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Figure 2-2: Ribbon diagram of hen egg white lysozyme (PDB ID: 1DPX) [55, 78] 
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Figure 2-3: Hydrolytic mechanism of lysozyme. The glycosidic C—O bond between sugar residues 
bound to sites B and C is cleaved, as indicated by the arrow. The hydrolytic reaction is also shown. 
Mur2Ac is N-acetylmuramic acid; GlcNAc, N-acetylglucosamine. RO— represents a lactyl (lactic 
acid) group; —NAc and AcN—, an N-acetyl group. 
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2.4 Rapid protein production 

Use of linear expression templates (LETs) has made the process of protein expression 

using CFPS rapid by eliminating the need for the time consuming process of DNA cloning [79]. 

LETs speed up the process of elucidating gene function with rapid synthesis of proteins and 

demonstrate their efficacy when multiple proteins are to be expressed in parallel. Furthermore, 

they can be easily integrated in automated systems [80]. Generally, a drop in protein yield has 

been observed when LETs are used instead of circular DNA plasmids. However, the time 

efficiency gained with LETs more than compensates for the drop in protein yield. 

The endogenous nucleases present in the cell extract used for CFPS degrade LETs. Lee et 

al. reported the stabilization of functional mRNAs from LETs by use of polyguanine chain at the 

3’ end of the mRNA [81]. Another attempt at improving protein yields with LETs was directed 

at eliminating the factors that had negative effect on the functional mRNA in the cell-free 

reaction mix. This was achieved by the use of cell strain containing mutation to inhibit the 

mRNA degradation activity of the RNase E [82, 83]. Recently, small molecule inhibitors of 

RecBCD have been discovered and were employed to improve the protein yield in our CFPS 

system [84]. 
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3 STREAMLINED EXTRACT PREPARATION FOR ESCHERICHIA COLI-BASED 
CELL-FREE PROTEIN SYNTHESIS BY SONICATION OR BEAD VORTEX 
MIXING 

3.1 Introduction 

Cell-free protein synthesis (CFPS) enables direct control and optimization of protein 

synthesis by performing the reaction in a test tube wherein the transcription, translation, and 

protein folding machinery provided by cell extract are combined with energy sources to catalyze 

the synthesis of only the target protein. Hence, viable cell extract is a vital constituent of 

effective cell-free reactions and cell lysis is a key unit operation in cell extract preparation. Due 

to the superior control and direct engineering that CFPS affords over protein synthesis, many 

independent researchers have developed, simplified and optimized CFPS reactions and cell-

extract preparation procedures [9, 59, 71-73, 85-89]. However, methods for high yielding E. coli-

based CFPS still require specialized cell lysis equipment resulting in a significant capital 

investment. In this work, we assess the use of cell lysis techniques with common biotechnology 

equipment requiring a smaller capital investment to prepare viable E. coli-based CFPS extract. 

CFPS is an open system devoid of a membrane barrier and thus allows for manifold 

manipulations of the system, including adjustment of energy, cofactors, and genetic template 

concentrations, as well as the cell extract itself. For example, different energy sources such as 

phosphoenolpyruvate [66], phosphocreatine [61, 90], glucose [15, 16], and fructose-1,6 

bisphosphate [67] have been successfully incorporated into CFPS and E. coli central metabolism 

and oxidative phosphorylation have been activated [18, 69]. Additionally, polymerase chain 
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reaction-generated linear DNA templates have been incorporated in CFPS [36, 56, 57]. To 

enable more scientist and engineers to reap the benefits offered by CFPS, a simple, robust, 

convenient, and high-yielding cell extract preparation method is needed. 

The E. coli-based system is the least expensive, the highest yielding, and the most time 

efficient CFPS system [91]. coli extract preparation protocol for CFPS dates back to a protocol 

from Nirenberg in 1963 [89] which was further modified by Zubay [86] and Pratt [87]. More 

recently, Kigawa et al. [72], Liu et al. [9], Kim et al. [59], and Yang et al. [71] have sought to 

streamline the extract preparation protocol. Kim et al. [59] eliminated unnecessary steps and 

reduced the reagent cost and processing time for extract preparation by 80% when compared to 

the protocol established by Pratt [87]. In addition, Kigawa et al. [72] and Yang et al. [71] have 

reported the use of shake flask fermentation to simplify the cell growth. Kim et al. [59] also 

reported the use of the commercial BL21 (DE3) strain (Invitrogen, Carlsbad, CA) to overexpress 

the T7 RNA polymerase during cell extract preparation and eliminate the need to add 

independently purified T7 RNA polymerase to the CFPS reaction as required by other protocols 

[9, 71, 72]. More recently, the same research lab reported the use of a BL21 Star™ (DE3) 

(Invitrogen) containing mRNA stabilizing mutation and is used in this work [92]. Figure 3-1 

provides an overview of these developments. As shown in Figure 3-1, all of the aforementioned 

protocols use a specialized bead mill or high pressure homogenizer for cell disruption, requiring 

a significant capital investment before research labs can assess the efficacy of E. coli-based 

CFPS for their protein of interest or application. 

Most of the results and analysis reported in this chapter are published in the September 

2012 issue of the peer-reviewed journal Biotechniques [74]. 
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Figure 3-1: Schematic comparison of different extract preparation methods. These methods were developed over the last 50 years. 
Methods with a star by the cell strain require the addition of independently purified RNA polymerase to the final CFPS reaction. The 
bead vortexing and sonication methods are reported in this paper. 
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3.2 Materials and methods 

3.2.1 Shake flask cell culture 

Cell growth for extract preparation was performed using BL21 Star™ (DE3) cells 

harboring the pEVOL-pPrF plasmid [93] in a 2.5 L baffled tunair flasks (IBI Scientific, Peosta, 

IA). Cells were cultured at 37 oC with 280 rpm in an Innova™ 4300 Incubator Shaker (New 

Burnswick Scientific, Enfield, CT). The fermentation was performed with and without the 

presence of 100 mM 3-morpholinopropanesulfonic acid (MOPS) in 2x yeast extract and tryptone 

growth media (2xYT). The fermentations were induced with 1 mM isopropyl β-D-1-

thiogalactopyranoside and 0.02 % (w/v) L-arabinose at an optical density (OD600) of 0.6. Cells 

were harvested at mid to late logarithmic growth phase at an OD600 of 2.7 to 3.8, 4 h after the 

induction by centrifugation at 8000 rpm in Sorvall RC® 6 plus Superspeed centrifuge (Thermo 

Scientific, Waltham, MA) at 4 oC for 30 min. Cells were then washed by suspending in 10 mL 

ice-cold buffer A (10 mM Tris base, 14 mM magnesium acetate, 60 mM potassium glutamate, 

and 1 mM dithiothreitol) per gram of cell and centrifuged at 6000 rpm in Sorvall RC® 6 plus 

Superspeed centrifuge at 4 °C for 30 min and subsequently resuspended in 1 mL ice-cold buffer 

A per gram of cell in preparation for cell lysis. Finally, the cell suspension was flash frozen in 

liquid nitrogen and stored at -80 oC prior to lysis. 

3.2.2 Cell lysis and extract preparation 

High pressure homogenization: Thawed cell suspensions were lysed with 3 passes 

through an Avestin Emulsiflex-B15 French press-style high pressure homogenizer (Avestin, Inc. 

Ottawa, ON, Canada) at 24,000 psi with sample cooling for a 1 min in an ice-water bath after the 

second pass. The lysate was centrifuged at 12,000 g for 10 min at 4 oC and the pellet was 
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3.2.5 Protein concentration calibration curve 

The standards of sfGFP were prepared by performing CFPS reactions with PANOxSP 

energy system with 5.25 µM L-[U-14C] Leucine [43]. The reaction was incubated at 37 oC for 3 

hr. After incubation, the reaction mixture was diluted 20, 50, and 100 times in Ultrapure water 

(Thermo Scientific). Total sfGFP concentration in the original reaction mixture and the three 

diluted reaction mixtures was determined using Trichloroacetic acid insoluble radioactivity assay 

in conjunction with Ecolume™ liquid scintillation cocktail (MP Biomedicals, Solon, OH) and 

Beckman Coulter LS 6500 Multipurpose Scintillation Counter (Beckman Coulter, Brea, CA) 

according to a previously described protocol [97]. Corresponding fluorescence of the diluted 

samples was measured as described in section 3.2.4. A linear correlation between fluorescence 

and sfGFP concentration was obtained. The red circles represent the experimental data, while the 

black line represents the linear regression (Figure 3-2). 

To calculate protein yields from CFPS reactions using the calibration curve, 15 µL of 

CFPS reaction product was diluted four fold by adding 45 µL Ultrapure water (Thermo 

Scientific) and the fluorescent reading was taken as described in the materials and methods 

section. The linear calibration curve was then used to correlate the fluorescence value to the 

active sfGFP concentration. 
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equipment has been regularly used for protein purification [102, 103], DNA extraction [104], 

cell-free extract preparation [72, 105], and lipid extraction [106]. 

Initial attempts with bead vortexing were performed with 10%, 20%, 50%, and 80% w/v 

bead. Of the different combinations, only the bead concentration recommended by the 

manufacturer (80% w/v bead to cell-buffer ratio) produced a significant amount of protein 

(results not shown), and was therefore chosen for further experiments. Also, cell lysates obtained 

by bead vortexing were observed to have a higher viscosity and 2 centrifugation steps of 30 min 

each were required to adequately clarify the lysate. The protein yield obtained with extract 

prepared by cycling between bead vortexing and cooling in ice-water resulted in lower protein 

production yields and higher extract-to-extract variability (Figure 3-6 and Figure 3-7) as 

compared to protein production yields from extracts prepared by high pressure homogenization 

and 10+ min of sonication. 

 

 

 
Figure 3-6: Variability of extract prepared using bead vortexing. A) Bead vortexing was performed 
by cycling 1 min of vortexing and 1 min cooling in an ice-water bath. B) Bead vortexing was 
performed by cycling 10 min of continuous vortexing and 1 min of cooling in an ice-water bath. 
Lines on each graph represent CFPS extracts created from the same E. coli-cell aliquot on the 
same day. The error bars represent standard deviation of sfGFP production from triplicate CFPS 
experiments using the extract. 
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4.2.3 Reaction mix and protein yield determination 

Phosphoenolpyruvate (PEP), E. coli tRNA mixture, creatine phosphate (CP), and creatine 

kinase (CK) were purchased from Roche Molecular Biochemicals (Indianapolis, IN) and L-[U-

14C] Leucine was purchased from PerkinElmer Inc. (Waltham, MA). All other reagents were 

purchased from Sigma-Aldrich (St. Louis, MO). All reagents were used without further 

purification. para-propargyloxyphenylalanine (pPa) was synthesized and characterized as 

described previously [4]. The following energy systems were used in this work: (1) PANOxSP 

[127], (2) simplified PANOx (PANOx*) [128, 129], (3) creatine phosphate (CP) [68], glucose 

[15], (4) fructose 1,6-bisphosphate (F1,6BP) [67], and (5) high glutamate salt. The detailed 

reaction compositions at the beginning of the reaction are listed in Table A 2 in the appendix 

section. Plasmid based reactions were performed with sfGFP plasmid encoding for super folder 

green fluorescent protein (sfGFP) and sfGFP-T216UAA plasmid encoding for sfGFP with pPa 

incorporated at position 216 (pPaGFP) [4]. 

Protein yield was determined using a linearly correlated calibration curve between 

fluorescence measurement and protein concentration as described in the section 3.2.5. 

4.2.4 Pre-CFPS amino acylation of tRNA 

Prior to the CFPS reaction setup, 𝑀𝑗tRNACUA
Tyr  was purified from the cell extract used for 

catalyzing CFPS using Direct-zol™ RNA Miniprep (Zymo Research Corporation, Irvine, CA) or 

TRIzol RNA extraction method (Invitrogen, Carlsbad, CA). The purified tRNA was 

aminoacylated in a 6x 𝑀𝑗tRNACUA
Tyr  solution with the following components: 6x purified 

𝑀𝑗tRNACUA
Tyr  (e.g. 40 ng/μL for CFPS requiring 6.67 ng/μL), 12 mg/mL 𝑀𝑗TyrRSpPa, 0.5 mM 

pPa, 10 mM magnesium glutamate, 30 mM potassium glutamate, 0.5 mM dithiothreitol, and 8 
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mM ATP [130, 131]. The reactions were incubated at 47 oC or 80 oC for 30 min to allow amino 

acylation of the 𝑀𝑗tRNACUA
Tyr  with pPa. Following this incubation period, CFPS reactions were 

performed with the appropriate amount of pre-charged 𝑀𝑗tRNACUA
Tyr  solution using the 

PANOxSP energy system described previously in section 4.2.3. 

4.3 Results and discussion 

In this work, we capitalize on the open environment provided by CFPS and optimize the 

reaction for site-specific incorporation of pPa in sfGFP. Additionally, we have shown that 

addition of in vitro amino acylated tRNA in CFPS results in a higher yield of proteins containing 

UAA. These two external additives also manifest the benefits of openness provided by cell-free 

system. Furthermore, protein with UAA was produced at a lower cost with different alternative 

energy sources. Using this setup, we compare the traditional ATP regeneration system 

PANOxSP [127] with alternative energy sources such as glucose [15, 16], simplified PANOx* 

[128, 129], creatine phosphate [68], high glutamate salt system, and fructose 1,6-bisphosphate 

[67] without the use of expensive cofactors like nucleoside triphosphates. Furthermore, we have 

demonstrated the use of LETs for rapid and improved yield for production of proteins with site-

specifically inserted UAA. 
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4.3.1 Optimization of cell-free reaction for pPa incorporation 

This work transfers the technology developed by Schultz and coworkers to the CFPS 

system and site-specifically incorporates pPa in sfGFP [53, 132]. In this method, suppressor 

tRNAs are amino acylated with the desired UAA and expressed in CFPS system with the DNA 

of interest. Since the reaction is dependent on the tRNA and the synthetase, optimization of the 

tRNA and the synthetase concentration is necessary for effective reaction. 

4.3.2 Dependence on tRNA and synthetase 

Since the synthetase charges the tRNA with pPa, the efficiency of pPa incorporation 

should be dependent on their relative concentration. For efficient pPa incorporation, the 

concentration of pPa charged 𝑀𝑗tRNACUA
Tyr  must be sufficient in quantity to compete with release 

factor 1 (RF1) for the amber stop codon [133]. Since the CFPS system is an open system, it 

enables relatively fast optimization and precise control of the tRNA and the synthetase 

concentration. Therefore, the effect of 𝑀𝑗tRNACUA
Tyr  and 𝑀𝑗TyrRSpPaconcentration on pPa 

incorporation was determined. Without additional 𝑀𝑗tRNACUA
Tyr  and 𝑀𝑗TyrRSpPa, in vitro 

incorporation of pPa was modest with total yield at 39 µg/mL. Therefore, additional 𝑀𝑗tRNACUA
Tyr  

and 𝑀𝑗TyrRSpPa were purified and added to the CFPS reaction to determine if higher 

concentrations of 𝑀𝑗tRNACUA 
Tyr  and 𝑀𝑗TyrRSpPa would result in higher incorporation of pPa. As 

shown in Figure 4-1, when 𝑀𝑗TyrRSpPa was increased without additional 𝑀𝑗tRNACUA 
Tyr  (at 0 

ng/µL) increase in pPaGFP yield was observed. This increment was observed only to a certain 

extent after which inhibitory effect was seen. Similar increment in pPaGFP yield was also 

observed at moderate level (10 ng/µL) and higher (20 ng/µL) level of 𝑀𝑗tRNACUA 
Tyr . With two-

factor ANOVA test, it was concluded that additional 𝑀𝑗TyrRSpPa had a statistically significant 
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effect on the pPa incorporation (P-value = 0.000303, criteria P-value < 0.05) while the effect of 

additional tRNA was statistically insignificant (P-value = 0.316, criteria P-value > 0.05). 

Therefore, tRNA was not added for further experiments in this work while 𝑀𝑗TyrRSpPa was 

purified and added. 

 

 

 

Figure 4-1: pPaGFP production at different tRNA and synthetase concentration. The error bar 
represents the standard deviation of three replicates of plasmid based reactions. tRNA and 
synthetase are reported in ng/µL and mg/mL unit. The efficiency represents the percentage ratio of 
pPaGFP to sfGFP yield at the same condition. 
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4.3.3 Pre-CFPS amino acylation of tRNA 

For site-specifically incorporating pPa in sfGFP, the 𝑀𝑗tRNACUA
Tyr  needs to be acylated 

with pPa. Furthermore, this acylated tRNA must compete with RF1 for incorporation or 

termination of the peptide at the amber stop codon, respectively. At the beginning of the CFPS 

reaction, the population of pPa charged 𝑀𝑗tRNACUA
Tyr  available is low since pPa is not added to 

the cell culture during extract preparation. Also, the addition of pPa during extract preparation is 

unlikely to result in higher incorporation as it has limited transport across the cell wall [4]. 

Furthermore, the 𝑀𝑗tRNACUA
Tyr  is from an extreme thermophilic archea Methanocaldococcus 

jannaschii that grows optimally at 85 oC [134] while the reaction occurs at 30 oC, potentially 

slowing the kinetics of pPa acylation to 𝑀𝑗tRNACUA
Tyr in a standard CFPS reaction. To circumvent 

the problem of insufficient pPa acylated 𝑀𝑗tRNACUA
Tyr  availability at the beginning of the reaction, 

in vitro acylation was performed at 47 oC and 80 oC. Elevated temperatures were chosen to 

potentially enhance the activity of the 𝑀𝑗TyrRSpPa as it is natively found in an extreme 

thermophile. In our test, in vitro acylation at both 47 oC and 80 oC resulted in higher 

incorporation of pPa in sfGFP. Addition of in vitro acylated 𝑀𝑗tRNACUA
Tyr  appears to increase the 

concentration of pPa charged 𝑀𝑗tRNACUA
Tyr  at the initiation of transcription and translation, 

resulting in almost double pPaGFP yields (Figure 4-2). Although the precharging of the 

𝑀𝑗tRNACUA
Tyr  with pPa increases yields, it comes at high time and labor cost. Producing and 

purifying the essential tRNA takes multiple days and more specialized chemicals and equipment. 

Furthermore, the tRNA should be pre-charged directly before the CFPS reaction. This pre-

reaction effort diminishes the stream-line potential of the LET system and reduces the potential 

for high-throughput analysis. 
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Figure 4-2: Effect of precharging on CFPS yield. The in vitro acylation was performed with the 
specified amount of tRNA, synthetase, 0.08 mM pPa, 1.67 mM magnesium glutamate, 5 mM 
potassium glutamate, 0.08 mM DTT and 1.33 mM ATP for 30 min at 47 oC and 80 oC prior to 
addition to the CFPS reaction. The error bar represents the standard deviation of three replicates 
of plasmid based reactions. tRNA and MjpPaRS are reported in ng/µL and mg/mL unit. The 
efficiency represents the percentage ratio of pPaGFP to sfGFP yield at the same condition. 
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reduced the cost of sfGFP and pPaGFP production by 81% and 78% respectively. To explore the 

economic side of the unnatural amino acid incorporation, other energy sources including creatine 

phosphate [61, 68], glucose [15, 16], fructose 1,6-bisphosphate [67], and high glutamate salt 

system were used without expensive cofactors such as acetyl coenzyme A, synthetic tRNA, and 

NTPs. For cost determination, the prices for reagents were obtained from the 2012 online 

catalogues of Roche Molecular Biochemical and Sigma-Aldrich. The cost determination 

excludes the cost of human labor. Figure 4-3 shows the protein yields with different energy 

sources and the cost of production of 100 microgram of active sfGFP and pPaGFP respectively. 

 

 

 

Figure 4-3: Protein production with different energy systems. The darker shade represents the 
sfGFP whereas the lighter shade represents the pPaGFP yields. The table in the inset represents the 
cost of producing mg of sfGFP and pPaGFP using the different energy system. The error bars 
represent the standard deviation of three replicates of the plasmid based reactions. 
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The total protein yield with glucose is lower than with the standard system. However, 

owing to the fact that glucose is incomparably inexpensive than PEP, it is more economical when 

cost per gram of protein produced is determined. The cost of energy source for the standard 

PANOxSP system is around 52% of the total cost whereas for the glucose system, the energy 

cost is only 0.23%. Cost breakdown of different components in PANOxSP and glucose system is 

shown in Figure 4-4. From the figure, it can be observed that for pPa incorporation, the major 

cost of PANOxSP system is the energy while the major expense in glucose system is the plasmid 

preparation. 

 

 

 

Figure 4-4: Cost break down of plasmid catalyzed CFPS. The pie chart represents A) PANOxSP 
and B) glucose energized CFPS to produce 100 µg of pPaGFP. The total CFPS cost is provided at 
the top of the figures. The sizes of the graphs are normalized to its absolute cost. 

 

 

$0.79 $0.01
$0.43

$2.42

$0.04

$7.13

$2.59

$1.17

NTPsCofactors NTPs

tRNA

NTPs

Plasmid

PEP

Cell extract Amino acids

NTPs

Salts

$0.002 $0.030 $0.006
$0.001

$0.030

$0.351

$0.238

Plasmid

Cofactors

Glucose

Cell extract

Amino acids NMPs Salts

A                                                                    B                    
Total cost: $ 1.458 Total cost: $ 0.658



 

60 

4.3.5 Linear expression templates 

Although the use of linear expression templates (LET) eliminates the need for time 

consuming and labor intensive DNA cloning; a drop in protein yields has typically been 

observed when employing linear DNA in lieu of circular plasmids. However, there are cases 

where comparable or even greater yields have been observed [92]. Even when a drop in 

production yield is observed, the time efficiency and high-throughput capability compensate for 

the loss in yield. The drop in yield has been attributed to the deterioration of LET by 

exonucleases present in the cell extract. One major class of exonuclease that degrades LET is 

RecBCD [120, 121]. 

Recently, Amundsen et al. have reported the screening of small RecBCD enzyme 

inhibiting molecules [84]. Among different molecules screened, molecules CID 697851 (IC50 of 

33 µM) and CID 1517823 (IC50 of 5.1 µM) from chemical classes cyanothiophene and 

pyrimidopyridone were used for this work. The compounds were first dissolved in DMSO and 

appropriate dilutions for CFPS reactions were made in DI-water. CFPS reaction was performed 

with or without the inhibiting reagents. Presence of these compounds improved production yields 

as much as 220% for pPaGFP produced with LET (Figure 4-5). A corresponding yield 

enhancement was not observed when expressing sfGFP using LETs (Figure A 1 in the 

appendix). While studying the kinetics of synthesis of these two proteins, ~80% of total sfGFP 

was synthesized in the first three hours while only half of pPaGFP was synthesized in the first 

three hours (Figure 4-7A). This could have led to the pronounced effect on pPaGFP yield by the 

inhibitor molecules as they could potentially inhibit RecBCD effectively for longer time. 
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Figure 4-5: LET based pPaGFP yield with RecBCD inhibiting molecules. The control reaction 
represents reaction without any addition of inhibitory molecules. The error bars represent the 
standard deviation of three experiments. 

 

 

Figure 4-6 shows the cost breakdown of reaction components in LET catalyzed CFPS 
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Figure 4-6: Cost break down of LET catalyzed CFPS. The pie chart represents A) PANOxSP and 
B) glucose energized CFPS to produce 100 µg of pPaGFP. The total CFPS cost is provided at the 
top of the figures. The cost calculation doesn’t include the cost of the inhibiting reagents. The sizes 
of the graphs are normalized to its absolute cost. 
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Figure 4-7: CFPS kinetics using LETs and yield from restriction digested plasmids. A) Kinetics of 
sfGFP and pPaGFP synthesis using LET as genetic template. The circle data points represent the 
sfGFP while the diamond data points represent the pPaGFP. The error bars represent the standard 
deviation of duplicate experiments. B) Protein yield from restriction digested plasmids. The dark 
bar represents the sfGFP while the light bar represents the pPaGFP. The control reaction 
represents the reaction with circular plasmid. The error bar represents the standard deviation of 
three experiments. 

4.4 Conclusions 
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addition, LETs can be prepared in 3 - 5 h compared to plasmids which take days to prepare. In 

this work, we demonstrate increment in the yield of proteins with unnatural amino acid using 

PCR-amplified linear DNA by inhibition of the RecBCD exonuclease by addition of small 

molecule inhibitors in the CFPS reaction. Further developments of such a system could 

significantly impact biocatalysis, pharmaceutical, and medical diagnostic applications.

 Most of the results and analysis reported in this chapter and in the appendix are

published in the peer-reviewed journal New Biotechnology. Reference: Shrestha, P., M.T.

Smith, and B.C. Bundy, Cell-free unnatural amino acid incorporation with alternative energy

systems and linear expression templates. New Biotechnology, 2013. http://dx.doi.org/10/1016/

j.nbt.2013.09.002.
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The objectives of this research were to engineer high-yielding cell-free extracts in an 

economical way and to improve protein production using PCR amplified linear DNA templates 

at lowered cost in an E. coli-based cell-free system. To achieve that goal, common cell growth 

and cell lysis techniques were employed as discussed in chapter 3. The chapter discussed 

different methods and previous research at simplifying the extract preparation procedure. To 

simplify and make the technology transferrable, cell growth was performed in shake flasks 

instead of high density fermenters and simpler cell lysis techniques were employed for cell lysis. 

Among various methods employed in this work, sonication was the most reliable cell lysis 

technique in terms of the ease, yield and ability to process lower sample volume. In chapter 4, 

challenges associated with LETs in cell-free were discussed followed by a potential solution to 

the degradation of LETs by RecBCD. In this work, improved yield of proteins with UAA was 

achieved by use of RecBCD inhibiting reagents. 

Initially, this work focused on developing cell extracts for cell-free research. Preliminary 

work with different lysis techniques identified sonication and bead vortexing as promising 

candidates for E. coli-based cell extracts. The main challenges associated with using these two 

techniques were sample heating, extract to extract variation in yield, and lower yields associated 

with the extract. The initial protocols used to lyse cells using these techniques and variations in 

extract performance are discussed in chapter 3. To solve the problem of sample heating, the vial 
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containing cells were immersed in ice-water bath during sonication. During bead vortex mixing, 

the sample vial was cooled periodically in ice-water bath. Further work with these two 

techniques helped achieve higher yield with the extracts prepared. Consistently high yields were 

achieved by longer sonication and vortexing time. This increment in time had greater impact on 

improving the yield with sonication. The simple growth and lysis technique are economically 

sound and has great usefulness in making the technology transferable. To highlight the progress, 

the use of sonicator and vortexer for cell lysis for high yielding extract production can be 

considered as a technical milestone in the area of extract preparation. 

Chapter 4 discussed the advantages of LETs in cell-free work and the current challenges 

associated with it. In this work, higher yield with protein with UAA in LET catalyzed CFPS was 

achieved by the addition of in vitro pPa acylated tRNAs. The addition of in vitro acylated tRNA 

resulted in double pPaGFP yields. The addition of in vitro acylated tRNAs increases the bias of 

stop codon to act as a codon for pPa incorporation rather than to act as a stop codon and truncate 

the protein. Additionally, improved yield with LETs for pPa incorporation was achieved using 

RecBCD inhibiting reagents. Use of these reagents resulted in 220% increment in the pPaGFP 

yield. Additionally, different energy source were employed in this work to reduce the cost of 

production of pPaGFP. 

This work offers two main advancements in the field of cell-free work. The first 

advancement is the technical renaissance in cell extract preparation as demonstrated by the use of 

sonicator and bead vortexer for cell lysis. The second advancement demonstrated by this work is 

the inhibition of RecBCD enzyme that has deleterious effect in CFPS. These improvements and 

optimizations can further help in higher protein expression in CFPS. 
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5.2 Future work 

The method employed in this work for cell extract preparation and improved protein 

yield with LETs can have transformative effect on CFPS as it allows for rapid testing of cell 

extracts and rapid protein synthesis using LETs. This work was successful in using a sonicator 

and bead vortexer for cell extract preparation and in achieving higher yield with LET-based 

CFPS. 

Further opportunities in cell extract preparation include optimization of (1) enzymatic 

lysis and (2) freeze-thaw for cell extract preparation. Additionally, these techniques can be 

expanded for yeast cell and insect cells as well. The successful implementation of these 

techniques might require careful optimization of lysis buffer among many other factors. The 

work with LETs can be furthered optimized for higher yields with proteins with multiple UAA 

incorporation. This work focused on protein yield with UAA incorporation at one site. UAAs 

incorporation at multiple sites results in dramatic drop in full length protein yield. This is another 

challenging problem that requires further work. Cell extract devoid of release factor 1 might be 

useful for this work. Furthermore, new energy sources can be developed for energizing cell-free 

reactions. For instance, cellulose which is universally available can be used for energizing cell-

free reactions. The use of cellulose will require extract with cellulase or external addition of the 

enzyme to break down the cellulose. 

There have been great advancements in CFPS and it has been used for myriads of 

applications. The development of economical cell extract preparation techniques and improved 

yield with LETs as performed in this thesis work will help many researchers reap the benefit of 

cell-free and establish cell free as a strong platform for laboratory scale protein research. 
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APPENDIX 

Table A 1: Approximate cost of cell lysis equipment discussed in this work. 

Equipment Price [$] Manufacturer Source 
High pressure 
homogenizers 

10,000 – 35,000 Avestin, Inc. Personal communication. 
04/26/2012 

Bead mill 10,000 – 40,000 Yasui Kikai Corp. and 
Omni International, Inc. 

Personal communication, 
04/26/2012 and 06/27/2012 

Sonicator 3000 - 4500 Sonics and Materials, 
Inc. 

Catalogue, 05/07/2012 

Vortex-Genie 
2* 

350 Scientific Industries, 
Inc. 

Online listing by Scientific 
Industries at 
http://www.scientificindustries.c
om/genie2.html, 06/29/2012 
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Figure A 1: sfGFP yield with RecBCD inhibiting molecules at different concentration. The control 
reaction represents reaction without any addition of inhibitory molecules. The error bars represent 
the standard deviation of three experiments. 
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Table A 2: Different energy system used in this work. 

 

Constituents 
PANOxSP 
[127] 

PANOx* 
[128, 129] 

CP/CK 
[68] 

Glucose 
[15, 16] 

F1,6BP 
[67] 

High glutamate 
salt Unit 

PEP 33.33 66 - - - - mM 
Creatine phosphate - - 66 - - - mM 
Creatine kinase - - 3.2 - - - µg/mL 
Glucose - - - 66 - - mM 
Fructose 1,6-bisphosphate - - - - 66 - mM 
Magnesium glutamate 10 - - - - - mM 
Magnesium acetate - 16 16 - 8 20 mM 
Ammonium acetate - 80 80 80 80 80 mM 
Ammonium glutamate 10 - - - - - mM 
Potassium Glutamate 175 90 90 90 90 260 mM 
Potassium Oxalate 2.7 - - - - 2 mM 
Potassium phosphate 

 
- - - - - 32 mM 

Diaminobutane 1 - - - - - mM 
Spermidine Stock 1.5 - - - - - mM 
NAD 0.33 0.33 0.33 0.33 0.33 0.33 mM 
CoA 0.27 - - - - - mM 
ATP 1.2 - - - - - mM 
CTP 0.86 - - - - - mM 
GTP 0.86 - - - - - mM 
UTP 0.86 - - - - - mM 
AMP - 1.2 1.2 1.2 1.2 1.2 mM 
CMP - 0.85 0.85 0.85 0.85 0.85 mM 
GMP - 0.85 0.85 0.85 0.85 0.85 mM 
UMP - 0.85 0.85 0.85 0.85 0.85 mM 
Folinic Acid 0.17 0.034 0.034 0.034 0.034 0.034 mg/mL 
HEPES buffer - 10 10 10 10 10 mM 
DTT - 1.7 1.7 1.7 1.7 1.7 mM 
PEG-8000 - 1 1 1 1 1 % w/v 
tRNA 0.0853 - - - - - mg/mL 
Amino acid1 2 0.5 0.5 2 2 2 mM 
Expression plasmid 12 12 12 12 12 12 nM 
pPa 2 2 2 2 2 2 mM 
Cell extract 25 25 25 25 25 25 % v/v 
MjpPaRSpPa 13.7 12 12 12 7 12 mg/mL 
1With the exception of glutamate. 
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