Story in Technology Classrooms: Teaching "Why" to Learn "How"

Jeffrey S. Hill
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Film and Media Studies Commons, and the Theatre and Performance Studies Commons

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/etd/4113

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Story in Technology Classrooms: Teaching “Why” to Learn “How”

Jeffrey S. Hill

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Arts

Jeffrey L Parkin, Chair
Sharon Swenson
Darl Larsen

Department of Theatre and Media Arts
Brigham Young University
June 2014

Copyright © 2014 Jeffrey S. Hill
All Rights Reserved
ABSTRACT

Story in Technology Classrooms: Teaching “Why” to Learn “How”

Jeffrey S. Hill
Department of Theatre and Media Arts, BYU
Master of Arts

This qualitative action research project examined the experiences of high school students in a technology education course as they were taught accepted technology education standards in conjunction with storytelling principles through writing and producing their own short films. The data from the project demonstrate that incorporating the principles of storytelling into technology education can be effective in helping students not only become skilled with the tools of technology, but also become media literate and articulate in creative expression.

Keywords: Career and Technical Education, storytelling, media literacy
ACKNOWLEDGMENTS

The successful completion of this thesis would not have been possible without the care and dedication of BYU faculty and staff. Amy Peterson Jensen invited me into the program. As instructors, Amy Peterson Jensen, Sharon Swenson, Dean Duncan, Darl Larsen, and Steve Shumway guided me to my subject of study and to the knowledge necessary for completion. My thesis committee chair and mentor Jeff Parkin never wavered in his belief of my abilities and spent many hours advocating for me. Thesis committee members Sharon Swenson and Darl Larsen openly shared their immense knowledge and wisdom. René Helfert had all the answers and led me through an arduous process.

Chris Andrews and his students at Salem Hills High School allowed me into their classroom with enthusiasm.

Steve Aaron is a friend who would never expect to be acknowledged, but deserves as high a reward as I can afford for his willingness to read and give notes at a moment’s notice without any benefit to himself other than the pleasure of helping a friend succeed.

My partner, Jennie Hill, gives me perspective and purpose, and is the source of my happiness.
TABLE OF CONTENTS

TITLE PAGE ... i
ABSTRACT ... ii
ACKNOWLEDGMENTS ... iii
LIST OF FIGURES ... vi
CHAPTER ONE ... 1
 Introduction ... 1
 History of Technology Education ... 4
 ITEEA and CTE .. 6
 Technology and Storytelling ... 9
 Storytelling ... 13
 Contextual Learning .. 15
 Media Literacy .. 15
 Guidance Gap .. 17
CHAPTER TWO .. 19
 Methodology ... 19
 Qualitative and Action Research ... 19
 Incorporation with my action research project ... 22
 Why story? .. 23
 Story and Career & Technical Education ... 24
 Context and Participants of the Study .. 24
 Procedure .. 27
 Data Collection .. 28
 Data Analysis using Grounded Theory ... 29
 Limitations .. 30
CHAPTER THREE .. 31
 Results ... 31
 Introduction of Focus Group Members ... 32
 Brief Explanation of Assignments .. 33
 Pre-Project Expectations .. 35
 Project Realizations .. 36
 Data ... 37
 The Big Picture .. 58
CHAPTER FOUR ... 60
LIST OF FIGURES

Figure 1 ... 20
Figure 2 ... 21
CHAPTER ONE

Introduction

Each year in the state of Utah over 211,000 students from grades seven through twelve participate in Career & Technical Education¹, or CTE, classes. The mission of CTE “is to provide all students a seamless education system, through competency-based instruction, culminating in certified occupational skills and meaningful employment” (utahcte.org). This process involves helping each student find a profession involving a technical skill and then guiding him or her to develop the necessary skills for an entry-level position in “a wide range of high-wage, high-skill, high-demand careers.” Thus, CTE courses have a strong emphasis on the technical aspects of its 16 “career clusters” (http://www.acteonline.org/cte/#.U5BqlxZLjco). One of these career clusters is Arts, A/V, Technology and Communications.

Because of my love of teaching, my appreciation of storytelling, and my facility with new technologies, it seemed logical for me to teach film. Film is the ideal fusion of storytelling and technology. I am a high school A/V, Technology and Communications CTE teacher, focusing on filmmaking. Like other teachers in this area, I am expected to teach students the technical skills necessary to pass the requisite exam related to careers in this profession. This has proven to be more challenging than expected.

In creating lesson plans based on state-approved filmmaking, A/V, Technology and Communications standards, I have become aware of the fact that CTE standards for secondary video production classes emphasize technological, or “tools”, instruction, without much, if any, focus on storytelling principles that inform the use of those tools. Furthermore, there is little

¹ A glossary of key terms can be found in the appendices as a supplement to the reading.
incorporation of media literacy in this technology instruction (see COURSE STANDARDS in APPENDIX F).

My experience has been that most students enroll in a multimedia class for creative expression, expecting their experience to be similar to an art class where they will learn both expression and technique. Further, for those students who want to be employed in the media industry, their desire is to make artistic contributions to their chosen field and not merely work as technicians. In other words, I have observed that the driving motivation for students taking a video or multimedia class is to develop creatively as well as technically. The current CTE standards in A/V, Technology and Communications focus on only one of these aspects.

While I am not the first CTE teacher in this area to have this realization, it has caused me to wonder whether incorporating principles of storytelling and media literacy into CTE classes would not only help students more effectively acquire the important technology skills required by CTE but also help students learn to use these skills in more meaningful ways. These are the questions I have attempted to answer in this action research project.

The state of Utah requires students to fulfill one credit in a CTE course in order to graduate from high school (http://www.schools.utah.gov/CURR/gradinfo/Home/High-School-Requirements-by-Year.aspx). Since students are required to take a CTE course, students generally choose the elective course that most interests them. Because of the name “elective”, these courses may not be perceived as essential for a student’s education. Therefore, even if students do demonstrate an interest in the subject area, the perception that elective courses don’t matter often causes students not to put forth their best efforts (Ferrer-caja, Weiss: 2002). Furthermore, the majority of Utah high school graduates go on to attend college
(higheredinfo.org), so it could be argued that in the state of Utah, the goal of CTE to prepare students to enter the workforce immediately may be less applicable.

CTE standards require students to learn how to use specific tools of technology, however, they do not require students to learn why to use those tools the way they do. There are no standards for teaching principles of storytelling such as dramatic structure, conflict, characterization, protagonist/antagonist, plot, theme, action and dialogue (http://www.schools.utah.gov/cte/documents/sts/standards/VideoProduction1.pdf). Technology is focused on using the tools of media creation; this action research project seeks to discover what students think about those tools of technology and how learning to use those tools of technology changes when the principles of storytelling and media literacy are added into the technology-focused classroom.

The Panel on Technology Education, et al. in Engineering Education and Practice in the United States: Engineering Technology Education (1985) wrote the following regarding students who tending toward “why” versus those who tend toward the “how”:

Although the overall pool of potential students for engineering and technology programs may appear to be homogeneous, the sensitive counselor will notice some significant differences in aptitude and attitude that emerge to differentiate the two groups of students. Those interested in the ‘why’ rather than the ‘how’ of a technological phenomenon will generally tend toward engineering, as will those who are drawn to the abstract and the theoretical; those who prefer to build and operate what was planned may favor the program in technology.

All secondary education media-related courses fall within the same programs containing technology and engineering courses. Following this model, the “how” of media technology
education includes important tools like cameras and sound recorders to capture media, software applications to edit and manipulate media, and devices to distribute and display media. The “why” for learning and using all of these media-creation tools is storytelling and communicating meaning. However, as discussed above, there are currently no standards found for incorporating storytelling and media literacy principles in classrooms focused on teaching technology.

This qualitative action research project examines the experiences of high school students in a technology education course who were taught current CTE standards in conjunction with media literacy and storytelling principles by writing and producing their own short films. The data from the project demonstrate that incorporating principles of media literacy and storytelling into technology education can be effective not only in helping students better grasp the tools of technology, but also in becoming more articulate in creative expression and the understanding of meaning.

These are principles students need to know both now and for the future. CTE courses help students prepare for the future and my hope is that this study will shed light on ways of more effectively teaching students these important principles (Plank, 2001).

History of Technology Education

Technology Education has an extensive genealogy and has been known by many different names throughout history; this branch of education has been known as Manual Training (1870s), Manual Arts (1890s), and Industrial Arts (1900s-1980s). The foundations of Technology Education can be traced back to individuals like François Rabelais (1490-1553, France) who taught that knowledge is gained through the use of objects and observation of processes. Technology Education emphasizes problem-solving and hands-on learning.
A major change for Technology Education came in 1917 with the passing of The Vocational Education Act. This act promoted the field of agriculture by allotting federal funds to those entering into it. At this point schools began isolating vocational education courses from the rest of the school curriculum in place (Herschbach 1997).

Career and Technical Education (CTE) is a program found in secondary education that assists students in “acquiring critical skills in order to jumpstart their career through occupational skill training, competency testing, and internships (USOE).” CTE is a large umbrella that covers many different areas of study, including:

- Agriculture
- Business
- Economics & Entrepreneurship
- Family & Consumer Sciences
- Health Science
- Information Technology
- Marketing
- Technology & Engineering
- Skilled & Technical Sciences

CTE is a specific and more recent term coined in 2006 when President George W. Bush signed a reauthorization of the Carl D. Perkins Vocational and Technical Education Act of 1984, renaming it the Carl D. Perkins Career and Technical Education Act of 2006 (http://www2.ed.gov/policy/sectech/leg/perkins/index.html?exp=7). Congressman Carl Dewey Perkins supported four Vocational and Technical Education Acts that allocates 5% of state administrative funding for technology preparation, keeping the funds separate from the general
funding given to schools. The Perkins Act provides almost $1.3 billion in federal support for career and technical education programs throughout the United States (https://www.acteonline.org/ctepolicywatch.post.aspx?id=5558&blogid=2289#.UxJaMfRdWVM).

Over time, what is now known as CTE curriculum developed to include the evolution of the technology, the use of technology in both society and industry, and how technology affects and responds to both human needs and wants (http://www.careertech.org/career-technical-education/cte-vision.html). The focus was placed on bio-related technology, communications, production, and transportation.

ITEEA and CTE

The American Industrial Arts Association was established in the year 1939, and later became known as the International Technology and Engineering Education Association, or the ITEEA. The ITEEA made a movement to establish unified standards and heighten Technology Education’s priority in schooling. In 2000, the ITEEA developed the Standards for Technological Literacy for all students, as a basis for the framework of Technology Education. Whereas CTE is isolated to those students interested in going directly into a career or attending a technical college right out of high school, ITEEA’s philosophy is that all students need a base in technology and engineering no matter what field or route of education they pursue (iteea.org).

In 2003, ITEEA created a publication called Advancing Excellence in Technological Literacy. This focused on criteria for assessment, and professional development.

The technology program of a secondary education class will typically follow the model of either Career and Technical Education (CTE) or International Technology and Engineering Education Association (ITEEA).
The mission of CTE is to provide all students a seamless education system, through competency-based instruction, culminating in certified occupational skills and meaningful employment.

ITEEA is the professional organization for technology, innovation, design, and engineering educators. Our mission is to promote technological literacy for all by supporting the teaching of technology.

The significant difference between CTE and ITEEA is that CTE helps each student find a profession and then guides them to develop the necessary skills for an entry-level position whereas ITEEA promotes teaching technology to all students despite their aspirations. CTE is preparing students for the current business environment. ITEEA seeks technological familiarity for all students. While working in a CTE model, this action research project will also be incorporating some ITEEA ideas.

No matter which model a school district adopts, the multimedia classes are focused on teaching students to use the technology tools. Because of the degree of emphasis on “how” students use specific tools, there is little room for instruction on or exploration of “why” one can use the technological tools and how they have been used in the past. Current technology classes focus on how to use a tool, but this study seeks to incorporate why to use a tool.

ITEEA does not have a specific standard for media education. However, they do have one for communication technologies (iteaconnect.org). Three of the standards emphasize design. Although they are referring specifically to design with engineering, the principles can be adapted to media concepts of design.
Most school districts adopting CTE as their program will have media courses listed under the category of business, information technology, or skilled and technical sciences (http://schools.utah.gov/cte/). As stated above, the goal of a CTE classroom is to afford students the opportunity to gain enough hands on experience and instruction to be competent with the basic functions of the tools (machines, software, etc.) deemed necessary for an entry-level position (schools.utah.gov/cte/). The assumption is that if the school can get the student’s “foot in the door” at a business then the employer will take the responsibility from that point forward to continue the technical training. This model of moving up through the ranks of a single employer is certainly applicable in many professions. However, within the film and television industry, the most prominent model for successful employment is entrepreneurship, as work tends to be more on a freelance basis, moving from job to job. Essentially, as one develops connections with other industry professionals and proves his or her expertise in his or her specialty, he or she will most likely get more work opportunities. Thus, in this profession, learning to innovate must be an integral component of the educational experience.

Educators of media producers in technology programs who do not teach and encourage innovation are limiting their students’ future opportunities (Wright, et al. 2013). Innovative thinking, like principles of storytelling and media literacy, is a higher-level skill that requires more than just technical knowledge. With the current curriculum limited to the “point and click” mastery of current technical programs, such as non-linear editing programs (see Course Standards in Appendix), students in the current CTE system of instruction are not being as well prepared as they could be for either higher education or for employing the innovative skills necessary for freelance work. Requiring higher level thinking skills of media literacy and storytelling create obviously more prepared students ready for higher paying, more creative jobs.
The field of media production is highly competitive. If the goal of a CTE course is to adequately prepare students for this job market, then students in media production classes must be taught not just the technical, but the creative, analytical, and collaborative skills necessary to succeed. In the current educational environment, a student signing up for a video production class in the CTE program because she admires a specific filmmaker will actually not be learning about what makes that filmmaker successful. In fact, a filmmaker’s technical abilities have little to do with their storytelling abilities. How well a director knows the keyboard shortcuts in the editing program Final Cut Pro has little impact on the quality or meaning of their stories. This is not to say that admired filmmakers do not understand how to use the technical tools of filmmaking, because technology and filmmaking are inherently inseparable. But technology alone is never the secret of meaningful storytelling; of course in the technology-dependent world of film and video, a powerful story cannot be told without skillful mastery of the technology (McKee, 1997).

Technology and Storytelling

The courses for media analysis and production supported by the Utah State Office of Education (USOE) are Multimedia I: Design and Development, Multimedia II: Production, TV Production I, and TV Production II.

The standards for Television Broadcasting, Video Production I can be found at schools.utah.gov. They are:

- Students will be able to understand and demonstrate the correct operation of the camera.

- Students will be able to understand and demonstrate procedures for recording audio.
• Students will be able to understand and demonstrate knowledge of lighting systems and how they are used.

• Students will be able to understand and demonstrate preproduction.

• Students will be able to understand and demonstrate production.

• Students will be able to understand and demonstrate post production.

• Students will be able to understand and demonstrate the use of visual effects and graphics.

• Students will be able to understand and demonstrate knowledge of the function of various cables and connectors.

• Students will be able to understand and practice copyright laws, ethics and legal issues dealing with photography as identified in United States Code Title 17 Chapter 1 Section 101.

• Students will gain an understanding of Video Production as a profession and will develop professional skills for the workplace.

While these standards are important, they do not include objectives outside of technical proficiency and do not address media messages or their societal influence. The standards for these classes are written to prepare students for an end of the year exam testing vocabulary and ability to manipulate interactive computer applications (USOE, 2009). On their currently constituted level, these courses are limiting students to point and click mastery and denying a more rich experience of comprehension of media as a conveyor of meaning; clicking is not understanding (Livingstone, 2008).

The massive amounts of consumption and production students are already doing is not taken into account by these courses, making the thematic understanding of story that much more
important (Reilly, 1994; Poyntz, 2009). Because all lesson plans begin with a standard and benchmarks, if educators are following the guidelines of these classes strictly, it is currently difficult to have students that are socially responsible media producing and consuming to the desired level (Ranker, 2007).

CTE courses are designed to “prepare students for entry-level positions” by practicing valuable skills, but they leave it up to the students to discover on their own the importance and capabilities of media (USOE, 2009). The students are being taught the concrete elements of media, and the difficult to define and understand abstract elements of media are being ignored. Educators can do more to prepare students for a career by exposing them to ideas and principles of media, as opposed to emphasizing only that which can be learned through practice and instructional tutorials (Wright, et al. 2013).

After a thorough study of technology education classes, Ohler (2008) concluded that technology educators are currently teaching students to do something valuable, but not helping them discover why it is valuable. One difficulty with previous approaches to technology education is the lack of emphasis on the storytelling principles of filmmaking. Students are able to take and manipulate images using tools, but they do not have the necessary foundation of how to tell or read a media story.

Verrall (2006) found that students must first understand the power of media, and then focus on the content and meaning, or what they want to say. A fear or complication of teaching technology separate from theory and analysis is that students will place the emphasis on the tool itself over or perhaps instead of the concept. The tools are there to aid storytelling. New technologies are created because there is a reason for it. We first want to do something, and then we find a way to do it. The story supports everything.
This study was aimed at helping the students to first understand media, and then to use the technology of cameras and software, etc. as they support and allow meaning to be conveyed.

The storytelling principles outlined in the texts *Writing the Short Film* (2005) by Pat Cooper & Ken Dancyger and *Digital Storytelling in the Classroom* (2008) by Jason Ohler were used in this study. The basic principles of storytelling from *Writing the Short Film* are:

- Dramatic Structure
- Conflict
- Characterization (Objective and Obstacles)
- Protagonist and Antagonist
- Plot
- Theme
- Screenplay Formatting
- Action and Dialogue

These texts did not replace the standards set by USOE, but they were used in conjunction with them to create a classroom that was more centered on the abstract concepts of both media literacy and media production.

Instead of spending the beginning and majority of the course on technical vocabulary terms for the parts of the camera and its movement, tutorials for editing software, and/or proper procedures for logging tapes, and then spend the final weeks of the class on a project in which students put into practice the different techniques, the technology was incorporated into storytelling elements. Each lesson plan focused on a principle of storytelling structure and then how technology could be utilized (see lesson schedule appendix).
Students read and responded to media viewed as a class and to other students’ media projects. It was my hope that through engaging with peers, students’ work would improve and students would learn to interact more professionally with others. Each student was to complete a final video and write a paper analyzing their film, demonstrating what they had learned through the phases of production and how their video used the storytelling principles.

All students participated in two group discussions conducted both before and after the project about their individual experiences with media and classroom interaction.

Storytelling

For a visual medium like film, effective the story and its telling must come first. It will then inform all other technical choices such as camera movement, lighting style, editing approach, and so forth (McKee, 1997). In fact, the specific ways the technology is employed further communicates the meaning of the story. A low angle close-up of John Wayne communicates something very different than a high angle wide shot of him. Effective communication requires not only knowing the difference between the camera height and lens type, it also requires understanding what each of those choices means. This is why technology cannot be ignored; it is also why technology must be understood within the context of its role in fulfilling specific narrative and thematic functions. This understanding comes from also receiving an education in principles of storytelling and media literacy in conjunction with the education in technology.

Some CTE instructors may feel like incorporating storytelling principles and media literacy into the curriculum of the technology class is a daunting request. However, in this action research project, I found that it can be a natural extension of what is already taking place. For example, in the current educational approach a video production and television broadcasting
class will often spend the majority of the semester learning how to use a video camera, the
vocabulary of shot selection, various video formats, and how to use a microphone, cables, and
non-linear editing software. The instructor will then assign students to make a short video using
the tools they have been taught. Students have not been taught how to tell a story, but they have
been taught which buttons to push for technical functionality. The assignment requires the use of
certain shots (dolly, pan, zoom, etc.) and instructions on where to upload the finished video.

In this scenario, storytelling is subservient to the purpose of the technology. It is acting
simply as a tool to learn other tools, for example, a project is graded on containing the necessary
dolly, pan, zoom shots NOT on the motivation behind using them. These tools and skills are only
truly valuable as long as students are storytellers first, not second. Exposing students only to the
technical aspects of filmmaking seems to limit them to be dependent on others for creative
direction instead of inspiring them to be creative themselves. A student entering the workforce
with technical and creative skills could be more valuable to a potential employer than one who
only learns the technology. A successful filmmaker is a storyteller that knows how to use
technology to tell a story. For example, knowing how to dolly is only valuable when the meaning
of the story calls for the power of a dolly shot.

It seems strange that storytelling is not already the most imperative standard for
technology classes emphasizing multimedia since storytelling is already used in curricula across
all subjects. It is the application of concepts that makes math and science understandable. I don’t
remember how to do calculus, but I remember that calculus is what I would need in order to
know how much cement to buy to make a koi pond in my backyard. Learning through story
seems to help most of us retain information better than learning for learning’s sake.
Contextual Learning

Livingstone (2008) conducted a study of students’ actual and perceived abilities with technology. CTE has taught strongly that students learn best through hands-on activities, but that does not mean that they learn just by putting their hands on the technology. They may learn the motions, but students need more guidance to develop the understanding.

As part of my teacher education I was asked to demonstrate that I know how to use 3D animation software. I had not done much in 3D animation before. I spent a few hours playing with a program. A friend familiar with that program told me a few shortcuts and explained some of the basics of how the program works. I was given a Duracell AA battery of which I was to create a 3D animation on the computer. I did. It wasn’t too difficult.

About a month later someone creating an animation of a school mascot for a pregame warm-up video approached me for help with the motion graphic. I wasn’t any help. I only knew the very basics. The student was much more advanced than I was.

This experience got me thinking about how I learn as a student. Why didn’t I grasp on to 3D animation and continue with it? This was an instance of being asked to learn something technology related for the sake of learning it. I had usually had a story to tell before.

Media Literacy

Young adults are consuming and producing media at higher rates everyday (Boyd, 2008). As a secondary education teacher, my responsibility is to be aware of the types of media my students are using and how it relates to my classroom. One of the aims of my teaching in this project was to take a step towards creating responsible media consumers and producers.
In a publication from nearly twenty years ago, Reilly points out that students are “reading” and “writing” through video production (1994). Students have experience with media that they can share, and they are coming from homes where media is valued differently (Gee, 2001).

Silverblatt (2001) notes that the National Telemedia Council defines media literacy as the ability to choose, understand, question, evaluate, and respond thoughtfully to media. To be media literate is to consciously engage with media instead of mindlessly consuming it.

Core principles of media literacy education from one of the most authoritative sources, namely NAMLE (The National Association for Media Literacy Education), are:

1. Media Literacy Education requires active inquiry and critical thinking about the messages we receive and create.

2. Media Literacy Education expands the concept of literacy (i.e., reading and writing) to include all forms of media.

3. Media Literacy Education builds and reinforces skills for learners of all ages. Like print literacy, those skills necessitate integrated, interactive, and repeated practice.

4. Media Literacy Education develops informed, reflective and engaged participants essential for a democratic society.

5. Media Literacy Education recognizes that media are a part of culture and function as agents of socialization.

6. Media Literacy Education affirms that people use their individual skills, beliefs and experiences to construct their own meanings from media messages.

Media literacy promotes analytical skills useful in all aspects of one’s life. If a student can learn to think critically about a thirty second commercial, he or she can translate that same critical thinking into other school subjects and life situations. Basic rhetorical analysis increases
the intelligence of students, employees, and citizens, thus raising their own value and the value of the companies and communities in which they participate.

Students who are media literate create more thoughtful, more exact, and more intriguing stories. A student who has considered the ramifications of a 30 second commercial seen during the Super Bowl is more likely to inspect his own work with the same discernment. Therefore, creating stories with great technical skill is not enough. Indeed, media literacy is not just one part—it may be the most important part. Students who take a high school media production course might finish the class and later forget how to write film, but hopefully, because they will be engaging in media the rest of their lives, they will never stop reading film.

Guidance Gap

Many studies have been done wherein patterns of success and/or failure among those with different socioeconomic status, race, and/or gender are reported. One vantage point is that of the “achievement gap,” wherein success and failure are separated and then socioeconomic status, race, and/or gender patterns are reported. Another vantage takes the opposite approach; the “digital divide” separates mostly socioeconomic status and then success and failure patterns are reported. The socioeconomic element of the digital divide points to the access of technology, but it is not always a clear indicator of the achievement gap. Thus a “knowledge gap” has been suggested, pointing out that achievement may have more to do with interpreting and understanding the information to which the digital divide wants everyone to have access.

Instructors of other courses are trying to incorporate media and technology into their students’ educational experiences. A CTE classroom has a different set of issues. While some students might have greater access to better cameras or computers or other types of equipment at home, all students have equal access to equipment in the classroom regardless of socioeconomic
status, race, and/or gender. However, as I’ve indicated above, technology is the only focus of the class content. Often, the teacher is viewed as a quartermaster who should simply instruct on the use of equipment and then check it out to the students. Students might sign up for a technology class in the hopes of getting their hands on a camera and getting a teacher off their backs.

In these situations, there is equipment instruction, but no literacy instruction. It reminds me of the kingdoms in Norton Juster’s *The Phantom Tollbooth*. The kingdom of letters and the kingdom of numbers have been separated, each touting their individual strengths in competition. But, as must be the case, they eventually learn that they are even more powerful when used together. There is great power in technology. There is also great power in story, history and theory. When they join forces, they can be unstoppable. But this requires a concerted effort—most of all by the teacher.

While the concept of media literacy invites most educators to bring technology into their classrooms, media literacy invites technology educators to bring literacy into theirs. Media education shows that technology can help students learn a multitude of scholarly disciplines. Perhaps introducing scholarly literacy into a technology classroom can help solidify technical knowledge of classroom learners. This will also create greater understanding—and thus greater occupational opportunity—for CTE students.
CHAPTER TWO

Methodology

Qualitative and Action Research

The collection and analysis of information received through recorded interactions, observations, and questionnaires are basic elements of qualitative research. Qualitative research requires exploring a situation and organizing received information into meaningful data through descriptive and narrative methods. Because this project explores student behavior in a controlled environment, a descriptive or qualitative approach was a strong fit for my study.

Action research is a specific form of qualitative research (Mills, 2000). It focuses on the analysis of a specific method and uses narrative findings to better one’s efforts in his or her particular field of work. Today action research is, according to Creswell (2008), the most frequently utilized research method within the field of education, due to the fact that it is well suited for the classroom, specifically when ethical issues of testing methods on students might arise, according to Denzin & Lincoln (2005).
Action research can be understood as a cycle of four steps (*Figure 1*). The first step is to reflect on one’s field of work and choose a problem to address. Next is to develop a plan that could rectify the problem that has been identified. Then the plan should be executed (“act”). To observe and gather information about the outcome is the fourth step.

Figure 1
As it is a cycle, many who employ action research will see the next step as returning to the first step with the new knowledge and repeating the process: reflect, plan, act, observe, repeat (Figure 2). This way, practitioners are likely to find continual improvement (Higher Education, 2003).

According to Mills (2000) this process can lead to positive educational change. Creswell (2008) states that for practitioners to truly finish the action research cycle, findings must be shared. This could be among colleagues or through a journal that would publish the research.

Frequently performed by teachers in a classroom setting (McFarland & Stansell, 1993), action research employs qualitative methods to explain academic situations and test the efficacy of a specific hypothesized plan of instruction. This research style seems to fit well into a media technology classroom because of the “flexibility” of course standards. Course standards state what must be taught; rarely do they state how it must be taught.
Stimulating positive change through measured investigation is the goal of action research, specifically within one’s own field of work. Schoolteachers will do a form of action research as each new school year begins. They reflect on and review the previous year’s (and years’) experiences. They plan to reinstate practices that performed well and seek to adjust others that may not have turned out as they had hoped. This informal “tinkering” is usually performed by teachers who enjoy their work (Richards, 2003). When “tinkering” is formalized, true action research can develop.

Incorporation with my action research project

My master’s thesis required a formal research project. I was studying to earn my teaching certificate while going through the master’s program. Taking instructive concepts from my teaching courses and combining them with the media literacy education I was receiving allowed me to create a research project that would meet the thesis requirements and allow me to learn a great deal before fulfilling my student teaching.

I reflected on teaching methods that were effective in my own learning. I wanted to know if there were some technique or approach that would benefit students learning technology. I decided on teaching the “why” of story as a vehicle for learning the “how” of the technology. I structured instruction and coursework so that understanding of story and technology would grow congruently. I had questionnaires for students to fill out before and after the study, and I had the students’ work over the course of the study to review for both their understanding of story and of the course’s technology. Writing about my study and findings will help other CTE instructors decide on useful methods for instruction to employ in their classrooms.
Why story?

When looking at a video production course simply as part of the CTE line of classes, the involvement of story does not seem to jump out as an obvious choice. However, story is frequently used to teach practical concepts. A story in a health class might steer a student away from using drugs. How drugs chemically alter a person’s mind and body is not as important as knowing that the result is negative. A story in a math class can help a student know the return received on a five-year investment. Knowing how to equate interest rates suddenly becomes interesting when it means making money. Video production students are expected to learn the “how” of video technology, but the “why” is mostly neglected from the course standards.

I received permission to perform my research in a class of a current CTE teacher, Chris Andrews. I collaborated with Chris to learn what his students already understood technically up to this point. Their in-class instruction had been heavily focused on the technology standards, so I decided to have the bulk of my lesson plans be story-based. I created a schedule to teach the students dramatic structure, characterization, theme, and so forth with the idea that as technical questions arose they would be addressed.

The basis of my action research was changing the primary instruction focus from “how” to “why,” specifically from technology to story, in order to see whether the technology would be learned more effectively. The work expected of them was no longer a checklist of technical skills, but an expression of something personal accomplished technically. I wanted to know if story would create greater purpose for the students to excel, not to only demonstrate technical ability but analytical and creative thinking.

Would the students be more invested in their work if they had something personal to say in it? Would they exceed the standards of the technology course as they sought to find better
ways of telling stories that truly mattered to them? Would they be more interested to learn the
technical aspects if those aspects were something that might enhance their personal message?
Through the instruction of story, I anticipated the students would be excited to create meaningful
projects, and I wanted them to find the reason for the technical information they would gain in
the class.

Story and Career & Technical Education

Video Production 1 has 10 standards in the state of Utah. The fourth is preproduction.
The first objective in that standard is storytelling. There are two bullet points: “Audience” and
“The three P’s – People, Place, Predicament.” The remaining objectives (which have no sub-
points) are storyboard, shot list, tape preparation, and props & costumes. The state’s standards
are sparse. Teachers can flesh out the bare bones outlined as much as they choose. It is
interesting to note that because video production has moved almost completely to acquiring
images on solid-state cards, “tape preparation” is an outdated standard rarely applicable to actual
practice.

I felt that students would connect to the idea of short form filmmaking and learn the
technological aspects of camera, sound, lights, and so forth as they sought to create their own
works. I wanted my action research to lead students to new levels of technical understanding
through a desire to create instead of a necessity to pass a class or graduate.

Context and Participants of the Study

For this action research project I am the researcher and I am also the classroom instructor.
This project was performed at Salem Hills High School in a CTE Television/Broadcasting class
between October 18th, 2010 and January 7th, 2011.
The course was Chris Andrews’ Video Production 1 class. He agreed to allow me to come to his class to perform this action research project. I had previously received a Bachelor of Arts undergraduate degree in Media Arts from Brigham Young University. I concurrently filled my final requirements to earn my teaching certificate while also enrolled in the Media Education Master’s program at Brigham Young University.

For this action research, eleven students (ten male and one female) in grades 10 through 12, each between fifteen and eighteen years of age, were the subjects of the research. The previous experience, knowledge, and desire of the students varied greatly regarding their personal, academic, and career long- and short-term goals. At the beginning of the action research project, surveys were distributed to students to determine their motivation for taking the class. Results of this survey are detailed in figure 1. The question “Why are you taking TV Production 1?” was asked on the questionnaire. I include their responses here as it helps illustrate the varying experience and desire of the students in the class.
Focus Group Participants

<table>
<thead>
<tr>
<th>Grade</th>
<th>Gender</th>
<th>Why are you taking TV Production 1?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>“Why are you taking TV Production 1?”</td>
</tr>
<tr>
<td>Barry</td>
<td>11</td>
<td>Male</td>
</tr>
<tr>
<td>Wally</td>
<td>12</td>
<td>Male</td>
</tr>
<tr>
<td>Tim</td>
<td>12</td>
<td>Male</td>
</tr>
<tr>
<td>Bruce</td>
<td>12</td>
<td>Male</td>
</tr>
<tr>
<td>Wayne</td>
<td>11</td>
<td>Male</td>
</tr>
<tr>
<td>Dick</td>
<td>11</td>
<td>Male</td>
</tr>
<tr>
<td>Clark</td>
<td>12</td>
<td>Male</td>
</tr>
<tr>
<td>Kent</td>
<td>11</td>
<td>Male</td>
</tr>
<tr>
<td>Hal</td>
<td>12</td>
<td>Male</td>
</tr>
<tr>
<td>Barbara</td>
<td>12</td>
<td>Female</td>
</tr>
<tr>
<td>Kyle</td>
<td>11</td>
<td>Male</td>
</tr>
</tbody>
</table>

*all names given are pseudonyms

Chris Andrews presented the students with the consent forms (see Appendix A), which were created as part of my application to the Brigham Young University Institutional Review Board (IRB). The forms explained the students’ rights and privacy. Their information would be kept confidential. There would be no compensation. There would be no effect on grades, for good or ill, if the students chose to participate or not. It also listed contact information if students or parents had further questions or concerns.
Two forms were given to each student. One form was for students to sign their consent. The other form was for their parents to give their permission for their child to participate, if their child was a minor. The returned forms were kept and filed along with the work the students created over the course of the action research project.

Procedure

The study started by assigning the students to write a short story and produce a short video of that story. Over the course of the study, the students would rewrite the story, adapt the story into a screenplay, and produce a new video of this screenplay. Along the way, intertwined within the learning of the CTE-required technical skills, students were taught basic story principles to use as a guideline for writing and analyzing their own stories, other students’ stories, and the media we encounter every day. Students would also be taught the CTE-required phases of production by taking their own story through each of those phases.

The students were asked to write a story (or find one, as was the case with Barry, who used a short story written by his sister for his project) and make a short film of it. Then the students were taught story elements as part of an extended preproduction phase of planning for remaking their own short videos. Story elements included overviews of dramatic structure and conflict as well as instruction on dramatic Aristotelian elements including characterization, plot, theme, action & dialogue, and music.

About a month was spent on preproduction assignments related to these topics. These assignments included a number of characterization exercises and preproduction visualization exercises, such as: storyboards, set design, color scheme, wardrobe, prop list, and shooting script.

A lot of ideation for instruction came from Bruce Block’s *The Visual Story: Creating the Visual Structure of Film, TV and Digital Media* (2001). In his book, Block explains how the
application of contrast and affinity can help tell story and punctuate emotion. Beyond the screenplay having emotional ups and downs, scenes that are fast or slow-paced, and so forth, the way a story is filmed can enhance its effectiveness. In *The Visual Story*, Block explains the use of space, line and shape, tone, color, movement, rhythm, and then illustrates the use of these elements to create the overall visual structure and emotional impact.

From this point, students were required to do a number of rewrites on their scripts. As the students worked out the visual elements of the story, they also fine-tuned plot and character elements. Making very deliberate decisions in their own process also helps students realize that there are deliberate decisions being made in the media they consume. That awareness creates a greater sense of media literacy for the students.

Students then had two weeks to work in production creating their short films and one week to finish in postproduction. There were mini tech exercises throughout this process, but these three weeks were when the students would really be using the technology.

Data Collection

The beginning of the collection of data coincided with the commencement of the research in October of 2010. Different types of artifacts were collected, discussed, and reviewed throughout the course of the class, but analysis did not take place until after completing my time instructing Chris Andrews’ Video Production 1 class at Salem Hills High School. The Brigham Young University Institutional Review Board required this approach to maintain subjectivity and avoid bias throughout the teaching experience.

One type of artifact collected for analysis was the student-produced videos. Students were asked to turn in their first video project, their reshoot rough cuts and their final edits. Not all students finished all assignments, which will also be a part of the data analysis to follow.
Other artifacts collected were numerous paper assignments that students turned in throughout the preproduction process. These included the students’ plans on how to use differing artistic choices during the shooting process of production (Block, 2001).

There were also questionnaires filled out by students at the beginning and end of the action research project to get their input and gauge their learning and understanding. Not all work is present for all students, but that which was received will be used in the analysis of the action research.

Data Analysis using Grounded Theory

Glaser and Strauss first developed grounded theory in the late 1960s. Strauss and Corbin later refined it in 1990. The idea behind grounded theory is to begin research with questions in mind, but be willing to adapt the research as evidence is gathered. Grounded theory refers to the idea that the research is based in observation and involves a few important analytic strategies, the first of which is open coding (Trochim, 2006). Information is identified, named, and divided into categories by the researcher (Richards, 2003; Borgatti, 2008).

Axial coding follows open coding. Axial coding consists of the researcher identifying subcategories and looking for connections and relationships among them (Richards, 2003). Part of this coding could include looking for relationships between students’ excitement to tell story and their work ethic to achieve what they needed to help that technically. The last step in the coding process is selective coding. One category is chosen as the core category by the researcher. It is the hub to the research narrative around which the rest of the information will relate.

Memo-ing is a step that takes place all along the way. This is the process of making notes to help one organize and remember thoughts as the data analysis takes place. Memo-ing helps the researcher process the information instead of constantly having to face writing the paper.
(Borgatti, 2008). I adopted the approach of grounded theory, coding, and memo-ing as I went through my action research project. This helped me along the way as the plan evolved and in the final process of recording and organizing data.

Limitations

The findings of this action research project are limited in scope in that the research took place with one small group of very specific people and personalities (myself included). Another teacher with another group of students might have a completely different experience from mine. This phenomenological fact cannot be ignored. Also, it is difficult to say if the students’ desires may have been sparked as much with a specific technological task over my approach of storytelling as the core of their work.
CHAPTER THREE

Results

The goal of this action research project was to see if bringing story into technology classrooms would help students become media literate, skilled with the tools of technology, and articulate in creative expression. Media literacy is the ability to choose, understand, question, evaluate, and respond thoughtfully to media (Silverblatt, 2001). To be media literate is to consciously engage with media instead of mindlessly consuming it. To be articulate in creative expression is to meaningfully communicate one’s own artistic ideas. Being skilled with the tools of technology is the focus of the CTE classroom, and thus must be accomplished along with the other goals of this action research project.

While there is crossover among these ideas and goals, I will be highlighting aspects of each individually as I present the results of this action research project. The most effective way I have found to show the progress (or not) of the students throughout the duration of the project is to highlight these three skills mentioned as found (or not) in the chronology of the students’ assignments.

For the purpose of simplifying the navigation of this section, the breakdown will be as follows:

1) Introduction of Focus Group Members
2) Brief Explanation of Assignments
3) Pre-Project Expectations
4) Project Expectations
5) Data – Findings of Each Student by Assignment

Introduction of Focus Group Members

The eleven students* of this focus group don’t present much diversity at first look. All are above average in academics. All are from somewhat similar circumstances. The great separating factor among the students in this action research project ended up being their work ethic (or the lack thereof).

- Barry, grade 11, is a male with the hope of production as a “future career.”
- Wally, grade 12, is a male with an interest to “make more” movies.
- Tim, grade 12, is a male wanting “to be a better filmmaker.”
- Bruce, grade 12, is a male who loves movies.
- Wayne, grade 11, is a male who loves “telling a story.”
- Dick, grade 11, is a male with a desire for media literacy.
- Clark, grade 12, is a male who would like a career in filmmaking.
- Kent, grade 11, is a male interested in “computer editing.”
- Hal, grade 12, is a male interested in “the macs.”
- Barbara, grade 12, is the only female participant of this action research project. Her interest is in marketing and she sees how learning production would help her pursue her interest.
- Kyle, grade 11, is a male who “would like to pursue a career in filming & directing.”

*all names given are pseudonyms

2 Students did not all turn in all of the assignments. While only the assignments that were turned in can be used as artifacts for this action research project, the absence of certain assignments can also be telling.
Brief Explanation of Assignments

Pre Survey

This was a short worksheet with six questions gauging the students’ knowledge and opinions. It was designed to give me basic knowledge of the subjects of the action research project.

Story

After teaching basic story structure, I assigned the students to write a short story. I emphasized that they should tell a story that is important to them. I wanted them to love their stories because they would be working with them for a while. This will be reviewed along with script and rewrites.

First Video

The students were instructed to make a video of their story using the technical knowledge of the classroom equipment. This will be reviewed along with later video assignments.

Hero

Students were taught that their unique perspectives could vary common stories. They were asked to create drawings of the main character of their story, a visualization exercise.

Hero: Part II

Since some students might not be able to draw to the level they might wish, I assigned a second visualization assignment in which the students could compile elements from magazines to create a feel for their main character.

Character

A packet of lots of questions to delve into character, including aspects students had perhaps not yet considered.
Script and Rewrites

Students were asked to write their stories as scripts, with proper formatting. They were in writing groups. They received notes from each other and from me on their work.

Film Comparison

The students were assigned to watch a film that comparable in style or theme to their script. The idea was for them to learn from others; to identify what they enjoyed watching and how they could incorporate that into what they were making themselves.

Preproduction

Storyboard

Storyboards are drawings of each shot the filmmaker visualizes as they do preproduction on their project.

Set Design

Designing what sets will look like in the film.

Color Scheme

Deciding what colors will appear in the film: sets, costumes, etc.

Wardrobe

Character design further visualized through description of clothing.

Prop List

Preparing every needful thing for their shoots.

Shooting Schedule

Planning when to shoot and shooting order.
Crew List

Students list their crew to help them think through who they need on set and to let me know who is involved in more than one project.

Post-Production and Edits

Rough Cut

An edit of the footage the students acquired into a story as cohesive as possible.

Final Cut

Students were encouraged to shoot pickups or reshoot anything that would help convey the story further. Notes from rough cuts were taken into account when creating the final edit.

Final Paper

Students were asked to write about their experience of preproduction, production, and postproduction and to explain their thought process in the decision making process. For my purposes, seeing that they consciously made decisions is far more important than what decisions they actually ended up making.

Post Survey

A worksheet for the students to demonstrate ideas they had learned, opinions they had of the process, etc. for me to get an idea from them of how successful the action research project was.

Pre-Project Expectations

This study uses storytelling in a technology classroom that does not have storytelling as part of the curriculum. In this study, I taught the students selected principles of storytelling and asked them to use the technology to express what they had learned.
I mistakenly went into this project knowing for certain, beyond the shadow of a doubt, that it could be nothing but a success. I remembered what high school video production classes were like: boring. I was going to bring the fun. I love story. I believed everyone interested in filmmaking was interested in story. I figured the students would be eager and anxious to get a true film education instead of the limited tech version they usually get in a high school video production class. I knew all of my energy and enthusiasm would be so contagious that the students would not be able to help but shout “Hallelujah!” at the end of each class period.

I had not taught a high school class for an extended period of time before this. Notwithstanding, I was confident in the lectures and assignments I had prepared—largely because they were based on lectures and assignments I had received and enjoyed in film school.

As I described the direction of the class to the students, they seemed visibly excited. It almost seemed like they were thinking, “our regular teacher is just a teacher, but this guy’s a film school student! Surely we can learn much from him!”

Project Realizations

I had no idea some students wouldn’t enjoy doing their assignments. What I interpreted as excitement to have me as someone students could learn from seemed to actually be excitement that I would be someone students wouldn’t have to listen to. Kent seemed to be particularly excited for the plan I presented, but ended up skipping most of the assignments. Fortunately, some of the students really were excited about my approach and were willing to do the work. The difficulty for me was trying to figure out how to help some of the students care about what we were doing.

If I had given an exam based on CTE standards at the beginning and end of the action research project, I would have been able to better gauge the students’ assimilation of the required
course information. The clearest data to come through from the students is that they increased in media literacy and found greater ways of expressing their creativity.

The exercises in which the students participated during this action research project challenged them to think of aspects of media and filmmaking they had not previously considered. With the limited amount of required instruction from CTE in a video production class, I feel that leading with media literacy and creative expression still left plenty of room for the technical tools to be taught and learned throughout the course of the school year.

Data

Pre-Survey

On Barry’s pre-survey he writes that he is taking TV Production because “it could be a future career.” He shares that the new things he has learned in class up to this point are lighting and Final Cut (Apple’s Non-Linear Editing software program). The rest of his answers are half answers at best; he literally only answers half of the question. Media is interesting to him because it’s “exciting.” He says story is most important to him, but doesn’t say why. He doesn’t explain how he thinks story is executed well.

Wally had enjoyed making movies with his friends, so he signed up for TV Production to do that some more. He says that most of the material in the class was new to him up to this point. While he doesn’t name pre-production, production, and post-production, he writes that his phases are “come up w/ story, film story, edit story.” He says “fun” is the most important thing to him when viewing media; otherwise it would not be “worth [his] time doing it.” He says story is most important, but doesn’t explain how he thinks it’s executed well. He simply implies that a bad story cannot be executed well.
Tim wanted to become “a better filmmaker.” He enjoys special effects and “action films w/ a purpose.” He says 5-20% of the material in class so far has been new to him because he “learned some stuff on audio” and learned more about camera shots and movement. He successfully named the phases of production. He says story is most important to him, but that he likes action, specifically special effects and outer space type films. He affirms that story “is the most essential thing to [a] film.”

Bruce “love[s] movies.” He says “movies, music” make media interesting to him and that 80% of the course so far has been new to him. He names the phases of production accurately. For Colton, “good dialogue and story” are most important to him when viewing media. He adds that “flashy effects suck” and that story ranks “high” along with character, setting and “interesting topic.”

On Wayne’s pre-survey he writes that he signed up for TV Production because he loves “making movies and telling a story.” “The emotion” is what makes media interesting to him. Interestingly, his response to how much material in the course was new up to this point he wrote 90, then 100, then “75% IDNK [I Do Not Know] 100%.” He had “idea, story, script, preproduction, production, postproduction” written for the phases of production, but then erased the first three words. Wayne writes that most important to him when viewing media is that it “makes sense good plot. Good story.” He states that story ranks “#1.”

“I want to learn how to make a good movie and tell a story. Also how to analyze good movies, and what makes good movies good,” was Dick’s reasoning for taking the course. “A great story, an adventure that’s believable and suspenseful and unexpected” is what makes media interesting to him. “Pretty much all of [the material]” was new to him to this point. He successfully named the production phases. He wants media to be “interesting, believable, and
original or funny.” “Story is priority. A good story is mostly believable with just enough of a stretch to make it exciting.”

Clark “wanted to learn more about filming cuz [he wants] a career in it.” He is interested by “the way things are [done] or how you do it.” He doesn’t answer how much of the course was new to him so far. He answers the production phases with “start with writing to storyboarding and then filming it,” then adds the correct answer. Most important to Clark when viewing media is “a lot of the action or comedy.” He doesn’t answer the last question.

Kent wants to “learn how to make film / get familiar w/ computer editing.” “The little information you can convey or how much info” is what makes media interesting to Kent. 95% of the course was new material to this point. Answer for the phases of production: Get an idea, revise/come up with new ideas, film, critics, revise, make better. Kent did not respond to the last two questions.

Hal is taking TV Production for “the macs.” Media is interesting because “it’s how people stay connected, and also celeb influence.” “Most of [the course so far was] not super new, so [he] knew most of it.” The correct phases of production are written to the left, and to the right he wrote “idea – implication into a medium – creation – release.” When viewing media, “music and paint (?) are important.” “Love doesn’t” interest him, “the mind does.” He concludes, “Story is important but good acting is just as.”

Barbara is “interested in” TV Production and feels it “would come extremely in handy” for her planned career in marketing. “The marketing side” of media interests her. The “technical stuff like lighting, cables, angle names” was new to her up to this point in the course. She honestly answers “What are the phases of production?” with “No idea.” She likes humor, but doesn’t like “brainwashing (‘This is what beautiful is.’).” To Barbara “the story is most
important, because without it, it would be images on a screen, nothing more. Make sure people connect to it in some aspect.”

Kyle “would like to pursue a career in filming & directing.” He is interested in “effects, moods, speciality [sic] of movie making.” So far 60% of the course material was new to him, “mostly editing.” His listed production phases are “story, emotion, film, end.” “Storyline, actions, emotion” are important to him when viewing media. Story is “top. It has to be interesting to be interesting.”

I have to imagine that most of the poor answers are partly a result of poorly worded questions. If I had broken up the questions into more questions, more lines, I probably would have gotten better responses from the students. Kent sites a specific technical skill to learn from the class: editing. Hal expressed interest in the computers. The rest of the reasons for the students in the class are bigger ideas than learning a technical skill. This is encouraging to me. The approach focusing on story should resonate with these students.

The students are varied in their previous experience with the technical skills taught in class. The amount of new material taught ranges from 5% to 100%. They do not all know the phases of production, which is to be expected at this point in the process. My hope is that they will learn that there is much that happens before and after the actual filming happens. While there is variance in the students’ tastes, there is a clear correlation through all of their answers that media must engage them in some way. Asking these questions is a first step toward media literacy for many of these students. Thinking about what they enjoy in media seems simple, but will lead to greater thought and discussion as the research continues and should lead the students to expressing their own creative voices.
First Video

Barry’s first video is just over one minute long. There are ten shots total in the piece, one of which seems to be included on accident. He uses an effective pan shot near the beginning of the video to reveal a bottle of poison and a great close-up shot later of the same bottle of poison being hidden in a pocket. There is one jarring jump cut that is very confusing. The protagonist soliloquizes about an antagonistic unseen character that he hopes to kill with poison. At the end we learn he has murdered his goldfish.

Wally’s first video is four minutes and seventeen seconds long. It is filled with terrible dip-to-black edits. There are a total of thirty-two shots in the video. The story is of two men tracking and killing a third man for a mob boss. It consists mostly of shots of people sitting and talking or walking and stalking. There’s not really any character in the piece.

Tim’s first video contains thirteen shots and is just over one and a half minutes long. The story is of a young man who freezes time when he breaks his alarm clock attempting to hit the snooze button. He doesn’t realize it very quickly, but when he does he decides to put shaving cream in someone’s face. In the process he accidentally knocks over another alarm clock that puts time back in motion, thus preventing him from pulling his prank. There are multiple titles explaining the special effects that are not present.

Wayne’s first video is just under three minutes long and is comprised of forty-one shots plus credits. A young man witnesses a kidnapping. He follows the kidnappers to the high school where he saves the girl. Many of the shots are very dark, with the actors disappearing into underexposed blackness.

Dick’s first video is just under three minutes long and is comprised of forty-three shots plus credits. Many of the shots are dark, with light for the actor’s face coming from flashlights.
The story shows a man running from two other men. The antagonists follow the protagonist into a church where he prays and seems to get away to safety. However, a closing title states, “An arrest was made, a jury convinced, an execution set.”

Clark’s first video is fifty seconds long. There are three shots. A negative filter has been applied to the entire film. The first shot is a man approaching and killing an armed man. The second and third shots are the man approaching and killing another armed man.

Bruce, Kent, Hal, Barbara and Kyle did not submit this assignment.

It feels like the seed of most of these videos is the youthful sensibility of “Wouldn’t it be cool if…” Which more often than not undermines meaning. The technical strengths of the students vary across projects. Through lecture and discussion, I hope students will develop their stories into more than mimicry of media they have consumed, and instead create something that is meaningful to each of them.

Hero

Barry drew a stick figure with a superhero logo on his chest. Next to it he wrote, “He has super natural powers.” Wally drew a very detailed character in armor and a cape with a sword and bow and arrows. Tim drew a muscular figure with a superhero logo emblazoned on his chest and belt buckle (just above his super briefs). The face was left blank with the words “YOUR FACE HERE” written inside. Bruce drew the outline of a figure wearing an overcoat. There is the word “invisible” with an arrow pointing at the head outline and “to keep him warm” with an arrow pointing at the overcoat. Wayne drew a simple figure in shirt and pants with the words “courageouse [sic],” “brave,” “spontaious [sic],” “creative,” and “board [sic] → excited, no so sure” nearby. Dick drew a muscular figure with a bronco belt buckle, cowboy hat, star badge, and chaps. Clark drew a stick figure with a thin lightning bolt on his chest and one where each
ear would be. He wrote “he’s so cool…saving people with his speed.” Kent drew a simple figure in shirt and pants with a small dog nearby. He wrote, “He is caring but not going to have all the glory. He has a dog that he has w/ him.”

Hal drew multiple figures, most of which he crossed out with bold x’s. The figures are all in the style of Japanese anime, a muscular male figure with large eyes and tall spiky hair. Near the character he writes lyrics from a song by Linkin Park, “I’m not a robot. I’m not a monkey. I will not dance even if the beat’s funky.” He continues, “Not a pattern, not a leader, not a role model, the pill that I’m on is a tough one to swallow.” “I am the opposite of wack, opposite weak.” Barbara drew the sweetest looking nun I’ve ever seen, complete with habit and halo above her head. She lists the following characteristics to the side of her drawing: selfless, compassionate, understanding, dedicated, loyal, loving, happy, positive. Kyle drew a hooded figure that closely resembles the hero from the video game Assassin’s Creed.

Some of the drawings are recreations of characters these students have found in other media; media they have enjoyed is media they’d like to mimic. Not being much of an artist myself, I’m reluctant to pass judgment on the quality of these drawings: it’s not a drawing class, so the technicalities of this skill aren’t really up for discussion. However, the effort put forth by the students is obvious. Whether the weak efforts from some of the students were a result of laziness or the idea that they cannot draw, I am concerned that students might only give part of their ability or completely give up.

Hero: Part II

Barry uses three images: a nose-ringed man with a streak of bleached blond bangs showing from under jet-black hair, three bottles of wine, and a delicious looking dish of salmon. Wally combines six images: a four-star army general in camouflage, Marty McFly, Usain Bolt, a
Dodge Caliber, flatbread from California Pizza Kitchen, and a tactical army team in action under the heading “Games.” Tim uses three images: an old man and a little girl holding a sparkler together, a grizzly bear, and Mark Zuckerberg. Bruce has a picture of a tall, thin conifer and the words “Complete,” “LIFE,” and “ILLUSTRATED MAN” on his assignment. Wayne has the word “Trapped,” a picture of a bicycle, earbuds, a bookcase, and a grand piano on top of a large picture of a concerned-looking Sam Bradford wearing a The North Face jacket over a University of Oklahoma sweater. Dick combines six images: falling precipitation, a man in a suit looking over his shoulder as he walks away, Steve Buscemi from Boardwalk Empire, hands clasped in prayer, a close-up of city buildings, and Jesus Christ.

Kent and Clark did not complete the assignment.

Hal employs a psychedelic face with jewelry for eyes, a male Gucci model in a pin stripe suit, and a two-headed Bradley Cooper. Barbara has 13 images: a stormy landscape with a dead tree in the foreground, a frightened Renee Zelwegger, a close-up of an eye, Linda Blair in a still frame from The Exorcist, whipped topping, a tattoo that says “poetry,” a frightened Nicole Kidman, an embroidered beta fish, a turntable, a cappuccino, a small dog with oversized pointy ears, a jellyfish, and a smiling Justin Timberlake with devil horns, unibrow, mustache, and drool drawn on his face. Kyle uses six images, two of which are forlorn tennis players. The others consist of a private jet, a sporty car, Lavar Burton as Kunta Kinte in the miniseries Roots based on the novel of the same name by Alex Haley, and a large knife covered in blood.

This is not a technical assignment, but it does require students to repurpose existing media to represent their own creative ideas. The efforts of the participants of this active research project are clearer at this point. Barry and Clark, who both drew stick figures, respectively submitted weak or no assignments. I hold on to some hope for Barry because of his first video,
which holds promise. Bruce and Kent, who both submitted simple drawings, turned in weak or no assignment respectively. Tim and Hal, who turned in okay drawings, turned in mediocre assignments. But based on the quality of their work to this point, I was feeling increasingly confident about the other students.

 Character

 Wally, Tim, Wayne, Dick, Barbara, and Kyle all gave this assignment the required effort. Perhaps Tim is not a visual person, but works better with words. Barry, Bruce, and Clark gave partial effort. Kent and Hal did not complete this assignment. These latter five students were all in the six I had been worried about previously. If they don’t put in the effort on these early and fairly simple projects, I’m concerned they will have no focus throughout the story process and thus fail to learn how and why to use the technology involved in this class to express their own creativity.

 Script and Rewrites

 Barry submitted four versions of his script, which ended up with the title “Fish Out Of Water.” There was marked improvement from his initial script to the first revision. From there the changes were minimal, but Barry definitely seemed to be thinking about all of the specifics of his script. Wally wrote two versions of one script (about gang violence) and then two versions of another script (about a detective). Tim wrote five versions of his script, which had the title “Bathroom Break,” but ended up with the title “Game Time.” There was a lot of thought that went into each revision. There were extreme changes from the first to the second draft, and big changes within each after that. His first draft didn’t have much of a story, but all revolved around the protagonist moving through frozen time. He worked a lot to improve story so that the
technical aspect of frozen time was justified and driven, instead of just being there for its own sake.

Bruce submitted four versions of his script, which ended up with the title “Strange Night.” He had his story in place with the first draft. The following drafts strengthened the form of his content. Wayne is one of the two students from whom I have the original story along with the scripts. He translates his short story to script fairly well. In his revisions of “Dead Zone” he strengthens the obstacles and motivations for the characters. Dick submitted one version of his script. It is actually quite good. Clark submitted one version of his script, “Knight Sold”, which is based on video games. It is not very good. Kent never wrote a script. I gave him one called “Shuttle Ride” to use for shooting. Hal submitted a partial script and then a full script titled “True Vision.” Not much is changed from the partial to the full, but there is substance added. Barbara submitted two versions of her script “Nothing’s Wrong.” I really liked it, but she turned it in quite late. There wasn’t a lot of time for her to work on revisions. It was also lengthy, and I was nervous about her ability to produce such an ambitious project. I let Barbara know that I was supportive of her project and would help her get her script made. Kyle has his original story and about five versions of his script “Contingency.” He grappled with the writing process. He put a lot of work into his script. Unfortunately, he kept changing his main script ideas instead of strengthening any one.

I really pushed for the students to learn and use the appropriate script format; most used CeltX to accomplish this. Students endeavored to express their creativity in their script writing. Along with writing, students had opportunity to expand their media literacy further by reading and reviewing others’ work.
Film Comparison

Tim watched *Click*. He noted how freezing time and the world around the protagonist was similar to his own script. He writes that he needs his “theme to be the most influential and effective part of [his] film.”

Wayne watched Hitchcock’s *Rear Window*. He enjoyed the film and “learned that great character struggle can be because of great realistic dialogue.” He noted that with that idea he went back to working on his script.

Dick watched *The Fugitive*. He studied how to film a chase scene with character’s running and how to pace the editing of such a scene. He learned that “chases are much more interesting if one character has to outsmart the other.” He mentioned slowing down the chase scene, incorporating the idea of contrast discussed from The Visual Story. He also felt his scene would not be so great due to a “pitiful lack of resources.” Dick seems to be the student who got the most out of this assignment by studying the form of the film he chose, not just comparing its content to that of his own story.

Hal watched *Donnie Darko*. He writes that his own film “has a more climactic ending.” He also notes, “The emotions are pretty limited in [his] film.” He is comparing content, but not form.

None of the other students completed this assignment.

I was really hoping the students would put more into this and get more out of it. The idea of comparing form over content must not have gotten through to the students. We had freshly finished the writing process, so content/story was still on the students’ minds. However, moving into preproduction they needed to start focusing on form. Students can find comparable stories to
gauge the possible audience or success of their own stories, but studying form could have helped them make very educated decisions on how to present their stories.

Preproduction

Listing what students did not turn in would take up more room than listing what they did turn in. Barry submitted a short description of his protagonist’s room, a simple color scheme, a list of three props, and the statement that he will film Saturday. Wally submitted a props list. Tim submitted a complete production schedule and detailed props and location lists. Bruce submitted a simple production schedule. Wayne submitted a production schedule, complete storyboards with notes on camera angles and movement, a props list, a wardrobe list, a note on special effects, and a color scheme. Dick submitted a simple production schedule. Clark submitted the simplest production schedule possible (a calendar of the month with a line on one day that reads “Film 3-4 and Edit.”). Hal submitted a production schedule with needed props listed on each day. Kyle submitted a prop list and color scheme.

At this point students moved into the production of their films. Even if they did not turn in all of the preproduction assignments, I am hopeful that they are thinking of more technical and creative elements that can be employed in shooting this project than were used in the first video assignment.

Edits

Barry submitted a rough and a final draft. The final draft omits one shot that was in the rough cut, a decision that strengthens the story and pacing. Barry seems to have done everything on this project himself: writing, acting, directing, editing, etc. While production value is not very high, the story and character are engaging and entertaining. Barry did a good job seeing his idea through to completion.
Wally submitted a rough draft. It is a different story from the one submitted in his first video project. This rough draft is not a complete story, but two very detailed scenes. The total run time is just under five minutes. It is so much more engaging than Wally’s first video. The characters are more believable and feel more real. There are a couple instances of the camera crossing the line of action, but it is not terribly distracting from the story at hand. In fact, Wally’s exploration of ideas in a couple of scenes is quite powerful and accomplished. These scenes are markedly better than his first video.

Tim submitted a rough draft. It is about seven minutes long and has over 140 edits. He finished a final cut which won the high school video competition after the completion of my research in their classroom. Tim’s original idea of freezing time is still in this video but it is now character driven, creating a highly engaging and entertaining short film. Tim learned to create special effects for this video (besides freezing time, he makes a car explode). Tim’s ambitions reflect what I hoped every student would feel as they worked to find ways to tell their stories.

Bruce’s rough draft is seven shots totaling about 45 seconds. It shows a young man waking up, getting dressed, and walking out a door.

Wayne submitted a rough draft that is much better than his first video. He developed a lot of character and plot during our time together. There is much more thought put into production design, wardrobe, props, etc. He seems to have learned from the experience of the first video to avoid shooting scenes in the dark as well. I am glad Wayne didn’t become overwhelmed with decisions to be made, but took it as a great opportunity to do a lot. He expressed disappointment that he had to play a number of characters because he couldn’t get anyone else to do it, but that seems like another good part of the learning process.
Dick submitted a rough draft that is very different from his first video. The first video was a chase for no known reason. This one starts with the protagonist getting his wallet stolen, and then the chase begins. It ends with a laugh as the protagonist catches the thief and says “Alright, nice game! Now it’s my turn to steal.” While the narrative in his final piece is a simple, punch-line idea, at least it has a narrative, which his first piece was lacking.

Clark submitted a rough draft. It is not a full story, but a couple of scenes. The scenes consist of a young man waiting, going to a fast food restaurant to talk to an employee, waiting, and finding the employee dead. There doesn’t seem to have been much thought put into this project.

Kent did not submit a video.

Hal submitted both rough and final drafts. There were not big changes from the rough to the final. During this six-minute video, Hal spends almost two minutes showing the protagonist getting ready for the day and going to school. The next two minutes consist of the main character and his friend passing a note back and forth in class. The last two minutes reveal a surreal montage of what seems to be some sort of internal battle until the protagonist awakes from his dream to find the other person in his room. The protagonist then kills himself. Hal did an acceptable job putting his project together.

Barbara did not submit a video.

Kyle submitted a rough draft. It consists of twenty-five shots, each of which is followed by at least a half second of black. It seems he was going for the feel of a movie trailer, more at the end than at the beginning. The beginning is a man waking up, brushing his teeth, getting dressed, and then getting shot. What follows are a bunch of disjointed shots of the protagonist
attacking people, moving around, and appearing dead. There are even a couple shots of their regular teacher, Chris Andrews.

The CTE-mandated technical skills of camera use, lighting, editing, sound, and so forth, are all apparent in each of the students’ films. But there is something more. Because each project came from an individual student’s own heart and mind, the students are expressing themselves authentically, creatively and purposefully. It is clear in their films that they are making conscious technical and artistic choices to communicate narrative, character and theme.

Final Paper

Wally wanted his main characters to contrast one another, so he put one in dark, formal clothing and the other in light, informal clothing. He made a decision to include a specific prop in the background of a shot that he was very proud of. He says he edited a scene of dialogue awkwardly on purpose to make the scene feel awkward. He writes about reinforcing character change through wardrobe at the end of the film. Tim talked more about his experiences than his decisions. The explanation of the assignment did not get through. He was supposed to write about his decisions in making his film, not his experiences making it. This is another case where I feel there must be a much wider chasm between teenagers and myself than I had ever imagined.

Wayne addresses lots of the decisions he made in the writing process that affected story. He also writes about color scheme choices involving his characters. He adds that a few choices were made quickly on set due to pressures and temperaments. Dick says that this class has made him think of things he had not previously considered and that now “a whole new world of possibilities” is open to him. He discusses his decisions concerning color scheme. He details his decisions regarding camera movement. Then he addresses regrets from production. Hal briefly
comments on decisions regarding clothing, music, dialogue and special effects. The other students did not submit this assignment.

The students who turned in this paper demonstrate an ability to articulate their creative decisions for their filmmaking process. Their discussion of these choices is a great indicator of their media literacy. They understand the thought and effort they put into their films and can recognize and appreciate the thought and effort made by others in their creative endeavors. They have all demonstrated the basic skills of the tools taught in the course.

Post Survey

This section will vary from the student-by-student breakdown and will be broken down by question.

1. Did this unit teach video production any differently than you expected? How was it different?

Barry: This taught story telling and pre-production more.

Wally: Yes; it’s almost as if I worked really hard on the story for a while but I still don’t seem to have the skills to film it the way I want. That or I just thought my film would be better. I don’t know.

Tim: Yes. I was not expecting to go that in depth with storytelling. I didn’t realize how every single thing is planned inside & out. (YES STORYTELLING – I wasn’t expecting that)

Bruce: Yes, I got more information then I expected.

Wayne: We got to focus more on the story and less technical.

Dick: It was very different. I thought we would focus more on filming techniques and camera movements, so how to actually film our movies. Instead we focused on story and how to make a good story. We talked about ways to make your movie structurally good, but we never talked about how to actually film this stuff.
Clark: Yes, I learned more about the writing part of filming.
Kent: Kind of not really a concept a day
Hal: Don’t get your hopes on the script
Barbara: Yes, it was a lot more hands on. Loved it.
Kyle: Ya, it’s a lot more than just getting an idea & going to film whatever.

It seems from these responses that the idea of story got through to the students. There is a sense of media literacy coming through in responses about details and planning everything. There is also a sense of some of the students feeling disappointed that they didn’t spend more time on technicalities. It would be interesting to gauge the students’ basic technical abilities versus their expectations of creating media on the scale of million dollar blockbusters.

2. What percentage of the material taught in this project has been new to you? What concepts/principles?

Barry: 74.7%, story telling, screenplay
Wally: The new programs are, and their formats. I’ve known the concepts of story since 7th grade at least but just knowing the process of a story is not enough. You have to experience trying to make one to understand it.
Tim: 60-70% new (it was sweet!)
Bruce: 90%
Wayne: About 80%
Dick: The story ideas were not new for me. I already new how to make a story, but everything about camera techniques / film techniques that create symbolism in your movie was new. The new part was learning how to tell a story through film instead of paper.
Clark: About 30% cuz I know alot of the stuff except the writing part.
Kent: 99.9% all mostly

Hal: 90% of it was new

Barbara: We’ll go with 95%

Kyle: 67% like everything is chosen, nothing is an accident

The students’ percentage responses vary from 30% (Clark claims already to have known everything but writing) to 99.9% (Kent, who did roughly none of the work during this process).

3. Have any of your opinions on media or production changed through the course of this study? How and why?

Barry: Yes, I look at movies more objectively

Wally: The filming is the hardest and takes forever

Tim: Yes. I know now that I want to study film theory, instead of the technical aspect of film.

Bruce: Yes, I have a better understanding of how movies are made and how to make them.

Wayne: Yes. I have come to realize how much work goes into all media and how much depth is in everything.

Dick: Yes. I have become so much more interested in film now that I have learned a lot about film techniques and can analyze the films I watch. I rewinded a part of a recent movie so I could watch how they timed the cuts to catch me off guard when an attacker came out.

Clark: um I enjoy it more

Kent: not really I still see it the same

Hal: I see why they do stuff in movies. It’s really annoying.

Barbara: Yes, I catch everything now. I’ve been turned into a critic.

Kyle: It’s harder yet more fun with all the aspects it takes to find the right set of ideas.
The students give very positive responses (except Clark and Kent, who underperformed). Hal’s response that seeing why certain choices are made in films is “really annoying” is my favorite response. He has become more media literate, whether he’s happy about it or not. Overall, the students were excited about the new level of understanding they reached going through the process of this action research project.

4. If the principal approached you today and asked you to make a video about the school for incoming freshmen, what principles or skills from this unit would you use in that production, and what would you not use? Would the video be any different if you were asked this before or after this project?

Barry: I wouldn’t really use the pre-production as much, because that is a different project

Wally: Probably not different before this unit. I would try to make an exciting story.

Tim: I would use storytelling a lot. I wouldn’t use fiction, but I would make sure I have a “school colors only” color palette [sic], and just spend a ton of time planning.

Bruce: I’d use a script and a screenplay. Yes it would.

Wayne: Using color to show emotion & character. Planning tools that I have learned about schedules. Yes I probably would have went out and just did it but now I would plan with ideas, execute them and help it tell the story.

Dick: I would write a script before I shot anything. I would have a storyboard, even if it was just in my head. I would know what I wanted my actors to wear and I would use the camera, not the actors, to tell the story.

Clark:

Kent: Planning, long term planning, probably you would have a better understanding
Hal: I would tell him no, because I hate making movies now. But if I did, I would use skills to lie and make high school look fun. After this class it would’ve been better.

Barbara: It’d be better because I know a ton more about what goes into production.

Kyle: Yes, especially after. There would be alot [sic] more dynamic effects in order to get the complete point across.

Most students gave the answer I was hoping for, that their project would be better after having gone through this process with me. Hal again shows that the fun of movies has been taken from him and that all media is a lie to present whatever concept the creator wishes.

5. Tell me about the production phases. What are they? What more do you know or understand about the phases of production that you did not before this unit?

Barry: I now know how to write screenplays and what to think about before filming.

Wally: Figure out story/topic then write script – rewrite and rewrite then come up with visual “helps” to show colors, camera angle, etc. Film. Edit. Reshoot. Edit.

Tim: Pre-production: A ton! 75% of the film! Production: Filming can be super stressful. Post-production: I love editing.

Bruce: Pre-production, production, post-production

Wayne: Pre-production, production, post-production – I learned about how much you write your script & how much you prepare.

Dick: 70% is preproduction. Write a story, write a script, visualize it, decide who your characters are, how they live, how they dress, what wallpaper they have in their house, what they have in the bathroom, etc. Then you actually film it. Then you edit it.

Clark:

Kent: Pre-production, production, post – what they are and more detail
Hal: Pre-production, production, post-production – That’s all I know

Barbara: I do not know.

Even if the students don’t name preproduction, production, and postproduction, they seem to understand the idea of putting a lot of thought into filmmaking. Barbara’s response, while truthful, is upsetting to me. Perhaps differently wording the question or the repeated classroom instruction of the answer would have been helpful to her.

6. If you could only name one thing or if you had to sum it up in one word or phrase, what did you learn during this unit?

Barry: Pre-production

Wally: Story.

Tim: How to tell a story on film.

Bruce: Film.

Wayne: Create (On the back of his sheet he wrote “I wish I had even more time to focus on it.”)

Dick: Everything is planned. There are no accidents in film.

Clark:

Kent: learning

Hal: Character development

Barbara: That work ethic is important. Ha. (On the back of her sheet she wrote “I needed more time to film, and maybe while we were creating our story if it was stressed to remember your resources that might’ve helped. Though I really enjoyed the activities building up to creating characters. Also I enjoyed the fun facts walking in.”)

Kyle: How to make a movie, the correct way.
I find myself focusing on the negative, the lack of response from students. Clark left the second half of his questionnaire blank. I wonder what might have helped reach Clark and Kent better. The constant challenge of every teacher is to reach out and help the one (or two). As I continue in my career as a teacher I hope to find better ways of doing this.

The Big Picture

Overall my interpretation of the students’ responses is positive. Working through preproduction assignments allowed students the opportunity to experience at least an idea of what goes into the creation of media they might consume or create. Those students who did not complete these assignments or try as hard on them seemed to understand the amount of work it would take, so while they didn’t perform the work they could at least understand the work to be done. Understanding how much effort and thought are put into media seems to be a large part of media literacy. Realizing a person or people put thought and effort into creating something can lead the consumer to put thought and effort into their consumption of it. This realization for the students was one of my highest hopes and firmest focuses. In class we watched lots of film scenes and making-of examples that helped the students appreciate the scope of feature film production. These students demonstrated an increased awareness and understanding of the effort that can and should be put forth by producers and, in turn, consumers of media.

It seemed that students motivated by a story about which they were passionate at the beginning of the course were able to see their projects through as their stories and their artistic visions solidified. Other students found their story along the way and were able to hone in on their visions, just at a later point in the schedule than the first students. Still other students seemed to fall by the wayside, as the work to do outweighed their passion for telling their stories.
There was also the chance that students were motivated by grades. Barry would get most of his assignments done on time; not always with his best effort but more for a check mark.

The basic tools of technology seemed to be understood by all of the students. None seemed to be overburdened by the task of a panning shot, for example. Some students chose stories that required technological knowledge that went well beyond the requirements of the class. Kyle and I had many conversations about how to do fight scenes, explosions, and other action genre elements. It seemed to be too much for him to finish in the time we had, so Kyle did not turn in a final draft of his video. On the other hand, Tim’s story which freezes time led him to learn tricks in production and post to create the effects of a temporal halt. It seemed some students tried to find a story to be passionate about that wouldn’t require technical abilities beyond what they could already do. Tim’s dedication to his story and his efforts to educate himself on advanced film making techniques was very admirable. It was his story that lead him to learn that advanced technology.
CHAPTER FOUR

Discussion

This qualitative action research project examined the experiences of high school students in a technology education course as they were taught accepted technology education standards in conjunction with storytelling principles through writing and producing their own short films. The data from the project demonstrate that incorporating the principles of storytelling into technology education can be effective in helping students not only become skilled with the tools of technology, but also become media literate and articulate in creative expression.

Incorporating story into a technology classroom holds great potential for CTE instructors. If a student signs up for a video production class with only an interest in camera, for example, he may become more interested in other technological tools as he finds the need to use them in his storytelling. With instruction in story students will learn the technology required of the course standards, but they may also become more literate in the analysis and creation of digital media.

This action research project shows that students willing to put in the work were able to learn technical skills through focus on storytelling techniques. These students also became more media literate. Unfortunately not all students put forth the effort required to fully synthesize technology and story, but it seems that even these students became more media literate through this experience.

Promoting the class as both a storytelling class and a technology class could attract different types of students, interested in one, the other, or both. It is very possible this project could have worked backwards as well: find storytellers and writers and give them a new medium to tell their stories. Instead of only inviting students interested in using cameras to join the class,
students who enjoy creative writing could be encouraged to enroll and then learn technology to
tell their stories with a new medium.

Many educators introduce technology into their classrooms as a new way to promote
literacy. Core curriculum classes (e.g. English, Social Studies) often use "making a video" as a
way to engage students in a different and fun way. CTE students who have the skill to complete
these assignments on a higher level are even more excited about these types of projects because
they have a venue to show off their skill.

Technology educators can and should bring literacy into their classrooms. The
 technological standards for CTE courses are simple and straightforward. Incorporating literacy
 and story into the curriculum will create more work for the teacher. It will be harder, but for the
students who invest in their learning it will be a much more enriching experience.

One important element of adding storytelling into a video production class that has not
yet been addressed fully is intrinsic motivation. Intrinsic motivation is a motivation that would
come from within the students as they are personally invested in telling their stories instead of
being externally motivated by grades, prizes, etc. Students need to be excited about the story.
One way this was done in this project was having students find films that inspired their projects
and how they were related. The films they found could have been related by plot,
cinematography, editing style, or any other number of ways. This gave them a moment to stop
and consider what they like or which filmmaker they want to emulate.

As an educator, a common conversation to encourage students to analyze film is to ask
them about a movie they like and then ask them why they like it. Students usually respond with a
simple response of “It’s cool,” or “It’s funny.” When the student is asked what makes that movie
cool or funny, they usually respond that they don’t know. One of the goals of media literacy is to
help students be able to answer this question. There is lasting power in students to be able to see something, recognize that they like it, and then go beyond that to recognize why they like it and be able to articulate those ideas on paper and express them in the films they make.

It is important to encourage students to watch and learn from all great films whether they are blockbusters or independent films. Students might get overwhelmed if they only see examples in class of big budget ones like Christopher Nolan's Batman films that respectively cost 150 million, 185 million, and 250 million dollars to produce (IMDB.com). Showing Nolan's short film “Doodlebug,” about a guy trying to catch something scurrying around his apartment, shows the dark style of Nolan and the obsessive nature of his characters without requiring a multimillion-dollar budget.

It seems that students in this project were able to increase in their understanding of the production and consumption of media. One of my favorite responses from the students’ final assessments was Hal’s response about how his media viewing has changed: “I see why they do stuff in movies. It’s really annoying.” It is unfortunate that he finds this annoying, but perhaps this may be because he was moving from a state of ignorance-is-bliss to knowledge is power. It was fun to see the personalities of the students they worked to express themselves. Encouraging them seemed to energize some students, helping them to tell the stories they were passionate about in the best ways possible. Unfortunately there were a couple of students who (perhaps as some teenagers tend to do) seemed to react adversely to feedback or encouragement or help and who then pulled away. In the end, nearly all of the students understood the basic technical tools of video production, but it was particularly rewarding to see students who became excited about the endless possibilities of film and went above and beyond the basic course expectations to work with more sophisticated tools to tell their stories.
Much of this action research project has raised questions to explore as I continue to learn and grow as an educator. Is there enough time to teach fully all story elements in a video production class? This action research project was limited in its time. Perhaps that contributed to some students not fully engaging.

After one year of incorporating story into the technology classroom, what would registration for the following year look like? Maybe the number of students interested in the approach would change, if not the kinds of students enrolling.

Adding storytelling and media literacy to a technical classroom will require more effort from educators than focusing solely on the technology. As teachers, should we focus only on the state approved standards, or can we find ways to incorporate additional elements that we know will help students develop a future career in the field we teach? It seems that most students will rise to the challenges we present them. Many new ways of teaching and learning are waiting to be explored, and I look forward to rising to that challenge and learning from others who do the same.
APPENDIX A

GLOSSARY

Action research – A form of qualitative research that focuses on the analysis of a specific method and uses narrative findings to better one’s efforts in his or her particular field of work.

Career & Technical Education – CTE is designed “to provide all students a seamless education system, from public education to post-secondary education…through competency-based instruction, culminating in essential life skills, certified occupational skills, and meaningful employment.

Dramatic structure – Dramatic structure refers to how a story is organized, with possible elements including exposition, rising action, climax, falling action, and resolution.

International Technology and Engineering Education Association – ITEEA “is the professional organization for technology, innovation, design, and engineering educators. [Their] mission is to promote technological literacy for all by supporting the teaching of technology and engineering and promoting the professionalism of those engaged in these pursuits. ITEEA strengthens the profession through leadership, professional development, membership services, publications, and classroom activities.”

Media – “The main means of mass communication (esp. television, radio, newspapers, and the Internet) regarded collectively.”

Media literacy – “Media literacy is a repertoire of competencies that enable people to analyze, evaluate, and create messages in a wide variety of media modes, genres, and formats.”

Multimedia – “The use of a variety of artistic or communicative media.”

Qualitative research – The collection and analysis of information received through recorded interactions, observations, questionnaires, etc.

Secondary education – “Education beyond the elementary grades; provided by a high school or college preparatory school.”

Technology – “The application of scientific knowledge for practical purposes, esp. in industry.”

Tool – “A device or implement, esp. one held in the hand, used to carry out a particular function.”
APPENDIX B

Name:
Date:

Why are you taking TV Production I?

What makes media interesting to you?

What percentage of the material taught in the course so far has been new to you? What concepts/principles?

What are the phases of production?

When viewing media, what is most important to you? What interests or doesn’t interest you?

Where does story rank and how is it done well or poorly?

END OF QUESTIONS – We will discuss what is below after completing the questions.

Frank Daniel - The essential elements of “a good story well told” are:
 1) The story is about somebody with whom we have some empathy.
 2) This somebody wants something very badly.
 3) This something is difficult, but possible to do, get, or achieve.
 4) The story is told for maximum emotional impact and audience participation in the proceedings.
 5) The story must come to a satisfactory ending (which does not necessarily mean a happy ending).
APPENDIX C

Name & Date:

Did this unit teach video production any differently than you expected? How was it different?

What percentage of the material taught in this project has been new to you? What concepts/principles?

Have any of your opinions on media or production changed through the course of the study? How and why?

If the principal approached you today and asked you to make a video about the school for incoming freshmen, what principles or skills from this unit would you use in that production, and what would you not use? Would the video be any different if you were asked this before or after the project?

Tell me about the production phases. What are they? What more do you know or understand about the phases of production that you did not before this unit?

If you could only name one thing or if you had to sum it up in one word or phrase, what did you learn during this unit?
APPENDIX D

FEEDBACK BY: ________________ TITLE OF SCRIPT: ________________

1. What is your overall reaction to the script?

2. What is the message, or theme, of this story?

3. Using as few words as possible, what did the main character want?

 Be specific:

 4. Describe one of the characters. How do you know that? What more do you want to know about that character?

5. My favorite part(s) were:

6. My least favorite part(s) were:

7. What, if any, parts of the story were confusing?

8. What, if anything, could make this story better?
<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Subject</th>
<th>Assigned</th>
<th>Due</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 26, 2010</td>
<td>Tuesday</td>
<td>Group Discussion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 28, 2010</td>
<td>Thursday</td>
<td>Dramatic Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 2, 2010</td>
<td>Tuesday</td>
<td>Conflict</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 4, 2010</td>
<td>Thursday</td>
<td>Feedback</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 8, 2010</td>
<td>Monday</td>
<td>Characterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 10, 2010</td>
<td>Wednesday</td>
<td>Formatting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 12, 2010</td>
<td>Friday</td>
<td>Protagonist and Antagonist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 16, 2010</td>
<td>Tuesday</td>
<td>Plot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 18, 2010</td>
<td>Thursday</td>
<td>Theme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 22, 2010</td>
<td>Monday</td>
<td>Action and Dialogue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 29, 2010</td>
<td>Monday</td>
<td>Music</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 1, 2010</td>
<td>Wednesday</td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 3, 2010</td>
<td>Friday</td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 7, 2010</td>
<td>Tuesday</td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 9, 2010</td>
<td>Thursday</td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 13, 2010</td>
<td>Monday</td>
<td>Editing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 15, 2010</td>
<td>Wednesday</td>
<td>Editing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 17, 2010</td>
<td>Friday</td>
<td>Editing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 21, 2010</td>
<td>Tuesday</td>
<td>Group Discussion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TELEVISION
BROADCASTING
Video Production 1

This course is designed to provide students with the basic knowledge and skills related to the television production industry. Includes instruction and hands-on assignments in the following areas: Camera operation, recording audio, lighting systems, pre-production, production, post-production, visual effects and graphics, and copyright laws.

USD8
7/14/2009
VIDEO PRODUCTION 1

Levels: Grades 10-12
Credit: Minimum 0.5 credits
CIP Code: 10.0203
11 Digit Code: 40-03-00-00-030
11 Digit CE Code: 40-03-00-13-030
Test #: 592
License: CTE/Secondary
Endorsement: Television Broadcasting
Prerequisite: None

COURSE DESCRIPTION
This course is designed to provide students with the basic knowledge and skills related to the television production industry. Includes instruction and hands-on assignments in the following areas: Camera operation, recording audio, lighting systems, pre-production, production, post-production, visual effects and graphics, and copyright laws.

CORE STANDARDS, OBJECTIVES, AND INDICATORS

STANDARD 1
Students will be able to understand and demonstrate the correct operation of the camera.

Objective 1: Basic parts of a camera
a. CCD/CMTS
b. Lens
c. Body
d. Viewfinder.

Objective 2: Camera movements
a. Pan
b. Truck
c. Dolly
d. Arc
e. Pedestal
f. Tilt

Objective 3: Picture composition
a. Rule of thirds
b. Nose room
c. Headroom
d. Lead room
e. Crossing the line
f. Aspect Ratio Selection
g. Interlaced
h. Progressive

Objective 4: Shot selections

Last Revised: 28 July 2011
a. Wide or long shot (LS)
b. Medium shot (MS)
c. Close up shot (CU)
d. Extreme close up shot (ECU)
e. Over-the-shoulder shot (O/S)
f. Cross shot (XS)

Objective 5: Camera operation
a. Focus
b. White balance
c. Setting the iris
d. Depth of field

Objective 6: Camera Support
a. Tripod
b. Monopod

STANDARD 2
Students will be able to understand and demonstrate procedures for recording audio.

Objective 1: Microphone
a. Pickup patterns
 - Omnidirectional
 - Unidirectional
 - Bidirectional
 - Cardioid
 - Hypercardioid
b. Transducers
 - Dynamic
 - Condenser
 - Ribbon
c. Microphone types
 - Lavaliere
 - Hand (stick)
 - Shotgun/Boom
 - Camera
d. Connectors
 - XLR
 - Mini (1/8”)
 - Phone (1/4”)
 - USB

Objective 2: Ambience
a. Definition of ambience
b. Natural Sound (NATS)
c. Controlling NATS

STANDARD 3
Students will be able to understand and demonstrate knowledge of lighting systems and how they are used.
Objective 1: Principles of Lighting
 a. Triangle or three-point lighting
 b. Key (spot)
 c. Back or halo (spot)
 d. Fill (flood)

Objective 2: Lighting instruments
 a. Spot (direct)
 b. Flood (diffused)
 c. Barn doors

Objective 3: Lighting situations
 a. Base lighting
 b. Chroma key
 c. Silhouette
 d. Falloff

STANDARD 4
Students will be able to understand and demonstrate preproduction.

Objective 1: Storytelling.
 a. Audience.
 b. The three P’s – People, Place, Predicament.

Objective 2: Storyboard.

Objective 3: Shot list.

Objective 4: Tape preparation.

Objective 5: Preps and costumes.

STANDARD 5
Students will be able to understand and demonstrate production.

Objective 1: Crew responsibilities.
 a. Director.
 b. Camera operator.
 c. Talent.

STANDARD 6
Students will be able to understand and demonstrate post production.

Objective 1: Logging

Objective 2: Editing
 a. Time code
 b. Titles
 c. Transitions
 d. Countdowns
e. Sound tracks
f. Timeline
g. Jump cut
h. Cut-to-the-beat

Objective 3: Television standards
a. NTSC
b. PAL
c. High definition vs standard definition
d. Aspect ratio
e. Frames per second (fps).

STANDARD 7
Students will be able to understand and demonstrate the use of visual effects and graphics.

Objective 1: Visual effects
a. Chroma key
b. Animation

Objective 2: Graphics
a. Text
b. Fonts
c. Colors (readability)
d. Title safe area
e. Lower Third

STANDARD 8
Students will be able to understand and demonstrate knowledge of the function of various cables and connectors.

Objective 1: Short-run video connections (S-video, RCA [phono], firewire [ieee 1394], HDMI)

Objective 2: Long-run video connections (BNC)

Objective 3: Connectors that can also be used for audio (RCA [phono], firewire [ieee 1394], HDMI, BNC)

Objective 4: Professional audio connectors (XLR)

Objective 5: Other audio Connectors (1/4” phone plugs, 1/8” mini plugs)

Objective 6: Adaptors (avoid where possible)

STANDARD 9
Students will be able to understand and practice copyright laws, ethics and legal issues dealing with photography as identified in United States Code Title 17 Chapter 1 Section 101.

Objective 1: Define copyright.
Objective 2: Other definitions
a. Audiovisual works.
b. Computer program.
c. Copies.
d. Copyright owner.
e. Digital transmission.
f. Financial gain.
g. Pictorial, graphic, and sculptural works.
h. Work of visual art.

Objective 3: Students will practice ethics and rules governing photojournalism (i.e. Editorial content must not be changed).

Objective 4: Students will practice correct usage of copyright laws (i.e. the right to reproduce, manipulate, distribute, plagiarize or exhibit another photographer’s work outside of fair use provisions).
 a. Time limitations.
 b. Portion limitations.
 c. Text material.
 d. Illustrations and photographs.
 e. Copying and distribution limitations.

Objective 5: Students will demonstrate understanding of ethics related to social and legal issues in subject choice (i.e. model releases, image appropriateness, and cultural sensitivity).

STANDARD 10
Students will gain an understanding of Video Production as a profession and will develop professional skills for the workplace.

Objective 1: As a participating member of the SkillsUSA student organization complete the SkillsUSA Level 1 Professional Development Program.
 a. Complete a self-assessment inventory and identify individual learning styles.
 c. Determine individual time-management skills.
 d. Define future occupations.
 e. Define awareness of cultural diversity and equity issues.
 f. Recognize the benefits of conducting a community service project.
 g. Demonstrate effective communication skills with others.
 h. Participate in a shadowing activity.
 i. Identify components of an employment portfolio.
 j. Explore what is ethical in the workplace or school.
 k. Demonstrate proficiency in program competencies.
 l. Explore what is ethical in the workplace or school.
 • State the SkillsUSA motto.
 • State the SkillsUSA creed.
 • Learn the SkillsUSA colors.
 • Describe the official SkillsUSA dress.
 • Describe the procedure for becoming a SkillsUSA officer.
Objective 2: Understand the use of drawings in architectural design and how those drawings relate to career opportunities.

Objective 3: Display a professional attitude toward the instructor and peers.

* SkillsUSA PDP requirements - recommended

Reilly, B. (1994). Composing with Images: A Study of High School Video Producers. University of California, Berkley, Division of Language and Literacy, School of Education. ERDS.

