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ABSTRACT 

Mathematical Telling in the Context of Teacher Interventions  
with Collaborative Groups 

 
Brandon K. Singleton 

Department of Mathematics Education, BYU 
Master of Arts 

 
Teacher telling is underrepresented in the mathematics education reform literature and 

deserves additional scrutiny. This case study examined a skilled teacher’s telling practices during 
a university mathematics content course for pre-service elementary teachers. I identified telling 
practices through discourse analysis, attending to the presence of mathematics and the 
contribution of new structure or ideas from the teacher. The teacher utilized seven unique types 
of mathematical telling while supporting collaborative group work on tasks. The study identified 
subtle telling, implicit telling, and explicit telling. The results suggest that mathematical telling is 
an integral part of the teacher’s role in inquiry-based instruction and should not be overlooked. 
Researchers can use the telling types to identify and describe telling practices more transparently. 
Practitioners can more consciously incorporate and discriminate between telling practices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: collaborative groups, discourse, inquiry, mathematical telling, tasks, teacher 
interventions, teacher’s role  
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Chapter 1: Introduction 

Changes in the nature and structure of mathematics classrooms recommended by reform 

advocates (National Council of Teachers of Mathematics, 2000) have turned researchers’ 

attention to the new demands placed on teachers. For decades, classroom practice in American 

schools was quite uniform (Hiebert, 2003). Lessons were centered on teacher demonstrations of 

the new material including several example problems. Students were expected to listen, take 

notes, and follow the teacher’s instructions on their assigned problems. In contrast, a central 

feature of reform instruction is student-centered inquiry into mathematics through the use of 

high-level tasks (Stein, Smith, Henningsen, & Silver, 2009). Teachers also expect students to 

participate in mathematical discourse communities where those students share and critique one 

another’s thoughts and assume primary responsibility for explanation and justification of their 

mathematics (Lampert, 1990). These changes to the classroom structure have led researchers to 

re-examine the role of the teacher in meeting the demands of reform instruction (Clarke, 1997; 

Goos, 2004; Simon, 1995; Smith, 1996; Staples, 2007). This work has consistently identified the 

teacher as a facilitator of classroom mathematical activity and discourse, in contrast with a more 

traditional identity of explainer and demonstrator of concepts and procedures.  

The above restructuring of mathematics pedagogy has led to an increase in the 

complexity of classroom discourse. One complex issue that has been identified as a major 

concern is the lack of attention to the ways a teacher conveys new mathematical information to 

students within a reform classroom (Lobato, Clarke, & Ellis, 2005). The predominant emphasis 

on the teacher’s role as a facilitator of classroom discourse has resulted in confusion regarding 

whether teachers should ever “tell” or speak assertively about mathematics (Chazan & Ball, 

1999; Lobato et al., 2005; Philipp, 1995). 
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The present research study seeks to contribute to a more nuanced understanding of 

inquiry-based instruction by considering the role of telling in inquiry. On the one hand, inquiry 

supplants teacher-centered telling practices such as lecture and demonstration with student-

centered activities in an effort to magnify the student’s voice, engage students in difficult 

thinking, and immerse students in authentic mathematical practices. On the other hand, more 

recent work has recognized the absurdity of never telling anything and has recommended 

alternative forms of teacher telling (Baxter & Williams, 2010; Chazan & Ball, 1999; Lobato et 

al., 2005). The question of what role telling should play in inquiry settings and what that telling 

should look like is a delicate one and warrants much more investigation from a variety of angles 

and research settings. 

 The choice for a teacher to tell or not tell is a dilemma that has emerged as a result of 

considering the implications of constructivism. Under the traditional transmission metaphor of 

teaching, the choice to tell was not as problematic. The teacher’s mathematical performances for 

students were viewed as an efficient and natural way to provide students the information they 

would need in order to practice and commit to memory the material (Smith, 1996). 

Constructivism dismisses the notion that knowledge can be transported through speech or 

symbols to children’s minds and instead emphasizes the subjective process of meaning making 

by individuals with unique mental schemas (von Glasersfeld, 1983). This does not mean that 

students cannot understand what the teacher is saying or that all telling is incomprehensible; it 

only suggests that speech and symbols may be interpreted very differently by individuals 

depending on their prior experiences and patterns of thinking. Overwhelming evidence has 

suggested that students’ experiences in traditional teacher-centered classrooms do not typically 

lead to conceptual understanding, effective mathematical communication, or robust problem 
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solving skills (Gregg, 1995; Hiebert, 2003; National Research Council, 2001; Schoenfeld, 1988). 

Therefore, inquiry-based practice seeks to immerse students in doing and talking about 

mathematics to provide more natural or accessible experiences from which students construct the 

intended mathematical concepts. With students centered in the processes of inquiry, teacher 

telling can be seen as a threat to student autonomy and responsibility for sense making. As a 

result, teachers who wish to intervene when student work appears unproductive or inconsistent 

with the teacher’s learning goals face a tension commonly referred to as the telling dilemma.   

 While the telling dilemma can surface in many instructional settings, this study will 

explore telling within the context of teacher interventions with small groups and individuals as 

opposed to whole-class discussions. The first reason for this choice is that there is a great need to 

understand how teachers help students succeed on tasks in preparation for a whole-class 

discussion where students share their contributions. Many of the students’ learning needs and 

obstacles surface as they work in their groups on the assigned task. For inquiry to be successful, 

a teacher must help students overcome these obstacles and sustain rich mathematical activity. 

Part of the teacher’s support involves guiding students mathematically, and the literature has 

given insufficient attention to the sorts of telling practices teachers implement as they guide 

students during tasks. A second reason is that the literature on whole-class discussions has 

portrayed the teacher primarily as an orchestrator and facilitator of student contributions (Simon, 

1995; Staples, 2007; Stein, Engle, Smith, & Hughes, 2008), whereas the research on teacher 

interventions with collaborative groups working on tasks has been more inclined to recognize the 

tendency for teachers to go beyond a facilitative role and provide direct assistance with the 

content (Brodie, 2000; Chiu, 2004; Meloth & Deering, 1999; Webb, 2009). This point is 

elaborated further in chapter two.  
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In considering the relationship between teacher telling and student learning, a well-

known teaching experiment involving the tutoring of a single student, Ann, is particularly 

insightful in demonstrating how certain ways of telling might productively influence student 

constructions of mathematical ideas (A. G. Thompson & Thompson, 1996; P. W. Thompson & 

Thompson, 1994). The researchers designed an experiment to investigate how a teacher, Bill, 

might influence one of his student’s (Ann’s) understandings of rate and motion through one-on-

one interactions around pre-planned tasks. The tasks used a simple computer application 

involving trips taken by a turtle and rabbit. The experiment took place an hour each day for four 

days. When Bill was unsuccessful helping Ann solve a task at the conclusion of the second day 

(leading to severe frustration in both Bill and Ann), he invited one of the researchers, Pat, to take 

over the beginning of the following session. Pat took substantial initiative as he assisted Ann in 

understanding the underlying concepts, and when Bill resumed teaching Ann she proceeded 

through the remaining tasks successfully.  

A discussion of the different approaches used by Bill and Pat reveals important aspects of 

teacher interactions with students about mathematics. Despite Bill’s struggles, he was committed 

to helping Ann solve the problems herself rather than showing her how to do it and inviting her 

to imitate his steps. He encouraged Ann to reason through the problems, using copious questions 

to try and guide her or point her in the right direction. Yet, Bill was unable to assist Ann in 

moving beyond a very difficult conceptual roadblock. There are several factors that seem to 

explain Bill’s lack of success (P. W. Thompson & Thompson, 1994). Bill’s language consisted 

primarily of numbers and calculations rather than the relationships between quantities of motion. 

His primary objective was moving through the specific task questions rather than cultivating a 

particular way of understanding the situation. When Ann’s responses were inconsistent with 
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Bill’s expectations, he failed to elicit and help her restructure her thinking. Bill’s and Ann’s 

implicit conceptualizations of the mathematics of the situation were so different from one 

another that Bill’s verbal interactions with Ann led to severe miscommunications.  

Whereas Ann’s teacher Bill seemed to lack a clear direction for what he wished her to 

understand, the researcher Pat had articulated very explicit ways of thinking about the concepts 

of rate and motion that he intended for Ann to learn (A. G. Thompson & Thompson, 1996). As 

Pat worked with Ann he used a direct approach. Pat did not pose a written task for Ann and try to 

guide her to solve it primarily on her own; instead, he took considerable initiative in the 

conversation to encourage Ann to think about motion in specific ways. Pat used explanations, 

representations, hand gestures, and questions to convey the important conceptual ideas he wanted 

Ann to consider. His questions were a continual diagnostic tool to ensure Ann was assimilating 

the ideas meaningfully. The key to Pat’s success had to do with his orientation toward the 

concepts and relationships of the situation, unlike Bill’s focus on the calculations of the task. Pat 

was more aware of the mental images Ann was likely using while thinking about rates, and 

exploited this knowledge to introduce ideas that would lead her to construct new ways of 

conceptualizing situations of motion.  

This singular teaching experiment with Ann demonstrated the compatibility of explicit 

teacher talk about mathematics and student construction of mathematical concepts. It also 

illustrated how the nature of the mathematical content expressed by the teacher (rather than just 

the level of explicitness) holds a great deal of explanatory power regarding the efficacy of 

mathematical negotiations of meaning between teachers and students. The stark contrast in 

Ann’s thinking in response to Bill’s telling practices and Pat’s suggests that the issue is far more 

complex than simply deciding whether to tell or not tell. A diverse range of telling practices 
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exists, some practices being more compatible with inquiry than others. Little is known regarding 

the ways teachers use mathematical telling practices effectively in inquiry-based settings. A 

greater understanding of the ways successful teachers convey mathematical information while 

maintaining high levels of student involvement and responsibility for learning will improve 

teachers’ ability to make informed choices as they manage the telling dilemma.  
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Chapter 2: Framework 

This chapter discusses the topics relevant to a study of the occurrence of mathematical 

telling within inquiry-based instruction in the context of teacher interventions with groups and 

individuals working on high-level tasks. First, the background of telling in mathematics 

education is presented followed by the definition of mathematical telling used in the present 

study. Second, the literature on teacher interventions with groups and individuals is reviewed 

with special attention to the relevance of mathematical telling to this research context.  

The History of Telling 

 Traditionally, teaching by telling grew naturally out of a transmission metaphor of 

learning. The assumption was that teachers possess knowledge and to impart the knowledge to 

students, it needs to be explained and presented clearly. Students act as sponges that absorb 

information so long as they pay attention and perform adequate practice. Smith (1996) 

articulated the core set of beliefs shared by teachers in this paradigm—the mathematical content 

is seen as “a fixed set of facts and procedures” (p. 390), teaching mathematics entails 

demonstrating procedures step-by-step, and learning mathematics requires listening and 

practicing so as to be able to recall the correct procedures at the appropriate times. These beliefs 

teachers hold about mathematical knowledge and teaching can be deeply engrained since they 

tend to be mutually compatible, provide the teacher a sense of efficacy in performing a well-

defined role, and allow one to cope with negative outcomes such as poor student motivation or 

performance in such a way that beliefs are reinforced rather than reconsidered (Gregg, 1995; 

Smith, 1996). 

 As a result of dissatisfaction with the traditional telling model of instruction, reformers in 

mathematics education turned to the epistemology of constructivism to rethink and restructure 
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mathematics pedagogy. Constructivism (von Glasersfeld, 1983) redefined knowledge and 

learning to problematize the transmission metaphor of communication. In constructivism, 

knowledge is construed as the product of efforts by individuals to organize and explain their 

experiences rather than coming to know some external and objective idea. Consequently, words 

and symbols do not contain meaning in their own right. Rather, individuals interpret the words, 

symbols, and phenomena around them based on an accumulation of experiences that lead to the 

formation of an interpretive schema for making sense of one’s lived reality. Efforts to reconcile 

mathematics pedagogy with the epistemological tenets of constructivism have led to the rejection 

of the assumption that simply telling students condensed and formalized mathematical 

information leads to meaningful comprehension. Researchers have explored ways of designing 

mathematical tasks informed by student thinking that prompt students to restructure their 

thinking in discipline-appropriate ways (Simon, 1995; Stein et al., 2009).  

 As the reform mathematics community abandoned telling-based teaching in the 

traditional sense, focus turned to new patterns of teacher discourse needed to enact the 

demanding role of eliciting and building on students’ mathematical thinking. While none of the 

emerging descriptions of the teacher’s role in the literature resemble the former teacher-centered 

practices of explanation and demonstration of solution procedures, most do portray the teacher as 

an assertive facilitator or participant. Teachers are expected to coordinate the sequence of 

activities, manage the sharing of student contributions (Staples, 2007; Stein et al., 2008), 

maintain students’ focus on important and relevant mathematical ideas (Sherin, 2002; Wood, 

1998), negotiate classroom mathematical practices and social norms to be taken as shared (Cobb, 

Wood, & Yackel, 1993), and foster student participation in a community of practice (Goos, 

2004; Lampert, 1990).  
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 While the above characterizations of teacher practice provide a refreshing contrast to the 

days of teacher demonstration and student imitation of formal mathematical procedures, 

researchers have recognized a limitation in the literature regarding the absence of discussions of 

the role of telling within inquiry-based settings (Baxter & Williams, 2010; Chazan & Ball, 1999; 

Lobato et al., 2005; Philipp, 1995). The reluctance to acknowledge and emphasize the types of 

telling that skilled teachers employ likely stems from the underlying goal to privilege student 

autonomy above teacher authority. However, rather than simply avoid framing teacher practice 

in terms of telling altogether, a few researchers have expanded or reformulated the meaning of 

telling to account for those instances in which teachers purposefully choose to tell. These 

approaches to telling are described in detail in order to build on their work.  

 Smith (1996) hypothesized that forms of judicious telling may increase teachers’ sense of 

efficacy and promote meaningful student learning. Because teachers mediate between the 

particular mathematical ideas emerging in the local community and the generally accepted 

practices of the mathematical discipline as a whole, teachers are encouraged to introduce “useful 

terminology, ways of representing mathematical ideas, and counterexamples to student 

conjectures” (p. 397). Smith argued this kind of timely provision of mathematical information 

enables rather than disables students and is quite different from the general telling model of 

teaching.  

 Baxter and Williams (2010) provided evidence of telling by investigating the use of two 

forms of scaffolding in middle school classrooms that emphasized learning mathematics through 

meaningful discourse. The first type of scaffolding is known as social scaffolding and refers to 

those teaching acts that support students’ adoption of appropriate discourse norms regulating 

their mathematical participation. The second type is analytic scaffolding, which refers to the 
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supports offered by materials, the teacher, or other students, that more directly influence 

mathematical understanding. “Analytic scaffolding might include physical manipulatives, 

models, metaphors, representations, explanations, or justifications…” (Baxter & Williams, 2010, 

p. 11). The authors noted that teaching acts in general are not limited to one form of scaffolding 

or the other, and that analytic scaffolding is constructed in part by the discourse that emerges 

from social scaffolding. One way teachers in the study managed the dilemma of telling was to be 

more direct in providing social scaffolding while leaving the creation of analytic scaffolding to 

tasks and students. This is consistent with other studies in which teachers were shown to take on 

a more directive role primarily while negotiating sociomathematical norms, curtailing the 

teacher’s need to explain the mathematics directly (Cobb et al., 1993; Rittenhouse, 1998). 

However, Baxter and Williams (2010) also noted that when the task or the social structure of the 

classroom failed to elicit the intended mathematics from students, teachers intervened with some 

form of telling. Teachers offered alternative solution strategies or brief explanations and 

summarized ideas from lengthy discussions. Although teachers risked privileging their own 

strategies or ideas, the authors argued “such telling can be woven skillfully into an overall 

tapestry of student discourse and work on significant mathematics in ways that successfully 

implement the vision of reform” (p. 25).  

 Chazan and Ball (1999) argued that the term “telling” is insufficiently precise and 

expanded its meaning to include not only the provision of mathematical information but also the 

assertive moves a teacher regularly makes while facilitating meaningful mathematical 

discussions. They noted that the telling denigrated in reform documents is generally limited to 

evaluating a student’s answer as right or wrong and giving correct answers. Their expanded view 

of telling included acts such as attaching conventional terminology to students’ language, 
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returning an issue to the floor by replaying a student comment or reminding students of a 

previous conclusion, requesting clarification, controlling the focus of a discussion, giving simple 

instructions (e.g., “come to the board”), requesting comments, and pressing students for their 

reactions or thinking (p. 2). Chazan and Ball used data from their own teaching experiences to 

illustrate the complex and context-dependent choices teachers face as they encounter situations 

where student arguments lose control or where students prematurely reach consensus on an 

incorrect mathematical idea. Both teachers chose to insert mathematical ideas in various ways to 

enhance their students’ mathematical activity. The authors concluded that additional research 

would need to make subtler distinctions between the kinds of telling teachers use as well as 

investigate the sense that students make of these acts.  

 While the contributions summarized above have primarily expanded telling to include 

facilitative and participatory roles that indirectly focus students on important mathematics, 

Lobato et al. (2005) reformulated telling to emphasize the productive ways teachers introduce 

novel mathematical ideas to students in reform settings. The imprecision of the term “telling” 

and the reform community’s general reluctance to acknowledge the ways teachers often 

introduce novel mathematical ideas to students (as opposed to merely orchestrating student 

contributions) led Lobato et al. to reformulate telling as “initiating.” Initiating is defined as “the 

set of teaching actions that serve the function of stimulating students’ mathematical constructions 

via the introduction of new mathematical ideas into a classroom conversation” (p. 110, emphasis 

in original). Initiating acts can take various forms, including statements, questions, imperatives, 

or even gestures. Teaching acts classified as initiating might include describing a new concept, 

summarizing student work, providing information to test ideas, introducing an alternative 
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strategy for consideration, presenting a counterexample, using Socratic questioning to introduce 

a concept, or presenting a new representation (Lobato et al., 2005, pp. 110-111).  

Although similar acts can be found in Smith (1996), Baxter and Williams (2010), Chazan 

and Ball (1999), and other reports, Lobato et al.’s (2005) purpose of reformulating telling as 

initiating was to reconsider the theoretical roots of telling so as to legitimize teaching acts that 

directly convey mathematical ideas within the constructivist school of thought. Their approach is 

holistic as opposed to fragmented. Teaching acts are considered in their broader context, and 

initiating is informed by and interacts with the teacher’s elicitations of students’ mathematical 

thinking (defined as “eliciting”). In addition, the function of an initiating act is determined by 

three major components: the teacher’s intention in performing the act, the nature of the act itself, 

and the student’s interpretation of the act’s significance. The student’s interpretation is 

particularly important to ensure the teacher does not talk past the student. Also, these speech acts 

should communicate mathematical meanings and concepts as opposed to rote procedural content 

in order to be genuinely considered initiating.  

 Collectively, the research described above has made two important contributions to 

understanding the role of telling in inquiry-based settings. First, it has challenged the tacit 

assumption that the teacher should never tell. Rather than simply avoiding the issue of telling 

altogether, the field is moving toward identifying what to tell, when, and how. Second, it has 

suggested some hypothetical telling acts that are seen as potentially compatible with inquiry and 

has differentiated between these acts and the traditional teacher-centered, lecture-based 

instructional model. Some of these telling acts have been demonstrated using insightful examples 

from teaching practice. 
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 There are also two unaddressed limitations in the telling literature. First, there is little 

empirical evidence from which effective telling practices have been derived. With the exception 

of analytic scaffolding (Baxter & Williams, 2010), the recommendations for telling lack 

empirical backing and stem from thought experiments or the researchers’ anecdotal experiences. 

While these are skillfully illustrated in well-chosen teaching episodes, it remains unknown the 

extent to which telling practices occur over time in a daily inquiry-based classroom. The present 

study seeks to address this limitation by systematically investigating a data sample for instances 

of telling. A second and related issue is that existing telling constructs aid only in recognizing 

telling but not classifying the variation in telling into specific, unique types. For example, 

analytic scaffolding (Baxter & Williams, 2010) and initiating (Lobato et al., 2005) are two 

constructs that help identify whether a teacher has told students important information but do not 

classify important differences and distinctions in this telling. In order to build on this work and 

define a construct with which to investigate the variations in mathematical telling implemented 

by inquiry-based teachers, the remainder of this section describes issues pertaining to the use of a 

framework for examining telling.  

Identifying Telling in Discourse 

Three main attributes of discourse could be considered when framing an investigation of 

telling. The first is grammatical form. The literature has demonstrated that the form of an 

utterance, such as whether it is imperative, declarative or interrogative, influences but does not 

clearly determine what information is eventually conveyed to students (Chazan & Ball, 1999; 

Lobato et al., 2005; Wood, 1998). Thus, speech is too complex to divide telling from not telling 

using only the grammatical form of the sentence.  
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The second attribute is function, which is essentially the perceived role or purpose of the 

speech by participants. Initiating and eliciting (Lobato et al., 2005) constitute one framework that 

depends heavily on function rather than form. In determining the function of a speech act, the 

“function triad” (Lobato et al., 2005, p. 115) includes the teacher’s intentions, the nature of the 

action, and the students’ interpretation. Thus, while function is a critical aspect of telling, it can 

be difficult to infer, especially when the three components of the function triad do not align.  

A third attribute of discourse is its content, informed by the surrounding discourse and 

broader context. This approach is more interpretive than the first approach of classifying the 

grammatical form of the discourse because the researcher uses the contents of the discourse as 

evidence to build a coherent and defensible account of the data. The approach is less interpretive 

than investigating the complete function of the discourse, since the teachers’ intentions and 

students’ interpretations are not interrogated (for example, through interviews) beyond what is 

revealed from the content of the discourse itself. The present study attended to the content of the 

discourse rather than the grammatical form or perceived function by the participants. This choice 

was related to the eventual research question of the study. Because telling is poorly understood 

or at least poorly documented in inquiry contexts, I chose to examine how discourse itself 

exhibits characteristics with telling potential. It is unclear whether teachers and students are 

aware of and sensitized to the many ways telling might occur. It therefore seemed reasonable to 

look for evidence of telling in the content of the discourse itself rather than through the 

perspectives of the participants. 

Framing Mathematical Telling 

 In developing a study to classify telling, it is necessary to articulate a set of boundaries 

determining what speech will be considered telling. This is not a straightforward task. Attention 
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has already been called to the imprecision of the term “telling” (Chazan & Ball, 1999). 

Traditionally, declarative statements that seemed to transfer information from teacher to students 

were the most obvious form of telling. However, constructivism implies that transmission of 

knowledge from one mind to another is in fact impossible and nonsensical. Regardless of the 

type or quality of the speech acts, individuals have no direct access to the contents of another’s 

thoughts. It is not difficult to find episodes in which students make little or no sense out of a 

teacher’s explicit language. From this perspective, telling as it was historically conceived 

becomes impossible because no speech is capable of literally transmitting information.  

To circumvent the obstacle that students have no direct access to the meanings and ideas 

expressed by others, we might alternatively conceive of telling as the set of all speech acts 

having the potential to stimulate new student thought via the introduction of information. While 

this definition is more compatible with constructivism, it is also problematic. All language is 

built as speakers make use of particular vocabulary, grammatical structure, vocal intonation, and 

other components in order to achieve some purpose. These components of speech may invoke an 

abundance of new thoughts regardless of how explicit or implicit they seem. For this reason, 

there is no such thing as neutral speech. Any group of words, sounds, or gestures may lead 

students to think about why these acts took place while other possibilities did not and to make 

inferences about the teacher’s intentions and the meaning of his or her acts. As a consequence, 

we are forced to concede that all speech is telling because of its potential to stimulate new 

thought.  

 The preceding discussion should make it clear that efforts to definitively classify speech 

using a binary “telling or not telling” scheme are unlikely to be consistent or meaningful, 

because it is practically impossible to know the extent to which a given speech act has an 
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influence on a student’s thinking. Thus, in order to identify and analyze teacher discourse that 

most resembles what is intuitively thought of as telling, I use two characteristics to define a 

boundary around a particular subset of relevant speech acts: a) the presence of mathematics in 

the discourse, and b) the owner or source of the mathematical ideas expressed. The first 

characteristic is to focus the study on mathematical telling as opposed to telling in general. The 

second characteristic examines whether the mathematics of the teacher’s discourse includes 

novel ideas inserted by the teacher (which are considered telling) or merely restatements and 

elicitations of student ideas (not considered telling). The characteristics narrow the research 

focus toward the telling acts that have historically been absent or unreported in discussions of 

inquiry-based practice. 

 The first of the two aforementioned characteristics is the presence of mathematical 

content. Research has already demonstrated that non-mathematical telling, such as 

communicating social norms and expectations, is used successfully by teachers in inquiry-based 

or discourse-based teaching (Baxter & Williams, 2010; Cobb et al., 1993). However, there is 

much less certainty regarding the extent to which teachers should communicate mathematical 

concepts or ideas directly. One agreed-upon exception is providing mathematical conventions, 

which cannot be discovered or invented purely by student reasoning. The extent to which 

teachers might tell other kinds of mathematical information remains largely unknown. Thus, this 

study intentionally investigates instances of telling in which the teacher makes a direct and clear 

reference to mathematics.   

The second characteristic is the degree to which the teacher’s utterances convey ideas 

originating from the teacher rather than a student. Because research demonstrates the benefits of 

building mathematical learning upon the thinking of students, teachers may depend extensively 
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on students to provide appropriate explanations or make integral connections. In such settings, 

teachers sometimes limit their contributions to repeating ideas originating from other students. 

When a class arrives at an incorrect conclusion or confronts an insurmountable obstacle, it can 

seem as though the teacher must somehow enable a student to come to the rescue with a 

breakthrough, essentially offloading telling to students (Lobato et al., 2005). Utterances in which 

the teacher shares information originating from his or her own thinking are a stronger class of 

telling that teachers may hesitate to use. This study examines the instances where a teacher 

shares original thinking not expressed by students because less is known regarding the 

occurrence of this telling in inquiry-based instruction.   

 Together, these two characteristics of discourse outlined above form the basis for 

defining “mathematical telling” in the present study. Mathematical telling, then, refers to a 

teacher utterance that makes a clear reference to mathematical content and initiates ideas 

originating from the teacher. This conceptualization of mathematical telling is of interest because 

it constitutes a particular set of telling practices historically absent in the vocabulary of 

mathematics education reform.  

Teacher Interventions with Groups and Individuals 

 This section addresses the choice of instructional context for an investigation into 

mathematical telling. Two primary instructional formats within inquiry-based instruction are 

whole-class discussion and collaborative work in small groups. Although mathematical telling is 

potentially a natural component of both of these settings, the literature on whole-class discussion 

has downplayed the teacher’s mathematical contributions and has emphasized orchestrating and 

facilitating student participation, whereas the literature on teacher interventions during group 

work has acknowledged to some extent the teacher’s need to provide original mathematical 
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information when working with the details of student thinking. For this reason, teacher 

interventions with groups and individuals constitute a reasonable context for initial explorations 

into the types of mathematical telling teachers use in inquiry. The present study contributes to 

this body of literature by expanding the limited amount of empirical data for teacher 

interventions and by improving descriptions of mathematical intervention (telling) practices with 

finer detail and distinction. 

 The literature investigating teacher practices in whole-class contexts has focused 

overwhelmingly on orchestrating and facilitating student contributions as opposed to providing 

information through practices resembling mathematical telling. For example, Stein et al. (2008) 

proposed five practices—anticipating student responses, monitoring work on the task, selecting 

student solutions for public presentation, sequencing the presentations, and connecting them 

together. These practices facilitate the sharing of student work without commenting on potential 

teacher interventions during the task or novel mathematical contributions during the discussion. 

Similarly, the primary teaching tools described in Simon’s (1995) teaching experiment involved 

assessing student thinking and responding with tasks meant to challenge the misconceptions in 

their thinking. Rather than explaining a concept or modeling his own thinking, the teacher 

depended on the tasks and on student contributions and insights to advance his learning goals. 

Staples (2007) specifically studied the teacher’s role in supporting whole-class collaborative 

inquiry, and found three major components: supporting students in making contributions, 

establishing and monitoring a common ground, and guiding the mathematics. The first two 

components are clearly facilitative. The third component (guiding the mathematics) did involve 

some mathematical aid such as providing “food for thought” that “generally did not reshape the 

task in a significant way” (p. 188). Staples observed that the teacher helped students think about 
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the problem rather than treating obstacles as a sign that they needed hints, next steps, or an 

explanation. Thus, even when teachers aided students in their cognitive mathematical work, their 

role has been described as facilitating student thought more than influencing it directly. Even 

though the literature on telling reviewed earlier (Baxter & Williams, 2010; Chazan & Ball, 1999; 

Lobato et al., 2005) has begun to challenge the assumption that teachers never tell within whole-

class discussion, it remains unclear how often teachers prefer to use such telling in those 

discussions. For example, in a whole-class setting teachers may be able to rely on one of the 

many students in the class to express key contributions they themselves might have otherwise 

made.  

 In contrast, at least some of the research on teacher interventions with collaborative 

groups working on tasks has acknowledged the need for teachers to go beyond a facilitative role 

and provide direct assistance with the content (Brodie, 2000; Ding, Li, Piccolo, & Kulm, 2007; 

Meloth & Deering, 1999). Brodie (2000) noted that one teacher’s focus only on the students’ 

process of engagement, rather than the products of their collaboration, prevented her from 

identifying critical misconceptions and intervening directly to challenge their thinking, thus 

reinforcing the misconceptions. Ding et al. (2007) evaluated teacher interventions and found 

them to be of higher quality when teachers identified students’ cognitive obstacles and directly 

guided or scaffolded their thinking. Meloth and Deering (1999) observed that regular explicit 

content help, such as providing information, using pointed questions, modeling thinking, or 

giving a brief explanation of a key concept, often enriched group discussions so long as it built 

on the group’s ideas. Henningsen and Stein (1997) found that scaffolding, modeling high-level 

performance, and sustained pressure for explanation were regularly present when students 

maintained high-level mathematical activity on a task. Each of these studies has acknowledged 
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the use of various teacher practices that act upon students’ mathematical thinking as opposed to 

merely facilitating peer collaboration on the tasks. Due to their sometimes direct and explicit 

nature, many of these practices likely resemble mathematical telling.  

Nevertheless, not all research supports the use of explicit, content-related teacher help. 

Cohen (1994) cautioned that excessive teacher interventions and an inability to delegate 

responsibility and authority to students may impede student collaboration and learning. Chiu 

(2004) examined students’ on-task behavior and progress toward a correct problem solution and 

found that these usually declined when teachers gave what Chiu called higher levels of help 

content (such as solution procedures or commands on how to proceed). Dekker and Elshout-

Mohr (2004) conducted a teaching experiment in which one classroom received only process 

help from the teacher and a second classroom received only product help. Student performance 

in the process help classroom improved more than in the product help classroom. Despite these 

results, Webb (2009) offered something of a reconciliation by making the following general 

observation: 

The results of these studies examining teacher interventions with small groups suggest 

that the distinctions between whether teachers provide help that focuses on the subject 

matter content (content-related help) or guidance about what collaborative processes 

groups should carry out (process-related help), and between whether teachers provide 

more-explicit versus less-explicit content help, may matter less than whether teachers 

first try to ascertain student thinking and the strategies they are using and then base their 

help on what they learn about students’ strategies and thinking about the task. (p. 17) 

Webb maintained that connecting teacher aid to student thinking is a major influence on 

intervention quality regardless of whether help content is implicit or explicit. Explicit help such 
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as mathematical telling that respects and extends student work is therefore not incompatible with 

reform-oriented, inquiry-based classrooms where a primary objective is to elicit and build on the 

thinking of the students.  

The primary conclusion from reviewing literature on whole-class and small-group 

contexts is that an initial investigation into a teacher’s use of mathematical telling may be better 

suited to the small-group context. In general, this area illustrates a higher tendency for the 

teacher to inquire into and engage directly with the details of students’ mathematical thinking, 

leading to a higher probability that practices like mathematical telling constitute an important 

teacher tool within the context of teacher interventions supporting student exploration of 

mathematical tasks. 

A major concern regarding this body of research motivates the present study on 

mathematical telling and highlights its primary contribution to this area. The literature on teacher 

interventions with collaborative groups remains small and descriptions of teacher practice too 

general and imprecise. Studies have until now only distinguished whether the teacher gives 

product help (regarding the mathematics of the task) or process help (regarding the norms of 

collaboration), as well as whether mathematical help is a high or low level (Brodie, 2000; Chiu, 

2004; Dekker & Elshout-Mohr, 2004; Meloth & Deering, 1999). These classifications are an 

early attempt to understand differences in teaching practice that affect student learning. 

However, their generality can lead to inappropriate conclusions. For example, the consolidation 

of all teacher interventions addressing mathematical content under the umbrella term of product 

help overlooks important variations within this category and obscures the incongruent findings 

from multiple studies (Brodie, 2000; Dekker & Elshout-Mohr, 2004; Ding et al., 2007; Meloth & 

Deering, 1999) either supporting or discrediting product help. The present research study adds to 
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this body of literature by expanding empirical accounts of teacher interventions with 

collaborative groups in the literature and by developing more specific and detailed 

characterizations of mathematically assertive teacher practices referred to here as mathematical 

telling.  

 In summary, this study will systematically investigate the following research question: 

“What types of mathematical telling does a knowledgeable and experienced inquiry-based 

teacher use to support students while intervening with small groups and individuals working on 

mathematical tasks?” 
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Chapter 3: Methodology 

This chapter outlines the methodology used in the study. First I describe the setting and 

participants of the case chosen for the study, and why they were appropriate to my research 

question. I describe the nature of the data used and the methods of analysis that were employed. 

Finally, I describe potential threats to validity and how I tried to address them in my methods. 

Case Study 

 Because an empirical exploration of the various types of mathematical telling occurring 

within inquiry is relatively novel, a case study is well suited for the present study. Case studies 

allow for generative interplay between theory and data, resulting in highly detailed descriptions 

of the phenomenon (VanWynsberghe & Khan, 2007). Case studies usually involve small sample 

sizes, contextual detail, natural settings, specific boundaries, working hypotheses, multiple data 

sources, and extendibility (VanWynsberghe & Khan, 2007). The temporal and spatial boundaries 

around the case used in this study are described in the following section.  

Setting and Participants 

The case chosen occurred within a one-semester university mathematics content course 

for pre-service elementary education majors held in the fall of 2011. The course is the second of 

two such mathematical courses taken sequentially. The teacher was a Caucasian female faculty 

member of the university with a doctoral degree in mathematics education and two years of 

experience teaching this particular course. She had four additional years of experience teaching 

similar courses at another university. The class included around twenty predominantly white 

students, one of whom was male and the others female. The class met twice weekly for two 

hours each session. The classroom contained whiteboards on three walls, a projector and screen 
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in front, a document camera, and cupboards with various manipulatives. Students sat in groups 

of size four to six at hexagonal tables spread throughout the room.  

Data were collected from the first three curricular units, each consisting of approximately 

seven lessons. The first unit covered fractional reasoning using iterating and partitioning images 

(Siebert & Gaskin, 2006). The second unit involved making sense of fraction operations. The 

third unit covered basic probability and statistics concepts. It should be noted that although this 

classroom had some similarities with other inquiry-based mathematics classrooms in general, 

other characteristics make it unique. Specifically, the students were pre-service elementary 

teachers rather than just mathematics students, and they had previous experience with many of 

the topics but were experiencing them in a very novel way. As a result, it was not uncommon for 

the mathematical discourse of the classroom to include pedagogical considerations.  

The course described above was selected for the case study because of its inquiry-based 

format and the teacher’s frequent and successful use of mathematical tasks. The teacher is 

considered by her colleagues to be a skilled instructor whose practice exemplifies the 

characteristics advocated by mathematics education reformers. The teacher’s preference for and 

comfort with inquiry-based teaching provided an optimal setting for examining the compatibility 

of mathematical telling and inquiry. The extensive use of group work on mathematical tasks 

proffered the opportunity to observe the teacher’s verbal interventions with groups and 

individuals.  

Unit of Analysis 

 In discussing case studies, VanWynsberghe and Khan (2007) distinguished between the 

case, which consists of everything within the specified boundaries of space and time, and the 

phenomenon of interest occurring within the case, which they referred to as the “unit of 
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analysis.” While the case I considered consisted of all classroom instruction in the course 

described above, the phenomenon of interest was the instantiation of mathematical telling during 

teacher interventions with groups and individuals as they worked on mathematical tasks. The 

collection and analysis of data were focused on identifying and understanding this phenomenon 

as it occurred within the chosen case. The methods used for this data collection and analysis are 

outlined in the following sections.  

Data Collection 

 The data used in this study were collected during the fall of 2011 for another research 

project under the direction of a faculty member from the same university. The data collected 

during this time that were utilized in the present thesis included classroom video, field notes, 

transcriptions of selected portions of the class, and paper artifacts (task sheets, homework sheets, 

and reference handouts).  

Classroom video data were collected concurrently with field notes and artifacts for 

approximately two months, spanning the three units described previously. The lessons were 

recorded in their entirety through an unobtrusive permanent camera installed at the rear center of 

the classroom. The direction of the camera lens can be adjusted through a control panel in one 

corner of the classroom, and a research assistant controlled the camera to follow the teacher 

throughout each lesson. Three hanging microphones at the front left, center, and right of the 

room captured sound from the room, and the teacher always wore a microphone that provided 

clear recordings of teacher speech. For the end of the second and the entire third unit, small table 

microphones were placed on two of the tables to enhance audio quality of group conversations at 

those tables. The research assistant at the control panel increased and decreased the various 
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microphone pickup levels as needed in order to hear the conversations occurring between the 

teacher and students.  

In each lesson, I (or occasionally another member of the research team) took detailed 

field notes to outline the unfolding activities and conversations. One column was used to record 

the events taking place, including who was speaking and the essence of what they said. A second 

column was used to record personal notes, reactions, or impressions as they occurred. The field 

notes provided a condensed sketch of all lessons and indexed the content of the video recordings.  

The classroom video data from the first unit and the third unit were purposefully selected 

to be transcribed for analysis. The second unit was omitted to limit the data to a manageable size 

for careful and detailed analysis. The mathematical content of the second unit, fraction 

operations, was similar to and built on the topics from the first unit, and thus seemed less likely 

to reveal as much variation in mathematical telling practices as the third unit. The first unit on 

fractions was selected because many of the classroom norms were being established and 

negotiated toward the beginning of the semester. The third unit on probability occurred later in 

the semester when most of the classroom norms had stabilized and covered significantly 

different mathematical content. Thus, the first and third units comprised a purposeful sample for 

focal analysis. Each of these two units contained seven lessons for a total of fourteen lessons. 

For each lesson, all portions containing group work or individual work were reviewed on 

the video, and all instances of teacher interventions in these settings were transcribed by 

undergraduate research assistants. An intervention was seen as any time a mathematical dialogue 

emerged between the teacher and at least one student, even if the teacher gave little to no explicit 

guidance. These transcriptions formed the basis for later coding and analysis. In order to 

understand roughly how much of the total instructional time was contained in these 
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transcriptions, I reviewed time stamps recorded in the field notes and video transcriptions. Using 

the time stamps, I summed the approximate intervals of time the teacher allocated to group work 

for each of the fourteen lessons. Group work constituted roughly one third of the total 

instructional time. 

As a final source of data, all paper documents administered by the teacher during the 

class were collected. These documents included classroom tasks, homework sheets, and handouts 

containing supplementary reference material. These artifacts were reviewed briefly and referred 

to as necessary while analyzing the classroom transcriptions to make sense of the dialogues 

occurring around those documents.  

The data sources described above were considered sufficient for satisfactorily answering 

the research question, which was to understand the types of mathematical telling a 

knowledgeable and experienced inquiry-based teacher used to support students while intervening 

with small groups and individuals working on mathematical tasks. The transcriptions of teacher 

interventions with groups and individuals within the fourteen lessons constituted the primary 

data source for analyzing the mathematical telling implemented by the teacher while supporting 

task exploration. The additional data sources served as a resource to consult when making sense 

of the transcribed conversations. Specifically, the field notes provided a summary of the 

proceedings of each lesson, which were reviewed concurrently with the transcriptions to situate 

the analyses of the transcribed portions of data within their broader context of the entire lesson. 

The task sheets, homework, and informational handouts were used when needed to make sense 

of the transcribed conversations that made references to ideas from those documents.  
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Data Analysis 

My analysis comprised three main objectives: 1) partition the data into sensible chunks of 

interrelated discourse, 2) develop precise codes for identifying teacher speech acts that exhibited 

the characteristics of mathematical telling as defined in the framework, and 3) classify the 

instances of mathematical telling by developing a coding scheme that distinguishes between 

unique types of mathematical telling. I began my initial analyses by looking only at the first two 

lessons. After I developed coding schemes from these two lessons, I began scaling up to the full 

fourteen lessons. The additional data led to modifications and refinements to the coding schemes 

until the codes began to fit all the data well. This work is detailed below. 

Partitioning the Data into Conversations 

The first objective was to partition the data into interrelated chunks of discourse to 

facilitate subsequent coding. Recall that the transcriptions included only the portions of each 

lesson in which the teacher yielded time to students to work individually or in groups. Within 

these transcriptions, I wanted to partition the data into “conversations” or chunks of interrelated 

discourse. Because my study focused on teacher telling practices, conversations among students 

only in absence of the teacher were not transcribed. Thus, the conversations necessarily included 

the teacher and at least one student. By looking at the data I identified indicators that one 

conversation had ended and a new one had begun. These indicators included conclusive 

discourse demarcating the conversation’s end, a change in participants (such as when the teacher 

moved from one table to another, or from one subset of students at a table to another), or an 

abrupt change in topic such that the preceding discourse was no longer relevant for making sense 

of the ensuing discourse.  
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Coding for Mathematical Telling 

 The next phase required identifying mathematical telling by developing a consistent 

coding scheme that operationalized the theoretical construct of telling. The two aspects of 

discourse used were the presence of mathematical content and the contribution of something new 

by the teacher (as opposed to merely repeating a student idea). Each teacher turn in the 

conversation was examined and coded for the presence of these two aspects. 

 For the first aspect, the presence of mathematical content in the discourse, I began by 

reading each teacher turn and marking whether I felt mathematical content was present or absent. 

In many cases this choice was clear. There were, however, some utterances that were puzzling in 

determining whether they were appropriately included as mathematical for this study. I examined 

these utterances and constructed a definition that enabled me to make these decisions 

consistently.  

 A teacher utterance was defined to be mathematical and coded as “M” so long as the 

utterance conveyed mathematical language or ideas and was used from a mathematical posture. I 

use posture to mean the intended angle from which the utterance is to be construed. A statement 

has a mathematical posture if the practices and ways of thinking from the mathematical 

discipline are required to enact and make sense of the utterance. This stipulation of mathematical 

posture was developed in order to exclude statements that contained mathematical language but 

did not really invoke any of the mathematical ideas or meanings. For example, at one point the 

teacher asked the students to hand in a math autobiography assignment. Even though the word 

“math” was used, it was only a label for a homework assignment and did not appeal to any 

mathematical ideas or meanings. This kind of statement had a managerial posture rather than 

mathematical. Other similar examples are moderating group conversations by regulating speaker 
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turns or instructing groups to write up their mathematical work on a white board to be shared. It 

is possible for an utterance to have more than one posture, but if a statement did not use a 

mathematical posture it was not coded as mathematics.  

 In determining the presence of mathematical content in the discourse, I considered the 

language used in the utterance itself as well as the relevant surrounding discourse that informed 

the meanings of that language. For example, pronouns that referred to prior mathematical 

discourse in the conversation were interpreted as mathematical because they appealed to the 

same meanings as the prior utterance. A consequence of this approach was that some teacher 

utterances were ambiguous. After a student shared mathematical thinking, the teacher sometimes 

said phrases such as “okay,” “alright,” “uh-huh,” or “keep going.” These phrases were 

sometimes evaluative of the students’ mathematical ideas (and were therefore coded as “M”) and 

sometimes were merely an acknowledgment of understanding or a prompt for the student to 

continue speaking (which were not coded as “M”). To the extent possible, surrounding discourse 

was used to help decide between these two possibilities. For example, if the student’s prior 

utterance was a question seeking validation, and the student discourse following the teacher’s 

phrase accepted it as validation, then the teacher utterance was coded “M.” If the surrounding 

discourse was not sufficient to make a confident determination, these utterances were coded as 

“U” for uncertain. The code “U” was also given if the teacher utterance was interrupted or 

incomplete, causing the meaning to be ambiguous. Of all codes given at this stage, roughly 63 

percent were mathematical (“M”), 33 percent were not mathematical, and 4 percent were 

uncertain (“U”).  

 The second aspect of discourse used to identify instances of mathematical telling was the 

contribution of something new (mathematically) from the teacher. I only applied these codes to 
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statements that were already coded as “M” from the process above. I began the code 

development by looking through initial data and seeking to identify contributions from the 

teacher versus repetitions of a student’s ideas. At first I hypothesized that three levels would be 

necessary – new teacher idea, teacher adjustment or modification of a student idea, and reference 

to a student idea with no teacher contribution. I planned to include in my study all utterances 

introducing a new teacher idea (the first level) and exclude those that referred to student ideas 

with no contribution (the third level); however, the middle level of adjusting or modifying a 

student’s idea contained more subtle teacher contributions. I pondered whether to include them 

in a study of telling as I examined some examples carefully. My framework illustrated that 

telling is not as straightforward as a binary “did tell” or “did not,” and a major goal of the study 

was to understand the kinds of mathematical content of in a teacher’s discourse that has clear 

potential to influence student thinking (whether or not the potential is realized).  I therefore chose 

to include these more subtle contributions in the definition of mathematical telling. As a 

consequence of this decision, it was no longer necessary to distinguish between a teacher 

contribution that was wholly the teacher’s versus a contribution that modified a student’s idea. 

Any utterance with a mathematical contribution from the teacher was coded as “T” for “Teacher 

contribution.” An utterance that did not contribute something new mathematically, such as 

requesting a student to say more about their mathematical thinking, was coded as “S” for 

“reference to Student ideas only” and was excluded from all subsequent coding analyses.  

An example from the data illustrates the value of including all mathematical teacher 

contributions, including those that seem more subtle, in the definition of mathematical telling. In 

the second lesson, the students were using the images of partitioning and iterating to find 

fractional parts of discrete sets of objects. One question on a task asked students to find two-

31 
 



fifths of thirty. One group was talking with the teacher about their thinking on the problem. The 

students realized that to find the size of one-fifth, they needed to partition the thirty objects into 

five parts. The conversation continued with a student comment and teacher response as follows: 

Student:  And to find what two-fifths is you multiply that six by two? 

Teacher:  Uh-huh, you take two of those groups right? 

At first glance this teacher response appears to be a mild rewording of the student’s idea. 

However, two important features make this teacher utterance an important one for a study of 

telling. First is the evaluative nature of the response. Excessive evaluation is commonly believed 

to undermine some goals of inquiry-based instruction, such as relegating authority for 

justification to students. It therefore seemed important to consider teacher evaluation of student 

ideas as one form of mathematical telling in order to identify how frequently it occurs and what 

it looks like in inquiry settings. A second feature of the teacher’s response is the intentional 

modification of the student’s language from that of calculations (“multiply that six by two”) to 

the imagery of groups (“take two of those groups”). Prior research has illustrated that teacher 

language influences the types of reasoning students employ during mathematical activity (A. G. 

Thompson, Philipp, Thompson, & Boyd, 1994). The teacher modeled, or privileged, one 

particular way of talking about mathematics. This was seen as a sufficiently important 

contribution to be considered telling.   

Classifying Mathematical Telling into Types 

 After developing the coding scheme above to define and identify instances of 

mathematical telling (statements coded as “M” for mathematics and “T” for teacher 

contribution), the next stage of analysis was to search for key similarities and differences across 
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the instances of mathematical telling. In this stage I worked to create and revise codes until I 

arrived at a stable and useful classification scheme of mathematical telling.  

My early attempts at classifying the instances of mathematical telling focused on the 

mathematical concepts and ideas embedded in the discourse of the teacher. I attended to whether 

the teacher talked about mathematical quantities and their relationships, the givens or 

assumptions of the problem, the mathematical goal or objective of the activity, the use of tools or 

representations, justifications of a claim, conventions, etc. These efforts were deemed inadequate 

because I felt I was missing the essence of the telling instances as they related to the negotiated 

activity between teacher and student. For example, the teacher might focus student attention to 

the problem’s givens in one instance to help the student begin problem solving and gain access to 

the question, and in another instance to point out a contradiction between the givens and a flawed 

student argument. Despite referring to the same mathematical fact or relationship that was 

provided in the problem’s givens, the two telling acts are very different.  

To address this concern I broadened my focus to both the mathematical content itself and 

its relationship to the student’s ongoing mathematical activity. I defined a construct that I called 

the “discursive function for engaging in classroom mathematics” to explicate the aspects of 

discourse I used to group together similar telling practices and distinguish the groups from one 

another. The construct is used to examine enacted verbal discourse (without appeal to nonverbal 

intentions and interpretations) and determine the observable function of teacher utterances within 

a mathematics classroom context. The three aspects of the utterance examined are: (a) the 

mathematical content being expressed, particularly what step in the task or problem solving 

process it is and how resolved or unresolved it is, (b) the relevance of the telling act to the 

student's learning and ongoing classroom mathematical activity, and (c) the surrounding 
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discourse of both students and teacher to provide additional evidence for answering (a) and (b) 

and to maintain overall coherence. This researcher construct of discursive function for engaging 

in classroom mathematics enables the researcher to create a plausible and coherent account of the 

data, by categorizing the telling practices implemented by the teacher according to their role in 

the enactment of classroom mathematics. 

The grain size for attaching a code to a chunk of discourse was a “teacher telling act.” As 

a general rule, a telling act was one teacher speaking turn. However, if a teacher's turn was 

incomplete when a student interrupted and the teacher continued to finish the turn afterward, and 

one utterance was not meaningful or interpretable without the other, then the two pieces were 

joined into a single telling act to maintain coherence. In addition, if within a speaking turn there 

was a change in discursive function for engaging in classroom mathematics, the turn was broken 

into separate telling acts and received separate codes. Separating the teacher discourse this way 

enabled me to attach only one code per teacher telling act. This was deemed more appropriate 

than double-coding longer strands of discourse because the instances examined did not seem to 

simultaneously enact multiple telling codes but rather changed from one code to another. This 

was true of all codes with one major exception, “validation.” Validation proved to be a function 

that could occur on its own or as a consequence of several of the other codes, and was therefore 

the only code allowed to be double coded across the entire data set with other telling codes. This 

phenomenon is explained further in chapter four. 

I developed an initial set of categories by looking at the first few lessons and inventing 

codes for each telling act according to their apparent discursive function for engaging in 

classroom mathematics. I came up with about seven codes. I then took each code and examined 

all of the telling utterances I had assigned that code in order to write theoretical descriptions or 
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definitions of the essence of the code. When I felt the codes were developed enough to be tested, 

I asked a peer graduate student to apply the codes on one lesson to compare reliability. Our codes 

agreed on 70 percent of the telling acts. In addition, I performed a self-reliability check in which 

I coded the same lesson from scratch twice, about a week apart. Comparing the two documents 

yielded a 79 percent agreement. I used these two reliability checks with myself and with my peer 

to identify the codes that were most commonly conflated. I studied the cause of these 

conflations, considering the theoretical overlaps between codes. I then refined the coding scheme 

by making a number of changes. I dissolved one of the codes completely since it was poorly 

defined and overlapped with several other codes. I combined two codes whose boundary was 

unclear, forming a more general and encompassing code. I also identified a couple of new codes 

that I felt more accurately captured some of the more rare and puzzling telling instances. I added 

more details and examples to the definitions of the codes to tease apart the theoretical boundaries 

between them. The improved coding scheme again had seven codes. 

I conducted another self-reliability check with this new coding scheme. I selected a 

longer lesson and coded it from scratch twice, three days apart. The percentage of total 

agreement was 76.5 percent. Much of the error came from a single code, the “validate” code. 

This code (mentioned above) is described with more detail in the results section and was used 

whenever the teacher validated the student’s mathematics. Validation was unique in that it was 

the only code that could occur simultaneously with another code. It was also the most difficult to 

consistently identify given that validation often occurred in subtle ways. When I recomputed the 

reliability ignoring the validation code, agreement was 88.7 percent. Conflations between codes 

were analyzed and the definitions updated to increase future consistency. The self-reliability 

measures can be interpreted to suggest that the results of this study are generally useful to think 
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about important categories and variations in teacher telling acts within inquiry, even though data 

from reality can antagonize theoretical constructs and small levels of uncertainty are usually 

inevitable in a qualitative study of this nature.  

The resulting coding scheme, with the seven telling types, was applied to all fourteen 

lessons in my data set. When I finished the coding, I proceeded to analyze and report on the 

seven types. I looked at each telling type, one at a time, and read through all of the instances of 

that type of telling. My purpose was to understand the telling type thoroughly to provide accurate 

descriptions and illustrative examples in the results. As I engaged in this process, I recognized 

that within some of my seven telling types there were important variations that I wished to 

communicate in the results. Thus, I developed subcategories for a few types when necessary to 

capture the variations I was experiencing while reading through the data. An unforeseen 

consequence of this process was that the subcategories made the original categories even more 

clear and well-defined. The subcategories helped me understand some of the instances that 

bordered two telling types and code them consistently. The seven telling types and their 

subcategories are described in detail and illustrated with examples in chapter four. 

Threats to Validity 

 There are four threats to validity that I address in this section. First is whether the choice 

to privilege the researcher’s perspective on the data impacted the credibility of the results. 

Second is the reliability of the telling codes and framework. Third is whether the telling practices 

reported are appropriately designated as inquiry. Fourth is the ability to generalize this particular 

case study to the mathematics education field more generally.  

 The first issue relates to the choice to develop the researcher’s account of the data rather 

than investigate the participants’ interpretations of their experience. This choice risked 
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attributing meanings to data that were inconsistent with the meanings constructed by the 

participants. However, the purpose of this study was not to investigate how participants 

experience teacher telling, but rather how teacher discourse within inquiry can exhibit the 

characteristics of telling (whether the teacher and students are aware of it or not). The 

identification and classification of telling in this study was driven by a purposeful theoretical 

framework in order to reveal the ways teacher discourse conveys mathematical information to 

students. The results are therefore the account from the researcher’s perspective viewed through 

the lens of the theoretical framework. This is no more or less valid than the account as it might 

have been reconstructed from the teacher’s or students’ perspective—it is simply the story from a 

purposeful viewpoint meant to expand the field’s understanding of what mathematical telling is 

and looks like in an inquiry-based setting.  

 The second issue is the reliability of the telling codes and framework. Earlier I discussed 

the peer and self reliability checks used to refine the telling codes. The resulting coding scheme 

was stable and relatively consistent. High reliability is always ideal; nevertheless, specific pieces 

of data can be difficult to classify and can challenge a particular framework. I used the 

discrepancies between coding rounds to develop and revise the problematic areas of the coding 

scheme. The result was a telling framework that illuminates the nature of telling. Although a 

minority of telling instances continued to challenge the boundaries between codes, the 

framework provided deeper insight into the phenomenon of teacher telling. Mewborn (2005) 

argued that although misfits in the coding process provide opportunities to refine a framework, it 

is more important for a framework to increase understanding of a general idea or phenomenon 

than to perfectly characterize a single instance in particular.  
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 A third issue concerns the identification of this classroom as inquiry-based. The case 

study examined in this thesis exhibited the central, primary characteristics of inquiry including 

high-level tasks, group collaboration, and student-centered whole-class discussions. However, it 

could be argued that some of the specific components of the instruction (mathematical telling 

potentially being one of these) were deviant from the overall inquiry-based approach and are not 

appropriately designated as components of inquiry. This concern would be tenable if certain 

teacher practices like teacher telling created tension by establishing contradicting classroom 

norms. Throughout the classroom observations and data analyses, such contradicting norms were 

not apparent. The instruction was enacted as a clear and consistent approach to engage students 

in the process of mathematical inquiry. The examples of mathematical telling provided in chapter 

four provide evidence of how the telling practices fit within the overall inquiry setting. Because 

the overall instruction widely matched the characteristics of inquiry, the specific practices 

observed were considered to be component parts of a coherent inquiry-based instructional 

approach.  

 The fourth issue is the ability to generalize the study to the broader field of mathematics 

education. Because of the contextual circumstances particular to the case used, the findings may 

not directly transfer to other settings and contexts. The classroom setting bounding the case 

under investigation involved pre-service elementary education teachers who regularly made 

sense of the lesson content pedagogically as well as mathematically, which is not typically the 

case for primary and secondary mathematics students. The results were derived from one 

teacher’s practice and it is unknown how the telling framework would fit additional teachers. 

The results also may depend heavily on the particular mathematical curriculum of the course, 

over which the teacher had a great deal of flexibility and little pressure from external 
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assessments and standards. In light of these particulars, the case was chosen so as to provide the 

highest probability of answering the research question regarding the instantiation of 

mathematical telling in inquiry-based settings. The teacher in this case study was highly capable 

and qualified in enacting inquiry-based instruction resembling the practices promoted by NCTM 

(2000, 2007) and others. Because discussions about the types of mathematical information told 

effectively by teachers in inquiry have been generally absent, the case purposefully explored the 

existence of mathematical telling within strong inquiry-based patterns of instruction. Thus, the 

sampling choice might be thought of as an “ideal-typical case” (LeCompte & Preissle, 1993) in 

that mathematics instruction in general does not tend to demonstrate this level of quality or 

fidelity to inquiry practice. Therefore, any findings about the instantiation of mathematical 

telling in this inquiry-based environment would have important implications regarding the future 

characterization and investigation of practices within other successful inquiry-based classrooms.  
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Chapter 4: Results 

 Using the means described in the previous chapter, my data analysis resulted in seven 

different types of mathematical telling: assess, interpret, qualify, clarify task, guide, disclose and 

validate. In this chapter I report in detail on each of the seven types. For each type of telling, I 

describe its defining characteristics, organize it into subcategories based on notable variations 

(when applicable), and analyze typical examples from the data. Although it is not possible to 

order the telling types definitively from least to most substantial, the order roughly follows a 

progression from what some might unwittingly view as innocuous telling to more candid 

interventions. Following the presentation of each telling type individually, I discuss the 

frequency of the telling types (see Figure 4) and discuss emergent considerations regarding 

telling.  

Assess 

The first type of mathematical telling is to assess. An assessment is a mathematical query 

posed by the teacher in order to ascertain what the student thinks or understands. In a broad 

sense, every question or task can elicit student thinking that is subsequently evaluated by the 

teacher and could informally be considered an assessment. However, the definition of assessment 

in this telling framework is more exclusive and not all assessments can be considered telling. The 

definition of assessment in this category reflects only “telling assessments” in which the teacher 

contributed something new mathematically. A telling assessment is a mathematically structured 

or constrained request rather than just a general elicitation of student thinking. For example, a 

question such as “How did you solve the problem?” is a general question without any imposition 

of additional mathematical structure and is therefore not a telling assessment. When assessments 

introduce a new mathematical constraint, structure or idea to the conversation they are ways of 
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telling. A student responding to a teacher’s telling assessment not only shares his or her own 

thinking but must either conform or object to the constraints embedded in the assessment. 

Another defining characteristic of assessment is that the teacher uses the question in order to 

become aware of the student’s understanding rather than as a means of addressing student 

obstacles the teacher is already aware of. Thus, guidance questions that focus or lead students to 

overcome an already evident student issue or misconception go beyond an assessing function and 

are considered a different type of telling.  

Assessments played two key roles that will be illustrated using examples from the data. 

The first role was to ascertain or reinforce student performance on an already familiar skill or 

concept. One assessment of this sort was used repeatedly by the teacher in a particular lesson 

from unit one. The students were learning how to identify and justify fractional quantities using 

two fraction images, partitioning and iterating (see Siebert & Gaskin, 2006). A partitioning 

image is used to justify a quantity as 1/n by arguing that when one whole is partitioned into n 

equal pieces, one of those pieces is the quantity 1/n. An iterating image is used to argue that if a 

quantity that is iterated n times makes up one whole then that quantity is 1/n. The written task 

students were engaged in allowed them the freedom to use either image for each problem given. 

As the teacher wandered among the tables, she routinely assessed the students to ensure they 

were labeling their own justifications with the correct image. For example, after hearing one 

group’s discussion about dividing the whole (a set of twelve items) into four parts, the teacher 

interjected as follows. 

Teacher:  So, when you said, “The twelve in four parts,” is that iterating or partitioning? 

Student:  Partitioning. 

Teacher:  Um-hmm. Yeah. 
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The students had not already explicitly labeled their explanation so the teacher verified they 

recognized their use of a partitioning image. Because these two images were major learning 

objectives of the course, the teacher frequently assessed her students’ ability to recognize and 

produce justifications appealing to both images.  

Because the concepts in this assessment had already been introduced to the students 

beforehand, one might question whether this assessment is appropriately labeled as telling. It is 

therefore helpful to discuss the telling characteristics of this example in detail. Contrast this 

assessment with a completely open student elicitation such as, “What are you thinking on this 

problem?” The assessment introduced concepts and constraints that were not in play before the 

teacher’s interjection. First of all, it drew attention to the label or type of justification the students 

might have been appealing to, invoking any images or meanings the students associated with the 

words “iterating” and “partitioning.” It is difficult to know what those students’ associations of 

meaning were and to what extent they were already in the students’ minds before that moment.  

In addition, the structure of the question precludes the possibility that the student’s 

verbalization appealed to an alternative image besides partitioning or iterating. This is not a 

trivial contribution, given that at another time one student constructed a solution that the teacher 

felt did not adequately reflect either image. In that instance, the question presented a square and 

asked the students to shade in one fourth and justify their response using partitioning or iterating. 

One student made four smaller squares inside the larger one. In a dialogue with the teacher, this 

student said, “Would it work that 4 small squares are equal to 1 large square?” This wording 

exhibited an alternative image in which the whole comprises its parts in a static state of 

equilibrium, obscuring the preliminary actions inherent in both a partitioning and an iterating 

image. The teacher acknowledged this formulation as mathematically correct but required the 
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student to explicate an action image producing the fractional arrangement. This instance shows 

that when the teacher’s assessments provided only two options for fraction images (iterating or 

partitioning), viable alternative images were excluded as possibilities. This illustrates that even 

the mildest constraints are not as neutral as is often supposed. 

As further evidence of the telling content in this assessment, consider the additional 

embedded constraint that the student’s solution process be only one of partitioning or iterating, 

not both. Additional instances from the data suggest that this is also not a trivial imposition of 

structure, since at various times several students voiced their concern that they had appealed to 

both images in a single justification. They would not likely have voiced this concern if the tasks 

and assessments had not constrained them to appeal to only one image per justification. Even 

though in practice it is very difficult to determine the precise influence any single telling act had 

on students, the considerations presented here illustrate the naivety in supposing that the 

mathematical ideas and constraints inherent in assessments of this nature are not telling and do 

not reveal important information about mathematics.  

The second role of assessment was to test the depth of student understanding by 

complicating or extending the question or task students were engaged in. These assessments 

were not as routine and introduced significant mathematics the students had not yet considered. 

In the following example, the students were made to write a division word problem whose 

solution is three fourths that uses a measurement perspective (i.e., the problem’s total amount 

and the group size are known and the number of groups, or fractional part of a group for non-

integer quotients, must be calculated). After first eliciting the students’ word problem, the 

teacher used two assessments. The first assessment corresponds to the first role discussed earlier 
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(verification of a familiar concept or skill), while the second assessment corresponds to the 

second role of extending and complicating the mathematical question or task. 

Teacher:  Okay, okay what did you write? 

Student 1:  We wrote four bananas make a bushel. You ate one banana so there are only 

three remaining. What fraction of a bushel is left? 

Teacher:  Hmm, so what fraction of the bushel is left? 

Student 2:  Three-fourths.  

Teacher:  Okay, tell me why that is a measurement division problem and not just a 

three-fourths problem? Like ‘cause I could look at that and I could think, well 

it’s three-fourths because it takes four bananas to make a bushel and there are 

three of them. And, um so tell me why that is also a division problem. Why is 

that three divided by four?  

The first assessment immediately following the students’ word problem simply verified they had 

found the correct answer to their own problem. The second assessment, in contrast, increased the 

complexity of the task from constructing a division word problem to justifying its structure as 

truly being division and not just a fraction problem. The students had not recognized this 

potential conflation between fraction and division concepts. By making students aware of their 

interrelated structure and requiring a conceptual distinction between the operation of division and 

the fractional result, the assessment encouraged deeper reasoning about the unintuitive structure 

of measurement division with a rational quotient.  

Interpret 

 The second type of mathematical telling is to interpret students’ mathematical 

formulations. In order to clarify or characterize what a particular student's reasoning entails, the 
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teacher rephrases the idea, summarizes it, generalizes it into more condensed form or infers 

unspoken parts of the student’s thinking. Even though the meanings expressed by the teacher are 

attributed to the students, they are filtered through the teacher’s framework of understanding and 

therefore may or may not align with what the student has actually said or thought. The teacher 

sometimes provides students an opportunity to affirm the accuracy of the interpretation. Because 

the teacher’s interpretations extrapolate beyond the literal student expression, the contribution is 

an act of telling. 

Consider this example from the data. The task required students to rewrite fractions into 

decimal form using a provided square grid with ten rows and ten columns forming one hundred 

smaller squares. One table was working on writing one-eighth as a decimal. The teacher stopped 

there and asked about their progress. They began to share the different ways they had approached 

the problem. The first student to share described the following strategy. 

Student:  The first way that I did it, I knew that eight could go into ten, and so that 

means I have two rows [of] ones left over and then I have to divide those two 

rows equally into these groups. 

Teacher: Okay, ‘cause you’re trying to form the whole things into eight groups right? 

The student’s strategy was apparently to first see how many tenths, or complete rows of ten 

small squares in the grid, could be divided evenly into eight groups. This would have yielded one 

row per group, leaving two rows left over. The student would then decompose those two rows 

into twenty hundredths and divide them evenly into the eight groups. It is unclear whether the 

student was thinking about the grid as one whole and its parts as fractional amounts or the grid as 

one hundred ones due to her choice of language—she referred to the leftover hundredths as ones. 

She described her first action in terms of whole number division, eight going into ten, in such a 
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way that it is unclear whether she saw the partitioning action in this division and its fractional 

meaning. In response to the student’s verbalized strategy, the teacher interpreted the student’s 

approach by inferring the underlying goal. Her rephrasing suggested the purpose of the student’s 

operations was to divide the entire whole into eight groups and her language explicated the 

partitioning action behind the division. Even though this underlying purpose might be inferred 

from the student’s work, the teacher’s interpretation is considered telling because she 

summarized the student’s approach in a broader and clearer way in order to inform the meanings 

behind the operations the student was performing on the quantities. 

Qualify 

 The third type of mathematical telling is to qualify the mathematics. The teacher 

describes or qualifies a mathematical part of the conversation according to human experience 

such as student feelings, emotion, motivation, mathematical difficulty, interest, worth, 

subjectivity, humor, common sense or everyday experience. The vast number of ways a teacher 

can qualify mathematics makes this telling type rather diverse. The underlying purpose of these 

qualifications is generally to reassure students as they engage in mathematics by humanizing the 

experience. Because some students may see mathematics as boring, threatening, irrelevant, 

contrived, predetermined, difficult, tedious or unnatural, a teacher qualifies mathematics with 

attention to these issues to align classroom activity with common human needs and expectations.  

The teacher in this study qualified mathematics in many ways. She downplayed student 

errors to minimize embarrassment, attached practical value to the activity or task, characterized 

the relative difficulty of mathematical ideas, acknowledged interesting contributions, described 

subjective aspects of their mathematical activity, joked with students using mathematics, and 

evaluated ideas as either awkward or natural according to informal daily reasoning. These acts 
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aided in establishing a safe, enjoyable, inviting and motivating environment where the classwork 

felt worthwhile rather than contrived.  

 This first example illustrates how the teacher identified parts of a student’s justification 

as being awkward. It is taken from the lesson in unit one on using partitioning and iterating 

images to name and justify fractional quantities. Students at one table were working on the 

question, “There are 20 students on the bus, but there are still 28 empty seats. What fraction of 

the seats are filled?” The numerical answer these students had chosen to use was 20/48, but they 

were having difficulty understanding how to define this quantity using a partitioning or iterating 

image and sought the teacher’s help. After the teacher asked some guiding questions meant to 

elicit an appropriate justification, this dialogue followed. The first teacher turn was a prompt to 

structure the students’ justification. The subsequent teacher turns contain teacher qualifications 

of the students’ mathematics (marked in boldface for clarity). 

Teacher:  But, like, so I want you to, don’t just, like, jump to an answer. Think, “How 

can I explain this using an iterating or partitioning image?” ‘Kay, so why is a 

bus, one seat of a bus, one forty-eighth? Why is it one forty-eighth? 

Student 1:  Because a whole is equal to… 

Student 2:  Oh! If you divide all… Okay. So, if you divide all of the seats into forty-eight 

equal pieces. 

Teacher:  Okay. So, if you take the bus and divide it into, like forty-eight equal spots. 

That’s a little awkward isn’t it? 

Student 2:  Yeah. 

Teacher:  Um, for buses. I think… 

Student 2:  Or, if you take the one, and multiply it by forty-eight— 
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Teacher:  Then you have the number of seats. 

Student 2:  Yes. 

Teacher:  Yeah. I, I almost think iterating is less awkward in terms of buses, to 

think about. Because partitioning, it’s like, we don’t really partition the 

bus into forty-eight pieces. I can think, I, one, one seat is one-forty-eighth of 

the bus because it takes forty-eight seats to make up the whole bus. Right? 

And so, I think iterating flows more naturally there.  

The first idea proposed by Student 2 (“divide all of the seats into forty-eight equal pieces”) 

appealed to a partitioning image in order to justify why one seat was 1/48 of all the seats. 

Although it is mathematically correct to partition a whole comprised of forty-eight discrete 

objects into forty-eight groups of size one, the teacher qualified this response as awkward based 

on the way students might think about the actual context of seats in a bus. The student then 

initiated an alternative justification using an iterating image. The teacher identified this second 

image as more natural for the context of buses. She considered it more common to think of a bus 

as having iterations or copies of one seat that fill the bus than beginning with the full bus and 

partitioning it into seats. This example illustrates that the teacher cared not only that students 

produce mathematically acceptable responses to the task but also that their work feel natural and 

realistic to them. This validated the kinds of reasoning students bring from everyday life and 

communicated beliefs about what mathematics is and how it is practiced. It is interesting that 

within the qualifications of her final turn the teacher also modeled a complete and correct 

response that drew from the ideas the students had contributed. This kind of solution modeling is 

another telling type discussed later in the “disclose” category. 
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 The next example of qualification demonstrates how the teacher attached value to the 

mathematical task in order to motivate a skeptical student. The task had several questions about 

calculating probabilities. The student worked on a question that read, “What is the theoretical 

probability of drawing a red and a blue ball from a bag containing 2 red and 3 blue balls if you 

return the first ball to the bag before the second ball is drawn?” The class had not yet developed 

multiplicative and additive strategies for handling probabilities involving multiple independent 

events. They were calculating the probabilities by making lists of all the equally likely outcomes 

and determining the fractional part of the outcomes that answered the question. One student 

began to find the activity tedious and asked the teacher whether a shorter method exists. The 

teacher did not provide one but talked about looking for patterns in the solution’s organization, 

which led to this dialogue. 

Student:  So like, what’s the point of listing all the combinations? What’s it teaching 

us? 

Teacher:  What’s this teaching you? Well for a lot of— 

Student:  Like to be patient. 

Teacher:  No, no, no [laughs]. It’s not teaching you to be patient. It’s first of all helping 

us think about the situation, like what’s really involved here in the situation. 

We have these shortcuts. We can’t make meaning of the shortcuts if we don’t 

know what’s actually going on. And so I know you have these nice shortcuts 

like multiplication, but if the shortcuts don’t make sense in terms of the 

situation then they are meaningless. But writing out the combinations can help 

us see where the shortcuts are going to come in. 
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In order to respond to the student’s complaint, the teacher qualified the mathematical value of the 

task. She affirmed that authentic mathematical activity involves making sense of situations, 

identifying patterns, and connecting those patterns to meaningful methods or shortcuts. To 

implement a shortcut with no understanding was not considered worthwhile mathematics for the 

teacher in this classroom. The teacher’s response in this episode can be seen as an attempt to 

humanize the task by reinterpreting the objective of the student’s mathematical activity in a way 

that privileges natural human inquiry and sense making over mechanical memorization and 

repetition.  

Clarify Task 

 The fourth type of mathematical telling is to clarify the task. This occurs when the 

teacher clarifies the mathematics of the task, question, activity, or intended form of a response 

without addressing any parts of the actual answer or solution process. The teacher’s utterance is 

meant to address student confusion regarding what the teacher intends for students to do or 

engage in so as to achieve the learning objective. 

 The teacher in this study chose to clarify the task at different times and in different ways. 

Sometimes the students voiced confusion and the teacher clarified the task for them, while other 

times the teacher initiated the clarification upon seeing evidence the students were not engaged 

in ways the teacher desired. The teacher varied in directing clarifications toward one student, one 

table or the entire class. Sometimes the teacher needed to clarify the task toward the beginning, 

while other times she clarified task components later on by responding to student work or even 

extending the task after students had finished.  

 There were two main roles the teacher accomplished as she clarified the task. The first 

was to provide clear instructions for how students were to engage in the intended learning 
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activity. The teacher gave basic instructions for what to do on which problems. She clarified 

which parts she did and did not require students to explain their work. She determined the form 

of a solution, for example a diagram or written explanation. She also told students the resources 

they should either use or avoid, such as previously learned concepts or tools like calculators. 

 The following example illustrates the teacher clarifying basic instructions. The task was a 

worksheet from the probability and statistics unit with sets of data and questions that were meant 

to develop the concept of mean absolute deviation. The first question asked students to represent 

data sets about concert ticket prices on number lines. Because the students had already learned 

various ways of graphing data, they became uncertain about what the teacher expected them to 

do. As students worked in their groups, the following conversation occurred between the teacher 

and students from one table. 

Student 1:  So, are we supposed to be making a box-and-whisker plot? 

Teacher:  Nope. Just, just, uh, draw a dot to represent the data points. You’re just 

looking— 

Student 2:  Oh… oh. 

Teacher:  You just want to be able to see the data points relative to each other. 

Student 1:  So, you would just [inaudible]. 

Student 2:  We’re marking the lowest and the highest, the median— 

Teacher:  No, just, like, draw all the data plots. Like, just draw a point for each one of 

them. 

Student 2:  Oh, draw the points on the line.  

Teacher:  Uh-hum. Just so you can see how they’re spread apart. You want to be able to 

see all the data points. [The teacher then directs herself to the entire class] 
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Yeah, do not draw a box-and-whisker plot. Just draw a dot for each of the data 

points. I just want you to be able to see the data points, and how they are, how 

they are positioned relative to each other. 

Even though the data on this problem could have been graphed appropriately using a box-and-

whiskers plot, the teacher directed students to make a dot plot in order to be able to see all of the 

data points and their relative positions in preparation for the rest of the task about mean absolute 

deviation. This choice to make the graphing instructions explicit likely limited some of the many 

opportunities for learning about data and statistics but enhanced other opportunities that 

concerned the teacher most at this point in the unit.  

 The second role of clarifying the task was to explain the mathematical ideas and 

meanings involved in the question or activity students were working on. In these instances, 

students were not as confused about the instructions of the task as they were the mathematical 

premises establishing the structure of the task. They were unable to access and make progress on 

the task because of obstacles in comprehending what was involved mathematically. In these 

cases, the teacher reread, rephrased, explained or added supporting information to the task.  

The following example occurred during the same task from the previous example on 

mean absolute deviation. In order to make sense of this example I have included the exact 

wording of the introduction to the task: 

Patrons of a particular concert hall purchase concert tickets through different ticket 

venues. The manager of the concert hall is interested in how much regular concertgoers 

spend on tickets. She surveys a random sample of people who attended all six of the 

concert hall’s summer series, and determines that the members of her sample paid, on 
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average, $45 per ticket. However, she thinks that the mean of the data does not tell the 

full story. 

The task then provides the data for three concertgoers of the manager’s sample. Each of these 

three concertgoers paid six prices for the six tickets of the summer series. Furthermore, each of 

these concertgoers spent an average of $45 per ticket. The question on this task pertinent to the 

upcoming example read as follows: “True or false? If the average price per ticket paid in the 

manager’s data sample is $45, then the average price per ticket paid for each of the concertgoers 

in the sample will also be $45. Explain.” Because this question as well as the context scenario is 

rather complicated, students were struggling to begin working on it. The following conversation 

took place with the teacher and one table. 

Student 1:  I don’t even understand this. 

Student 2:  I think they’re the sample manager stats. 

Student 3:  I think that’s the sample we have up here. 

Student 1:  But what’s the [inaudible]? 

Teacher:  What? 

Student 1:  We’re just confused by the two different data samples? 

Teacher:  So, um, this one right here? 

Student 1:  Yeah. 

Teacher:  So, um, so what they did is they collected from all of the concertgoers who 

went to all six. And they said, “Oh, the average amount spent over all those 

concertgoers was forty-five dollars.” And, if you notice, each of these, the 

average for each concertgoer was also forty-five dollars. So, it’s saying if the 
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average for, across the whole set, was forty-five dollars, does that mean that 

every single concertgoer will also have an average of forty-five dollars? 

Student 1:  Oh, each subset of data? 

Teacher:  Yeah, will each subset of data also have an average of forty-five dollars. 

Student 2:  To figure it out based on our profile? 

Teacher:  No, no. Don’t… that, that one’s separate from the pictures. That’s just, like, 

um, in, in this, this right here, they all have an average of forty-five dollars. 

So, my question is, um. I mean, it might be contrived, or it might be that they 

would always have an average of forty-five dollars. Like, I just want you to 

think about, like, does the fact that everybody all together has an average of 

forty-five dollars mean that all of the six concert series subsets will have an 

average of forty-five dollars spent, too? 

Student 3:  If Concertgoer A had like all forty, but Concertgoer C was like all sixty. And 

if they wouldn’t— 

Teacher:  Would it be. Yeah. [Teacher leaves as students continue working] 

Because of the complexity of the scenario, the students struggled to become engaged with the 

mathematics of the question being asked. The teacher clarified the context of how the data was 

sampled and to what the present question referred. She also tried to focus the students on the key 

part of the question by asking whether the phenomenon the students had just observed within the 

data presented to them was a mathematical necessity or simply a contrived coincidence. This 

enabled students to access the problem and resume their inquiry into its solution, as seen by the 

counterexample being crafted by Student 3 at the end of the dialogue.  

 

54 
 



Guide 

 The fifth type of mathematical telling is to guide. The teacher gives guidance to students 

while they work on tasks, develop and revise solutions, construct justifications, discuss concepts, 

and reflect on strategies. The guidance provides additional mathematical structure or supporting 

information that students are meant to incorporate into their activity. The teacher may focus 

students toward a useful area, redirect their attention away from unproductive ways of thinking, 

use pointed questions to lead students in a particular direction, suggest hints and strategies, 

identify errors or justification deficiencies in student work, edit portions of student solutions or 

justifications, and give counter-arguments to problematic student propositions. A key 

characteristic of guidance is that it leaves some portion of the solution mathematically 

incomplete or unresolved, requiring the student to act on, incorporate, or resolve the guidance 

provided from the teacher. 

Each instance of guidance exhibited one of the following four purposes: focus toward or 

away from an idea, lead students into productive ways of thinking, address reasoning errors, and 

give helpful hints and suggestions. These four purposes are found in Figure 1 along with some 

specific ways the teacher accomplished these purposes. These four purposes will be described in 

more detail and demonstrated using examples that follow.  
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Guide 

Focus Lead Address reasoning errors Give hints, suggestions 

Direct attention toward 
useful items 

Encourage promising 
approaches 

Discourage poor 
approaches 

Point to parallel 
examples/scenarios 

Remind of previous 
tasks and experiences 

Pose questions or next 
steps 

Organize justifications 

 
Help students explain 
concepts 

Ask rhetorical questions 

 
Help students make a 
conclusion/inference 

Identify contradiction or 
invalid assumption 

Identify explanation 
deficiency 

Give counter-arguments 

 
Workshop a student 
justification 

Recognize and debate 
opposing viewpoints 

Locate or correct error 
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Interpret the problem 
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Explicate criteria for an 
acceptable solution 

Figure 1. Purposes of guidance. 

Focus 

The first purpose of guidance was to focus the students’ attention toward or away from an 

idea. These instances of guidance generally told students where to look but did not explain what 

to conclude or infer as a result of focusing on that aspect. Consider this example from the first 

day of class. The task involved using Cuisenaire rods to answer questions about fractional 

quantities. One student who I’ll call Laurel (all names are pseudonyms) was working on the 

problem, “If purple is 2, what is the value of black?” She had placed one purple next to a black 

and then lined up a row of seven of the smallest white blocks alongside them as shown in Figure 

2. Laurel was unsure how to begin reasoning about this situation to come up with an answer and 

called for help from the teacher. The teacher elicited Laurel’s initial thinking and provided focus 

as seen in this dialogue. 

Teacher:  How do you think, you have something started there, can you tell me what 

you have started there? 

Laurel:  Well, I just… The purple is four out of seven, the black is seven out of seven. 
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Teacher:  Okay, so what information do you have here? So, again forget, forget that, 

that you were thinking for a minute, and let’s just focus on the blocks. It says 

what? What is, what’s the information you have? 

Laurel:  That this is two. 

The student’s description of the situation involved “out of” language that reflects a problematic 

image of fractions as one whole-number amount out of another whole-number set (Siebert & 

Gaskin, 2006). This sort of whole-number reasoning made it difficult for Laurel to compare and 

operate on fractional quantities. The teacher responded by focusing Laurel away from this type 

of unproductive reasoning and instead toward the manipulatives together with the problem’s 

given information (that one purple block is the quantity two), a fact the student’s reasoning 

completely neglected.  

Purple  

Black 

W W W W W W W 

Figure 2. Laurel’s arrangement of purple, black and white Cuisenaire rods. 

Lead 

 The second purpose of guidance was to lead students into productive ways of thinking. 

When a problem or concept was too complex for the student to manage, the teacher would break 

down the problem into pieces or steps and lead the student to answer or consider one piece at a 

time. This served to organize the solution or explanation process. The term leading has 

developed negative connotations for some, especially when applied to situations like “funneling” 

where the teacher trivializes the task and undermines the student’s problem solving process 

(Wood, 1998). The way the teacher in this study used guidance to lead students differed from 
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those kinds of debilitating practices. The teacher did not trivialize the student’s activity, but 

structured it by making one aspect salient and problematic and requiring the student to reason 

deeply about the meanings involved in order to resolve it. An example of leading will be given 

shortly in an excerpt in which leading as well as the third purpose of addressing reasoning errors 

occurred concurrently.  

Address Reasoning Errors 

 The third purpose of guidance was to address errors in student reasoning. As students 

constructed solutions and justifications, the teacher identified contradictions, invalid 

assumptions, explanation deficiencies and invalid claims in their reasoning. She also gave 

counterarguments to flawed propositions, edited the wording of a justification, and pointed out 

opposing viewpoints among students to be debated and reconciled. 

 An example of the teacher using guidance to address reasoning errors (the third purpose 

of guidance) and then lead a student into productive thinking (the second purpose of guidance) is 

now provided. The excerpt is a continuation of the prior guidance example in which the student, 

Laurel, used Cuisenaire rods to construct fractional amounts from other amounts. Recall from 

Figure 2 the student had lined up individual white blocks along the purple and black blocks and 

was reasoning about the amounts inappropriately. The teacher had first tried focusing Laurel 

away from her method and toward the given information in the problem (that a purple block was 

2). As the conversation progressed, Laurel continued to struggle and the teacher went beyond 

focusing to pointing out issues with Laurel’s reasoning and leading her in more productive 

directions. Laurel’s language repeatedly referred to the individual white blocks as ones. For 

example, when the teacher asked Laurel why she chose to line up white blocks, she responded, 

“Just because they were ones.” This created tension between purple being given as two and 
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seeing purple as composed of four ones. The teacher explicitly addressed this student’s problem 

using guidance as seen in the following excerpt.  

Teacher:  So I’m going to tell you, you said two things that were contradictory to me. I 

want to see if you can reconcile it. We’re given that purple is two— 

Laurel: But I’m saying it’s four. 

Teacher:  —but you’re saying it’s four. 

Laurel:  So it’s four ones so four equals two. Four equals… [trails off] 

The teacher clearly pointed out the contradiction in Laurel’s argument. Even though the teacher 

had focused the student on the given information that purple is 2 at least three times by this 

point, the Laurel’s image of fraction as a whole number of pieces out of a whole set was so 

strong that she was still unable to abandon her notion that purple was somehow 4. The above 

dialogue was immediately followed by the guidance presented below in which the teacher led the 

student with questions and steps to reason more appropriately.  

Teacher:  So if this [purple] is, if this is two, what’s this? [picks up one white block] 

Laurel:  A half. 

Teacher:  Okay what, how did you get that? Why do you know it’s a half? (This teacher 

turn was not coded as guidance) 

Laurel:  Because one half multiplied by four is two.  

Teacher:  Okay, so what would one be? 

Laurel:  One would be, [shows the amount of two whites with fingers] 

Teacher:  Yeah. Okay, so now use this to figure out what black is. So you know that 

these [whites] are not one.  
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Soon after this, Laurel correctly identified black as three and a half. The success of this final 

interchange can be attributed to the teacher’s leading moves that organized and structured the 

student’s solution process. The first leading question forcefully established the given assumption 

that purple is two as the premise from which to make a new deduction about the quantity that one 

white represents. This helped Laurel to stop thinking of purple as four and white as one, and was 

the pivotal turning point after which Laurel began to reason appropriately about the situation. 

After the teacher elicited Laurel’s justification for deducing white as one half, the teacher led the 

student to next identify one whole and finally to quantify black. The excerpts given in this 

example demonstrate how the information and structure from various kinds of guidance can 

enable students to become successful on an inquiry-based task when deeply held misconceptions 

and problematic thought patterns are major impediments to appropriate engagement with the 

concepts.  

Give Hints and Suggestions 

 The fourth and final purpose of guidance was to provide helpful hints and suggestions. 

This included suggestions for how to carry out a method, a helpful perspective or interpretation 

of a situation or context, bounds or constraints on the set of possible solutions, general principles 

about how to approach problems in mathematics, and criteria the teacher required for student 

solutions to be acceptable. 

 An example of guidance through hints and suggestions occurred on a task where students 

were given a context source for a hypothetical data set and were asked to identify it as 

categorical (qualitative) or quantitative and name types of graphs (bar chart, dot plot, histogram) 

that could be made with the data set. There were eight problems. One group became confused on 

the seventh problem and solicited the teacher’s help. The problem read, “The number of grams 

60 
 



of chocolate in the 12 best-selling candy bars in the United States.” A student who I’ll call Darla 

reported their answer that it was quantitative and that they wanted to use a bar chart. They 

probably asked for the teacher’s help because they had learned that bar charts corresponded to 

qualitative data and not quantitative. A second student who I’ll call Beth chimed in, “It’s number 

of grams and that gives you a number,” and they had associated the word “number” with 

quantitative data. The dialogue continued with two teacher hints in the form of general principles 

about mathematics: 

Beth:  But is it categorical, because it’s, like, each candy bar has that? 

Teacher:  Uh-huh, so… Just because we say it’s categorical doesn’t mean there are no 

numbers involved. Um, ‘cause we always have a count for each category, or 

we always have some value associated with each category. So, yeah.  

Darla: It’s just they switched the order on us, because before they would say the 

qualitative [part first]… 

Teacher:  Uh-huh, yeah. So, it, it actually has… it’s like, you know, a lot of math 

problems, if you see numbers in a certain order, it doesn’t mean you use those 

numbers in that order, right? And so, you have to think about the situation 

itself. 

To answer the students’ question, the teacher revealed hints in the form of helpful principles and 

guidelines. Because students often possess an oversimplified association between “qualitative” 

and “non-numerical,” the teacher first clarified the principle that even when data is qualitative it 

involves either counts or values associated with the categories. Subsequently, Darla realized that 

the information in this problem was presented in a different order than the problems preceding it. 

Specifically, the previous problems’ wordings were all similar to “the heights of 20 five-year-old 
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children” or “the eye colors of students in your class” where the structure was [Independent 

variable used by students to classify problem] of [context item for a count or value]. The candy 

bar problem switched the order of this structure and confused the students. Because the students 

were attending to superficial aspects of the question, the teacher shared the helpful principle that 

solving mathematics problems requires investigating the mathematical meanings of the situation 

rather than picking out numbers and quantities based on their order in the question. This example 

corroborates the findings of others that even high quality mathematical tasks in written form can 

suffer from decline in worthwhile student mathematical activity during implementation, 

requiring interventions to realign student activity with practices that are valued (Henningsen & 

Stein, 1997).   

Disclose 

 The sixth type of mathematical telling is to disclose. A disclosure is a communication of 

mathematical ideas in more complete and resolved form. Some examples of mathematical 

content in a disclosure are a solution component, an alternate solution, a justification, an 

explanation of an idea, a mathematical norm or convention, or a description of a concept. The 

teacher discloses this information for various reasons such as to help students construct solutions 

and justifications, answer student questions about the material, discuss complex concepts, and 

verify student answers to the task.  

The choice of the word “disclosure” for this telling type is not meant to imply that only in 

this category was mathematical information disclosed. All of the telling types disclosed 

important mathematical information to students. Rather, the term is meant to emphasize the more 

resolved and finished form of the utterance, in contrast with telling types such as guidance in 

which a portion of the mathematics was purposefully unresolved to require student incorporation 
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and resolution of the conveyed information. Because the disclosure telling type is the most 

complete and direct, it may appear the most similar to historical conceptions of telling as the 

transfer of facts and information. However, as was discussed in chapter two, this historical 

telling paradigm does not account for all of the rich ways that discourse can convey meaning and 

impose structure on student mathematical activity. In addition, the content and purposes of the 

disclosure telling type are drastically different from teacher discourse in traditional lecture and 

recitation teaching models.  

The instances of disclosure in this study were sorted into four purposes: amplify student 

input, explain mathematical concepts, model appropriate reasoning, and provide mathematical 

norms and expectations. These four purposes are found in Figure 3 along with the specific ways 

the teacher accomplished these purposes. Each of these four purposes will be described at length 

below, followed by in depth examples illustrating their use in the data. 

Disclose 

Amplify student input Explain Model reasoning Norms & expectations 

Elaborate on a student 
answer 

Finish student thought 

 
Rephrase and modify 
mathematical image 

Validate a response and 
support/give reasons 

Synthesize input from 
multiple students 

Explain idea or concept 

 
Distinguish concepts 

 
Clarify method 

 
Illustrate with an 
example 

Contrast problem 
structures 

Justify a solution 

 
Justify an algorithm 

 
Correct flawed student 
work 

Provide solution 
component 

Provide alternate 
solution 

Mathematical 
convention 

Notation 

 
Terminology 

 
Expectation for 
justifications 

Form of the answer 

Figure 3. Purposes of disclosure. 

Amplify Student Input 

 The first purpose of disclosure was to amplify student input. After a student shared 

correct and appropriate reasoning, the teacher often added strength to the student’s input by 
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reiterating the student’s ideas and using some of the student’s language. These amplifications 

validated the student’s input as mathematically correct as well as expanded or modified the 

mathematical ideas in significant ways. The teacher elaborated on the response or filled in 

additional details, reworded the student verbalization to be more complete or correct, finished the 

student’s sentence with the anticipated mathematical thought, subtly modified the language to 

appeal to an alternative mathematical image, supported her validations by supplying a reason or 

underlying justification, or synthesized multiple contributions from a group or one student into a 

single correct and complete formulation.  

 The effect these amplifications had on student thinking is difficult to determine from 

verbalized discourse alone. The teacher amplified student input partly to establish more complete 

and mature ways of expressing the mathematical ideas, but also partly to acknowledge and 

accept the input before moving on to new questions or topics. Because the teacher’s language 

borrowed from the student’s language and echoed student ideas, a portion of the teacher’s 

transformations were subtle and it was not always clear whether the student recognized or 

appreciated the new mathematical content contained in the teacher’s utterance. However, other 

teacher amplifications contributed new mathematical ideas more plainly. This telling 

subcategory was similar to a construct known as revoicing (O'Conner & Michaels, 1993) in that 

the underlying positive validation and agreement accompanying the teacher’s transformations 

allowed students to retain ownership of the teacher’s amplifications of their ideas to a certain 

degree. 

 The following example shows the teacher amplifying a student idea to reinforce its 

validity and elaborate on its significance. The students were reflecting on their results of a 

probability task. They were first asked to predict the probability that a Hershey’s Kiss (a small 
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chocolate candy with a flat base and curved, cone-like shape) would land on its base with the 

point up when tossed. They then performed a 50-trial experiment. One group of students was 

surprised with their experimental result, 32 percent. The teacher entered a conversation with 

them. The first student, who I’ve called Laurel in earlier excerpts, summarized her conversation 

with another student, who I’ll call Jasmine, when they were predicting values. 

Laurel:  We’re thinking, ‘cause the two things we talked about was first Jasmine was 

like it would be fifty-fifty ‘cause there’s two. Like one, there’s two ways. But 

then I was kind of bratty and was like no, because— 

Jasmine:  Yeah you were. 

Laurel:  —no because there is like more than one way, like there’s more than one way 

for it to fall on its side, but there’s only one way for it to fall on its face. But I 

don’t know if that’s really right. 

These two students were trying to deduce a theoretical probability using their perceptions of the 

situation. Jasmine exhibited a common misconception of counting possible outcomes without 

realizing they may not be equally likely. Laurel believed that there were more ways for the 

chocolate to fall on its side than its face, but was uncertain because the ways were not a discrete 

count like they would be for sides of a die, for example. The teacher responded that this thinking 

was interesting, and after a couple of other comments the dialogue closed with the teacher’s 

amplification in this manner. 

Laurel:  Yeah, but I feel like there is more than one way it can fall. 

Teacher:  But, yeah, it’s definitely more likely that it will fall this way ‘cause there’s, 

it’s easier for it to fall that way than this way. Yeah that makes sense. That is 
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actually really important, that like you can think there is two possibilities but 

it’s still not one in two. Or one half probability. 

The teacher strengthened the students’ confidence in Laurel’s reasoning that the chocolate was 

more likely to fall on its side than its base. She then stressed the importance of the students 

having gained this insight to overcome the common misconception that two distinct outcomes 

are always equally likely, one of the major learning objectives of this task. Even though Laurel 

had already voiced the basic mathematical ideas the teacher disclosed in this example, the 

teacher rephrased the ideas and validated them, making this contribution a teacher amplification 

of student input.  

Explain 

 The second purpose of disclosure was to explain the mathematics. The teacher defined 

concepts, explained ideas, distinguished related concepts from one another, clarified the steps 

and processes involved in calculation and solution methods, illustrated concepts with typical or 

hypothetical examples, and contrasted the structure of related but different task problems. Many 

of these explanations were prompted by students asking the teacher to clarify an aspect after they 

had worked on the task for some time and identified an area of confusion. Other times the 

student felt insecure about an answer or conclusion and verified it with the teacher, who 

subsequently recognized and addressed a student misconception.  

 This next example shows the use of an explanation to encourage students to recognize 

and think about a key distinction between two statistical concepts. The task was meant to elicit 

prior student knowledge and understanding about summary statistics like mean, median and 

mode to describe data. There were four contexts provided for data sets (but no actual numbers 

for the data set) and students had to come up with a single numerical value that could describe 
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and summarize such a data set. One group of students was discussing the context, “Shoe sizes in 

the women’s section of a shoe store.” They began to consider using range. They ran into issues 

about how exactly to describe the range. One student made up specifics for the shoe store 

scenario, starting from size 6 to size 12. She first calculated 12 minus 6 to be a range of 6, but 

then counted the number of sizes from 6 to 12 and got 7. She then asked the teacher if “range 

plus one” would work. The teacher threw it back to the group to decide whether 6 or 7 was best. 

Another student affirmed that the range is 7 since there are that many sizes. Perhaps to help 

students notice the difference between “number of sizes” and “range of sizes,” the teacher 

reminded them that there could also be half sizes of shoes. A student replied, “No. Not at my 

shoe store!” It is likely this student was avoiding an additional conceptual difficulty rather than 

voicing an actual preference for shoe store practices. The teacher did not want to allow the 

students to avoid thinking about this important aspect of range. She explained range explicitly in 

the following disclosures. 

Teacher:  You don’t offer half sizes!? So, okay, so it’s like... So, it sounds like, okay, it 

sounds like these are two different numbers. When you’re talking about the 

range, um, that’s saying I go… I, like, I encompass this amount. Whereas, if I 

say I offer fourteen sizes, that’s a count of the number of sizes you offer. And 

I think those are two different numbers. 

Student 1: You’d have one number… [mostly inaudible] 

Teacher:  Well, a count is, a count is a, um, is a single number. Yeah, that’s a single 

number. That’s a single number. A range, like, my sizes range, between… 

um… the range of my sizes is six. 
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Student 2:  Is the range the one number that’s how many numbers are in between the 

smallest and the greatest? 

Teacher:  Yeah, it’s, it’s the distance between the smallest and the greatest. So, that’s a 

six. 

The teacher’s first move in this excerpt was to explain the difference between the range of a data 

set and the number of unique data values, a nonstandard statistic that only makes sense with 

discrete data. The teacher’s second turn appears to have sanctioned the use of this latter summary 

statistic for this shoe store problem. She returned to the shoe store scenario to explain how range 

is conventionally calculated, affirming it would be 6 rather than 7 for shoe sizes from 6 to 12, 

and that it is expressed as one number rather than as an interval of extreme values.  

In response to these explanations and examples, Student 2 in the excerpt asked an 

interesting clarifying question about what range means conceptually. She used the language 

“how many numbers are in between the smallest and the greatest.” It is not clear what the student 

intended by this. From one perspective, the question is nonsensical since there are always 

infinitely many numbers between any two numbers on a number line. It is possible that the 

misconception between range and count of unique data values lingered and caused the student to 

use this language. A second possibility is that the student was thinking of range as the difference 

between the largest and smallest values and used the words “how many numbers” to mean how 

many unit increments. The student may have also been thinking in a different way entirely. 

Regardless of the student’s mental meanings and imagery at that moment, the teacher’s final 

statement is an example of a teacher amplification of a student idea that involved a subtle but 

crucial modification of the mathematical image. The teacher responded with a positive, affirming 

“yeah” but then worded the definition of range differently. She replaced the language of “how 
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many numbers” with the notion of the “distance” between the largest and smallest values, a more 

mathematically correct and universal image of range that works consistently across both discrete 

and continuous scenarios. 

The teacher’s disclosures above were consistent with the goals of inquiry even while 

revealing a significant amount of mathematics to the students. When students were reasoning 

idiosyncratically about range and other measurements of variation (and even conflating multiple 

measures), they were not going to somehow arrive at the conventional use of range on their own. 

The teacher explained what range is and contrasted it with the students’ invented statistic of 

shoe-size counts. As a result of the teacher’s disclosures, the students’ inquiry into these 

concepts was pushed further than what would have likely occurred had the students answered 

this task question by simplifying their hypothetical context and avoiding emerging complications 

and difficulties.  

Model Reasoning 

 The third purpose of disclosure was to model appropriate reasoning. As students 

constructed solutions, verified answers, and asked clarifying questions about the problems, the 

teacher sometimes disclosed all or part of a solution or justification as a model for the student to 

make sense of and emulate. The unabashed provision of solution components could at first seem 

in conflict with inquiry, in which students are meant to retain primary responsibility for problem 

solving and justification. For this reason, I carefully investigated the contexts of these 

disclosures. Among the four subtypes of disclosure, modeled reasoning was not uncommon, 

suggesting that mathematical disclosure via modeled reasoning was not an aberrance to this 

teacher’s practice. The following examples demonstrate how modeled reasoning was 

implemented by this teacher. 
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 One purpose of several examples of modeled reasoning was to curtail time spent by 

students in an activity that was unlikely to afford a proportionally worthwhile learning benefit. 

This was especially true when the teacher provided a solution component or corrected student 

errors. In one lesson on using a one hundred square grid to convert fractions into decimal form, 

the teacher circulated and monitored student progress in the groups. Occasionally as students 

shared their solutions she would recognize a calculation flaw, especially on complex problems 

like converting 1/7 into a decimal. One pedagogical choice might have been to hint that an error 

existed and perhaps which step it was on. However, in this case the teacher chose to simply 

disclose the flawed step and incorrect calculation for the students. Clearly it was important for 

students to correct the errors, since one group mistakenly came to the conclusion that the decimal 

repeated far sooner than it really did, for example. The teacher chose to disclose the correct 

numerical calculations to productively manage the students’ activity, enabling them to avoid 

having to hunt for a calculation error and instead focus on justifying the general process of 

dividing the whole into fractional amounts by using successive partitions of powers of ten. This 

choice was a contextual one based on her judgment of potential learning opportunities of the 

situation.  

 Another example is repeated from earlier where it was included in the qualify telling 

type. The students were using partitioning and iterating images to name and justify fractional 

quantities. The question was, “There are 20 students on the bus, but there are still 28 empty seats. 

What fraction of the seats are filled?” The students attempted a partitioning justification for their 

answer of 20/48 by dividing the seats up into 48 equal pieces. In the prior analysis I illustrated 

how the teacher attended to the alignment of the justifications with everyday reasoning about the 
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context of buses. In the present analysis, I focus on how the teacher amplified student input (the 

first purpose of disclosure discussed earlier) and modeled justifications for the students.  

Student 2:  Oh! If you divide all… Okay. So, if you divide all of the seats into forty-eight 

equal pieces. 

Teacher:  Okay. So, if you take the bus and divide it into, like forty-eight equal spots. 

That’s a little awkward isn’t it? 

Student 2:  Yeah. 

Teacher:  Um, for buses. I think— 

Student 2:  Or, if you take the one, and multiply it by forty-eight— 

Teacher:  Then you have the number of seats. 

Student 2:  Yes. 

Teacher:  Yeah. I, I almost think iterating is less awkward in terms of buses, to think 

about. Because partitioning, it’s like, we don’t really partition the bus into 

forty-eight pieces. I can think, I, one, one seat is one-forty-eighth of the bus 

because it takes forty-eight seats to make up the whole bus. Right? And so, I 

think iterating flows more naturally there. 

There are a number of interesting disclosures in this excerpt. After Student 2 first formulated a 

partitioning justification, the teacher amplified it while rephrasing a couple of key parts. Where 

the student referred to the whole as “all the seats,” the teacher used the word “bus” for the whole 

to enable her to envision it prior to being partitioned. She made equivalent modifications on 

other problem contexts, such as when a student talked about dividing 36 inches into 36 pieces 

and the teacher substituted “a yard” for 36 inches. Another image modification was to change 

“pieces” to “spots” to align the partitioning action with the context. Even with this improved 
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alignment, the teacher conceded the justification was awkward. Student 2 then ventured a new 

justification appealing to an iterating image when she said “take the one, and multiply it by forty-

eight.” The student may or may not have finished her own sentence in the same way as the 

teacher’s addition, “then you have the number of seats,” but the student consented. The teacher’s 

final move was to model the reformulated iterating justification for the quantity 1/48. One 

function of the teacher’s telling in this excerpt seems to have been to enact the role of a co-

participant (see Rittenhouse, 1998) in the activity, potentially modeling the kinds of 

brainstorming, evaluation and revision that occur with mathematical composition. Many of the 

tasks in this class required students to not only solve problems but additionally to organize a 

mathematical justification into clear and compelling prose, a high-level skill requiring both 

mathematical and linguistic finesse. Because the teacher chose to model mathematical reasoning 

during high-level tasks such as this one, it is worth investigating whether tasks cultivating more 

ambitious mathematical practices and learning objectives are frequently accompanied by an 

increased need for modeling by an expert participant like the teacher. It was evident in this class 

that the teacher did not model justifications for the students to copy down and memorize word 

for word but instead helped them make sense of and reconstruct the justifications using their own 

understanding. 

Provide Norms and Expectations 

 The fourth and final purpose of disclosure was to provide mathematical norms and local 

teacher expectations. The teacher articulated common mathematical conventions and practices, 

notation choices and meanings, terminology for concepts, justification expectations specific to 

this class, and appropriate forms of the answer (such as whether a fraction needed to be 

simplified or not). Mathematical content of this sort has been endorsed as appropriate to tell 
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students when they would be unable to discover this type of knowledge by reasoning 

idiosyncratically (Philipp, 1995; Smith, 1996). Even so, the teacher’s disclosure of this sort of 

information influenced students in ways not unlike the other telling types in that the information 

privileged certain ways of thinking shared by the mathematical discipline and structured the 

students’ mathematical activity.  

 In the following example, a student brought up a general question she had about the 

appropriate way to express an answer. The task she referred to involved calculating the 

theoretical probability of drawing marbles from a bag with certain outcomes. For one of the 

questions, there were 20 possible outcomes, 12 of which satisfied the desired conditions, so the 

student had a probability of 12/20. The student’s conversation with the teacher went as follows. 

Student:  Okay, and I have a question about yesterday, because I wasn’t here. When you 

do things like twelve over twenty, can you simplify that to three over five, or 

would you rather it be twelve over twenty? 

Teacher:  Oh, I’m okay with either. 

Student:  But, is there a correct way to do it? 

Teacher:  Is there a correct way to do it? 

Student:  Do you know what I’m saying? Like with statistics? 

Teacher:  Well, they’re both the same fraction. 

Student:  I know. But with statistics, is it, like, better to leave it, like, obviously four out 

of five sounds better than eight out of ten, and… 

Teacher:  Yeah, I mean, you would probably simp… um, usually, um, a lot of times we 

report them in terms of percentages, or, um, or decimals, ‘cause that way you 

can make them always consistent with any other that you find.  
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The significant aspect of this conversation is partly the mathematical content told (disciplinary 

norms and practices) but more so the way the participants reasoned and made sense of the 

situation. The student’s initial question about how the teacher expected the answers to be 

presented initially seemed to be a simple and trivial question for the teacher to address. The 

teacher, consistent with the mathematical community in general, viewed the responses as 

mathematically equivalent and expressed no preference. It is very surprising that the student, 

knowing that either response was acceptable in terms of satisfying the teacher, persisted on 

whether there was a “correct” way to do it, appealing specifically to one particular branch of 

mathematics—statistics. This is a legitimate question since there are sometimes contextual or 

disciplinary preferences for expressing numbers in certain ways despite being mathematically 

equivalent. For example, perhaps a reason for not simplifying the fraction is to conserve the 

meanings of the numerator and denominator in reference to the context’s discrete outcomes and 

possibilities. When the teacher recognized the student’s concern, she brought up the possible 

disciplinary preferences of using percentages or decimals to maintain comparability. This 

example illustrates that the teacher needs to be sensitive to student thinking regarding 

mathematical norms and conventions just as a teacher is sensitive to how students engage with 

and make sense of mathematical concepts and solution methods. 

Validate 

 The seventh and final type of mathematical telling is to validate. The teacher either 

validates or invalidates a student expression of mathematics. This telling type is unique in that it 

does not convey any new mathematical ideas or structures other than whether a particular student 

utterance is correct or incorrect. By defining validation this way, it became necessary to treat this 

code differently than the others. For the first six telling types, an instance of mathematical telling 
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was categorized as only one of the six. In contrast, validation could occur as the only function of 

a telling utterance or as an additional consequence of one of the other six telling functions. The 

term validate was chosen to convey a meaning more specific than the general idea of 

“evaluation,” which determines worth based on many standards beyond just mathematical 

correctness. For example, when the teacher tells a student to “forget what you were thinking for a 

minute,” the teacher has evaluated the thinking as being presently unhelpful but has not 

conveyed a sense of right or wrong. Such statements were not considered validations.  

 In practice it was difficult to definitively identify all instances of validation due to its 

complexity and subtlety in language. Explicit words such as “right” or “wrong” were clear 

indicators. However, some words functioned as either a mathematical validation or a 

conversational acknowledgment of hearing and comprehending student speech or even marking 

a turn transition from student to teacher, depending on the context. Such words included “yeah, 

okay, uh-huh” and “alright,” among others.  Other teacher language had no such words at all but 

appeared to function as a validation in the discourse simply by repeating student language with 

positive emphasis or negative skepticism. Beyond these difficulties in interpreting spoken 

discourse, there are subtle conversational structures and norms that likely function to validate or 

invalidate student work, sometimes unintentionally. For example, a teacher may pause after 

hearing a student remark, leading the student to believe something is wrong.  

 Because of these complexities surrounding validation, a strategy was devised so as to be 

able to contribute a meaningful analysis of validation using the data sources and methodology of 

this study. The field of mathematics education has emphasized students taking authority for 

justification and evaluation of mathematics instead of external sources like textbooks, answer 

keys and teachers, and so it seemed reasonable to code only for the most clear and obvious cases 
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of validation to determine whether such telling occurred at all in this classroom. The frequency 

of validation was therefore at least as much as what is reported here, with additional subtle 

instances being likely. The criteria used to identify clear, defensible instances of validation 

required looking at the content of the teacher’s discourse itself as well as the surrounding student 

discourse. In the teacher’s discourse, I looked for markers of validation like using explicit 

(dis)agreement words, repeating student utterances with positive emphasis or negative 

skepticism, or correcting a student response by providing the appropriate answer. I then looked at 

the surrounding discourse for confirming or disconfirming evidence of a validation. I first 

ensured that the supposed validation aligned with the validity of the student’s reasoning. For 

example, if the teacher used ambiguous agreement words such as “uh-huh” and the student’s 

response was incomplete or incorrect, I erred on the side of caution and interpreted these as 

conversational acknowledgments rather than clear cases of validation. The student’s reaction to 

the validation was also considered. Confirming evidence included when a student acknowledged 

the validation, concluded the conversation (being satisfied with the teacher’s response to his or 

her answer), moved on to the next part, or adjusted his or her reasoning (after an invalidation). If 

a student response was inconsistent with a teacher validation having occurred, then the teacher 

utterance was not coded as a clear instance of validation.  

 The teacher in this study validated students’ mathematics in several key forms. The most 

common form was an expression of agreement. Beyond using basic agreement words, the 

teacher also sometimes restated, rephrased, or completed the student’s mathematical 

verbalization. At times she provided an explanation or justification of the student’s idea she was 

validating. She occasionally praised the student’s thinking or gave encouragement. The teacher 

also invalidated students’ mathematics. She did this by negating their response, providing a 
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counterargument, correcting an error by providing the intended answer, or challenging a 

response by repeating it with a questioning tone. The teacher also critiqued student ideas by 

identifying what was either worthwhile or deficient in the student’s thinking. The nature of 

student thinking preceding teacher validations varied throughout the data. Students shared brief 

answers, approximations, solutions, methods, explanations, concerns, questions, clarifications, 

uses of notation and representations, and examples. Most student expressions were verbal but a 

few were written (such as pictures or explanations on their task sheets).  

 The following example of validation is typical of the teacher’s practice and illustrates the 

use of an invalidation through a questioning tone, and then a validation with a simple agreement. 

This example occurred at the conclusion of a conversation that has been partially reported and 

analyzed earlier in the guidance section. The task was from the first day of class where the 

students used Cuisenaire rods to begin with one fractional quantity and deduce another. Recall 

that a student named Laurel struggled deeply on the problem, “If purple is two, what is the value 

of black?” The teacher used various types of guidance to move Laurel away from unproductive 

thinking and toward appropriate reasoning on the problem. As reported earlier, Laurel finally 

managed to identify a white block as the quantity one-half rather than one. It remained to appeal 

to her block arrangement (see Figure 2) to deduce the quantity of black. The conversation 

finished as follows: 

Teacher:  Okay, so now use this to figure out what black is. So you know that these 

[whites] are not one. 

Laurel:  So it’s one and one half. 

Teacher:  So the black is one and a half? 

Laurel:  Oh, no. So the black would be, like, three and a half. 
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Teacher:  Yeah, does that make sense? 

Laurel:  Yes. It does make sense. 

Laurel first answered that black was one and one half, probably because the black is one and one 

half more than purple. The teacher restated Laurel’s own conclusion, but in the form of a 

question. Laurel’s immediate response, “Oh, no,” indicates that the teacher’s utterance was an 

invalidation of her answer. Laurel corrected her answer to account for the full length of black, 

and the teacher validated it this time as correct. The teacher’s “yeah” was not ambiguous in this 

context since she asked if the response made sense, a question she usually asked after the student 

gave a correct response. 

 Validation frequently occurred as a consequence of the other six telling types as well as 

on its own. Validation was common with disclosure and guidance, was somewhat infrequent 

with clarify task, and was very rare with the qualify, interpret, and assess telling types. Within 

the disclosure telling type, many of the validations accompanied an amplification of student 

input. Within guidance, many validations were used to address reasoning errors. Validations also 

occurred with the other purposes of disclosure and guidance, however. Within the clarify task 

telling type, the teacher tended to validate or invalidate the students’ interpretations of the task 

instructions. The concurrence of validation with the remaining telling types was too infrequent to 

report any patterns.  

 The following is an example of validation occurring concurrently with guidance 

(addressing reasoning errors). One group was trying to write a word problem whose solution is 

three divided by four from a measurement perspective. After some discussion one student 

ventured an idea. 
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Student:  Well I mean like, so like, if you had like you said, there are… There’s like 48 

donuts and 36 of those donuts are all, or like, not 36. Twelve of those donuts 

are all eaten, how many are left? 

Teacher:  Uh, huh but then that sounds like, that sounds like 48 minus 36 to me, is what 

that sounds like. 

The teacher invalidated the student’s response by critiquing the inappropriate structure of the 

word problem. The critique communicated mathematical information beyond the fact that the 

student’s word problem was incorrect, causing it to merit the guidance code in addition to an 

invalidation. The validation and guidance qualities are embedded in the same string of teacher 

discourse, illustrating the unique way validation is capable of concurring with other telling types. 

Parenthetically, observe how the affirmative words “uh, huh” functioned as an acknowledgment 

of the student’s response but clearly did not validate the student’s mathematics in this example. 

Frequency of the Telling Types 

 The purpose of this section is to discuss the pervasiveness of the mathematical telling 

types reported in this chapter. It is well to recall that this study examined only teacher 

interventions with groups and individuals as they worked on collaborative tasks and excluded all 

examination of whole-class discussion. This context comprised about one third of the total 

instructional time. Thus, this framework for mathematical telling was only one component of the 

teacher’s broader role to enact inquiry-based instruction. The frequency of the types of 

mathematical telling will be calculated only in relation to the setting in which they occurred 

(teacher help during explorations of the task) rather than the larger classroom experience as a 

whole.  
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 To reliably quantify the occurrence of the mathematical telling, I used the partitions of 

data referred to in chapter three as conversations rather than speaker turns. This approach yielded 

two advantages. The first was that because many of the teacher’s turns were interrelated and 

ongoing attempts to achieve a particular purpose or goal, discrete counts of telling codes would 

potentially overestimate the presence of some telling types and underestimate others. For 

example, an assessment was usually accomplished in a single turn, while instances of guidance 

or disclosure regularly extended multiple turns with interruptions and negotiations of meaning 

before accomplishing their purpose. I felt that using simple code counts might inappropriately 

exaggerate the telling acts that extended multiple turns but served the same purpose. 

Conversations provided a useful alternative. Each conversation began and evolved according to 

the perceived needs of one student or group. In a given conversation, the teacher used whichever 

telling types were deemed appropriate to address these needs. Each telling type that occurred at 

least once in a given conversation was counted as contributing to the resolution of those student 

needs. This provided a reliable way to calculate the presence of each of the telling types without 

being undermined by the complexities that occur as speakers alternate turns. The second 

advantage to using conversations was that they provided some sense of the regularity of the 

telling types across multiple conversations. In order to be considered frequent, a telling type 

would need to occur persistently throughout multiple conversations involving a variety of 

students and situations rather than occur multiple times in a few long but perhaps anomalous 

conversations.  

 The calculated results for the frequency of each telling type are in Figure 4. The first code 

“M” is shown on the graph as 100 percent to indicate that this was the whole from which all of 

the percentages were calculated. It does not mean that all of the conversations between the 
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teacher and small groups or individuals referred to mathematics. The percentages of the 

individual telling types have a sum larger than 100 percent because most conversations contained 

multiple telling types. 

There are at least two interesting features of the graph in Figure 4. The first is the 

remarkably high percentage for “MT,” 96 percent. This suggests that when the teacher referred 

to mathematics, she nearly always used mathematical telling sometime during the conversation 

as opposed to merely facilitating collaborative norms or innocently eliciting their thinking. The 

second interesting feature is the unforeseen trend that telling types with more mathematical 

information and constraints occurred more frequently than those with less. This is especially 

remarkable given that the literature in mathematics education has downplayed the role of highly-

constrained, explicit communicative acts. 

 
Figure 4. Telling type frequency by the percentage of conversations in which each type occurred 
at least once. M refers to the 196 conversations containing at least one reference to mathematics 
and constitutes the whole from which all other percentages were calculated. MT refers to 
conversations that included any instance of one of the seven types of mathematical telling. 
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Discussion 

 There are several findings that follow from the analyses in this chapter. First, the 

frequency of mathematical telling in this study contrasts sharply with depictions of inquiry in the 

literature. This teacher did not limit herself to regulating student collaborative processes only as 

some have recommended (Cohen, 1994; Dekker & Elshout-Mohr, 2004). Most of her 

conversations with students involved mathematics, and Figure 4 showed that 96 percent of these 

mathematical conversations involved at least one type of mathematical telling. The frequency of 

this telling is unique from other studies where the teacher’s role was portrayed almost 

exclusively as eliciting and orchestrating student contributions (Ball, 1993; Goos, 2004; 

Lampert, 1990; Sherin, 2002; Simon, 1995; Staples, 2007; Stein et al., 2008; Wood, 1998). 

Although this study did not show whether the rate of telling is comparable for other inquiry-

based teachers in other classrooms, the pervasiveness of the mathematical telling presented in 

this chapter leads one to question whether the presence of telling generally in inquiry-based 

instruction has been severely underestimated.  

Three other findings have to do with broad characteristics of telling spanning multiple 

telling types from the mathematical telling framework.  The first of these three is that telling 

occurred in subtle ways. By scrutinizing each teacher speech act for visible contributions of 

mathematical information, the study revealed subtle ways the teacher told. The instances of 

telling that tended to be more subtle were when the teacher assessed, interpreted student input, 

qualified the mathematics, guided students by focusing or leading with questions that withheld 

key information, and amplified student input by rephrasing a student conclusion. The glaring 

omission of certain information in such telling practices can eclipse their subtle contributions and 

leave the impression that no telling has occurred. The excerpts presented in this chapter 
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demonstrate that these mathematical contributions generally are not trivial and have important 

potential to influence student thought, whether or not this potential is realized by the student.  

 The second finding about telling is that the teacher used implicit forms of communicating 

information to productively influence students in ways that have not been clearly articulated in 

prior literature. The telling types that I am referring to are guidance and, to a lesser extent, 

clarifications of the task. These telling acts might be misconstrued as innocent or harmless either 

because they refer only to the mathematics of the task and not the solution or because they 

convey ideas implicitly and require the student to infer the intended mathematical message. 

Some examples of this implicit guidance include when the teacher focused student attention 

without explicating what she intended for them to see, or when she led a student to arrive at a 

conclusion through a question rather than explicit directions. Several of the excerpts from earlier 

in this chapter illustrated that when the students were confused about the task’s setup or solution 

process, the teacher’s task clarifications or guidance played an obvious role in moving those 

students forward. The changes in student progress and thinking in response to these telling acts 

preclude one from dismissing them as innocent and harmless.  

These clear articulations of indirect telling and its influence have been remarkably absent 

from prior literature because such telling was unrecognized or reported in ambiguous terms. For 

example, Chazan and Ball (1999) curiously avoided discussing novel teacher contributions of 

mathematics, even in indirect ways, and instead emphasized the incorporation and management 

of ideas originating from students as an expanded form of telling. Staples (2007) examined many 

facets of the teacher’s role and claimed that at times the teacher guided students with “food for 

thought” that “generally did not reshape the task in a significant way” (p. 188). Staples observed 

that the teacher helped students think about the problem rather than treating obstacles as a sign 
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that they needed hints, next steps, or an explanation. Such ambiguous language failed to 

articulate what this “food for thought” consisted of and how it helped students think more 

productively about the problem. The claim that the help did not reshape the task in a significant 

way diminished the appreciable influence of the teacher’s help, reducing its explanatory power 

and therefore its identifiable worth in the classroom. Other studies have used terms that 

potentially masked the telling that was going on, like “press” (Webb et al., 2009) and 

“scaffolding” (Anghileri, 2006; Henningsen & Stein, 1997). Even though Webb et al. (2009) 

attended to the influence that high press had on students’ explanations, the term “press” connotes 

that the information was somehow extracted from students without designating any influence as 

telling. The scaffolding metaphor has sometimes been applied to mathematically assertive 

teacher help that is considered effective without accounting for its telling function; when used 

this way, scaffolding is essentially a euphemism for telling. These examples show how accounts 

of implicit telling in the literature differ significantly from the carefully articulated accounts of 

mathematical telling in the present study.  

The third finding regarding telling is that explicit telling was a tool utilized by this 

teacher within inquiry. Explicit telling includes the telling types that are dense with mathematical 

information such as validation, disclosure, and some instances of guidance (mainly addressing 

reasoning errors or providing hints and suggestions). The literature has been very reticent to 

point out and describe instances of this sort of telling. In contrast, the teacher in this case study 

consistently explicated students’ reasoning errors, gave hints or suggestions, explained concepts, 

modeled solutions, and validated or invalidated students’ mathematics. Both disclosures and 

validations occurred in over half of the teacher’s mathematical conversations with students. 

Although the effects of these telling acts were not measured, the following hypotheses may 
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partially explain their purposes. The teacher’s disclosures did not seem to prematurely end 

students’ problem solving activity by giving away answers. Instead, they seemed to be intended 

as models for students to reason deeply about and make sense of. The validation may have 

provided students reassurance to encourage risk-taking and exploratory thinking. Validation may 

have helped students calibrate their own evaluations of mathematics with the criteria established 

by the mathematical discipline. It may have also set clear expectations for how student work 

would be graded on assignments and tests to establish trust and fairness. 

The fact that mathematical telling occurred with high frequency in subtle, implicit, and 

explicit ways in inquiry were unique findings from this study. Conclusions and implications 

around these findings are discussed in chapter five. 
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Chapter 5: Conclusion 

 The restructuring of mathematics pedagogy from traditional lecture toward student-

centered inquiry has prompted investigations into the teacher’s role. A sensitive component of 

this role is how teachers “tell” or convey important mathematical information to their students at 

appropriate times and in appropriate ways. Although the literature has sanctioned certain forms 

of telling, it is missing empirical evidence illustrating variations and key characteristics of 

telling. This qualitative study examined one case of high-quality task-based instruction to 

generate descriptive categories of the teacher’s mathematical telling practices. Mathematical 

telling was defined as teacher discourse that both referred to mathematics and introduced new 

mathematical structure or constraint to the student. The analyses revealed seven types of 

mathematical telling. The teacher utilized these telling types skillfully while supporting students 

working on tasks in collaborative groups. 

Contributions 

 The results of this study provide empirical evidence that mathematical telling is 

compatible with inquiry-based instruction. The telling of mathematical information was an 

integrated part of this teacher’s overall instructional approach. Descriptions and analyses of 

typical excerpts from the classroom support the conclusion that mathematical telling is 

compatible with inquiry and is likely an integral part of student-centered instruction. This 

validates earlier hypotheses that certain ways of telling are a part of the teacher’s role (Baxter & 

Williams, 2010; Chazan & Ball, 1999; Lobato et al., 2005; Smith, 1996) but also greatly 

broadens the range of telling practices viewed as productive or important. This is especially true 

of the more direct and explicit telling types. 

86 
 



 The seven types of mathematical telling, along with their subcategories, constitute a 

framework for understanding more deeply how telling can be recognized in discourse and what 

that telling looks like. This framework answered calls for subtler distinctions between the kinds 

of telling teachers use (Chazan & Ball, 1999) and the kinds of interventions used to support 

collaborative groupwork (Webb, 2009). The prior telling-related frameworks of analytic and 

social scaffolding (Baxter & Williams, 2010) and initiating and eliciting (Lobato et al., 2005) 

established a theoretical basis for productive telling in non-traditional settings. The present study 

extended these frameworks by using empirical data to not just identify but also classify 

discursive telling with unprecedented distinction and precision. The new framework targeted the 

context of teacher interventions with collaborative groups and characterized these interventions 

more carefully than prior constructs. Specifically, the framework classified variations in teacher 

help far beyond the umbrella term of product help (Dekker & Elshout-Mohr, 2004) or Chiu’s 

(2004) numerical scale rating help content from low to high. 

 The methodology of the study introduced a useful approach to study the construct of 

telling. Much of the literature that discussed telling used the term in a loose, intuitive sort of way 

(Baxter & Williams, 2010; Chazan & Ball, 1999). In contrast, Lobato et al. (2005) reformulated 

the theoretical roots of telling, and their work heavily influenced the present study. Their 

reformulation as “initiating” rejected telling as a simple binary construct (did tell or did not) 

based on grammatical form and treated it instead as a spectrum of teacher acts with potential to 

initiate novel ideas. This initiating potential is derived in part from the discourse’s mathematical 

content and structure. The main point of departure between Lobato et al.’s approach and the 

approach used in the present study was the consideration of function. Lobato et al. defined telling 

as a function of discourse based on the perceived role by participants. It would therefore be 
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necessary to examine the intentions of the teacher and interpretations of the student and reconcile 

these when they do not align. Because it is complex in practice to investigate teacher intentions 

and student interpretations for every speech act, the present study attended only to the visible 

content of the discourse, informed by its surrounding context, to create an explanatory account of 

the events. This proved a reliable and practical alternative for identifying discourse that exhibited 

characteristics of telling. 

Implications 

 Theoretical characterizations of inquiry-based instruction must account for the telling acts 

witnessed in this study. Inquiry is not unguided discovery learning with a hands-off teacher; 

instead, inquiry makes use of scaffolding and structure to immerse students in ambitious learning 

activity aligned to particular learning objectives (Hmelo-Silver, Duncan, & Chinn, 2007). 

Mathematical telling is an important part of this structure. The high incidence of telling in this 

study suggests that researchers and teachers should not overlook or ignore the teacher’s 

mathematical telling practices with students. Failure to account for these practices creates 

unrealistic portraits of inquiry and could mislead those who are trying to implement it. 

Acknowledging mathematical telling as a component of inquiry will help teachers be informed 

as they take advantage of discursive patterns that strongly support students’ mathematical 

thinking. 

The seven specific types of mathematical telling are useful for researchers and 

practitioners. Researchers can use the framework in future studies to identify and describe 

teacher telling practices with improved precision. Researchers should no longer overlook subtle 

contributions of information, downplay the presence or influence of implicit mathematical help, 

and ignore explicit telling acts that occur. The field can use the framework to be more descriptive 
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and transparent about teacher telling practices, improving subsequent efforts to characterize the 

teacher’s role and correlate specific telling practices with student learning. Practicing teachers 

can use the framework to help them recognize their own use of telling practices. Teachers with 

reservations about interacting mathematically with students can use the telling framework as a 

potential model for incorporating supportive mathematical interventions. Teachers often need to 

intervene when student activity declines (Henningsen & Stein, 1997), and teachers need not 

confine themselves to an extreme, overly conservative approach for fear of undermining inquiry. 

A final implication is that telling practices should be viewed as one of many available 

instructional tools for creating structure and managing student activity. Because inquiry-based 

instruction makes use of structure to align student activity to worthwhile mathematical learning 

objectives, telling is a natural component of inquiry alongside the launching of tasks. From this 

perspective, the mathematical constraints embedded either within the task or within the teacher’s 

telling practices become somewhat comparable, if not interchangeable. Regardless of whether 

the teacher imposes structure beforehand in the written form of the task or afterward in the verbal 

form of telling, the constraints all work toward the primary objective of managing productive 

student activity. This implication is analogous to an earlier observation made by others; just as 

questions can tell and statements can induce further questions (Lobato et al., 2005; Wood, 1998), 

mathematical tasks can tell and their solutions can induce further tasks or lines of inquiry. This 

perspective mitigates misconceptions about the need to avoid certain forms of discourse just 

because they refer to mathematical ideas from either the task or its solution. The perspective 

defines a learning space in which the mathematical task and its solution are relative to each other 

as they are negotiated between teacher and student.  
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Limitations and Directions for Future Research 

 The first limitation of this study is the small sample size typical of a case study. The case 

examined one teacher from one classroom during part of one semester. The small sample size 

was necessary to avoid data overload and conduct in-depth qualitative analyses. Although it is 

likely that the resulting forms of mathematical telling are shared by other inquiry-based 

teachers, this study does not show how widespread or exhaustive they are. Additional 

research on mathematical telling practices is needed to corroborate, improve, or challenge the 

results of this study based on results in other classrooms.  

 A second limitation is that the study examined only the telling potential of discourse by 

limiting analyses to the expressed content of the discourse itself. No methods were employed to 

ascertain how the participants experienced these telling acts beyond what was visible in the 

discourse. A benefit to this approach is that the resulting telling framework was not undermined 

by the complexities of the participants’ highly subjective interpretations of their experiences. 

However, the drawback is that this study cannot link the observed telling practices with the 

teacher’s instructional goals or the students’ learning outcomes. Future research would need to 

investigate teachers’ awareness of telling in their practice, their purposes for and evaluations of 

that telling, students’ awareness of and reactions to teacher telling, and causal relationships 

between teacher telling and student learning and engagement. 

 A third limitation is that the study examined mathematical telling only in the context of 

teacher interventions with collaborative groups. The study’s objective was to generate a detailed 

and descriptive qualitative framework for telling, and the context of collaborative groups 

appeared most fruitful for this purpose based on literature reviews. Future research can 

investigate mathematical telling practices within whole-class settings and compare and contrast 
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them with the practices in collaborative groups. Research can also investigate how mathematical 

telling practices and other teaching practices interact as integrated parts of the whole teaching 

environment, instead of studying telling practices exclusively. 

 The final limitation is that the results from this study must not be misinterpreted to justify 

the indiscriminate use of telling. Not all telling acts are effective or desirable, and telling may be 

appropriate in some cases but not others. The results from this study explain what did happen in 

one case of high-quality instruction, and not necessarily what should happen. These results were 

likely influenced by the demographics and maturity of the participants, the established 

collaborative norms of this particular classroom, and the mathematical content of the class. Care 

should be exercised in using the results to prescribe practices for teachers in differing contexts. 

For example, it is not necessarily true that the relative frequencies of a teacher’s telling practices 

should resemble those observed in Figure 4. 

Summary 

 Descriptions of the teacher’s role in meeting the new demands of inquiry-based 

instruction have insufficiently attended to the ways teachers tell mathematical information to 

their students. This study systematically investigated telling in discourse to increase 

comprehension of mathematical telling practices used by a skilled inquiry-based teacher. The 

detailed framework of seven telling types and their subcategories increased understanding of 

telling and expanded the repertoire of appropriate moves a teacher might make while intervening 

with collaborative groups. The findings included the recognition and characterization of subtle 

telling, implicit telling, and explicit telling. The data excerpts illustrated the compatibility of 

mathematical telling with the goals of inquiry. These results suggest future characterizations of 

inquiry should be more transparent and precise when discussing teacher telling practices.   
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