure may lead to a large
density of particles towards the slower-moving parts of the blade, as observed in Fig. 12b. This poses no numerical
difficulties, but it increases the computational cost unnecessarily.

In order to ease computational cost, now we introduce an improvement to the procedure that makes this decoupling
more efficient. This is done by varying the number of particles that are shed along the blade, increasing the number
of sheds only towards the faster-moving part of the blade. Let f be the number of particles that are shed at a given
blade element, f is defined to increase with the radial position r (ranging from 1 at the root, to m at the tip) through the
following function given as pseudo-code:

f (r,m) = max
[
1, min

[
m, floor

( 1
1 − (r/R)

) ] ]
(7)

Fig. 13 shows the distribution of particles shed along the blade as m is increased. When applied to the simulation, the

(a) Nsheds = Nsteps (b) Nsheds = 4Nsteps (c) Nsheds = 4Nsteps

Fig. 12 Comparison of wake shedding cases after three time steps. (a) exemplifies the case Nsteps ≥ Nsheds where
particles are shed every m steps (m = 1 is shown). (b) shows the Nsteps < Nsheds case that creates an excessive
particle density towards the root, while (c) approximates a uniform particle density using Eq. (7).
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Fig. 13 Number of particles shed along blade as a function of m.
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particle field approaches a uniform density of particles as shown in Fig. 12c. With this decoupling of temporal and
spatial resolutions, the convergence of the propeller simulation can be explored through well-defined, independent
parameters as shown in the following section.

III.D Convergence Study

In order to quantify the convergence and numerical error associated with the propeller simulation, first we study the
convergence of the vortex particle method by itself through the simulation of a vortex ring. The self-propelling vortex ring
is a good VPM benchmarking case as is purely dominated by vorticity, and an analytical inviscid solution of its centroid
velocity U can be derived from the Navier-Stokes equations [87]. The analytical solution is U = Γ

4πR

(
ln

(
8R
c

)
− β

)
,

where Γ is the circulation of the ring, R is the ring’s radius, c is the toroidal core radius, and β is a parameter dictated by
the vorticity distribution along the toroid cross section. The algebraic kernel proposed by Winckelmans [31] is known
to lead to β = 0.5, hence in the simulation of the vortex ring we have used Winckelmans’ kernel instead of the Gaussian
kernel, with Γ = 1 m2/s, R = 2 m, and c = 0.002R. This corresponds to U = 0.310 m/s.

In the VPM simulation, the vortex ring is discretized into N cross sections evenly spaced at a distance ∆x = 2πR/N
along the toroid’s centerline, with one particle at the centerline and one layer of particles around the circular cross
section as explained in Ref. [66]. Making the smoothing radius σ equal to the toroidal core radius c, the core overlap
λ between contiguous particles is defined as λ ≡ σ/∆x. Fig. 14 shows the convergence of centroid velocity to the
analytical solution as the spatial resolution is increased from N = 25 to N = 9425. The figure in the right shows
the numerical error in a semi-log scale as the core overlap is increased with N , evidencing that the error decreases
exponentially after the threshold λ = 1. This threshold has been identified in the literature as a necessary condition (i.e.,
λ > 1) to construct a smooth vorticity field after particle discretization, ensuring stability and convergence of the VPM
[36, 66, 88], and is also equivalent to requiring the spatial discretization ∆x to be smaller than the smoothing radius σ.
With this, it is shown that the numerical error of the VPM can be decreased down to any arbitrary precision.

In order to analyze the convergence of the propeller simulation, we have defined four independent parameters that
determine temporal and spatial resolutions:

• Nsteps, number of time steps per revolution.
• Nsheds, number of particle sheds per revolution.
• fσ , particle smoothing factor defined as fσ ≡ σ/R, with R the rotor radius.
• n, number of blade elements per blade.

Within these parameters, Nsteps determines the temporal resolution of the simulation, Nsheds determines the spatial
discretization of the wake, fσ sets the smallest length scale resolved in the wake as it fixes the smoothing radius σ,
and n determines the spatial discretization of the blade. Both fσ and Nsheds determine the core overlap λ between tip
particles, defined as λ = σ/∆x = fσR/∆x, where ∆x = 2πR/Nsheds is the spacing between particles shed from the
blade tip as shown in Fig. 6. Thus, for a given core overlap λ, the smoothing radius σ decreases as particle density is
increased. As already mentioned, the stability and convergence of the VPM requires meeting the condition of sufficient
core overlap, λ > 1, throughout the simulation. However, Lagrangian distortion will decrease the overlap once the
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Fig. 15 Temporal (left) and spatial (right) convergence of the propeller simulation. Dotted lines correspond to
Richardson extrapolations, (CT )extrap.
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Fig. 17 Effects of particle smoothing on CT at a con-
stant Nsheds of 144.

wake starts to leapfrog and transition into turbulent breakdown. Our experience shows that λ = 2 is the minimum
tip-particle overlap achieving stable simulations up to turbulent breakdown from hover through high-advance-ratio
configurations. To illustrate these parameters, Fig. 6 shows the first 12 time steps of a simulation with Nsteps = 90,
Nsheds = 90, fσ = 0.07 (corresponding to λ = 1.0), and n = 7.

The effects of each individual parameter on the numerical error was explored by simulating an APC 10x7 propeller
at an advance ratio of 0.6 using the default values Nsteps = 72, Nsheds = 144, λ = 2.125 (or fσ = 0.093), and n = 50
while each individual parameter was varied. The metric in this convergence study was the thrust coefficient CT . Fig. 15
shows the convergence of CT as Nsteps is increased from Nsteps = 18 to Nsteps = 360 (corresponding to time steps of
20◦ and 1◦ of rotation, respectively) with its corresponding Richardson extrapolation, (CT )extrap. An approximation of
the convergence order p is obtained from a curve fit of the form (CT )extrap + a (∆t)p (shown in the figure as a solid
line), where ∆t ∝ 1/Nsteps. This results in p = 1.049, indicating a first-order temporal convergence regardless of the
third-order Runge-Kutta integration of the VPM’s governing equations. The overall low-order convergence is believed
to be due to performing an Euler step for the propeller rotation step. In spite of this, the simulation shows very low
numerical error associated with temporal discretization, resulting an error relative to (CT )extrap smaller than 1% for
Nsteps ≥ 72 (or time steps smaller than 5◦).

Fig. 15 shows the convergence of CT as Nsheds is increased from Nsheds = 72 to Nsheds = 576 (corresponding to
shedding particles every 5◦ and 0.625◦ of rotation, respectively) with its corresponding Richardson extrapolation,
(CT )extrap. A curve fit of the form (CT )extrap+b (∆x)p , where∆x ∝ 1/Nsheds, results in p = 1.204 indicating approximate
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first-order spatial convergence. For Nsheds ≥ 144, the error relative to (CT )extrap becomes smaller than 1%. Fig. 16
shows the convergence as the blade discretization n is increased from n = 7 to n = 142, displaying a non-monotonic
behavior. This is believed to be due to noise introduced in the splining and first-order interpolation process of airfoil lift
and drag curves at every element along the blade. The same behavior can be observed in a code† using blade-element
momentum theory (BEMT), as shown in the figure, which supports this belief. In the VPM-based simulation, CT

varies by less than 0.3% with n ≥ 25. Thus, with n = 50 and Nsheds = 144, the numerical error associated with spatial
discretization is estimated to be smaller than 1%.

Finally, Fig. 17 shows the effects of particle smoothing fσ and equivalent core overlap λ on CT . It is observed that
CT starts to diverge as the stability threshold (λ = 1) is approached, while also diverging as fσ > 0.25 (equivalent to σ
larger than 0.25R) leads to unphysical wake dynamics caused by excessive smoothing. Since the instability associated
with λ → 1 plateaus at λ ≈ 2, we have chosen λ = 2.125 (or fσ = 0.093) for all subsequent simulations.

It must be noted that the convergence patterns shown in this section are obtained only after decoupling the temporal
and spatial resolutions. Otherwise, a convergence study on the coupled spatio-temporal resolution leads to a numerical
error that does not decrease monotonically, giving the false impression that the VPM is not a convergent method.
Also, the aforementioned low discretization errors are only valid for the CT parameter and high advance ratio that was
tested. We expect that flow field parameters like slipstream velocities would show a slower convergence and different
sensitivities.

IV Validation

IV.A Test Cases

In this study we present validation of the VPM-based propeller model in both hover and forward-flight multirotor
configuration at low, moderate, and high Reynolds numbers. Three experimental studies from the literature are used to
validate the different operation configurations, using the three rotor geometries shown in Fig. 18 and summarized in
Table 1. The hover case uses a rotor resembling the geometry of the DJI Phantom II quadcopter rotor, as described
by Zhou et al. [20] and Ning [21], and the simulation of two side-by-side hovering rotors is compared to reported
particle image velocimetry (PIV) and load cell measurements during low-Reynolds-number operation [20]. This rotor is
240 mm in diameter, and its geometry approximates the optimum rotor design obtained by imposing a constant effective
angle of attack along the blade. The geometry was digitized assuming the twist distribution θ(r) = 5.3◦ + 6.3◦ Rr (with r
the radial position) shown in Fig. 19 (right) and a uniform E63 airfoil shape transitioning to an E856 airfoil towards the
hub. Both chord distribution and leading edge curve are generated as described by Ning [21], and shown in Fig. 19
(left), where c is the chord length, x is the distance from the centerline as shown in Fig. 18, and z is the distance from
the plane of rotation. All simulations are run at 4860 RPM and no freestream velocity, matching the experimental
configuration resulting in a diameter-based Reynolds number ReD of 6.5 × 105 and chord-based Reynolds of Rec of

Table 1 Operation configuration of test cases.

DJI Phantom II APC 10x7 E779a
Diameter 9.4 in (240 mm) 10 in (254 mm) 8.9 in (227 mm)

Number of blades 2 2 3
Solidity 0.12 0.10 0.40

RPM 4860 ∼9200 1500
Tip speed 0.18 Mach 0.36 Mach 0.05 Mach

Freestream 0 m/s 0 – 29 m/s 2.5 – 3.5 m/s
Advance ratio 0 0 – 0.75 0.45 – 0.65

Chord-based Reynolds number 6.2 × 104 1.2 × 105 8.9 × 105

Diameter-based Reynolds number 6.5 × 105 1.5 × 106 2.7 × 106

†https://github.com/byuflowlab/CCBlade.jl
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6.2 × 104. Reynolds numbers are calculated at the 70% blade span as

ReD =
V70%D
ν

and Rec =
V70%c̄
ν

,

where c̄ is the mean chord, and V70% is the effective speed resulting from both freestream and local rotational velocity at
70% the blade span.

The forward-flight configuration uses the APC thin-electric 10x7 propeller operating at a moderate Reynolds number.
This propeller is a hobby-grade model commonly used in small unmanned aircraft, it is readily available, and its 10-inch
diameter makes it a good fit for mid-size wind tunnel testing. Moreover, its performance has been measured and indexed
in the UIUC Propeller Database [89], and verified by McCrink and Gregory [90] both experimentally and through
blade-element momentum theory. The blade is generated assuming a Clark Y airfoil section from 0 to 5% span, and a
NACA 4412 for the remainder of the span, while using the chord and twist distributions digitized by McCrink and
Gregory shown in Fig. 19. The leading edge curve was digitized by cutting slices of the actual blade. Note that forward
flight in distributed-propulsion aircraft implies a fully axial inflow instead of the edgewise flow typically referred to in
rotorcraft terminology. The performance of the individual propeller is validated against wind-tunnel measurements
[90] across a sweep of advance ratio J at a constant ReD of 1.5 × 106 and Rec of 1.2 × 105, where J is calculated
as J = V∞/(nD), with n = RPM/60. Both V∞ and n are varied accordingly to achieve the desired advance ratio and
Reynolds number.

Fig. 18 Blade geometry of rotors simulated in this study. Left to right: DJI Phantom II, APC 10x7, E779a.
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Finally, high-Reynolds operation and wake dynamics are validated by comparison to experimental measurements on
the marine propeller INSEAN E799a reported by Felli et al. [84] Underwater experimentation enables the visualization
of tip vortices through cavitation bubbles, while reaching a high-Reynolds-number operation at a low tip Mach number.
This subscale propeller is 227 mm in diameter, and its geometry was made available by INSEAN upon request. Thrust
predictions are compared to reported measurements at J = 0.65 and ReD = 2.7 × 106 (or Rec = 8.9 × 105), while wake
dynamics are qualitatively compared to visualizations at J = 0.45, 0.55, and 0.65.

The thrust coefficient CT , torque coefficient CQ, and propulsive efficiency η hereby reported are defined as

CT =
T

ρn2D4 , CQ =
Q

ρn2D5 , and η =
TV∞
2πnQ

.

Unless otherwise indicated, all simulations are run at a time step equivalent to 5◦ of rotation (Nsteps = 72), particles
are shed every 2.5◦ of rotation (Nsheds = 144) with a tip core overlap λ of 2.125, and 50 blade elements per blade. As
indicated by the convergence study in Section III.D, the numerical error of the simulation at a high advance ratio is
estimated to be less than 1% for CT .

In the following sections, the propeller model is first validated in a single-rotor configuration at low, moderate, and
high Reynolds number in both hover (Section IV.B) and forward flight (Section IV.C). Finally, validation of predicted
rotor-on-rotor interactions in two side-by-side rotors in hover is shown in Section IV.D.

IV.B Single-rotor Results: Hover Case

The hover configuration uses the DJI Phantom II rotor operating at a low Reynolds number (Rec = 6.2 × 104) and
constant 4860 RPM. The thrust coefficient CT of the rotor throughtout the simulation is shown in Fig. 10 along with
the experimental mean thrust and fluctuation. The wake starts to develop and convect downstream during the first
two iterations, and the near field becomes fully developed after only three iterations as indicated by the convergence
of thrust. The periodic spikes observed at six, ten, and fourteen revolutions correspond to every instance when the
turbulent breakdown region has been trimmed. The wake after eighteen revolutions is shown in Fig. 20 (left), where
features of the topology can be clearly identified: a well-defined structure in the near field (z < 0.5D), an onset of
leapfrogging at z ≈ 0.5D, and a transition into turbulent breakdown at z ≈ 1.0D. The simulation converges to a mean
CT of 0.1013 and a steady fluctuation (standard deviation) of 0.001, meanwhile Zhou et al. [20] and Ning [21] report an
experimental mean CT of 0.1007 and a fluctuation of 0.008. This results in an error of only 0.5% between the simulation
and experimental mean CT , meanwhile the fluctuation is largely underpredicted. We conjecture that the fluctuations

Fig. 20 Wake of single-rotor and multirotor hover simulations. Arrows scaled by the vortex strength of every
particle.
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Fig. 21 Velocity field at plane z = 0.1D of single rotor (left) and multirotor (right, s = 0.05D) in hover
configuration. Top row shows the experimental ensemble average (retrieved from Zhou et al. [20]), bottom row
shows the simulation ensemble average. Colormap corresponds to axial velocity, while arrows indicate swirl
velocity.

observed in the experimental measurements of the individual rotor are enhanced by interactions with the test stand not
captured in our simulations (e.g., mounting pole, hub, and mechanical vibrations).

Fig. 21 compares the ensemble-average velocity of the single rotor (left figures) observed experimentally and
predicted at a plane located a distance 0.1D downstream. The simulation shows a streamtube slightly more expanded
than what is observed experimentally. The white circle centered at the hub shows that the experimental streamtube is
not centered about the axis of rotation, which supports our belief that the experiment encounters significant interactions
with the mounting pole. Fig. 22 shows the in-plane vorticity of both the experimental PIV and the simulated single
rotor (left figures). The vorticity distribution is obtained as the average field at a phase-locked angle of 120◦ over four
revolutions, where the phase is defined as the angle between the vertical yz-plane and the position of the rotor blade.
The VPM simulation shows a vortex core that is more diffused than what is observed experimentally. It must be noted
that this vortex core matches the size of the smoothing radius σ associated to the prescribed spatial discretization, and
we suspect that a more accurate prediction could be achieved with a higher spatial resolution. In spite of that, the VPM
simulation correctly predicts an onset of tip-vortex leapfrogging at a downstream distance z ≈ 0.5D. Thus, these results
confirm that the propeller model captures all the physics of interest at low Reynolds number in a hovering single-rotor
configuration.
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Fig. 22 Phase-locked average vorticity distribution of single rotor (left) and multirotor (right, s = 0.05D) in
hover configuration as measured experimentally (top) and simulated (bottom). Arrows scaled by the vortex
strength of every particle. Experimental images retrieved from Zhou et al. [20]
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IV.C Single-rotor Results: Forward-flight Case

The forward-flight configuration uses the APC 10x7 propeller operating at a moderate Reynolds number (constant
Rec of 1.2 × 105) across a sweep of advance ratio J. Fig. 23 compares the predicted thrust, torque, and propulsive
efficiency to the experimental values reported by McCrink and Gregory [90]. It is observed that both CT and CQ match
the experimental values at low and moderate advance ratios, but they drop earlier than what is seen experimentally
at high advance ratios. This is also observed in the blade-element momentum predictions by McCrink and Gregory,
which hints that this may be an issue with the geometry description (i.e., inaccurate airfoil shape, twist distribution, or
aeroelastic twist caused by blade deflection at high advance ratios) rather than the modeling method. The discrepancies
in CT and CQ cancel out as the propulsive efficiency η is calculated, resulting in a good agreement across all advance
ratios up to J ≈ 0.725. Thus, it is confirmed that the VPM propeller model is valid at a moderate Reynolds number
across low and moderately-high advance ratios in forward-flight single-rotor configuration.

In order to validate the predicted wake dynamics in forward flight, the E779a marine propeller was simulated at
advance ratios J = 0.55 and J = 0.65. This underwater test case also provides validation of performance predictions
at a high Reynolds number (Rec = 8.9 × 105). The simulation at J = 0.65 predicts a CT and CQ of 0.185 and
0.032, respectively, meanwhile Felli et al. [84] report an experimental CT and CQ of 0.187 and 0.031. This results
in a discrepancy of 1.4% and 1.1% between experimental and predicted CT and CQ, respectively. Fig. 24 compares
the experimental wake visualized through cavitation bubbles and the simulation. In the case J = 0.55, we see that
the simulation predicts similar dynamics of leapfrogging and transition into turbulent breakdown as is observed
experimentally, with these dynamics moving further downstream as J is increased to 0.65. Thus, it is confirmed that the
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propulsive efficiency in forward-flight single-rotor configuration.
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Fig. 24 Comparison between experimental (top) and simulated (bottom)wake structure of themarine propeller
E779a (top images reproduced by permission of Cambridge University Press from Felli et al. [84]).
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VPM propeller model provide accurate performance predictions at a high Reynolds number, while qualitative inspection
indicates similar wake dynamics between simulation and experiment in forward flight.

IV.D Multirotor Results

The hovering single-rotor case of Section IV.B is now extended to multirotor configuration by adding an identical rotor
in counter-rotation at a tip-to-tip distance s of 0.05D. Counter-rotation means that one propeller rotates clockwise,
meanwhile the other rotates counter-clockwise. The simulation shows that the multirotor wake mixing onsets a
topological instability that moves the turbulent-breakdown region closer to the plane of rotation, as shown in Fig. 20
(right). Fig. 22 compares the in-plane vorticity field between single-rotor and multirotor configuration. Both simulation
and experiment show that tip vortices lose their structure as wakes mix in-between the rotors (x = −0.5D region,
compare left and right figures).

Next, the separation distance s was varied to determine its effects on thrust. Every time that blades pass through the
region of wake mixing, the loading of the blade drops, decreasing the mean thrust and increasing the fluctuation, which
is accentuated as the tip-to-tip distance becomes small. Fig. 25 shows the mean thrust (left) and thrust fluctuation (right)
compared to what Zhou et al. [20] observed experimentally, normalized by their corresponding values in single-rotor
configuration. Here it is seen that the simulation captures both the thrust drop and the increased fluctuation, showing
satisfactory agreement with the experimental measurements‡. Thus, it is confirmed that the VPM multirotor model is
able to capture aerodynamic rotor-on-rotor interactions. Furthermore, it is inferred that the unsteady loading introduced
by these interactions are responsible for the increased acoustic noise reported by Zhou et al. [20], making the VPM a
good candidate for a future application in noise prediction.

Zhou et al. observed an accentuated upwash and a recirculation region in the near field between the rotors (shown in
Fig. 21, top right), and conjectured that the flow separates along the blades every time they pass through this region,
leading to the observed drop in blade loading. The simulation (Fig. 21, bottom right) shows the same accentuated
upwash observed experimentally, though the recirculation region is absent. Since the drop in thrust shown in Fig. 25
agrees well with the experiment in spite of not capturing the recirculation region, we conclude that the effects of the
recirculation pocket are negligible and that the induced upwash is the main contributor to the drop in blade loading.

V Conclusion

In this study we have shown the capability of the viscous vortex particle method to capture multirotor aerodynamic
interactions. A VPM-based multirotor model was introduced along with recommendations for computational efficiency
and an implementation achieving numerically stable simulations. A detailed convergence study was performed on four

0.0 0.2 0.4 0.6 0.8 1.0
Separation distance s/D

0.97

0.98

0.99

1.00

N
or

m
al

iz
ed

 th
ru

st

Experimental
Simulation

0.0 0.2 0.4 0.6 0.8 1.0
Separation distance s/D

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 th
ru

st
 fl

uc
tu

at
io

n

Fig. 25 Effects of rotor-on-rotor interactions on thrust as separation between rotors is decreased, normalized
by their respective values in single-rotor configuration.

‡Fluctuations are underpredicted as the experimental measurements include interactions inherent to the experimental setup (mounting pole and
hub) not captured in the simulation, as mentioned in Section IV.B. However, simulation and experiment show good agreement after normalizing both
by their respective single-rotor values.
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parameters characterizing temporal and spatial resolutions, showing a numerical error smaller than 1% at a high advance
ratio. Single-rotor validation was presented at low, moderate, and high Reynolds numbers, showing an error of only 0.5%
between experimental and predicted thrust coefficient in hover, and good agreement on predicted propulsive efficiency
across low and moderately-high advance ratios in forward flight configuration. Wake dynamics in multirotor hovering
configuration showed a good qualitative agreement between simulation and particle-image velocimetry measurements.
The simulation indicates that the accentuated induced upwash in between the rotors is the main contributor to the drop
in blade loading during rotor-on-rotor interaction. The multirotor VPM model showed good quantitative agreement
with experimental thrust measurements, capturing the thrust drop observed experimentally as the tip-to-tip distance
between rotors became small, along with the associated unsteady loading.

The validation of the VPM multirotor model hereby presented lays the groundwork for the future development of an
aeroacoustic model predicting the noise associated to unsteady loading in multirotor configurations, with the potential
of integrating these analyses in the conceptual design stage of multirotor aircraft.
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