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abstract

k-S-Rings

Emma Rode Turner
Department of Mathematics, BYU

Doctor of Philosophy

For a finite group G we study certain rings S
(k)
G called k-S-rings, one for each k ≥ 1, where

S
(1)
G is the centralizer ring Z(CG) of G. These have the property that S

(k+1)
G determines

S
(k)
G for all k ≥ 1. We show that S(4) determines G when G is any group with finite classes.

We show that S
(3)
G determines G for any finite group G, thus giving an answer to a question

of Brauer. We show the 2-characters defined by Frobenius and extended 2-characters of
Ken Johnson are characters of representations of S

(2)
G . We find the character table for the

2-S-ring of the dihedral groups of order 2n, n odd, and classify groups with commutative
3-S-ring.

Keywords: S-ring, character, k-character, group algebra, finite group, Frobenius, FC group



Acknowledgments

I would like to thank my advisor, Dr. Steve Humphries, for his time, support, patience,

and wisdom.

I would like to thank my parents for all their support, and for encouraging me to develop

my talents and do something that I loved.

I would like to thank my children, Mary and Bradley Turner, for their love and support,

and for enduring a mother whose brain was often wandering in math land. You’re the best,

and I love you.



Contents

1 Introduction 1

1.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background Results and related results . . . . . . . . . . . . . . . . . . . . . 8

1.3 Fundamental Results on k-S-rings . . . . . . . . . . . . . . . . . . . . . . . . 18

2 The 4-S-Ring Determines the Group 22

2.1 Determining xy from the 4-S-ring . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The CICT of G determines G . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 UTCCI maps and NDICT maps 32

3.1 Some Definitions and preliminary results . . . . . . . . . . . . . . . . . . . . 35

3.2 Image of xy under ψ when x 6∼ y, x 6∼ x−1, and y 6∼ y−1 . . . . . . . . . . . . 42

3.3 Determining ψ(xy) when x 6∼ y and either x ∼ x−1 or y ∼ y−1 . . . . . . . . 44

3.4 The ‘non-determined’ incomplete Cayley Table of generalized dihedral groups

of order 2n, n odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The NDICT determines finite groups G with |G| < 256 . . . . . . . . . . . . 52

4 The NDICT of a finite group G when |G| ≥ 256 54

4.1 Definitions and some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Formalizing the ideas of the example . . . . . . . . . . . . . . . . . . . . . . 59

4.4 The first two cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 All remaining cases except k = n/4 . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 The final k = n
4

cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Character Theory of 2-S-rings 84

5.1 An example with S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



5.2 Character tables of G, G2, S
(1)
G and S

(2)
G . . . . . . . . . . . . . . . . . . . . 93

5.3 2-character table of Dihedral groups of order 2n, n odd . . . . . . . . . . . . 98

5.4 On the representation of S
(2)
G corresponding to a Frobenius 2-character . . . 111

5.5 The Character Table of a Commutative k-S-ring. . . . . . . . . . . . . . . . 117

6 Finite groups with commutative k-S-rings 119

6.1 Classification of 3-S-ring groups . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 The 3-S-ring groups with commutative 3-S-rings . . . . . . . . . . . . . . . . 131

7 Conclusion and Unanswered Questions 133

v



Chapter 1. Introduction

In 1963, Richard Brauer collected several known results and unsolved problems from the

field of Group Theory into an expository article [3]. In that article, Brauer asked what

else needs to be known, in addition to the character table of a finite group, to determine

the group. That question, and some of the results it inspired, motivate and direct our

work. In particular, Brauer’s question rekindled interest in the group determinant and the

k-characters of a finite group, objects which played a fundamental role in the development

of character theory.

In 1896, while studying the group determinant, Ferdinand Georg Frobenius defined func-

tions he called k-characters of the group (where k is any positive integer) which allowed

him to factor the group determinant. Frobenius’ 1-characters are now called the irreducible

characters of a finite group.

Soon after, in 1897, Frobenius discovered that the 1-characters were related in a natural

way to the representations of groups. The characters of a finite group G are class functions

on the conjugacy classes of G. The class sums form a basis for Z(CG), the center of the

group algebra. From the irreducible characters of G it is possible to determine Z(CG) up to

isomorphism, and from Z(CG), the irreducible characters can be determined.

The k-characters are also class function on special subsets of Gk called the k-classes of

G. The k-class sums form a a basis for a subring of CGk which we call the k-S-ring of G,

and the k-S-rings of groups are the primary object of study in this paper.

It is straightforward to show that D8 and Q8, the dihedral group of order 8 and the

quaternions respectively, have the same 2-S-rings. Thus, the 2-S-ring does not determine the

group, but in answer to Brauer’s question we show that the 3-S-ring determines the group,

when G is a group for which all conjugacy classes have finite size. We also prove two stronger

results for finite groups. The first is that finite groups with the same character table are

determined by the products of 3-classes of elements of type (x, x, x), (x, x, 1), and (x, 1, 1) for

x ∈ G with 1 the identity in G. The second, and stronger, condition is that a finite group
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G is determined by a group invariant we call the non-determined incomplete Cayley table

(NDICT) of G.

In 1991, motivated by Brauer’s question, Edward Sibley and David Formanek showed

that the group determinant determines the group [7]. In 1992, Ken Johnson and Surinder K.

Sehgal showed that the 1- and 2-characters do NOT determine a group [14], and in the same

year Ken Johnson working with Hans-Jürgen Hoehnke showed that 1-, 2-, and 3- characters

do determine a group [8].

Ken Johnson also defined a 2- and 3-character table for a finite group G in [12]. In the

definition of the 2-character table of a group the notion of the 2-S-ring is used [12]. See also

[25] for a discussion of k-S-rings and k-characters.

The character table of an S-ring (and hence k-S-ring) has also been defined and studied

by Olaf Tamaschke [24]. Unlike the character tables of groups, the character tables of S-rings

do not have to be square. For example, the 2-S-ring of the Frobenius group of order 20 has a

character table which is not square. We calculate the character table for the 2-S-ring of D2n,

n odd, which does have a square 2-character table. We explore the relationship between the

irreducible characters of G2, the characters of the 2-S-ring of G, and the 2-characters of G.

We show that the 2-characters that Frobenius defined correspond to representations of (and

hence characters of) the 2-S-ring in a natural way.

In partial answer to the question of when a k-S-ring has a square character table, we

show that the only groups with commutative 3-S-rings are the generalized dihedral groups of

order 2n, n odd. A result of Frobenius guarantees a square character table for commutative

S-rings.

1.1 Definitions and Notations

In this paper we are primarily concerned with finite groups and FC groups.

Definition 1.1. [21] An FC group is a group for which the sizes of all conjugacy classes are

finite.

2



We use e or 1 to denote the identity element of a group G. For x ∈ G, let o(x) denote

the order of x. Also, we let xy = y−1xy, [x, y] = x−1y−1xy, and for K ⊆ G we let hK =

{g−1hg|g ∈ K}. We let CG(a) denote the centralizer in G of the element a ∈ G, and we let

CG(A) denote the centralizer of the set A ⊆ G.

A group G is generalized dihedral if G = N o C2 where N is a finite abelian group and

C2 is a cyclic group of order 2 which acts on N by inversion.

Definition 1.2. Let G be an FC group. The (complex)group algebra of G, denoted CG,

consists of formal sums of type
∑
g∈G

αgg, where only finitely many of the αg ∈ C are non-zero

and (αg)(βh) = (αβ)gh for α, β ∈ C.

For a finite set S ⊆ G, we define S ∈ CG to be S =
∑
g∈S

g.

If the sets {Ci} are the conjugacy classes of an FC group G, then the corresponding

elements Ci ∈ CG are called the class sums of G and generate Z(CG), the center of the

group algebra. The subring Z(CG) of CG is an example of a special type of subring of a

group algebra called an S-ring.

The concept of an S-ring was introduced by Schur, but it was Wielandt who first called

them S-rings [20, 27, 4]:

Definition 1.3. An S-ring over an FC group G is a subring (or subalgebra) of the group

algebra CG spanned by elements of the form Γi where S ={Γ1,Γ2, . . . } is a partition of G:

G = Γ1 ∪ Γ2 ∪ · · · ∪ Γm ∪ . . . ,

with Γ1 = {e} and |Γi| <∞ which satisfies:

(1) If i ≥ 1 and Γi = {g1, . . . , gs} then there is some j ≥ 1 such that Γ−1
i := {g−1

1 , . . . , g−1
s }

is equal to Γj;

(2) If i, j ≥ 1, then ΓiΓj =
∑

k λijkΓk where λijk is a non-negative integer for all i, j, k.

3



The Γi are called the principal sets of the S-ring. The Γi form a basis for the S-ring and

are called the principal elements. The λijk are called the structure constants of the ring.

It is also common to define the S-ring of a finite group as a subring of the integral group

ring ZG which has the principal elements {Γi} as the basis. We will occasionally think of

the k-S-ring as a subring of the integral group ring, and when we do, this should be clear

from the context.

Let G be a finite group. Fix k ≥ 1 and let the symmetric group Sk act on Gk by

permuting entries:

(g1, g2, . . . , gk)
σ = (g(1)σ, g(2)σ, . . . , g(k)σ),

and let G act on the right on Gk by diagonal conjugation:

(g1, g2, . . . , gk)
g = (gg1 , g

g
2 , . . . , g

g
k).

Let G̃k denote the permutation group generated by these actions of Sk and G on Gk.

Definition 1.4. The G̃k-orbits of the action are called k-classes of G. The G̃k -orbit of

g = (g1, g2, . . . , gk) ∈ Gk is denoted K
(k)
G (g) or KG(g1, g2, . . . , gk). We write K(k)(g) or

K(g1, g2, . . . , gk) if G is understood.

Because G̃k acts via automorphisms on Gk, the k-classes determine an S-ring over Gk

which we call the k-S-ring of G and which we denote by S
(k)
G .

In the case k = 1, we see that S
(1)
G is just the centralizer ring Z(CG). We think of the

k-S-rings of G as generalized centralizer rings.

The k-classes as defined here are the same k-classes used by Frobenius in his study of

k-characters. The k-characters are defined recursively.

Definition 1.5. Let ψ be a character of G, and define ψ(1) = ψ. For (g, h) ∈ G2 define

ψ(2)(g, h) = ψ(g)ψ(h)− ψ(gh).
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Recursively define

ψ(k)(g1, g2, . . . , gk) = ψ(g1)ψ(k−1)(g2, g3, . . . , gk)− ψ(k−1)(g1g2, g3, . . . , gk)−

ψ(k−1)(g2, g1g3, . . . , gk)− · · · − ψ(k−1)(g2, g3 . . . , g1gk)
.

Let Irr(G) denote the set of irreducible characters of G. If Irr(G) = {ψ1, ψ2, . . . , ψr} is

a complete set of irreducible characters of G, then the maps {ψ(k)
i : G → C} are called the

k-characters of G. We will also call them the Frobenius k-characters.

Example 1.6. Consider S3 = {e, (123), (132), (12), (13), (23)}, which has character table

S3 e (123) (12)

χ1 1 1 1

χ2 1 1 −1

χ3 2 −1 0

.

Using the formula ψ(2)(g, h) = ψ(g)ψ(h)− ψ(gh), one can calculate some of the 2-character

values for S3.

χ
(2)
3 (e, e) = χ(e)χ(e)− χ(e) = 4− 2 = 2

χ
(2)
3 ((123), (123)) = χ((123))χ((123))− χ((132)) = 1− (−1) = 2

χ
(2)
3 ((12), (12)) = χ((12))χ((12))− χ(e) = 0− 2 = −2

χ
(2)
3 ((12), (23)) = χ((12))χ((23))− χ((123)) = 0− (−1) = 1

We write GLn(C) for the set of invertible n×n matrices with complex entries and Mn(C)

for the n× n matrices with complex entries. For A ∈Mn(C), tr(A) denotes the trace of the

matrix A. If A ∈ Mn(C) is a diagonal matrix with diagonal entries a1, a2, . . . , an, then we

write A = D(a1, a2, . . . , an).

Definition 1.7. A representation of a group G is a group homomorphism ρ : G→ GLn(C).

A representation of an S-ring T is an algebra (or ring) homomorphism ρ : T →Mn(C).

If {ρi} is a complete set of pairwise non-isomorphic irreducible representations of a finite

group G, then the functions χi : G → C : g 7→ tr(ρi(g)) are the irreducible characters of

5



G. The value of χi(1) is the degree of χi. Characters for S-rings are defined analogously, as

follows:

Definition 1.8 (Tamaschke). Let T be an S-ring of a finite group G = Γ1 ∪ Γ2 ∪ · · · ∪ Γm,

generated by the principal sets Γi. Let τj =
Γj
|Γj|

for j = 1, . . . ,m. For any representation

F : T → Mn(C) the complex valued function φ : G → C : g 7→ traceF (τi) where g ∈ Γi, is

called the T -character of G related to F . The character is irreducible if the representation is

irreducible.

Every Schur-ring (as a subalgebra of CG) is a semisimple algebra [26, p. 386, footnote].

Thus, every representation of T is completely reducible, and hence each character of T is a

linear combination of the irreducible characters of T with non-negative integral coefficients

[24, p. 342].

We also have the notion of a T -character table.

Definition 1.9. If T is an S-ring over a finite group G, the character table of T or T -

character table of G has rows indexed by the irreducible characters and columns indexed by

an element of the principal set and entries the character values. We let CT (T ) denote the

character table of the S-ring T .

If G is finite, we also define an inner product on characters of S-rings.

Definition 1.10. Let χ, ψ be T -characters of G. Then we define

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g)

where ψ(g) denotes the complex conjugate.

When T = Z(CG), this definition agrees with the usual definition of inner product on

characters of a group.

If ρ : G → GLn(C) is a representation of G, and T is an S ring of G, then ρ extends

naturally to a representation CG → Mn(C) and we let ρ̂ denote the restriction of this map

to the S-ring T .

6



If φ : G → H is any map between groups G,H, then we we define φ(k) : Gk → Hk :

(g1, . . . gk)→ (φ(g1), . . . , φ(gk)).

Definition 1.11. We say FC groups G, H have the same k-S-ring if there exists a bijection

φ : G→ H for which the map φ̂(k) is a ring isomorphism of the k-S-rings of G and H.

Example 1.12. We have defined the concept of having the same k-S-ring. There is a

weaker concept: Let A,B be S-rings over groups G,H respectively with principal sets

{C1, . . . , Cr, . . . }, {D1, . . . , Dr, . . . }. Then an algebraic isomorphism of S-rings is a map

φ : {C1, . . . , Cr, . . . } → {D1, . . . , Dr, . . . } which induces an algebra isomorphism

φ : 〈C̄1, . . . , C̄r, . . . 〉 → 〈D̄1, . . . , D̄r, . . . 〉.

A principal element C of S
(k)
G will be called diagonal if every element of C has the form

(g, g, . . . , g) for some g ∈ G. Note that every element g ∈ G determines a diagonal k-class.

As a generalization of diagonal classes we have the following:

Definition 1.13. The uniform 3-classes of an FC group G are the classes K(x, x, x),

K(x, x, 1), K(x, 1, 1) for x ∈ G.

We are also interested in the following maps, which allow us to answer Brauer’s question

regarding what, in addition to the character table, determines a finite group G.

Definition 1.14. A bijection ψ : G → H which induces an isomorphism of centralizer

algebras and which also has the property that ψ(3)(AB) = ψ(3)(A)ψ(3)(B) for all uniform

3-classes A,B of G3 is called a UTCCI map or UTCCI bijection, (where UTC stands for

uniform 3-class and CI stands for centralizer isomorphism).

All computations made in the preparation of this paper were done using Magma [2].

7



1.2 Background Results and related results

Julius Wilhelm Richard Dedekind began studying the group matrix and the group determi-

nant in the 1880s. He was interested in factoring the group determinant, as part of his work

looking for a nice basis for normal fields [4, p. 51].

Definition 1.15. If G is a finite group with elements {g1, g2, . . . gn}, then the matrix XG =

[xgig−1
j

] is called the group matrix of G. Here xg1 , xg2 , . . . , xgn are commuting indeterminates,

and ΘG = det(XG) is the group determinant of G.

For example, for C4 = {e = g1, t = g2, t
2 = g3, t

3 = g4}, we have

ΘC4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x4 x3 x2

x2 x1 x4 x3

x3 x2 x1 x4

x4 x3 x2 x1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= x4

1 − x4
2 + x4

3 − x4
4 − 2x2

1x
2
3 + 2x2

2x
2
4 − 4x2

1x2x4 + 4x1x
2
2x3 + 4x1x3x

2
4 − 4x2x

2
3x4

In this case the group determinant of C4 can be written as a product of linear factors:

ΘC4 = (x1 + x2 + x3 + x4)(x1 − x2 + x3 − x4)(x1 + ix2 − x3 − ix4)(x1 − ix2 − x3 + ix4)

For abelian groups, Dedekind proved:

Theorem 1.16 (Dedekind). If G = {g1, g2, . . . , gn} is an abelian group of order n and

ψ′, ψ′′, . . . ψ(n) are the characters corresponding to it, then the determinant ΘG is decompos-

able, namely as the product of n linear factors

ψ(s)(g1)x1 + · · ·+ ψ(s)(gn)xn

that correspond to the n values of s.

8



Non-abelian groups have linear factors and factors of higher degree in their group deter-

minants, when factored completely over C. For example ΘS3 = Q1Q2Q
2
3 where

Q1 = x1 + x2 + x3 + x4 + x5 + x6,

Q2 = x1 + x2 + x3 − x4 − x5 − x6, and

Q3 = x2
1 + x2

2 + x2
3 − x2

4 − x2
5 − x2

6 − x1x2 − x1x3 − x2x3 + x4x5 + x4x6 + x5x6,

and the xi are commuting indeterminates.

In 1896 Frobenius proved a generalization of Dedekind’s result for non-abelian groups [4].

His work involved the definition of characters and k-characters, and relies on the following

result:

Theorem 1.17. ([Frobenius]) If there are n3 variables aijk satisfying

• aijk = ajik;

•
∑
j

aijkajpq =
∑
j

aijqajpk;

•
∑
i,j

aijkajil are all non-zero.

Then the equations rjrk =
∑
i

aijkri have exactly n different complex solutions, each of which

is an n-tuple (r1, r2, . . . , rn) and they are linearly independent.

The first two requirements guarantee that we have a commutative, associative algebra,

and the third guarantees that the algebra be semisimple. For Frobenius, the aijk were

the structure constants of Z(CG), the center of the group algebra. Wielandt [26, p. 386,

footnote] showed that all S-rings are semisimple, and so in particular k-S-rings are also, so

this theorem also applies to the structure constants of commutative k-S-rings, giving a set

of n linearly independent complex solutions.

When the aijk are the structure constants of Z(CG), then the associated solutions

(r1, r2, . . . , rn) are ‘almost’ the irreducible characters of G. Frobenius scaled the solutions

so they would satisfy certain conditions called ‘orthogonality conditions’ known to hold for

characters of abelian groups, and he called these n-tuples the characters of G.

9



For example, consider S3 = {e, (123), (132), (12), (13), (23)}. Then S3 has three conjugacy

classes and so Z(CS3) is generated by the class sums

C1 = e, C2 = (123) + (132), C3 = (12) + (13) + (23).

To find the structure constants, we calculate

C1C1 = C1

C1C2 = C2

C1C3 = C3

C2C2 = 2C1 + C2

C2C3 = 2C3

C3C3 = 3C1 + 3C2

Theorem 1.17 states that the system of equations in variables x1, x2, x3 with the same

structure constants will have three complex solutions.

x1x1 = x1

x1x2 = x2

x1x3 = x3

x2x2 = 2x1 + x2

x2x3 = 2x3

x3x3 = 3x1 + 3x2

The solutions to this system are (1,2,3), (1,2,-3), (1,-1,0), or, in tabular from we have:

S3 C1 C2 C3

1 2 3

1 2 −3

1 −1 0

10



Dividing all entries of the second column by |C2| = 2 and all entries of the third column by

|C3| = 3, and then multiplying entries of the third row by 2 produces the character table of

S3:

S3 e (123) (12)

χ1 1 1 1

χ2 1 1 −1

χ3 2 −1 0

.

To get the character table for the 1-S-ring of S3 we only divide the columns by the class

sizes, but do not multiply the third row by 2.

S
(1)
S3

e (123) (12)

ψ1 1 1 1

ψ2 1 1 −1

ψ3 1 −1/2 0

.

The maps ψi : G→ C induce representations ψ̂i : S
(1)
S3
→ C : τj → ψi(gj), where τj =

K(gj)

|K(gj)| .

When we evaluate 〈ψ3, ψ3〉 = 1
6
(12+2(−1/2)2+3(02)) = 1

4
, we see that the characters defined

this way are not ‘ortho-normal.’ However, the inner product is meaningful, as discussed in

Chapter 5.

Theorem 1.18 (Frobenius). If ψ is a character of degree k, then the corresponding irre-

ducible factor Pψ of ΘG is given by

Pψ =
1

k!

∑
ψ(k)(g1, g2, . . . , gk)xg1xg2 · · ·xgk ,

where the summation is over all elements of Gk.

The characters of a finite group do not determine the group. For example D8 and Q8 are

11



non-isomorphic and have the same character table.

D8, Q8 C1 C2 C3 C4 C5

ψ1 1 1 1 1 1

ψ2 1 1 1 −1 −1

ψ3 1 1 −1 1 −1

ψ4 1 1 −1 −1 1

ψ5 2 −2 0 0 0

However, D8 and Q8 are determined by their 2-characters [12, pp. 303-305].

A renewed interest in Frobenius’s approach to representation theory was initiated by K.

W. Johnson in [12] and has led (among other things) to the following results:

(1) the group determinant determines the group [7, 15];

(2) the 1−, 2− and 3− characters determine the group [8].

Also, in [12] the notion of the 2-character table was defined. It was shown that there

are non-isomorphic groups with the same 2-character table [14]. Another relevant concept is

that of the weak Cayley table of a group G : this is the matrix with rows and columns indexed

by the elements of G = {g1 = 1, g2 . . . , gn}, such that the gi, gj entry is the conjugacy class

of the element gigj [13]. One says that groups G,H have the same weak Cayley table if there

is a bijection α : G → H which takes classes to classes and satisfies α(g1g2) ∼ α(g1)α(g2),

where ∼ denotes conjugacy in H [13]. The map α is called a weak Cayley table isomorphism.

We note that the concept of groups having the same weak Cayley table makes sense even if

the groups are infinite, so that the weak Cayley table is defined for any group.

It is known that there are non-isomorphic groups with the same weak Cayley table [13].

It is also known that the information in each of

(i) the weak Cayley table;

(ii) the 1− and 2−characters;

12



(iii) the 2-character table;

of a finite group G is the same [13].

There are also the related questions about what properties of the group are determined

by the character table, 2-character table, and so forth. Mattarei [17, 18, 16] answered one

question of Brauer [3] by showing that there are non-isomorphic solvable groups with the

same character table, but with different derived lengths. Of course the character table of G

determines G/G′. But there are non-isomorphic groups G,H with the same character table

but with G′/G′′ 6∼= H ′/H ′′ [16]. Johnson, Mattarei and Sehgal [13, Corollary 3.5,3.6] showed

further that there are non-isomorphic groups which have the same weak Cayley table, but

different derived lengths.

We show in Lemma 1.29 that the diagonal k-classes generate a subring of the k-S-ring of

G which is isomorphic to Z(CG). Thus, both the weak Cayley table of G and the 2-S-ring

of G determine the character table of G, but the properties of having the same weak Cayley

table and having the same 2-S-ring are independent:

Groups with the same weak Cayley table have the same number of involutions [13]. In

general, the 2-S-ring does not determine the inverse map of a group. However, in Lemma

1.31 we show that the inverse map is determined by S
(2)
G in the case where G has odd order.

Theorem 1.19. [9] There are groups which have the same weak Cayley table, but not the

same 2-S-rings, and groups which have the same 2-S-rings but not the same weak Cayley

table:

(a) the dihedral and quaternion groups of order 8, D8 and Q8, have the same 2-S-rings,

but do not have the same weak Cayley table;

(b) the two non-abelian groups of order p3, where p > 3 is a prime, have the same weak

Cayley table, but do not have the same 2-S-rings.

In particular, the 2-S-ring of a group does not determine the group.

Proof. For part (a) we use the presentations for the quaternion and dihedral groups of order
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eight given below:

Q8 = 〈x, y, z|x2 = z, y2 = z, z2, (xy)2 = z, (x, z), (y, z)〉,

D8 = 〈a, b, c|a2, b2, c2, (a, c), (b, c), (ab)2 = c〉.

Groups with the same weak Cayley table have the same number of involutions [13], but D8

and Q8 have different numbers of involutions. Thus D8 and Q8 do not have the same weak

Cayley tables. The bijection φ : D8 → Q8 below induces an isomorphism of S
(2)
D8

and S
(2)
Q8

:

φ(eD8) = eQ8 , φ(a) = x, φ(b) = xy, φ(c) = z,

φ(ab) = y, φ(bc) = xyz, φ(ac) = xz, φ(abc) = yz.

One can check by hand that this gives an isomorphism of 2-S-rings. Thus D8 and Q8 have

the same 2-S-rings, but not the same weak Cayley tables.

For a proof of part (b) see [9].

Example 1.20. The computer algebra system MAGMA [2] has a database of finite groups.

We use the notation Gn,k to denote the kth group among all groups of order n in the MAGMA

database. Each of the following pairs of groups

(G192,1023, G192,1025), (G768,1085030, G768,1085037),

(G768,1083600, G768,1083604), (G1280,1116310, G1280,1116312),

have the same character tables, but have different 2-S-rings, since they have a different

number of 2-classes. One checks that each of these eight groups is a Frobenius group and

that in each case the groups in each pair have different numbers of involutions and so do not

have the same weak Cayley table. We note that in [13, p. 408] the authors give a necessary

and sufficient condition for two Frobenius groups to have the same weak Cayley table.

14



Let

G(0) = G,G(1) = [G,G], . . . , G(i) = [G(i−1), G(i−1)], . . .

denote the derived series of the group G. Another result in [9] contrasts to the results of

[13, 17, 18, 16] showing that the character table and the weak Cayley table do not determine

the derived length of a group:

Theorem 1.21. [9] Let G be a finite group. The weak Cayley table of G and S
(2)
G together

determine the classes of G that lie in each element G(i) of the derived series of G. In

particular, they determine the size of each G(i) and the length of the derived series of G.

Thus the weak Cayley Table and the 2-S-ring together give us more information about

the group than does the weak Cayley table alone.

We say groups G,H have the same WCTS(2) if there is a weak Cayley table isomorphism

φ : G→ H such that φ(2) determines an isomorphism S
(2)
G → S

(2)
H .

Theorem 1.22. [9] If G and H have the same WCTS(2) determined by φ : G → H, then

φ(G(i)) = H(i) for all i ≥ 1; in particular, the sizes of the derived factors of G and H are

the same.

Example 1.23. Let G27,3 = 〈a1, a2, a3|a3
1, a

3
2, a

3
3, a

a1
2 = a2a3, and a3 is central〉 and G27,4 =

〈b1, b2, b3|b3
1 = b3, b

3
2, b

3
3, b

b1
2 = b2b3, and b3 is central〉.

One can check that the map φ : G27,3 = 〈a1, a2, a3〉 → G27,4 = 〈b1, b2, b2〉 defined by

φ(aε11 a
ε2
2 a

ε3
3 ) = bε11 b

ε2
2 b

ε3
3 if ε1 = 0, 1;

φ(aε11 a
ε2
2 a

ε3
3 ) = bε11 b

ε2
2 b

ε3+2
3 if ε1 = 2,

is a weak Cayley table isomorphism and that φ : G27,3 → G27,4 induces an isomorphism of

the 2-S-rings of these groups. This shows that G27,3 and G27,4 have the same WCTS(2).

Recall that a pair (G,H) of non-isomorphic groups form a Brauer pair if there is a

bijection φ : G → H that maps classes to classes, that determines an isomorphism of
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centralizer algebras, and which also respects the power maps: the H-class of φ(gk) is the

same as the class of φ(g)k for all g ∈ G, k ∈ Z.

With respect to Brauer’s problem of which properties together with the character table

determine a group, it can be shown that having the same weak Cayley table and the same

2-S-ring does not determine a group up to isomorphism:

Theorem 1.24. [9] There are non-isomorphic groups of order 29 which have the same weak

Cayley table and the same 2-S-rings. They form a Brauer pair.

Example 1.25. We have defined the concept of an algebraic isomorphism of S-rings. One

can check that the 2-S-rings for the non-abelian groups G53,3, G53,4 of order 53 are alge-

braically isomorphic but that these groups do not have isomorphic 2-S-rings [9].

One can also check that the 2-S-rings for G32,30 and G32,31 are not algebraically isomor-

phic, although they have the same character table. Thus, groups with the same character

tables do not necessarily have algebraically isomorphic 2-S-rings, and in this case certainly

do not have the same 2-S-rings.

Let φ(2) : S
(2)
G → S

(2)
H be an isomorphism induced from φ : G→ H. We define ∆ : G→

G2 by the rule g 7→ (g, g). Let Ci be the principal elements of S
(2)
G and let Ei = φ(2)(Ci).

Let N be a normal subgroup of G and write N = Ai1 ∪ Ai2 ∪ · · · ∪ Ait as a union of classes

of G. Then ∆(Aij) ∈ S
(2)
G is diagonal and so φ(2)(∆(Aij)) is also diagonal. It follows that

∆(N) is a normal subgroup of G×G which is isomorphic to N . Thus φ(2)(∆(N)) is a normal

subgroup of H×H which projects isomorphically under the first projection map to a normal

subgroup M of H. We say that M corresponds to N in this circumstance.

Example 1.26. Here we show that there are groups G,H with the same 2-S-rings, which also

have the property that G has a normal subgroup N corresponding to M /H such that S
(2)
G/N

and S
(2)
H/M are not algebraically isomorphic and so certainly do not have the same 2-S-rings.

Thus the property of having the same 2-S-ring does not behave well under quotients. This

is in contrast to the case of the weak Cayley table, where one can show that if φ : G→ H is
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a the weak Cayley table isomorphism and N / G,M = φ(N), then G/N and H/M do have

the same weak Cayley table.

To describe our example, take G = G64,13, H = G64,14, using the Magma notation. One

can check directly that G,H have the same 2-S-rings (one can use [9, Theorem 5.5] to give

this result also). Further, one finds that G and H each have three normal subgroups of order

2. The quotients of G by these three normal subgroups are groups having isomorphism types

G32,8, G32,9, G32,10, (∗)

while the quotients of H by its three normal subgroups of order two are of isomorphism

types

G32,7, G32,10, G32,10.(∗∗)

Thus if the above statement is not true, then we should be able to pair up the groups in (*)

with the groups in (**) so that corresponding pairs have algebraically isomorphic 2-S-rings.

One can check that G32,7 and G32,8 have the same 2-S-rings, but that G32,9 and G32,10 do not

have algebraically isomorphic 2-S-rings. Thus there can be no such pairing and the result

follows. �

Here is another a property of a group which is not determined by the character table,

but which is determined by the 2-S-ring.

Theorem 1.27. [9] (i) If G is a group and x, y ∈ G, x 6∼ y, then

|KG(x, y)| = 2× [G : CG(〈x, y〉)].

(ii) If G is a group of odd order and x, y ∈ G, x 6= y, then

|KG(x, y)| = 2× [G : CG(〈x, y〉)].

In particular, for a group G of odd order and any x, y ∈ G, we can determine |CG(〈x, y〉)|
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from S
(2)
G .

(iii) S
(2)
G determines the multiset of sizes |CCG(a)(b)| = |CG(〈a, b〉)| where a, b ∈ G are

chosen to be non-conjugate. In particular, there are groups with the same character table,

but with different such multisets.

For a proof see [9].

1.3 Fundamental Results on k-S-rings

The k-class sums are the basis for the k-S-ring. We will use the following basic properties of

2-classes, in particular.

Lemma 1.28. Fix g, h ∈ G. We have the following:

(i) K(e, g) =
(
{e} × gG

)
∪
(
gG × {e}

)
.

(ii) K(g, h) ∈ (gG × hG) ∪ (hG × gG).

(iii) If g 6∼ h, then K(g, h) = (gG × hG) ∪ (hG × gG) if and only if CG(g)CG(h) = G.

(iv) When g is not central, gG × gG is a union of two or more 2-classes, one of which is

always the diagonal class K(g, g).

Proof. Statements (i),(ii), and (iv) are direct consequences of the action of G̃2 on G2. And

(iii) follows from a homework problem in [10, p.7].

Lemma 1.29. The set of all C̄, where C is a diagonal principal element, generates a subring

of S
(k)
G which is isomorphic to Z(CG), the centralizer S-ring of G.

Proof. Let A1, . . . , Au be the diagonal principal elements of S
(k)
G and let π1 : Gk → G be the

first projection function π1(g1, g2, . . . , gk) = g1.

Let ∆(G) = {(g, g, . . . , g) : g ∈ G} ⊂ Gk and note that the restriction of π1 to ∆(G)

gives a group isomorphism π1 : ∆(G) → G which in turn determines an isomorphism of

algebras C∆(G) ∼= CG. Since each π1(Ai) is a class of G the result follows.
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One can easily show that ∆(G) is contained in the center of S
(k)
G .

Corollary 1.30. Let φ(k) : S
(k)
G → S

(k)
H be an isomorphism of k-S-rings that is induced from

the bijection φ : G→ H. Then G and H have the same character tables. In particular, the

map φ induces an isomorphism of centraliser algebras φ : Z(CG)→ Z(CH).

Proof. The isomorphism φ(k) : S
(k)
G → S

(k)
H maps diagonal classes to diagonal classes bijec-

tively and induces an isomorphism between the subrings that they generate. These subrings

are isomorphic to the respective centralizer rings and so the result follows from Lemma

1.29, upon recalling that the character table is determined by the structure constants of the

centralizer ring. See Theorem 1.17.

If φ : G→ H is a bijection which induces a k-S-ring isomorphism φ̂(k), and the k-classes

of G and H are {Ci : i ∈ I}, {Ej : j ∈ J} (respectively), then

(i) for all i ∈ I there is j ∈ J with φ(k)(Ci) = Ej; and

(ii) if we relabel the Ej so that φ(k)(Ci) = Ei, then we have C̄iC̄j =
∑

k λijkC̄k if and only

if ĒiĒj =
∑

k λijkĒk.

Here (i) follows from the fact that principal sets must go to principal sets, and (ii) follows

from (i) and the fact that the rings are isomorphic.

The weak Cayley table determines inverses of elements. In general, the 2-S-ring does not.

However, we do have the following:

Lemma 1.31. Let G be a group of odd order, x ∈ G. Then S
(2)
G enables us to find x−1.

Proof. We may assume that x 6= 1. Then there is certainly some 2-class, D say, that contains

(x, x−1); that class satisfies (1, 1) = (x, x−1)(x−1, x) ∈ D2.

On the other hand, if D is a class that contains (x, y) and satisfies (1, 1) ∈ D2, then we

will first show that (x−1, y−1) ∈ D and then we will show that y = x−1.

Since (1, 1) ∈ D2 there are s, t ∈ G such that either

(a) (xs, ys)(xt, yt) = (1, 1); or
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(b) (xs, ys)(yt, xt) = (1, 1).

Conjugating (a) or (b) by s−1 gives (x, y)(u, v) = (1, 1), where (u, v) ∈ D and so

(x−1, y−1) = (u, v) ∈ D.

Since (x−1, y−1) ∈ D = K(x, y) we must have either

(i) (x−1, y−1) = (xr, yr), for some r ∈ G, or

(ii) (x−1, y−1) = (yr, xr), for some r ∈ G.

Note that (i) is forbidden since |G| is odd. Thus we have (ii): x−1 = yr, y−1 = xr, showing

that

x = (y−1)r = xr
2

,

so that r2 ∈ CG(x). But |G| is odd and so r ∈ CG(x). This gives y−1 = xr = x, so that

(x, y) = (x, x−1).

Thus, given x, to find x−1 we look for a 2-class D such that (x, y) ∈ D for some y ∈ G,

and D̄2 = λ(1, 1) + . . . , λ 6= 0. We conclude, as in the above, that y = x−1.

Theorem 1.32. Let k ≥ 1. Then for any FC group G there is an epimorphism π(k) :

S
(k+1)
G → S

(k)
G . Also, FC groups having the same k-S-ring have the same r-S-ring for all

1 ≤ r ≤ k. In particular, finite groups having the same k-S-ring (for some k ≥ 1) have the

same character table.

Proof. Fix k ≥ 1 and let π = π(k) : Gk+1 → Gk be the projection so that π(g1, . . . , gk, gk+1) =

(g1, . . . , gk). Then π induces a ring homomorphism ZGk+1 → ZGk that we will also denote

by π. We will show that

(1) if C is a principal set of S
(k+1)
G , then π(C) ∈ S

(k)
G ; this will show that π restricts to a

ring homomorphism π : S
(k+1)
G → S

(k)
G .

(2) the ring homomorphism π : S
(k+1)
G → S

(k)
G is onto.

Showing (1) and (2) will prove that S
(k+1)
G determines S

(k)
G for all k ≥ 1.

To show (1), let C be a principal set of S
(k+1)
G . Since C is invariant under the action of

diagonal conjugation and under the Sk+1-permutation action, it is easy to see that π(C) is

invariant under the action of diagonal conjugation and under the Sk-permutation action. It
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remains to show that if α = (g1, . . . , gk), β = (h1, . . . , hk) ∈ π(C) are in the same k-class,

then the cardinalities of π−1(α) ∩ C and π−1(β) ∩ C are the same.

Now, since α = (g1, . . . , gk), β = (h1, . . . , hk) ∈ π(C) are in the same k-class, then there

is some permutation φ ∈ Sk and some g ∈ G such that β = (αg)φ. Thus it suffices to prove

the result in the two cases where either (i) β = αg; or (ii) β = (α)φ.

So suppose that we have (i). Then for γ ∈ π−1(α)∩C we have γg ∈ π−1(β)∩C, because C

is closed under action by diagonal conjugation. This shows that (π−1(α)∩C)g ⊆ π−1(β)∩C;

similarly we have (π−1(β) ∩ C)g
−1 ⊆ π−1(α) ∩ C, since α = βg

−1
. Thus π−1(β) ∩ C ⊆

(π−1(α)) ∩ C)g and so π−1(β) ∩ C = (π−1(α) ∩ C)g. This proves case (i).

Now suppose that we have (ii). We may think of φ ∈ Sk as an element of Sk+1 in the

obvious way. Then for γ ∈ π−1(α)∩C we have (γ)φ ∈ π−1(β)∩C, because C is closed under

the Sk+1 action. This shows that (π−1(α)∩C)φ ⊆ π−1(β)∩C, and, as in case (i), one easily

shows that (π−1(α) ∩ C)φ = π−1(β) ∩ C. This proves case (ii) and concludes the proof of

(1).

Now for (2) we let C be a principal set of S
(k)
G , and let α = (g1, . . . , gk) ∈ C. Let ε(α)

denote the number of entries gi that are equal to the identity 1 ∈ G. Clearly ε(α) is a

function on C. We prove the result by (descending) induction on 0 ≤ ε(C) ≤ k for fixed k.

Thus we assume that the image of π contains all k-classes C with ε(C) = r and then show

that it contains all k-classes C with ε(C) = r − 1. (Clearly the image contains all k-classes

C with ε(C) = k.)

So assume that the image of π contains all k-classes C with ε(C) = r, and let D be a

k-class with ε(D) = r − 1. Let α = (g1, . . . , gk) ∈ D and let D′ be the (k + 1)-class that

contains α′ = (g1, . . . , gk, 1). Then the elements in D′ have either the form (a) (a, 1), where

a ∈ Gk; or (b) (a, 1, a′), where (a, a′) ∈ Gk and the last entry of a′ is not 1.

The image under π of an element of type (a) has ε value equal to r−1, and is an element

of C; while the image of an element of type (b) has ε value equal to r. By induction we

know that these latter classes are in the image of π, and so D is in the image of π.
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Chapter 2. The 4-S-Ring Determines the Group

In this chapter, we show that the 4-S-ring of an FC group G determines the group G. It is

true that, for finite groups, this result is subsumed in the result that the 3-S-ring of a finite

group determines the group, since the 4-S-ring determines the 3-S-ring. But this result is

cleaner and motivates a theorem that we use in the 3-S-ring case.

Definition 2.1. The conjugacy incomplete Cayley Table or CICT of a group G is the map

G2 → G : (g, h) 7→ gh when g 6∼ h.

Thus, when we are given the CICT of G, we do not know the entire Cayley Table,

because on conjugacy classes our information is incomplete. Related to the idea of a CICT

we introduce the idea of a CICT map:

Definition 2.2. Let G,H be groups. A bijection ψ : G → H which satisfies ψ(gh) =

ψ(g)ψ(h) for all g, h ∈ G with g 6∼ h is called a CICT map. If there is a CICT map from G

to H, we say that G and H have the same CICT.

In the first section of this chapter, we show that if two FC groups G and H have the

same 4-S-ring, then they have the same CICT. In the second section we show that two FC

groups with the same CICT are isomorphic.

Our main result for this chapter is the following:

Theorem 2.3. Let G and H be FC groups which have the same 4-S-ring. Then G and H

are isomorphic.

Throughout this chapter, unless otherwise mentioned, G and H are FC groups.

2.1 Determining xy from the 4-S-ring

We know that we can determine the identity element 1 of G from the 4-S-ring of G, as it is

the unique element x ∈ G for which K(x, x, x, x)K(x, x, x, x) = K(x, x, x, x) ∈ S
(4)
G . We

begin this section by proving the following lemma:

22



Lemma 2.4. Let x, y ∈ G\{1}. If x 6∼ y, then (xy, xy, x, y) ∈ K(x, x, x, 1)K(y, y, y, 1), and

if (g, g, x, y) ∈ K(x, x, x, 1)K(y, y, y, 1), then g = xy.

Proof. Let x, y ∈ G \ {1}, and assume x 6∼ y. Let A = K(x, x, x, 1), B = K(y, y, y, 1). By

the definition of 4-classes, we have A = {(x, x, x, 1)s, (x, x, 1, x)s, (x, 1, x, x)s, (1, x, x, x)s}s∈G

and B = {(y, y, y, 1)t, (y, y, 1, y)t, (y, 1, y, y)t, (1, y, y, y)t}t∈G. In particular, (x, x, x, 1) ∈ A

and (y, y, 1, y) ∈ B, so (x, x, x, 1)(y, y, 1, y) = (xy, xy, x, y) ∈ AB, and it has form (g, g, x, y).

Suppose for some g ∈ G we have (g, g, x, y) ∈ AB. Then we have (g, g, x, y) = αβ for

some α ∈ A and some β ∈ B, and looking at the types of elements in A and B, we see that

αβ could be one of sixteen possible product types. We check each of these sixteen cases and

show that if (g, g, x, y) ∈ AB, then g = xy.

Case 1: α = (x, x, x, 1)s, β = (y, y, y, 1)t, αβ = (xsyt, xsyt, xsyt, 1) = (g, g, x, y).

Here we have xsyt = g, xsyt = g, xsyt = x, 1 = y, and the last equation gives a contradiction,

because by assumption y 6= 1.

Case 2: α = (x, x, x, 1)s, β = (y, y, 1, y)t, αβ = (xsyt, xsyt, xs, yt) = (g, g, x, y).

Here we have xsyt = g, xsyt = g, xs = x, yt = y so we have xs = x, yt = y, and g = xsyt = xy.

Case 3: α = (x, x, x, 1)s, β = (y, 1, y, y)t, αβ = (xsyt, xs, xsyt, yt) = (g, g, x, y).

Here we have xsyt = g, xs = g, xsyt = x, yt = y so that g = xsyt = xs. Solving xsyt = xs for

y, we get y = 1. This gives a contradiction, because we assume y 6= 1.

Case 4: α = (x, x, x, 1)s, β = (1, y, y, y)t, αβ = (xs, xsyt, xsyt, yt) = (g, g, x, y).

Here we have xs = g, xsyt = g, xsyt = x, yt = y so again we have y = 1, a contradiction.

Case 5: α = (x, x, 1, x)s, β = (y, y, y, 1)t, αβ = (xsyt, xsyt, yt, xs) = (g, g, x, y).

Here we have xsyt = g, xsyt = g, yt = x, xs = y so we have a contradiction, since, by

assumption x 6∼ y.

Case 6: α = (x, x, 1, x)s, β = (y, y, 1, y)t, αβ = (xsyt, xsyt, 1, xsyt) = (g, g, x, y).

Here, if αβ = (g, g, x, y) then we get xsyt = g, xsyt = g, 1 = x, xsyt = y so we have x = 1, a

contradiction.

Case 7: α = (x, x, 1, x)s, β = (y, 1, y, y)t, αβ = (xsyt, xs, yt, xsyt) = (g, g, x, y).
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Here we have xsyt = g, xs = g, yt = x, xsyt = y so we have another contradiction in yt = x.

Case 8: α = (x, x, 1, x)s, β = (1, y, y, y)t, αβ = (xs, xsyt, yt, xsyt) = (g, g, x, y).

Here we have xs = g, xsyt = g, yt = x, xsyt = y so we have x ∼ y, a contradiction again.

Case 9: α = (x, 1, x, x)s, β = (y, y, y, 1)t, αβ = (xsyt, yt, xsyt, xs) = (g, g, x, y).

Here we have xsyt = g, yt = g, xsyt = x, xs = y so we again have the contradiction x ∼ y.

Case 10: α = (x, 1, x, x)s, β = (y, y, 1, y)t, αβ = (xsyt, yt, xs, xsyt) = (g, g, x, y).

Here we have xsyt = g, yt = g, xs = x, xsyt = y so we have g = xsyt = yt, so x = 1, giving

another contradiction.

Case 11: α = (x, 1, x, x)s, β = (y, 1, y, y)t, αβ = (xsyt, 1, xsyt, xsyt) = (g, g, x, y).

Here we have xsyt = g, 1 = g, xsyt = x, xsyt = y so we have xsyt = x = y = g = 1 and so

this case also gives us a contradiction, since x 6= 1 by assumption.

Case 12: α = (x, 1, x, x)s, β = (1, y, y, y)t, αβ = (xs, yt, xsyt, xsyt) = (g, g, x, y).

Here, if αβ = (g, g, x, y) then we get xs = g, yt = g, xsyt = x, xsyt = y so we have x ∼ g ∼ y,

a contradiction.

Case 13: α = (1, x, x, x)s, β = (y, y, y, 1)t, αβ = (yt, xsyt, xsyt, xs) = (g, g, x, y).

Here we have yt = g, xsyt = g, xsyt = x, xs = y so we have x ∼ y, a contradiction.

Case 14: α = (1, x, x, x)s,β = (y, y, 1, y)t, αβ = (yt, xsyt, xs, xsyt) = (g, g, x, y).

Here we have yt = g, xsyt = g, xs = x, xsyt = y so we have yt = g = xsyt, so x = 1, a

contradiction.

Case 15: α = (1, x, x, x)s, β = (y, 1, y, y)t, αβ = (yt, xs, xsyt, xsyt) = (g, g, x, y).

Here, we have yt = g, xs = g, xsyt = x, xsyt = y so we have x = xsyt = y, a contradiction.

Case 16: α = (1, x, x, x)s, β = (1, y, y, y)t, αβ = (1, xsyt, xsyt, xsyt) = (g, g, x, y).

Here we have 1 = g, xsyt = g, xsyt = x, xsyt = y so we have xsyt = x = y = g = 1, a

contradiction.

This shows if x, y ∈ G \ {1} and (g, g, x, y) ∈ AB, then we must have g = xy.

We want to apply this result to FC groups G,H which have the same 4-S-rings. By

definition there is a bijection ψ : G→ H which induces an isomorphism ψ(4) : S
(4)
G → S

(4)
H .
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Recall that ψ : G → H induces an isomorphism ψ : Z(CG) → Z(CH) and takes classes of

G to classes of H, by Lemma 1.32.

Now, fix x, y ∈ G \ {1}, with x 6∼ y. Because ψ takes classes to classes, we know that

ψ(x) 6∼ ψ(y). Also, because ψ(4) is a ring isomorphism, we have

ψ(4) (K(x, x, x, 1)K(y, y, y, 1)) = ψ(4) (K(x, x, x, 1))ψ(4) (K(y, y, y, 1))

= K(ψ(x), ψ(x), ψ(x), 1)K(ψ(y), ψ(y), ψ(y), 1).

And (xy, xy, x, y) ∈ K(x, x, x, 1)K(y, y, y, 1), so

ψ(4)(xy, xy, x, y) ∈ K(ψ(x), ψ(x), ψ(x), 1)K(ψ(y), ψ(y), ψ(y), 1)

But ψ(4)(xy, xy, x, y) = (ψ(xy), ψ(xy), ψ(x), ψ(y)) is of type (h, h, ψ(x), ψ(y)). As shown

in the lemma above, K(ψ(x), ψ(x), ψ(x), 1)K(ψ(y), ψ(y), ψ(y), 1) contains only one term of

type (h, h, ψ(x), ψ(y)), and this occurs when h = ψ(x)ψ(y). So we must have ψ(xy) =

ψ(x)ψ(y) in the case where x 6∼ y. We have just shown the following:

Theorem 2.5. Let G,H be FC groups with 4-S-ring isomorphism induced by ψ : G → H.

Then ψ(xy) = ψ(x)ψ(y) for any x, y ∈ G with x 6∼ y, i.e. ψ is a CICT map.

For a finite group G, we can picture the CICT of G as being simply the Cayley table of G

with no entries in products of elements which are conjugate. Here is the CICT of S3, where

we are intentionally not giving traditional labels to the elements of the group for purposes
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of this example.

S3 e s t u v w

e e s t u v w

s s v w u

t t w u v

u u w v

v v u w

w w v u

In the next section, we want to show that given the CICT of an FC group, there is a

unique way to complete it as the Cayley table of a group. Or equivalently, that an FC group

G is determined by its products gh, g 6∼ h.

Before proceeding with the general proof, we consider a specific case using the CICT of

S3. We know if G is a group with the same CICT as S3, then G is non-abelian of order 6,

and because S3 is the only non-abelian group of order 6, this CICT must be the CICT of

S3. But what we want to demonstrate is how to use the information of the CICT to fill in

the undetermined products. For this example, we show how the product uv is determined

by the CICT of S3

First, note that u and v are in a class of size |G|
2

, so u and v must be involutions.

One way to determine the product uv is to look in the u row of the CICT. We see that

v occurs in this row, and more particularly that v occurs in the t column, so ut = v. We

know that multiplying both sides by u, we get t = uv, so that we have determined from

the CICT that uv must be t. This method can be used to determine any of the values

uv, vu, uw,wu, vw,wv, and relies on the fact that u, v and w are involutions. It also relies

on the fact that v ‘happened’ to occur in the u row of the CICT.

This example is just for a specific type of class, but it highlights the main technique that

we have available. For a fixed element h in G, we look among elements of {hg|g ∈ G}, i.e.

elements of the h row of the CICT, for an element a with a desirable characteristic, because

26



h−1a is determined by the CICT. The proof relies heavily on the associative property of

groups.

We introduce two sets that allow us to talk about these ideas in general.

Let G be an FC group, and assume that for any g, h ∈ G with h 6∼ g, the product gh is

known or, equivalently, that we have the CICT of G. Then, given h ∈ G, for any g ∈ G\hG,

the product hg is known and we define

Ph = {hg|g 6∼ h}.

For a finite group, if we fill in the CICT as we did in the S3 example, Ph is the set of entries

in the h-row of the CICT of G.

If b ∈ Ph, i.e. “b occurs in the h row of the conjugate incomplete Cayley Table”, then

b = ha for some a ∈ G, and we can determine a = h−1b from the CICT. (If we have a filled

out CICT for a finite group G, this corresponds to finding the entry b in the h row and

identify the column a in which b occurs.) So, the set Ph has the following two properties:

(P1) For a ∈ G, ha ∈ Ph if and only if a 6∼ h;

(P2) If b ∈ Ph, then h−1b can be determined from the CICT of G.

In the next section, we will be interested in those h ∈ G for which we can calculate hx

and also (hx)y. We know hx can be determined from the CICT exactly when h 6∼ x, and,

when hx can be calculated, we want to be able to calculate (hx)y. This can be determined

exactly when hx 6∼ y, or equivalently when hx 6∼ x, because y ∼ s. We define

Qx = G \
(
{h ∈ G|hx ∼ x} ∪ xG

)
,

so that Qx consists exactly of those h ∈ G for which hx and (hx)y can be determined for

any y ∼ x.

We note that 1 ∈ {g ∈ G|gx ∼ x}, since 1x ∼ x, so 1 6∈ Qx. Also, we know that
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|{g ∈ G|gx ∼ x}| = |xG| because this set is exactly xGx−1. From this it follows that

|Qx| ≥ |G| − 2|xG|. Also, the notation for Qx is independent of y, because the set itself is

independent of y. For any h ∈ Qx, z ∈ xG, we can determine (hx)z.

From the CICT, we can only calculate gx for g 6∼ x, so we cannot necessarily determine

{g ∈ G|gx ∼ x} directly. But when g 6∼ x we can determine gx and we know from the CICT

whether gx ∼ x. So we can determine the set {h ∈ G|hx ∼ x} ∪ xG, and from that we can

determine Qx, using only the information in the CICT.

Summarizing, we know that the set Qx can be determined from the CICT and has the

following properties:

(Q1) 1 6∈ Qx;

(Q2) |Qx| ≥ |G| − 2|xG|;

(Q3) For any h ∈ Qx, we can compute (hx)y.

For example, in the CICT of S3, we have Pu = {u, v, w} and Qu = S3 \ [{1, s, t} ∪

{u, v, w}] = ∅, while Qs = G \ [{s, t} ∪ ∅] = {e, u, v, w}.

2.2 The CICT of G determines G

In this section our goal is to show that FC groups with the same CICT are isomorphic. First

we prove the following:

Theorem 2.6. Let G be an FC group and suppose that we know each product gh where g

and h are not conjugate. Then we can determine the Cayley table of G algorithmically.

Proof. Let G be an FC group and fix x, y ∈ G with x ∼ y. We want to show that xy is

determined by the CICT of G. We will do this proof by cases based on the size of xG = yG.

The first case, |xG| = |G|
2

generalizes the method of our S3 example.

Case 1: G is a finite group and |xG| = |G|
2

. Then we have |CG(x)| = 2, so that

CG(x) = {1, x} and o(x) = 2. Because y ∼ x we know o(y) = 2 and CG(y) = {1, y} as
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well. If y = x, then xy = x2 = 1 is known, so assume y 6= x. Because (xy)2 = 1 implies

xy = (xy)−1 = y−1x−1 = yx, but we know that y does not centralize x, it follows that xy is

not an involution. In particular, xy 6∼ x, so y = x(xy) is in Px by property (P1). And we

know from property (P2) that when y ∈ Px, we can solve for x−1y = xy. So when |xG| = |G|
2

,

we can always calculate xy.

Case 2a: G is a finite group and |xG| < |G|
4

. In this case, from property (Q2), we have

|Qx| ≥ |G| − 2|xG| > |G| − 2
|G|
4

=
|G|
2
,

so that more than half the elements of G are in Qx. Fix an element h ∈ Qx. By (Q3), we can

determine (hx)y, and by (P2), if (hx)y is in Ph, then we can also compute h−1(hx)y = xy.

In the case where G is finite and we have a filled out CICT in front of us, we could fix

h ∈ Qx, compute (hx)y, and then look for (hx)y in Ph, the entries of the h row of the CICT.

If we find (hx)y in Ph, we see what column it occurred in, i.e. we compute h−1(hx)y (using

property (P2)), and we have determined xy. If we do not find h(xy) in Ph, we can fix another

element h′ ∈ Qx and try again. The question is whether we are guaranteed to eventually

find an element g ∈ Qx for which (gx)y ∈ Pg, so that we can use property (P2) to determine

g−1(gx)y = xy. We show that there is always such a g.

By property (P1), we have (hx)y = h(xy) ∈ Ph exactly when h 6∼ xy. Because |(xy)G| ≤
|G|
2

and |Qx| > |G|
2

, we know |Qx \(xy)G| > 0, so Qx \(xy)G 6= ∅. Fix g ∈ Qx \(xy)G. Because

g ∈ Qx, it follows from (Q3) that we can determine (gx)y. And because g 6∼ xy, it follows

from (P1) that g(xy) ∈ Pg. So we know g(xy) and by (P2) can solve for g−1(gx)y = xy. This

means that if we try the method described above for enough elements, we must eventually

find an element g ∈ Qx for which (gx)y ∈ Pg, so that we can calculate g−1(gx)y = xy. This

shows that the product xy is determined in the case where |xG| < |G|
4

.

Case 2b: G is a non-finite FC group. Let s = |xG|. In this case, from property (Q2),

we have

|Qx| ≥ |G| − 2s
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so that Qx is clearly nonempty.

When |xG| 6< |G|
4

, then G is a finite group and |xG| ∈
{
|G|
2
, |G|

3
, |G|

4

}
. We have already

shown that when |xG| = |G|
2

, we can calculate xy. So there are only the cases |xG| = |G|
3

and

|xG| = |G|
4

remaining.

When |xG| 6< |G|
4

, then |xG| ∈
{
|G|
2
, |G|

3
, |G|

4

}
. We have already shown that when |xG| = |G|

2
,

we can calculate xy. So there are only the cases |xG| = |G|
3

and |xG| = |G|
4

remaining.

Case 3: G is finite and |xG| = |G|
3

. In this case, by property (Q2), we have |Qx| ≥

|G| − 2|xG| = |G|
3

, so in particular Qx is nonempty. Also for this case |CG(x)| = 3, and so

CG(x) must be the cyclic group generated by x, where o(x) = 3. If y = x, we first look for

1 = x(x2) ∈ Px. If 1 ∈ Px, then by (P2) we can calculate x−11 = x2 = xy. It follows from

property (P1) that we have 1 = xx2 ∈ Px exactly when x 6∼ x2. So if 1 6∈ Px, then x ∼ x2.

In this case, fix h ∈ Qx. Because x ∼ x2 and h 6∼ x, we know h 6∼ x2. Thus (hx)x can

be calculated by (Q3), and by (P1), (hx)x = hx2 ∈ Ph. So by property(P2) we can find

h−1(hx)x = x2. This shows that we can determine x2 whenever |xG| = |G|
3

.

To finish the |xG| = |G|
3

case, we assume x 6= y. We know we can determine x2, so first

we can look for y in Px2 . If y ∈ Px2 , then by (P2) we can calculate (x2)−1y = xy. If y 6∈ Px2 ,

then it is because xy ∼ x2. As was the case when we determined x2, our method will vary

depending on whether or not x and x2 are conjugate.

We first consider the subcase where x ∼ x2 and xy ∼ x2. In this case, fix g ∈ Qx. Then

by (Q3), (gx)y can be calculated, and g 6∼ x, so g 6∼ xy, so g(xy) ∈ Pg, by (P1). Thus, by

property (P2) g−1(gx)y = xy is determined by the CICT.

Next, we consider the subcase where x 6∼ x2 and xy ∼ x2. Then x 6∼ xy and y 6∼ x2,

because x ∼ y. But y 6∼ x2 implies that x2y is known. And because x 6∼ xy, from (P1) it

follows that x(xy) ∈ Px. So by (P2) we can determine x−1x2y = xy.

Because this was the final subcase, we have shown that we can always determine the

product xy from the CICT when |xG| = |G|
3

.

Case 4: G is finite and |xG| = |G|
4

. In this, our final case, by (Q2) we know that
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|Qx| ≥ |G| − 2 |G|
4

= |G|
2

. Also, |CG(x)| = 4, so we know that x has order 2 or order 4. We

work by cases, but in all cases we will work to show that Qx \ (xy)G 6= ∅. As we found

earlier, when we have g ∈ Qx \ (xy)G 6= ∅, then we know that (gx)y can be calculated by

(Q3) and also that g 6∼ xy, so g(xy) ∈ Pg. It then follows by (P2) that g−1(gx)y = xy can

be determined.

First, we consider the case x 6∼ x−1. We know we are in this case when 1 ∈ Px. When

this occurs, we are able to determine x−1, but more importantly for what we are doing,

when x 6∼ x−1, we know that G has two classes of size |G|
4

, and so by size considerations

cannot have a class of size |G|
2

. In particular, |(xy)G| < |G|
2

. Since |Qx| ≥ |G|
2

, we must have

Qx \ (xy)G 6= ∅.

Now suppose x = x−1. When x is an involution, then (yx)x = y so (yx)x ∼ x. Thus, by

definition we have yx 6∈ Qx. But yx ∈ (xy)G, so we have Qx \ (xy)G = Qx \
(
(xy)G \ {yx}

)
.

Since Qx contains at least half the elements of G, and (xy)G \ {yx} contains at most |G|
2
− 1

elements, by size consideration we must have Qx \ (xy)G 6= ∅.

The final subcase of the |xG| = |G|
4

is the case x ∼ x−1, x 6= x−1. As mentioned earlier,

this implies that o(x) = 4. We know that CG(x2) contains CG(x), so |CG(x2)| ≥ 4 and

|(x2)G| ≤ |G|
4

. This ensures that Qx \ (x2)G 6= ∅, so that x2 can be determined from the

CICT, or equivalently when x = y we can determine xy.

Suppose x 6= y. We have o(x) = 4, so o(x2) = 2 and x2 6∼ y. Thus x2y is determined

by the CICT. If, in addition, we have x−1 6∼ x2y, then by (P2) we know x−1x2y can be

determined from the CICT.

If x−1 ∼ x2y, then xy = x−1(x2y) ∈ x−1xG = xGx−1. As part of our earlier discussion, we

showed that Qx = G \ (xG ∪ xGx−1). From this it follows that xy 6∈ Qx so that Qx \ (xy)G =

Qx\{(xy)G\{yx}}. Recall that Qx contains at least half the elements of G, and (xy)G\{yx}

contains at most |G|
2
− 1 elements, so we have Qx \ (xy)G 6= ∅. This is the final subcase when

we have |xG| = |G|
4

, we can always determine xy from the CICT when |xG| = |G|/4.

In all cases, we showed that we can determine xy from the CICT of G. This shows that
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there is a unique way to complete the CICT of G to get the Cayley Table of an FC group.

We note that this theorem is not true for the class of finitely-generated groups, a counter

example being given by Osin’s construction of an uncountable set of finitely generated infinite

groups with only two conjugacy classes [19, Cor 1.3]. In fact Osin constructs infinite finitely-

generated groups with exactly n conjugacy classes for every n ≥ 2.

We conclude this section with the following theorem:

Theorem 2.7. Let G,H be FC groups and let ψ : G → H be a CICT map. Then ψ is an

isomorphism.

Proof. Let G, H be FC groups with ψ : G→ H a CICT isomorphism. Then ψ is a bijection,

and for each g ∈ G we write g̃ for the corresponding element of H. We relabel elements of

H, so that we think of H as H = {g̃}g∈G. Thus elements of G and H differ in labeling only

by the inclusion of a tilde.

If we have x ∼ y, x, y ∈ G, and consider the corresponding elements x̃, ỹ ∈ H, when

we go through the steps of the proof of Theorem 2.6 above, using such elements as g, h, to

determine the product xy, we can simultaneously construct x̃ỹ using the elements g̃, h̃. We

get a unique element z = xy in G and we get a unique element of H, which must be z̃. So we

have ψ(xy) = ψ(z) = z̃ = x̃ỹ = ψ(x)ψ(y) when x ∼ y. This shows that ψ(gh) = ψ(g)ψ(h)

for any g, h ∈ G, so that ψ is an isomorphism.

Theorem 2.3 follows from Theorems 2.7 and 2.5. So when G and H have the same

4-S-ring then G and H are isomorphic.

Chapter 3. UTCCI maps and NDICT maps

Because the 2-S-ring does not determine the group, the next question is whether the 3-S-ring

of an FC group determines the group. This will motivate the work of the next two chapters.

32



The method is similar to the method of the 4-S-ring case. First we extract information

about possible products of certain pairs of elements x, y ∈ G using information about prod-

ucts of principal elements of the 3-S-ring of G and collect this information into what we will

call the ‘non-determined’ incomplete Cayley Table (NDICT). We then show that two groups

with the same NDICT are isomorphic.

In the S
(4)
G case we looked for (g, g, x, y) ∈ K(x, x, x, 1)K(y, y, y, 1). We found that there

was a unique possibility for g, namely g = xy. We did not use the full structure of the

4-S-ring, just products of diagonal 4-classes. We do a similar thing in the 3-S-ring case,

considering class products of the classes K(x, x, x), K(x, x, 1), K(x, 1, 1), x ∈ G, which we

call the the uniform 3-classes of G.

Because we are motivated by Brauer’s question, we are interested in the following maps:

Definition 3.1. A uniform 3-class centralizer algebra isomorphism (UTCCI) map is a bi-

jection ψ : G → H which (1) takes classes of G to classes of H, (2) induces an isomor-

phism of the centralizer algebras Z(CG) and Z(CH), and (3) also has the property that

ψ(3)(AB) = ψ(3)(A)ψ(3)(B) for all uniform 3-classes A,B of G3.

We are going to collect information from looking at products of uniform 3-classes, where

the information we extract depends on the relationship of x and y for x, y ∈ G. In addition

to paying attention to whether x ∼ y, we also need to know whether the pair (x, y) satisfies

a condition that we call ‘non-determined’.

Definition 3.2. A pair (u, v) with u, v ∈ H, u 6∼ v, is called an ND pair (not determined)

if u, v satisfy the following list of conditions:

(i) uv 6= vu, which implies that u is not a power of v and v is not a power of u.)

(ii) v2 6= 1.

(iii) vu = v−1, which implies uv = uv2.

(iv) u ∼ uv ∼ uv−1 ∼ uv2 ∼ u−1.
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Note that (i) and (iii) imply (ii). As the name implies, these are exactly the pairs x, y

of elements, x 6∼ y in G for which we cannot determine exactly the product xy by taking

products of uniform 3-classes.

Definition 3.3. Let G be a finite group. We define the ‘non-determined’ incomplete Cayley

Table or NDICT of G be the table indexed by g ∈ G, which has three types of entries.

(i) If x 6∼ y and (x, y) and (y, x) are not ND pairs, then the entry is xy. Also, if x ∼ y

and x is a power of y or y is a power of x, we have the entry xy.

(ii) If x 6∼ y and either (x, y) or (y, x) is an ND pair, then the entry of the NDICT is the

set {xy, yx}.

(iii) If x ∼ y and x is not a power or y and y is not a power of x, then the entry of the

NDICT is ∅.

Definition 3.4. Let G,H be FC groups. A bijection ψ : G → H is called an NDICT map

if ψ maps classes to classes and has the following characteristics:

(1) for x 6∼ y, x, y ∈ G, if neither (ψ(x), ψ(y)) nor (ψ(y), ψ(x)) is an ND pair, then

ψ(xy) = ψ(x)ψ(y).

(2) for x 6∼ y, if (ψ(x), ψ(y)) or (ψ(y), ψ(x)) is an ND pair, then ψ(xy) ∈ {ψ(x)ψ(y), ψ(y)ψ(x)}.

(3) ψ(xk) = (ψ(x))k for any x ∈ G, k ∈ Z.

If such a map exists, we say that FC groups G and H have the same NDICT.

In this chapter, we prove the following:

Theorem 3.5. Let G,H be FC groups with ψ : G → H a UTCCI map. Then ψ is an

NDICT map.

We also show that finite groups G,H with the same NDICT form a Brauer pair. Using

this fact and known information about Brauer pairs, we will show that groups G for which
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|G| < 256 is determined by the NDICT. We also discuss the NDICT of generalized dihedral

groups of order 2n, n odd.

In chapter 4 we show for finite groups of order 256 or greater which are not generalized

dihedral of order 2n, n odd, that an NDICT map is a CICT map. Application of Theorem

2.7 will then show that G and H are in fact isomorphic.

We show in the next section (Lemma 3.6) that a bijection ψ : G → H which induces

a 3-S-ring isomorphism is a UTCCI map. Thus, as a corollary, it will also follow that the

3-S-ring of a finite group determines the group.

3.1 Some Definitions and preliminary results

Proposition 3.6. If ψ : G→ H induces a 3-S-ring isomorphism for G,H FC groups, then ψ

induces an isomorphism of centralizer algebras, takes classes to classes, and has the property

that ψ(AB) = ψ(A)ψ(B) for any uniform 3-classes A,B. Or, in other words, ψ is a UTCCI

map.

Proof. Let G,H be FC groups. Let A,B be uniform 3-classes in G. It follows from Theo-

rem 1.32 that ψ induces an isomorphism of centralizer algebras. Because ψ̂(3) is a 3-S-ring

isomorphism, and A,B are elements of S
(3)
G , we know that ψ(3)(AB) = ψ(3)(A)ψ(3)(B). The

result for set products follows.

Lemma 3.7. Let ψ : G→ H be a UTCCI bijection. Then

(a) ψ(AB) = ψ(A)ψ(B) for any classes A,B of G.

(b) ψ(1G) = 1H .

(c) K(ψ(x−1)) = K(ψ(x)−1).

(d) Let A,B be uniform 3-classes of G. Then (x, y, z) ∈ AB if and only if (ψ(x), ψ(y), ψ(z)) ∈

ψ(A)ψ(B).
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Proof. (a) Fix x, y ∈ G and let A = K(x), B = K(y). Because ψ is a UTCCI map,

ψ : Z(CG)→ Z(CH) is an isomorphism, and takes classes of G to classes of H.

(b) The class K(1) is the unique class for which K(x)K(x) = K(x).

(c) The class K(x−1) is the unique class for which 1 ∈ K(x)K(x−1). Because 1 ∈

K(x)K(x−1), we have 1 ∈ ψ(K(x)K(x−1)) = ψ(K(x))ψ(K(x−1) = K(ψ(x))K(ψ(x−1)), so

that in fact K(ψ(x−1)) = K(ψ(x)−1).

(d) When A and B are uniform 3-classes, then ψ(AB) = ψ(A)ψ(B) so ψ(A)ψ(B) =

ψ(AB). And ψ is a bijection, so we know (x, y, z) ∈ AB if and only if ψ(3)(x, y, z) ∈ ψ(AB)

if and only if (ψ(x), ψ(y), ψ(z)) ∈ ψ(A)ψ(B).

Throughout the remainder of this section, G,H are FC groups and ψ : G → H is a

UTCCI map. In order to show that ψ(g−1) = ψ(g)−1 for any g ∈ G, we first need a technical

lemma. We define

Ix = {g ∈ G|(1, x, g) ∈ K(x, x, 1)K(x−1, x−1, 1)}.

Then we have the following result about Ix:

Lemma 3.8. Let x ∈ G \ {1}, for G an FC group. Then

(a) Both |Ix| = 2 and Ix = {x, x−1} hold if and only if both x 6= x−1 and x ∈ xG(x−1)G

hold;

(b) Ix = {x−1} otherwise.

Proof. Let G be an FC group and x ∈ G \ {1}.

Let A = K(x, x, 1), B = K(x−1, x−1, 1). From the definition of 3-classes we have

A = {(x, x, 1)s, (x, 1, x)s, (1, x, x)s}s∈G, B = {(x−1, x−1, 1)t, (x−1, 1, x−1)t, (1, x−1, x−1)t}t∈G,

so that (x, x, 1)(x−1, 1, x−1) = (1, x, x−1) ∈ AB. If (1, x, g) ∈ AB, then (1, x, g) = αβ for

some α ∈ A, β ∈ B. So (1, x, g) could occur as one of nine possible types of products.
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Case 1: α = (x, x, 1)s, β = (x−1, x−1, 1)t, αβ = (xs(x−1)t, xs(x−1)t, 1) = (1, x, g).

Here we have xs(x−1)t = 1, xs(x−1)t = x, 1 = g, so we get x = xs(x−1)t = 1, a contradiction

because by assumption x 6= 1.

Case 2: α = (x, x, 1)s, β = (x−1, 1, x−1)t, αβ = (xs(x−1)t, xs, (x−1)t) = (1, x, g).

Here we have xs(x−1)t = 1, xs = x, (x−1)t = g, so that xs = x and x(x−1)t = 1. Solving we

get (x−1)t = x−1 and so g = (x−1)t = x−1.

Case 3: α = (x, x, 1)s, β = (1, x−1, x−1)t, αβ = (xs, xs(x−1)t, (x−1)t) = (1, x, g).

Here we have xs = 1, giving x = 1, a contradiction.

Case 4: α = (x, 1, x)s, β = (x−1, x−1, 1)t, αβ = (xs(x−1)t, (x−1)t, xs) = (1, x, g).

Here we have xs(x−1)t = 1, (x−1)t = x, xs = g, and so we get xs = xt from the first equation,

xt = x−1 from the second, so that g = xs = xt = x−1.

Case 5: α = (x, 1, x)s, β = (x−1, 1, x−1)t, αβ = (xs(x−1)t, 1, xs(x−1)t) = (1, x, g).

Again we have 1 = x, which gives a contradiction, because by assumption x 6= 1.

Case 6: α = (x, 1, x)s, β = (1, x−1, x−1)t, αβ = (xs, (x−1)t, xs(x−1)t) = (1, x, g).

Here we have xs = 1, a contradiction, because x 6= 1.

Case 7: α = (1, x, x)s, β = (x−1, x−1, 1)t, αβ = ((x−1)t, xs(x−1)t, xs) = (1, x, g).

Here we have (x−1)t = 1, again a contradiction.

Case 8: α = (1, x, x)s, β = (x−1, 1, x−1)t, αβ = ((x−1)t, xs, xs(x−1)t) = (1, x, g).

Again we have (x−1)t = 1, and so we get x = 1, a contradiction.

Case 9: α = (1, x, x)s, β = (1, x−1, x−1)t, αβ = (1, xs(x−1)t, xs(x−1)t) = (1, x, g).

Here we have 1 = 1, xs(x−1)t = x, xs(x−1)t = g, and so we get g = xs(x−1)t = x.

This shows that it is only possible to get x and x−1 in Ix. We showed earlier that x−1 is

always an element of Ix. Case 9 is the only case where we pick up x as a possible element of

Ix for x 6= x−1, and this occurs only when x = xs(x−1)t. So |Ix| = 2 only when x is not an

involution or the identity and x ∈ xG(x−1)G.

Just as an aside, when G = S3 we have (123) = (132)(132) ∈ (123)G((123)−1)G, so it is

possible to have |Ix| = 2.
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Now we want to apply this result to FC groups G,H for which there is a UTCCI bijection

ψ : G→ H. By Lemma 3.7(d), we know that that

(1, ψ(x), ψ(x−1)) ∈ K(ψ(x), ψ(x), 1)K(ψ(x)−1, ψ(x)−1, 1).

But (1, ψ(x), ψ(x−1)) is of type (1, ψ(x), h) ∈ K(ψ(x), ψ(x), 1)K(ψ(x)−1, ψ(x)−1, 1), and so

is a term of type (1, ψ(x), h) in K(ψ(x), ψ(x), 1)K(ψ(x)−1, ψ(x)−1, 1). So by Lemma 3.8,

ψ(x−1) ∈ Iψ(x).

Also, (1, ψ(x), ψ(x)−1) ∈ K(ψ(x), ψ(x), ψ(x)K(ψ(x)−1, ψ(x)−1, 1) implies

(1, x, ψ−1(ψ(x)−1)) ∈ K(x, x, 1)K(x−1, x−1, 1)

by Lemma 3.7, so that ψ−1(ψ(x)−1) ∈ Ix.

So, if |Ix| = 1 then x−1 = ψ−1(ψ(x)−1), so that ψ(x−1) = ψ(x)−1. Similarly, if |Iψ(x)| = 1,

then ψ(x−1) = ψ(x)−1. If |Ix| = 2, then by way of contradiction assume ψ−1(ψ(x)−1) = x.

Then we have ψ(x) = ψ(x)−1, so that |Iψ(x)| = 1, a contradiction, because x 6= x−1.

We have shown the following:

Theorem 3.9. Let G,H be FC groups and ψ : G → H a UTCCI map. Then ψ(x−1) =

ψ(x)−1.

We now attempt to mimic what we did for the 4-S-ring, where we considered (g, g, x, y) ∈

K(x, x, x, 1)K(y, y, y, 1). We found that there was a unique possibility for g, namely g = xy.

In the 3-S-ring case, we consider, for x, y ∈ G, the set

Ax,y = {g ∈ G|(g, x, y) ∈ K(x, x, 1)K(y, y, 1)}.

We will see that we always get xy ∈ Ax,y, but Ax,y may also include other elements of G.

Even so, it turns out to be a very useful set.

The identity element 1 of a group is determined by its 3-S-ring, Lemma 3.7, and for any
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x ∈ G, the product 1x = x is known, so in the statement of the following lemma nothing is

lost by assuming that that x 6= 1, y 6= 1.

Lemma 3.10. Let G be an FC group and let x, y ∈ G \ {1}. Then

(a) If x 6∼ y, then xy ∈ Ax,y ⊆ {xy, x−1y, xy−1}.

(b) If x ∼ y, then {xy, yx} ⊆ Ax,y ⊆ {xy, yx, xy−1, x−1y, y−1x, yx−1}.

Proof. Let G be a finite group. Let x, y ∈ G \ {1}. Let A = K(x, x, 1), B = K(y, y, 1).

Then by the definition of 3-class we know that A = {(x, x, 1)s, (x, 1, x)s, (1, x, x)s}s∈G and

B = {(y, y, 1)t, (y, 1, y)t, (1, y, y)t}t∈G. We have (x, x, 1)(y, 1, y) = (xy, x, y), so (xy, x, y) ∈

AB and xy ∈ Ax,y. If x ∼ y, then (y, 1, y) ∈ K(x, x, 1) and (x, x, 1) ∈ K(y, y, 1), so

(y, 1, y)(x, x, 1) = (yx, x, y) ∈ AB. So yx ∈ Ax,y when x ∼ y.

Suppose (g, x, y) ∈ AB. Then (g, x, y) = αβ where α ∈ A, β ∈ B. So (g, x, y) can occur

as one of nine possible types of products, corresponding to the types of elements in A and

B. We check each possibility to determine when it is possible to get (g, x, y) ∈ AB.

Case 1: α = (x, x, 1)s, β = (y, y, 1)t, αβ = (xsyt, xsyt, 1) = (g, x, y).

Here we have xsyt = g, xsyt = x, 1 = y, and the last equation gives a contradiction, because

by assumption y 6= 1. So we don’t get any elements of Ax,y from this case.

Case 2: α = (x, x, 1)s, β = (y, 1, y)t, αβ = (xsyt, xs, yt) = (g, x, y).

Here we have xsyt = g, xs = x, yt = y, and so that g = xsyt = xy. This is what we already

showed, namely that xy ∈ Ax,y.

Case 3: α = (x, x, 1)s, β = (1, y, y)t, αβ = (xs, xsyt, yt) = (g, x, y).

Here we have xs = g, xsyt = x, yt = y, and so we get x = xsyt = xsy, and solving for xs we

get xs = xy−1, so g = xs = xy−1. So we can get xy−1 ∈ Ax,y.

Case 4: α = (x, 1, x)s, β = (y, y, 1)t, αβ = (xsyt, yt, xs) = (g, x, y).

Here we have xsyt = g, yt = x, xs = y, and so this case can only occur when x ∼ y. We get

g = xsyt = yx. So we can get yx ∈ Ax,y if x ∼ y.

Case 5: α = (x, 1, x)s, β = (y, 1, y)t, αβ = (xsyt, 1, xsyt) = (g, x, y).
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Here we have xsyt = g, 1 = x, xsyt = y, and the second equation gives a contradiction,

because by assumption x 6= 1.

Case 6: α = (x, 1, x)s, β = (1, y, y)t, αβ = (xs, yt, xsyt) = (g, x, y).

Here we have xs = g, yt = x, xsyt = y, and so this case occurs only when x ∼ y. We

get y = xsyt = xsx. Solving for xs we get xs = yx−1. Since g = xs, it is possible to get

yx−1 ∈ Ax,y.

Case 7: α = (1, x, x)s, β = (y, y, 1)t, αβ = (yt, xsyt, xs) = (g, x, y).

Here we have yt = g, xsyt = x, xs = y, and so this case occurs only when x ∼ y. We get

x = xsyt = yyt. Solving for yt we get yt = y−1x. So it is possible to get y−1x ∈ Ax,y if x ∼ y.

Case 8: α = (1, x, x)s, β = (y, 1, y)t, αβ = (yt, xs, xsyt) = (g, x, y).

Here we have yt = g, xs = x, xsyt = y, and so we get y = xsyt = xyt and solving for yt we

get yt = x−1y, so we can get g = yt = x−1y in Ax,y.

Case 9: α = (1, x, x)s, β = (1, y, y)t, αβ = (1, xsyt, xsyt) = (g, x, y).

Here we have 1 = g, xsyt = x, xsyt = y, and so we get g = 1, and y = x and x ∈ (xG)2. Note

that in this case we have g = xy−1.

So, if x 6∼ y, then Ax,y ⊂ {xy, xy−1, x−1y} and xy ∈ Ax,y.

If x ∼ y, then Ax,y ⊆ {xy, xy−1, x−1y, yx, yx−1, y−1x} and {xy, yx} ⊆ Ax,y.

We will use Ax,y to show that a UTCCI map ψ : G→ H maps powers of g ∈ G to powers

of ψ(g). In the next section we will use Ax,y to show that when groups of odd order have

the same 3-S-ring, then the groups are isomorphic.

Theorem 3.11. Let G, H be FC groups. If ψ : G → H is a UTCCI map, then ψ(gk) =

(ψ(g))k for all integers k.

To simplify notation, we let ψ(x) = x̃, ψ(y) = ỹ, etc. We will write x̃k for ψ(x)k and

note that x̃−1 is unambiguous because of the result of Theorem 3.9.

Proof. Let G,H be FC groups, with ψ : G → H a UTCCI map. Fix x ∈ G. We know

ψ(1) = 1, and it follows from Theorem 3.9 that when x2 = 1, then ψ(x)2 = 1. So we assume
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x2 6= 1. We have (x, x, 1)(x, 1, x) = (x2, x, x) ∈ K(x, x, 1)K(x, x, 1), and so we also have

(ψ(x2), x̃, x̃) ∈ K(x̃, x̃, 1)K(x̃, x̃, 1). But from the definition of Ax̃,x̃, this means we have

ψ(x2) ∈ Ax̃,x̃ ⊆ {x̃x̃, x̃x̃−1, x̃−1x̃} = {1, x̃2},

and ψ(x2) 6= 1, because ψ is a bijection, so we must have ψ(x2) = x̃2. Thus, when o(x) ≤ 3,

ψ(xk) = x̃k for any k.

Without loss of generality, we assume o(x) ≥ 4.

The proof is by (strong) induction on k, 1 ≤ k ≤ o(x). Inductively, we assume ψ(xj) = x̃j,

1 ≤ j ≤ k for some k. We have shown that ψ(g−1) = (ψ(g))−1 for all g ∈ G, so it follows

that

ψ(x−j) = ψ((xj)−1) = (ψ(xj))−1 = ((x̃)j)−1 = x̃−j

for 1 ≤ j ≤ k.

Because (xk+1, xk, x) ∈ K(x, x, 1)K(xk, xk, 1) and, by induction ψ(xk) = x̃k, it follows

from Lemma 3.7 that we have

ψ(3)(xk+1, x, xk) = (ψ(xk+1), x̃, ψ(xk)) ∈ K(x̃, x̃, 1)K(x̃k, x̃k, 1).

But (ψ(xk+1), x̃, ψ(xk)) is of type (g, x̃, x̃k). From the definition of Ax̃,x̃k and Lemma 3.10,

we know (g, x̃, x̃k) ∈ K(x̃, x̃, 1)K(x̃k, x̃k, 1) implies g ∈ Ax̃,x̃k . So that

ψ(xk+1) ∈ Ax̃,x̃k ⊆ {x̃x̃k, x̃kx̃, x̃−1x̃k, x̃x̃−k, x̃kx̃−1, x̃−kx̃} = {x̃k+1, x̃k−1, x̃1−k}.

By induction, we have ψ(xk−1) = x̃k−1 and ψ(x1−k) = x̃1−k. Because ψ is a bijection, we

must have ψ(xk+1) = x̃k+1.

Finally, as a corollary to this result, recall that a pair (G,H) of non-isomorphic groups

form a Brauer pair if there is a bijection φ : G → H that maps classes to classes, that

determines an isomorphism of centralizer algebras, and which also respects the power maps:
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the H-class of φ(gk) is the same as the class of φ(g)k for all g ∈ G, k ∈ Z.

From the definition of Brauer pair and Theorem 3.11 we get the following result:

Corollary 3.12. Let G,H be FC groups. If there exists a UTCCI map ψ : G → H, then

G,H are a Brauer pair.

3.2 Image of xy under ψ when x 6∼ y, x 6∼ x−1, and y 6∼ y−1

In this section, G,H are still FC groups and ψ : G → H is a UTCCI map. Also, x, y ∈ G

and x 6∼ y.

In the last section, we found the set Ax,y by inspecting the possibilities for entries in

products of certain uniform classes. We did a similar thing to determine Ix. Then we looked

at Ax̃,ỹ and Ix̃ to determine possible images of x−1 and xy under ψ (respectively).

We continue that method in this section, finding sets in H which contain x̃ỹ and inter-

secting these sets to further restrict the possible image of xy. For x 6∼ y, x 6∼ x−1, and

y 6∼ y−1 we will show that x̃y = x̃ỹ.

For x, y ∈ G, define

Rx,y = {g ∈ G|(g, x, x) ∈ K(x, x, x)K(y, 1, 1)}, and

Lx,y = {h ∈ G|(h, y, y) ∈ K(x, 1, 1)K(y, y, y)}.

Lemma 3.13. Let G be a finite group. Let x, y ∈ G\{1} with x 6∼ y. Then Rx,y = {xyt}t∈G

and Lx,y = {xsy}s∈G.

Proof. Let G be a finite group. Let x, y be non-conjugate, non-identity elements of G.

Let A = K(x, x, x) and B = K(y, 1, 1). Then by the definition of 3-classes, we know

A = {(x, x, x)s}s∈G and B = {(1, 1, y)t, (1, y, 1)t, (y, 1, 1)t}t∈G. Since (x, x, x) ∈ A and

(yt, 1, 1) ∈ B for any t ∈ G, we have (x, x, x)(yt, 1, 1) = (xyt, x, x) ∈ AB for any t ∈ G. These

elements (xyt, x, x) are of type (g, x, x) ∈ AB, g ∈ G. This shows that {xyt}t∈G ⊆ Rx,y. To
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show equality, we show that if (g, x, x) ∈ AB, then g ∈ {xyt}t∈G. We know that an element

(g, x, x) ∈ AB can occur as one of three possible types of products.

Case 1: (x, x, x)s(1, 1, y)t = (xs, xs, xsyt) = (g, x, x).

Here we get x = xsyt = xs and solving for y gives y = 1, a contradiction.

Case 2: (x, x, x)s(1, y, 1)t = (xs, xsyt, xs) = (g, x, x).

Again we get x = xs = xsyt, and solving for y gives y = 1, a contradiction.

Case 3: (x, x, x)s(y, 1, 1)t = (xsyt, xs, xs) = (g, x, x).

Here we have xs = x, g = xsyt = xyt.

So, in all cases, we have g ∈ {xyt}t∈G, so that, in fact {xyt}t∈G = {g ∈ G|(x, x, g) ∈

K(x, x, x)K(y, 1, 1)}.

To see that Lx,y = {xsy}s∈G, let C = K(x, 1, 1) andD = K(y, y, y). By the definition of 3-

class we have C = {(x, 1, 1)s, (1, x, 1)s, (1, 1, x)s}s∈G, D = {(y, y, y)t}t∈G. Because (xs, 1, 1) ∈

C for any s ∈ G and (y, y, y) ∈ D, we have (xsy, y, y) ∈ CD for any s ∈ G, so {xsy}s∈G ⊆

{h ∈ G|(h, y, y) ∈ K(x, 1, 1)K(y, y, y)}. To show equality, we show that if (h, y, y) ∈ CD,

then h ∈ {xsy}s∈G. We know that an element (h, y, y) ∈ CD can occur as one of three types

of products.

Case 1: (x, 1, 1)s(y, y, y)t = (xsyt, yt, yt) = (h, y, y).

Here we have yt = y, h = xsyt = xsy.

Case 2: (1, x, 1)s(y, y, y)t = (yt, xsyt, yt) = (h, y, y).

Here we get y = xsyt = yt, and solving for x gives x = 1, a contradiction.

Case 3: (1, 1, x)s(y, y, y)t = (yt, yt, xsyt) = (h, y, y).

Here we get y = yt = xsyt and solving for x gives x = 1, a contradiction.

So, in all cases, we have h ∈ {xsy}s∈G. This concludes the proof that {xsy}s∈G = {h ∈

G|(h, y, y) ∈ K(x, 1, 1)K(y, y, y)}.

Suppose x 6∼ y, with x, y ∈ G. Then (xy, x, x) ∈ K(x, x, x)K(y, 1, 1), and because ψ

is a UTCCI map it follows from Lemma 3.7 that (x̃y, x̃, x̃) ∈ K(x̃, x̃, x̃)K(ỹ, 1, 1). So by

the definition of Rx̃,ỹ we have x̃y ∈ Rx̃,ỹ. Similarly (xy, y, y) ∈ K(x, 1, 1)K(y, y, y) implies
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(x̃y, ỹ, ỹ) ∈ K(x̃, 1, 1)K(ỹ, ỹ, ỹ) so that x̃y ∈ Lx̃,ỹ. Also, (xy, x, y) ∈ K(x, x, 1)K(y, 1, y)

implies (x̃y, x̃, ỹ) ∈ K(x̃, x̃, 1)K(ỹ, 1, ỹ) so that x̃y ∈ Ax̃,ỹ. So we must have x̃y ∈ Ax̃,ỹ ∩

Rx̃,ỹ ∩ Lx̃,ỹ.

Our next goal is to understand Ax̃,ỹ ∩ Rx̃,ỹ ∩ Lx̃,ỹ when x 6∼ x−1, y 6∼ y−1. Because ψ

maps classes to classes and inverses to inverses, this implies x̃ 6∼ ỹ, x̃ 6∼ x̃−1, and ỹ 6∼ ỹ−1.

First, because x̃ỹ ∈ Ax̃,ỹ, x̃ỹ ∈ Rx̃,ỹ and x̃ỹ ∈ Lx̃,ỹ, we have x̃ỹ ∈ Ax̃,ỹ ∩Rx̃,ỹ ∩ Lx̃,ỹ.

Also, we know that Ax̃,ỹ ∩ Rx̃,ỹ ∩ Lx̃,ỹ ⊆ Ax,y ⊆ {xy, xy−1, x−1y}. Because y 6∼ y−1, we

have ỹ−1 6= (ỹ)t for any t ∈ H, so that x̃ỹ−1 6= x̃ỹt for any t ∈ H. So x̃ỹ−1 6∈ Rx̃,ỹ. Similarly,

because x̃ 6∼ x̃−1, then x̃−1ỹ 6= (x̃)sỹ for any s ∈ H, so that x̃−1ỹ 6∈ Lx̃,ỹ. Thus we have

x̃ỹ−1, x̃−1ỹ 6∈ Ax̃,ỹ∩Rx̃,ỹ∩Lx̃,ỹ, so that in fact Ax̃,ỹ∩Rx̃,ỹ∩Lx̃,ỹ = {x̃ỹ} when x 6∼ y, x 6∼ x−1,

y 6∼ y−1. Because x̃y ∈ Aỹ,ỹ, it follows that x̃ỹ = x̃y. We have shown the following:

Lemma 3.14. Let G,H be FC groups and ψ : G→ H a UTCCI bijection. Let x, y ∈ G. If

x 6∼ y, x 6∼ x−1, y 6∼ y−1, then ψ(xy) = ψ(x)ψ(y).

If particular, if G is a group of odd order, and ψ : G → H is a UTCCI map, then no

element of G \ {1} is conjugate to its inverse, so it follows from Lemma 3.14 that ψ(gh) =

ψ(g)ψ(h) for any g, h ∈ G with g 6∼ h. So, ψ is a CICT isomorphism, and hence G and H

are isomorphic by Theorem 2.7.

Corollary 3.15. Let G,H be finite groups of odd order and ψ : G → H a UTCCI map.

Then ψ is an isomorphism. In particular, if G, H have the same 3-S-ring, then G and H

are isomorphic.

3.3 Determining ψ(xy) when x 6∼ y and either x ∼ x−1 or y ∼ y−1

With Lemma 3.14 in hand we are ready to focus our efforts on pairs of elements x, y ∈ G for

which x 6∼ y and either x ∼ x−1 or y ∼ y−1. We obtained Lemma 3.14 by considering sets

in H containing x̃y and then intersecting those sets until we restricted to a single element

x̃ỹ that was the only possible image for x̃y. If x ∼ x−1 or y ∼ y−1 we may not always be so
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lucky. But we can do better than what we’ve got so far.

In this section, G,H are still FC groups and ψ : G → H a UTCCI map. Also, x, y ∈ G

and x 6∼ y.

We are going to need a couple more sets. For x, y ∈ G with x 6∼ y, we let

Mx,y = {(g ∈ G|(x, g, y−1) ∈ K(g, g, 1)K(y−1, y−1, 1)}, and

Nx,y = {h ∈ G|(x−1, g, y) ∈ K(x−1, x−1, 1)K(g, g, 1)}.

Then Mx,y and Nx,y have the following characteristics.

Lemma 3.16. Let G be a finite group. Let x, y ∈ G \ {1} with x 6∼ y, x 6∼ y−1. Then

xy ∈Mx,y ⊆ {xy, yx, xy−1}, xy ∈ Nx,y ⊆ {xy, yx, x−1y} and

(a) If yx 6= xy and yx 6= x−1y, then yx ∈ Mx,y if and only if yx ∼ y−1. If xy−1 6= xy and

xy−1 6= yx, then xy−1 ∈Mx,y if and only if xy−1 ∼ x.

(b) If yx 6= xy and yx 6= x−1y, then yx ∈ Nx,y if and only if yx ∼ x−1. If x−1y 6= xy and

x−1y 6= yx, then x−1y ∈ Nx,y if and only if x−1y ∼ y.

Before beginning the proof, we mention that if, for example xy = yx, then we have

yx ∈ Mx,y, regardless of whether or not yx ∼ y−1. Also, the restriction that x 6∼ y−1 holds

is not much of a restriction because we are now primarily interested in the case where x 6∼ y

and either x ∼ x−1 or y ∼ y−1. And when we have either of these cases, it is straightforward

to verify that x 6∼ y−1 and, equivalently, that x−1 6∼ y.

Proof. Let G be a finite group. Fix x, y ∈ G \ {1} with x 6∼ y, x 6∼ y−1.

We have (x, xy, y−1) = (xy, xy, 1)(y−1, 1, y−1) ∈ K(xy, xy, 1)K(y−1, y−1, 1) so xy ∈Mx,y.

If x ∼ xy−1, then (x, xy−1, y−1) = (x, x, 1)(1, y−1, y−1) ∈ K(xy−1, xy−1, 1)K(y−1, y−1, 1),

so that xy−1 ∈Mx,y.

If y−1 ∼ yx, then (x, yx, y−1) = (y−1, 1, y−1)(yx, yx, 1) ∈ K(yx, yx, 1)K(y−1, y−1, 1), so

that yx ∈Mx,y.
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Also, we have (x−1, xy, y) = (x−1, 1, x−1)(1, xy, xy) ∈ K(x−1, x−1, 1)K(xy, xy, 1), so xy ∈

Nx,y.

If y ∼ x−1y, then (x−1, x−1y, y) = (x−1, x−1, 1)(1, y, y) ∈ K(x−1, x−1, 1)K(x−1y, x−1y, 1),

so x−1y ∈ Nx,y.

If x−1 ∼ yx then (x−1, yx, y) = (1, yx, yx)(x−1, 1, x−1) ∈ K(x−1, x−1, 1)K(yx, yx, 1), so

yx ∈ Nx,y

To see that Mx,y ⊆ {xy, yx, xy−1}, fix g ∈ G. We let A = K(y−1, y−1, 1), and C =

K(1, g, g). By the definition, we have A = {(y−1, y−1, 1)t, (y−1, 1, y−1)t, (1, y−1, y−1)t}t∈G and

C = {(g, g, 1)s, (g, 1, g)s, (1, g, g)s}s∈G. If g ∈ Mx,y, then (x, g, y−1) ∈ CA and so (x, g, y−1)

occurs as one of nine possible types of products, which we check:

Case 1: (gs, gs, 1)((y−1)t, (y−1)t, 1) = (gs(y−1)t, gs(y−1)t, 1) = (x, g, y−1).

Here we get y−1 = 1, a contradiction.

Case 2: (gs, gs, 1)((y−1)t, 1, (y−1)t) = (gs(y−1)t, gs, (y−1)t) = (x, g, y−1).

Here we get (y−1)t = y−1 and gs = g, substituting in the equations from the first component

we get x = gs(y−1)t = gy−1. Solving for g, we get g = xy.

Case 3: (gs, gs, 1)(1, (y−1)t, (y−1)t) = (gs, gs(y−1)t, (y−1)t) = (x, g, y−1).

Here we get (y−1)t = y−1 and x = gs, substituting into the equations from the second

component, we get g = gs(y−1)t = xy−1, g ∼ x.

Case 4: (gs, 1, gs)((y−1)t, (y−1)t, 1) = (gs(y−1)t, (y−1)t, gs) = (x, g, y−1).

Here we get gs = y−1 and (y−1)t = g. Substituting into the equations from the first compo-

nent, we get x = gs(y−1)t = y−1g. Solving for g, we get g = yx, g ∼ y−1.

Case 5: (gs, 1, gs)((y−1)t, 1, (y−1)t) = (gs(y−1)t, 1, gs(y−1)t) = (x, g, y−1).

Here we get y−1 = gs(y−1)t = x, a contradiction. By hypothesis x 6∼ y−1.

Case 6: (gs, 1, gs)(1, (y−1)t, (y−1)t) = (gs, (y−1)t, gs(y−1)t) = (x, g, y−1).

Here we get x = gs and g = (y−1)t, which implies x ∼ y−1, a contradiction.

Case 7: (1, gs, gs)((y−1)t, (y−1)t, 1) = ((y−1)t, gs(y−1)t, gs) = (x, g, y−1).

Here we get x = (y−1)t, a contradiction.
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Case 8: (1, gs, gs)((y−1)t, 1, (y−1)t) = ((y−1)t, gs, gs(y−1)t) = (x, g, y−1).

Here we get x = (y−1)t, a contradiction.

Case 9: (1, gs, gs)(1, (y−1)t, (y−1)t) = (1, gs(y−1)t, gs(y−1)t) = (x, g, y−1).

Here we get x = 1, a contradiction.

This shows that Mx,y ⊆ {xy, yx, xy−1}, and also gives the restrictions for when yx, xy−1

can occur in Mx,y.

Similarly, to show that Nx,y ⊆ {xy, yx, x−1y}, we let B = K(x−1, x−1, 1). Then from the

definition of 3-class we have B = {(x−1, x−1, 1)t, (x−1, 1, x−1)t, (1, x−1, x−1)t}t∈G. Again let

C = K(1, g, g). Consider (x−1, g, y) ∈ BC. Out of nine possible products there are only

three that fail to give a contradiction:

Case A: ((x−1)t, 1, (x−1)t)(1, gs, gs) = ((x−1)t, gs, (x−1)tgs) = (x−1, g, y).

Here we get (x−1)t = x−1, gs = g, and y = (x−1)tgs = x−1g so g = xy.

Case B: ((x−1)t, (x−1)t, 1)(1, gs, gs) = ((x−1)t, (x−1)tgs, gs) = (x−1, g, y).

Here we get (x−1)t = x−1, gs = y, and g = (x−1)tgs = x−1y, g ∼ y.

Case C: (1, (x−1)t, (x−1)t)(gs, 1, gs) = (gs, (x−1)t, (x−1)t) = (x−1, g, y).

Here we get gs = x−1, (x−1)t = g, and y = (x−1)tgs = gx−1 so g = yx, g ∼ x−1.

This gives us the inclusion Nx,y ∈ {xy, yx, x−1y} and the restrictions for when we can

have yx, x−1y ∈ Nx,y.

Now we consider the consequences of this with regards to a UTCCI map ψ : G→ H.

Fix x, y ∈ G \ {1} with x 6∼ y and with either x ∼ x−1 or y ∼ y−1. As mentioned earlier,

it follows that x 6∼ y−1 and y 6∼ x−1. And, because ψ takes classes of G to classes of H, we

also have that x̃ 6∼ ỹ, and either x̃ ∼ x̃−1 or ỹ ∼ ỹ−1.

We have (x, xy, y−1) = (xy, xy, 1)(y−1, 1, y−1) ∈ K(xy, xy, 1)K(y−1, y−1, 1) and ψ a

UTCCI map, so (x̃, x̃y, ỹ−1) ∈ K(x̃y, x̃y, 1)K(ỹ−1, ỹ−1, 1). By definition of Mx̃,ỹ, we have

x̃y ∈Mx̃,ỹ.

Similarly, we have (x−1, xy, y) ∈ K(1, x−1, x−1)K(xy, xy, 1) from which it follows that

(x̃−1, x̃y, ỹ) ∈ K(x̃−1, x̃−1, 1)K(x̃y, x̃y, 1). So we also have x̃y ∈ Nx̃,ỹ. We have shown the
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following:

Lemma 3.17. Let G,H be finite groups. If ψ : G→ H is a UTCCI map, then for x, y ∈ G

satisfying x 6∼ y, and either x 6∼ x−1 or y 6∼ y−1, we have x̃y ∈Mx̃,ỹ ∩Nx̃,ỹ.

Thus elements of Mx̃,ỹ ∩Nx̃,ỹ are the possible images of xy under ψ.

We let M = Mx̃,ỹ, N = Nx̃,ỹ. If |M ∩N | = 1, then M ∩N = {x̃ỹ}, so x̃y = x̃ỹ.

We consider what happens when |M | = 3. By Lemma 3.16, this can occur only if

x̃ỹ 6= ỹx̃ 6= x̃ỹ−1, ỹx̃ ∼ ỹ−1 and x̃ỹ−1 ∼ x̃, and in this case we have M = {x̃ỹ, ỹx̃, x̃ỹ−1}.

Because ỹx̃ ∼ ỹ−1 we know ỹx̃ 6∼ x̃−1. Also, taking x̃ỹ−1 ∼ x̃ and inverting both sides, we

get ỹx̃−1 ∼ x̃−1, so that x̃−1ỹ = (ỹx̃−1)x̃ ∼ x̃−1, and from this it follows that x̃ỹ−1 6∼ y.

Because we have x̃−1ỹ ∼ x̃−1 and x̃−1ỹ 6∼ ỹ, it follows from Lemma 3.16 that N = {x̃ỹ}.

This proves:

Lemma 3.18. Let x, y ∈ G a finite group with x 6∼ y, x 6∼ y−1. If |M | = 3, then |N | = 1

and M ∩N = {x̃ỹ}.

As our first consequence of this, we note that it is impossible to have |M ∩ N | = 3. As

a second consequence, we note that if |M ∩N | = 2, then |N | ≥ 2, so that |M | 6= 3, so that

when |M ∩N | = 2, we are forced to have |M | = 2.

So all that remains for us to consider is the possibility that |M ∩ N | = 2. Because this

implies |M | = 2, there are two possibilities for M : either (A) M = {x̃ỹ, ỹx̃} with x̃ỹ 6= ỹx̃

and ỹx̃ ∼ ỹ−1, or (B) we have M = {x̃ỹ, x̃ỹ−1} with x̃ỹ−1 ∼ x̃ and x̃ỹ−1 6= x̃ỹ.

Case A: First, suppose M = {x̃ỹ, ỹx̃} with ỹx̃ 6= x̃ỹ and ỹx̃ ∼ x−1, then ỹx̃ 6∼ y−1, as

shown above. Because ỹx̃ 6= x̃ỹ, we can get ỹx̃ ∈ N only if ỹx̃ = x̃−1ỹ.

Case B: Next, suppose |M ∩N | = 2 and M = {x̃ỹ, x̃ỹ−1} with x̃ỹ−1 ∼ x̃ and x̃ỹ−1 6= x̃ỹ.

Again, we must have x̃ỹ−1 ∈ N . And because x̃ỹ−1 6= x̃ỹ, this can occur because x̃ỹ−1 = ỹx̃

(where x̃ỹ 6= ỹx̃), or because x̃ỹ−1 = x̃−1ỹ. In this case, because x̃ỹ−1 6= x̃ỹ we get as a

consequence that x̃−1ỹ 6= x̃ỹ. But when x̃ỹ−1 ∼ x̃, we showed above that x̃−1ỹ 6∼ ỹ, so

that x̃−1ỹ ∈ N only if x̃−1ỹ = x̃ỹ or x̃−1ỹ = ỹx̃. This, in conjunction with the fact that
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|M ∩ N | = 2, implies that |N | = 2, so that N = {x̃ỹ, ỹx̃} with x̃ỹ 6= ỹx̃. And so we must

have ỹx̃ = x̃ỹ−1.

When |N ∩M | = 2, then M ∩N = {x̃ỹ, ỹx̃} so that x̃y ∈ {x̃ỹ, ỹx̃}. However, we found

that we have |M ∩N | = 2 only if the elements x̃, ỹ satisfy certain conditions.

In case A, we had M = {x̃ỹ, ỹx̃} because ỹx̃ ∼ ỹ−1 with N = {x̃ỹ, x̃−1ỹ} and ỹx̃ = x̃−1ỹ.

In this case, x̃, ỹ must satisfy the following conditions:

(a) x̃2 6= 1, because x̃ỹ 6= x̃−1ỹ.

(b) ỹx̃ = x̃−1ỹ. Inverting both sides and multiplying on the right by ỹ we get x̃−1ỹ−1ỹ =

ỹ−1x̃ỹ, and this is equivalent to x̃ỹ = x̃−1.

(c) ỹ ∼ ỹ−1 because ỹ ∼ x̃−1ỹ = ỹx̃ ∼ ỹ−1.

(d) ỹ ∼ x̃ỹ ∼ x̃−1ỹ ∼ (x̃−1)2ỹ, because ỹ ∼ x̃−1ỹ = ỹx̃ ∼ ỹ−1 and ỹx̃ = (x̃−1)2y.

In case B, we had M = {x̃ỹ, x̃ỹ−1} with x̃ỹ 6= x̃ỹ−1, and x̃ỹ−1 ∼ x̃. We showed N =

{x̃ỹ, ỹx̃}, with x̃ỹ 6= ỹx̃, so that ỹx̃ = x̃ỹ−1. In this case, for similar reasons as above, x̃, ỹ

must satisfy the following:

(a) ỹ2 6= 1.

(b) ỹx̃ = ỹ−1, which is equivalent to x̃ỹ = (ỹ)−2x̃.

(c) x̃ ∼ x̃−1.

(d) x̃ ∼ x̃ỹ ∼ x̃ỹ−1 ∼ x̃ỹ2.

These are a pretty restrictive list of conditions. And, they are symmetric. By that I mean

that if (u, v) satisfies the second set of conditions, with x̃ = u, ỹ = v, then (v, u) satisfies

the first set of conditions with v = x̃, u = ỹ. We recall the following definition of ND pair,

which makes it easier to keep track of constraints:

Definition 3.19. A pair (u, v) with u, v ∈ H, u 6∼ v, is called an ND pair (not determined)

if u, v satisfy the following list of conditions:
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• uv 6= vu, which implies that u is not a power of v and v is not a power of u.

• v2 6= 1.

• vu = v−1, which implies uv = uv2.

• u ∼ uv ∼ uv−1 ∼ uv2 ∼ u−1.

Using this terminology, we summarize what we have done with the following lemma.

Lemma 3.20. Let G,H be finite groups and ψ : G→ H a UTCCI map. Let x, y ∈ G such

that x 6∼ y, x 6∼ y−1. If (x̃, ỹ) and (ỹ, x̃) are not ND pairs, then x̃y = x̃ỹ. If (x̃, ỹ) or (ỹ, x̃)

is an ND pair, then x̃y ∈ {x̃ỹ, ỹx̃}.

Also, we note that ND pairs exist. For example, consider the elements α = (12), β = (123)

in S3. It is easy to verify that:

• αβ 6= βα

• β2 = (132) 6= 1

• βα = (132) = β−1

• α ∼ αβ ∼ αβ2

So that ((12), (123)) is an ND pair.

When we combine Lemma 3.20 with Lemma 3.14 we get the following:

Theorem 3.21. Let G,H be finite groups with ψ : G → H a UTCCI map. Let x 6∼ y,

x, y ∈ G. If (ψ(x), ψ(y)) and (ψ(y), ψ(x)) are not ND pairs, then ψ(xy) = ψ(x)ψ(y). If

(ψ(x), ψ(y)) or (ψ(y), ψ(x)) is an ND pair, then ψ(xy) ∈ {ψ(x)ψ(y), ψ(y)ψ(x)}.

Proof. Let G,H be finite groups, and ψ : G→ H a UTCCI map. Let x, y ∈ G, with x 6∼ y.

We showed in Lemma 3.14 that when x 6∼ x−1 and y 6∼ y−1 we have ψ(xy) = ψ(x)ψ(y).

When either x ∼ x−1 or y ∼ y−1, then x 6∼ y−1, and we showed in Lemma 3.20 that unless

one of (x̃, ỹ) or (ỹ, x̃) is an ND pair, then we have x̃y = x̃ỹ. When one of (x̃, ỹ) or (ỹ, x̃) is

an ND pair then x̃y ∈ {x̃ỹ, ỹx̃}.
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3.4 The ‘non-determined’ incomplete Cayley Table of gener-

alized dihedral groups of order 2n, n odd

Here is an example of the NDICT for the group S3, where again we are intentionally not

giving traditional labels to the elements of the group.

S3 e s t u v w

e e s t u v w

s s t 1 {v, w} {u,w} {u, v}

t t 1 s {v, w} {u,w} {u, v}

u u {v, w} {v, w} 1

v v {u,w} {u,w} 1

w w {u, v} {u, v} 1

Corollary 3.22. Let G be a finite abelian group. Then the NDICT of G is the Cayley Table

of G.

Proof. Let g ∈ G, where G is a finite abelian group. Then the only element of gG is g and

g2 is determined by the NDICT. For all other elements h ∈ G, gh = hg is determined by the

NDICT of G.

There are two ways to fill in the NDICT of S3 as the Cayley table of a group. They are:

S3 e s t u v w

e e s t u v w

s s t 1 v w u

t t 1 s w u v

u u w v 1 t s

v v u w s 1 t

w w v u t s 1

S3 e s t u v w

e e s t u v w

s s t 1 w u v

t t 1 s v w u

u u v w 1 s t

v v w u t 1 s

w w u v s t 1
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This scenario is not unique to S3. Let G = N oC2 be a generalized dihedral group where

N is abelian of odd order and C2 = 〈t|t2 = 1〉 acts by inversion on N .

In order to compute the NDICT of G, fix g, h ∈ N . Then gG = {g, g−1}, so the g, h entry

in the NDICT is gh (if g ∼ h then gh is known because one is a power of the other). Also,

ght = gt = g−1 and (ht)G = Nt is a single class of involutions, so ht ∼ ght, and (ht, g) is an

ND pair and the g, ht entry of the NDICT is the set {ght, htg}. If g = h, then gt = ht and

the product ghht = 1 is known. When gt 6= ht, the (gt, ht) entry must be ∅ because gt ∼ ht

and neither is a power of the other.

Next we want to show that there is not a unique way to fill in the NDICT of G as the

Cayley table of G when G is generalized dihedral of order 2n, n odd. For g ∈ N , define

ψ : G→ G by ψ(gti) = tig, where i ∈ {0, 1}. We show that ψ : G→ G is an NDICT map.

Because N is abelian, ψ(gh) = gh = ψ(g)ψ(h). For the ND pair (g, ht), we have

ψ(g(ht)) = tgh = h−1tg = ψ(ht)ψ(g) and also ψ((ht)g) = ψ(g−1ht) = tg−1h = gh−1t =

ψ(g)ψ(ht). This shows that ψ({ght, htg}) = {ψ(g)ψ(ht), ψ(ht)ψ(g)}.

The existence of this map will prevent us from showing that an NDICT map is a CICT

map. However, this is not a problem, because we have the following:

Theorem 3.23. Let G = N o C2 be a generalized dihedral group of order 2n, n odd. Then

G is determined by the NDICT of G

This follows from the earlier remark that every product of elements in N is determined

by the NDICT of G, and N determines G.

3.5 The NDICT determines finite groups G with |G| < 256

In the next chapter we show that when G is a finite group with |G| ≥ 256 which is not

generalized dihedral of order 2n, n odd, then an NDICT map G → H is actually a CICT

map. In order to do this, we show that the NDICT of such groups can only be completed in

one way as the CICT of a group. We do this by showing that the NDICT in fact determines

xy when (x, y) is an ND pair and |G| ≥ 256. We will show the following:
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Theorem 3.24. Let G and H be finite groups with |G| ≥ 256 and G,H not generalized

dihedral of order 2n, n odd. If ψ : G→ H an NDICT map, ψ is an isomorphism.

In this section we discuss groups of order smaller than 256. Actually we let GAP do the

heavy lifting. In her dissertation [22], Ellen Skrzipczyk showed that the smallest 2-groups

which were Brauer pairs were of order 28. And when one rules out 2-groups, it is easy to

write code to verify that there are no other Brauer pairs of order less than 256.

At the end of this section we show (Lemma 3.29) that if two groups have the same NDICT

they are a Brauer pair. From that result it will follow that:

Theorem 3.25. If G, H are finite groups which have the same NDICT and |G| < 256, then

G is determined by its NDICT.

From Theorems 3.24, 3.23, and 3.25 we have

Theorem 3.26. If G, H are finite groups and ψ : G → H is an NDICT map, then G and

H are isomorphic.

Corollary 3.27. If there exists a UTCCI map ψ : G→ H, then G and H are isomorphic.

Corollary 3.28. The 3-S-ring of a finite group G determines G.

Next we prove Lemma 3.29. This Lemma also allows us to state that Theorem 3.26 gives

another answer to Brauer’s question.

Lemma 3.29. Let G, H be finite groups which have the same NDICT. Then G and H are

a Brauer pair.

Proof. Let ψ : G→ H be a NDICT map. Then by definition ψ respects powers. It remains

to show that ψ induces an isomorphism of centralizer rings. Let {C1, C2, · · · , Cn} be the

conjugacy classes of G. It suffices to show that the structure constants λijk defined by CiCj =
n∑
k=1

λijkCk are determined by the NDICT of G. Fix Ci. Then CiG = |Ci|G =
n∑
k=1

|Ci|Ck. It

follows that if all λijk for i 6= j are known, then one can determine the structure constants
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λiik. And when i 6= j, then λijk is determined by the NDICT. If we don’t know the product

gh for a elements g ∈ Ci, h ∈ Cj, then we know the set {gh, hg} and these elements are

conjugate, so we know how many elements in CiCj are in each Ck and can figure out the

coefficient λijk. Thus, we can determine λijk from the NDICT of G, and the centralizer

algebra is determined.

Chapter 4. The NDICT of a finite group G when |G| ≥ 256

As our main result of this chapter we prove the following:

Theorem 4.1. Let G be a finite group with |G| ≥ 256 which is not dihedral of order 2n, n

odd. If (x, y) is an ND pair, then xy is determined by the NDICT of G.

This implies that ψ(gh) = ψ(g)ψ(h) when g 6∼ h, from which we get the following:

Theorem 4.2. Let G and H be finite groups with |G| ≥ 256 and G,H not dihedral of order

2n, n odd, with ψ : G→ H an NDICT map. Then ψ is a CICT isomorphism.

From this result and Theorem 2.7 we get Theorem 3.24.

Our method is constructive: Let G be an FC group for which the NDICT of G is known.

We fix g ∈ G and consider the gth ‘row’ of the NDICT of G. If we have a single entry z in

the h column of the NDICT, then we know that gh = z, and that either g is a power of h,

or h is a power of g, or that g 6∼ h and (g, h) and (h, g) are not ND pairs. We are going to

leverage the products which are determined by the NDICT to find the product xy for ND

pairs (x, y). If we can show for all ND pairs (x, y) that the product xy is determined by the

NDICT, then it follows that the CICT of G is determined by the NDICT.

Throughout this chapter G is a finite group unless otherwise mentioned.

4.1 Definitions and some Lemmas

Definition 4.3. Let G be a finite group and x ∈ G \ {1}. We define:
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(i) Cx = {g ∈ xG|g and x are not powers of each other}.

(ii) Lx = {g ∈ G|(x, g) is an ND pair}.

(iii) Rx = {g ∈ G|(g, x) is an ND pair}.

We will also use the following facts about the sets Cx, Lx, Rx:

Lemma 4.4. Let G be an FC group and x ∈ G \ {1}. We have the following:

(a) Cx ⊆ xG \ {x, x−1} and |Cx| ≤ |xG| − 1. If x 6= x−1, then |Cx| ≤ |xG| − 2.

(b) Lx ⊆ x−1xG \ {1, x−2} and |Lx| ≤ |xG| − 1. If x 6= x−1, then |Lx| ≤ |xG| − 2.

(c) If xg = x−1, then Rx ⊆ CG(x)g and |Rx| ≤ |CG(x)|.

(d) If x is an involution, then Rx = ∅ and |Rx| = 0.

(e) If x has odd order, then Lx = ∅ and |Lx| = 0.

(f) If h ∼ x, then Cx ∪ Ch ⊆ xG and |Cx ∪ Ch| ≤ |xG|.

(g) If x is an involution, then Lx = {g ∈ x−1xG|g2 6= 1}.

(h) If g ∈ G \ (Cx ∪ Lx ∪Rx), then xg and gx are determined by the NDICT of G.

(i) If (x, y) is an ND pair, then Ry ⊆ CG(y)x and |Ry| ≤ |CG(y)|.

Proof. Let x, g ∈ G \ {1}, where G is an FC group.

(a) Because x and x−1 are powers of x, by definition of Cx we have Cx ⊆ xG \ {x, x−1}

(b) Let xG = {x, xg2, xg3, . . . , xgk} where |xG| = k. If (x, g) is an ND pair, then x ∼ xg,

so g ∈ {g2, g3, . . . , gk} = (x−1xG) \ {1}. From the definition of ND pair, we know that

x ∼ x−1. If x 6= x−1, then without loss of generality, we assume xg2 = x−1 so that

g2 = x−2. Because x−2 is a power of x, so we know that (x, x−2) is not an ND pair.

Also, when x = x−1, then x2 = 1. So we have Lx ⊆ x−1xG \ {1, x−2}.
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(c) If (g, x) is an ND pair, then, among other conditions, we know xg = x−1. For h ∈ G, it

follows from the orbit stabilizer relationship that h ∈ CG(x)g exactly when xh = x−1.

It follows that Rx ⊆ CG(x)g, and |Rx| ≤ |CG(x)|.

(d) By definition, if x is an involution, then (g, x) cannot be an ND pair for any g ∈ G.

(e) By definition, if x has odd order, then (x, g) cannot be an ND pair for any g ∈ G.

(f) When xG = hG, then Cx ∪ Ch ⊆ xG ∪ hG = xG.

(g) Suppose x an involution, and that x ∼ xg for some g ∈ G \ {1}. Then xg is also an

involution, so that xgxg = 1. Multiplying by g−1 on the right, we see that xgx = g−1

so that gx = g−1. From this it also follows that (xg)x = xxgx = xg−1, from which it

follows that x ∼ xg ∼ xg−1. So if g is not an involution, then (x, g) is an ND pair.

(h) These are exactly the elements g ∈ G which for which g 6∼ x, (x, g) is not ND, and

(g, x) is not ND. It follows from Lemma 3.20 that for such a g, the product xg is

determined by the NDICT.

(i) If (x, y) is an ND pair, then yx = y−1, and so we have {g ∈ G|yg = y−1} = CG(y)x. If

g ∈ Ry, then yg = y−1, so Ry ⊆ CG(y)x.

Lemma 4.5. If (x, y) form an ND pair, then x ∼ xyk for all k ∈ Z, i.e. x〈y〉 ⊆ xG. Also

o(y) ≤ |xG|.

Proof. We know xy = xy2. Fix an integer k. Then (xyk)y = xy(yk)y = (xy2)yk = xyk+2.

But we have x ∼ xy1 and x ∼ xy2, so by induction we have x ∼ xyk for all integers k.

4.2 Example

We are now going to do an example. Let G = A5, the alternating group of degree 5. Let

x = (12)(34) and y = (125). They are not powers of each other and it is straightforward to
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check that yx = y−1 and x ∼ xy ∼ xy2, so that (x, y) is an ND pair. Our set {xy, yx} is the

set {(25)(34), (15)(35)}.

The class xG consists of all the involutions in A5. The class xG has 15 elements, and

straightforward calculation shows that:

x−1xG ={1, (354), (345), (152), (125), (14325), (13542), (12453), (15234),

(14532), (15243), (13425), (12354), (14)(23), (13)(24)}.

From this we can see that Cx = xG \ {x}. Because (14)(23) and (13)(24) are involutions,

(x, (14)(23)) and (x, (13)(24)) are not ND pairs. We can verify directly the results of Lemma

4.4(g): |Lx| = 15 − 3 = 12, the 15 elements of xxG = x−1xG minus identity and the two

involutions.

One thing this example highlights is the fact that knowing that (x, h) is an ND pair tells

us nothing about {g|(x, g) is an ND pair}. For example, there is an ND pair (x, h) with an

element h from every non-identity, non-xG conjugacy class of G. Also, we have (x, (354))

and (x, (152)) both ND pairs, with (354) ∼ (152), but neither a power of the other.

If we consider the x = (12)(34) row of the NDICT of A5, we find 14 columns for which

the entry is ∅, corresponding to the elements of Cx = xG \ {x}. There are 12 columns in

which we get paired entries {g1, g2} corresponding to h ∈ Lx, where {g1, g2} = {xh, hx}.

And there are 34 columns for which we have the single entry xh in the column h. Similarly,

when we look at the x column of the NDICT of G, there will be 14 rows with ∅ as the entry

corresponding to the 14 entries of Cx, 12 entries which are pairs {hx, xh} corresponding to

the 12 entries of Lx, and 34 rows which contain a single element.

Now consider y = (125). Because (x, y) is an ND pair, we know that the (x, y) entry

of the NDICT is the set {g1, g2} = {(25)(34), (15)(34)}. In order to show that the NDICT

determines xy, we do not need to work from scratch to find xy as we did in the CICT case.

We just need to show that the NDICT determines which of these two elements can be xy.
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The way we will do this is to pick an element g1 and analyze the g1 column in the NDICT.

For the sake of this example, we choose g1 = (25)(34). When we look at the g1 column of

the NDICT, we will again find 14 spots which have no entry, corresponding to the elements

of Cg1 = xG \ {g1}, and 12 spots which have entry a set of two elements, corresponding to

the elements of Lg1 . Also, Rg1 = ∅. These facts can be verified directly or by referring to

Lemma 4.4.

We begin with those elements g ∈ G for which the entry in the x and g1 columns of the

NDICT is a single element gx and gg1 respectively. In set notation, we are considering the

set G \ (Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1).

Just using the results of Lemma 4.4 we get |Cx ∪ Cg1| ≤ 15, Rx = Rg1 = ∅. So we know

by rough estimation that |Cx ∪Lx ∪Rx ∪Cg1 ∪Lg1 ∪Rg1| ≤ |xG ∪Lx ∪Lg1 | ≤ 15 + 12 + 12.

So simply by size considerations, there are at least 21 elements g ∈ G for which both gx and

gg1 can be calculated.

In this example, we can (and will) calculate the actual size of the set Cx ∪ Lx ∪ Rx ∪

Cg1 ∪Lg1 ∪Rg1 , but in general we can’t, and groups with classes this big will require special

techniques. In this example, we want to ‘finish up’ our demonstration of our main method.

We calculated x−1xG, so we know Lx. It is also straightforward to calculate g−1
1 (gG1 ) =

(25)(34)xG to find Lg1 .

(25)(34)xG ={1, (143), (134), (152), (125), (14253), (12345), (15432), (13524),

(14523), (15342), (12435), (13254), (23)(45), (24)(35)}.

With this, we see by inspection that |Cx ∪ Cg1 ∪ Lx ∪ Lg1| = 37. (Recall Rx = Rg1 = ∅.)

So, there are actually 23 elements g ∈ G for which the entries in the x and g1 columns are

single elements, so that gx and gg1 are determined from the NDICT.

Now consider the 23 elements gx, g ∈ G\ (Cx∪Cg1 ∪Lx∪Lg1), and look at the y column

for each of the rows corresponding to these elements. If, for some gx, there exists an entry

(gx)y, the NDICT will determine the entry xy. This is because we have computed (gx)y and
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gg1 for an ‘arbitrary’ g1 ∈ {xy, yx}. If (gx)y = gg1, then g1 = xy. If gg1 6= (gx)y, then we

know that g1 = yx and g2 = xy. But in either case, this shows that the NDICT determines

xy.

In general, if we can do this for any ND pair (g, h) we will have shown that there is only

one way that we can fill out the CICT of G using the NDICT of G.

Next we show, using a numerical argument, the existence of a g for which gx and gg1 are

determined as a single entry in the NDICT, such that gx 6∈ (Cy ∪ Ly ∪Ry).

For this example, we know that y = (125) has class size 20. We also know that y 6= y−1

and y−1 is the only element in G that y is a power of. So Cy = yG \ {y, y−1} and there are

20 − 2 = 18 elements in Cy. Because y has odd order, it follows from Lemma 4.4(e) that

Ly = ∅. We also know that |yG| = |G|/3 so that |CG(y)| = 3. It follows by Lemma 4.4(c)

that |Ry| ≤ 3.

From this, we determine that the y column of G has at most 18 empty entries and at

most 3 pair entries, and for all other rows the entry is a single element. So, for at least two

of the 23 gx with g ∈ G \ (Cx ∪ Cg1 ∪ Lx ∪ Lg1 ∪ Rx ∪ Rg1), there will be a single entry

(gx)y in the y column. This means that for x = (12)(34) and y = (125), the product xy is

determined by the NDICT of A5.

Because A5 is not a Brauer pair with any group, we know that A5 is determined by the

NDICT. However, this example allowed us to demonstrate some of the methods we will use

in the general proof.

4.3 Formalizing the ideas of the example

Given an ND pair (x, y) in a finite group G, our main method will be to fix g1 ∈ {xy, yx}

and then show the existence of a g ∈ G for which we can calculate gg1, gx, and (gx)y. The

existence of such a g shows that the product xy is determined by the information of the

NDICT. We will call this working from the left. Occasionally, we will want to work from

the right by finding an h ∈ G for which g1h, yh, and x(yh) can be calculated. Showing
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the existence of such a g or h will often involve a size argument, and occasionally a little

ingenuity as well.

Recall that when we work from the left we are looking for an element g ∈ G for which

we can determine gx, gg1, and (gx)y from the NDICT. The elements of Cx ∪ Lx ∪ Rx ∪

Cg1 ∪ Lg1 ∪ Rg1 are not candidates for g because for h ∈ Cx ∪ Lx ∪ Rx ∪ Cg1 ∪ Lg1 ∪ Rg1

one of the products hx or hg1 is not determined by the NDICT of G. For the elements of

G\ (Cx∪Lx∪Rx∪Cg1 ∪Lg1 ∪Rg1), the products gx and gg1 are determined by the NDICT.

Thus, we want to show that for some element h,

h ∈ x [G \ (Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1)] ,

the product hy can be calculated. Because Cy ∪ Ly ∪ Ry is the set of elements h ∈ G for

which hy is not determined by the NDICT of G, there exists a g ∈ G for which gx, gg1, and

(gx)y can be calculated if

x [G \ (Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1)] \ (Cy ∪ Ly ∪Ry) 6= ∅.

Thus we have shown the following:

Lemma 4.6. Let G be a finite group for which the NDICT of G is given. Let (x, y) be an ND

pair in G and let g1 ∈ {xy, yx}. If x[G\ (Cx∪Lx∪Rx∪Cg1 ∪Lg1 ∪Rg1)]\ (Cy∪Ly∪Ry) 6= ∅,

then xy is determined by the NDICT of G.

Lemma 4.7. Let G be a finite group for which the NDICT of G is given. Let (x, y) be an

ND pair in G and let g1 ∈ {xy, yx}. If there exists g ∈ G for which yg, g1g and x(yg) can

be determined from the NDICT of G, then xy is determined by the NDICT of G.

Often we will use a size argument and the following corollaries will be helpful:

Corollary 4.8. Let (x, y) be an ND pair. If

|x [Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1 ] |+ |(Cy ∪ Ly ∪Ry)| < n,

60



then xy is determined by the NDICT of G.

Proof. This follows from the Lemma 4.6 once we notice that

x [G \ (Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1)] \ (Cy ∪ Ly ∪Ry) =

G \ [x(Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1) ∪ (Cy ∪ Ly ∪Ry)] .

Corollary 4.9. Let G be a finite group with |G| = n. If |Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+

|Cy ∪Ly ∪Ry| ≤
(
1− 1

a

)
n+ b for some positive real numbers a, b for which ab < n, then the

NDICT of G determines xy.

Proof. If ab < n then b < n
a

so b− n
a

+n < n and so
(
1− 1

a

)
n+ b < n and the result follows

from Corollary 4.8

The following technical lemma will allow us to do several class sizes at the same time.

Lemma 4.10. Let n, l be positive integers with n > l2. If l ≤ t ≤ n/l, then t+n/t ≤ l+n/l.

Proof. Fix n, l positive integers with n2 > l. Consider the function f(t) = n
t

+ t, l ≤ t ≤ n
l
.

We have f ′(t) = 1 − n
t2

, so the only critical point is at t =
√
n. Also f ′′(t) = 2n

t3
is always

positive for l ≤ t ≤ n
l
. So the maximum for f(t) on the interval [l, n

l
] occurs at one of the

endpoints. Evaluating at the endpoints, we get f(l) = l + n
l

= f(n
l
). So f(t) ≤ l + n

l
when

l ≤ t ≤ n
l
.

With our tools in hand and the example out of the way, we are ready to dig into the

proof.

4.4 The first two cases

In this section we begin the proof of Theorem 4.1, that the NDICT of a finite group G

with |G| ≥ 256 determines the product xy for any ND pair (x, y) when G is not generalized

dihedral of order 2n, n odd. The proof is by cases on k = |xG| and m = |yG|.
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Because we are working by cases in two variables, we will keep track of what we prove in

a table, indexed by k = |xG| and m = |yG|. When a case is proven, we put the label of that

case in the correct class sizes. So, for example, the letters A in the table below indicates

that in Case A we show that the NDICT of G determines the product xy whenever (x, y) is

an ND pair for which 6 ≤ k ≤ n/6 or 6 ≤ m ≤ n/6. Because |G| ≥ 256, we have 9 < n
9
, so

there is no ambiguity on the chart.

k\m 2 3 4 5 6 7 8 9 > 9 < n
9

n
9

n
8

n
7

n
6

n
5

n
4

n
3

n
2

2

3

4

5

6 A A A A A A A A A A

> 6 A A A A A A A A A A

< n/6 A A A A A A A A A A

n/6 A A A A A A A A A A

n/5

n/4

n/3

n/2

Proof. Let G be a finite group, |G| ≥ 256, for which the NDICT is known. Let (x, y) be an

ND pair in G. Let k = |xG|, m = |yG|, and n = |G|. From the NDICT we know the set

{xy, yx}. We fix g1 ∈ {xy, yx}.

Case A: 6 ≤ k ≤ n/6 and 6 ≤ m ≤ n/6. In this case we know from Lemma 4.10 that

k + n/k ≤ 6 + n/6 and m+ n/m ≤ 6 + n/6.

Consider the set Cx∪Lx∪Rx∪Cg1∪Lg1∪Rg1 . By Lemma 4.4(f), we have |Cx∪Cg1| ≤ k.

Also, by Lemma 4.4(b) we have |Lx| ≤ k − 1 and |Lg1 | ≤ k − 1. Finally, by Lemma 4.4(c)
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we have |Rx| ≤ n/k and |Rg1| ≤ n/k. This gives us

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1| ≤ |Cx ∪ Cg1|+ |Lx|+ |Rx|+ |Lg1|+ |Rg1|

≤ k + (k − 1) +
n

k
+ (k − 1) +

n

k

= 3k +
2n

k
− 2 = k + 2

(
k +

n

k

)
− 2

≤ n

6
+ 2

(
6 +

n

6

)
− 2 =

n

2
+ 10.

We also have an upper bound on the size of the set Cy ∪ Ly ∪Ry. By Lemma 4.4(a), we

have |Cy| ≤ m− 1. Also, by Lemma 4.4(b) we have |Lx| ≤ m− 1. Finally, by Lemma 4.4(c)

we have |Ry| ≤ n/m. So we have:

|Cy ∪ Ly ∪Ry| ≤ |Cy|+ |Ly|+ |Ry|

≤ (m− 1) + (m− 1) +
n

m

=
(
m+

n

m

)
+m− 2

≤ 6 +
n

6
+
n

6
− 2

=
n

3
+ 4.

This gives us

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ n/2 + 10 + n/3 + 4

= 5n/6 + 14 = (1− 1/6)n+ 14.

And because 6 · 14 < 256, xy is determined by Corollary 4.9.

Because of the restrictions placed on (x, y) based on their relationship as an ND pair,

there are several cases for which there are no ND pairs (x, y) for which k = |xG| or m = |yG|.

For brevity, we combine these into a single case.

Case B: k = 2, n/k odd, m = n/2, or m odd. Suppose, by way of contradiction, that

(x, y) is an ND pair and n/k is odd. Then x has even order (definition of ND pair), so CG(x)
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also has even order. But CG(x) = n/k is odd, a contradiction. In particular, because (x, y)

is an ND pair, k 6= n/3, n/5.

Suppose, by way of contradiction, that k = 2. Then y is not an involution (definition

of ND pair), so y 6= y−1 and |〈y〉| > 2. By Lemma 4.5, x〈y〉 ⊆ xG. So |xG| = k > 2, a

contradiction. In particular, because (x, y) is an ND pair, we know k 6= 2.

Suppose, by way of contradiction, that m = n/2. Again, we know that y is not an

involution, so that |CG(y)| ≥ o(y) ≥ 3. Thus |yG| = |G|/|CG(y)| ≤ n/3, a contradiction. So,

because (x, y) is an ND pair we have m 6= n/2.

Finally, suppose, by way of contradiction, that m is odd. Because (x, y) is an ND pair,

y ∼ y−1 and y is not an involution. Thus |yG| = m is even, a contradiction. In particular,

because (x, y) is an ND pair we know m 6= 3, 5, 7, 9.

Thus, when k = 2, n/k is odd, m = n/2, or m is odd, there are no ND pairs (x, y) with

|xG| = k of |yG| = m and so vacuously the NDICT determines xy for ND pairs with these

class sizes.

The completed table below gives the flow of the rest of the proof. We note that on this

table, there will be many cases (e.g. the case for which k = 6 and m = 7) that are proven

more than once. When this occurs, the case is labeled by the first occurrence in the proof.
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k\m 2 3 4 5 6 7 8 9 > 9 < n
9

n
9

n
8

n
7

n
6

n
5

n
4

n
3

n
2

2 B B B B B B B B B B B B B B B B B B

3 C B C B C B C B C C C C C C C C C B

4 F B D B D B D B D D D D D D D D D B

5 F B E B E B E B E E E E E E E E E B

6 F B G B A A A A A A A A A A J K L B

> 6 F B G B A A A A A A A A A A J K L B

< n/6 F B G B A A A A A A A A A A J K L B

n/6 F B G B A A A A A A A A A A J K L B

n/5 B B B B B B B B B B B B B B B B B B

n/4 F B N B M B M B M M M P M Q M R S B

n/3 B B B B B B B B B B B B B B B B B B

n/2 H B H B H B H B H H H H H H H H H B

For many of the remaining cases, a size argument will also suffice. However, with larger

class sizes and/or larger centralizers, the sets Cx, Lx, Rx, also get larger. In these cases we

have more information about xG, yG, CG(x), CG(y) which we can use to find a g for which

we can work from the right or from the left to determine xy.

4.5 All remaining cases except k = n/4

Case C: k = 3. Because (x, y) is an ND pair, we know that x ∼ x−1 and y is not an

involution. Because |xG| is odd and x ∼ x−1, it follows that x is an involution. So from

Lemma 4.4(d), we know that Rx = Rg1 = ∅. Also, because |xG| = 3, and we know from

Lemma 4.5 that x〈y〉 ⊆ xG, we have o(y) = 3. Also, straightforward calculations show that

xG = {x, xy, xy2} = {g1, g1y, g1y
2} regardless of whether we chose g1 = xy or g1 = yx, so

that Lx = Lg1 = {y, y2}.

Because x2 = 1 and yx = y−1, or equivalently xy = y−1x, it is straightforward to show
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that xGxG = {1, y, y2}. Thus {1, y, y2} is a product of sets which are normal in G and so

must itself be a normal set and hence a union of conjugacy classes. And since yx = y2, we

must have yG = {y, y2}. This gives us a subgroup N = CG(y) for which [G : N ] = 2, so that

N C G. We know that x does not centralize y, so that x 6∈ N . More precisely, since N is

normal in G, it follows that xG ∩N = ∅. By definition Cx ⊂ xG, Cg1 ⊂ xG, so it follows that

(Cx ∪ Cg1) ∩N = ∅.

In this case we are going to work from the right. Because n ≥ 256 and o(y) = 3, we know

that N \ 〈y〉 6= ∅. Fix g ∈ N \ 〈y〉. We can calculate yg because g 6∼ y and gy = yg. We also

will have yg ∈ N \ 〈y〉. As shown earlier, we have Rx = Rg1 = ∅ and Lx = Lg1 = {y, y2}.

Together this shows that yg ∈ G \ (Cx ∪ Lx ∪ Rx) and g ∈ G \ (Cg1 ∪ Lg1 ∪ Rg1). Thus

x(yg) and g1g can be determined from the NDICT by Lemma 4.4(g). And, by Lemma 4.7

the product xy is determined by the NDICT in this case.

In Case C, we used the fact that n ≥ 256 to force the existence of an element in N \ 〈y〉

which we could use to determine xy. But all we really need is n > 6. The case N = 〈y〉

corresponds to the example of the NDICT of S3 discussed earlier. In that example, we saw

that the NDICT did not determine xy for the ND pair (x, y) where x was an involution and

y had order 3 (but the NDICT still determined the group).

Case D: k = 4, m 6= n/2. From Lemma 4.5 we know that x〈y〉 ⊆ xG. From the

definition of ND pair we know y is not an involution. So y can only have order 3 or 4. We

write xG = {x, xy, xy−1, z} for some z ∈ G where if o(y) = 4 we have z = xy2. We consider

first the subcase where x is an involution, and then the subcase where x 6= x−1.

When x is an involution, a size argument suffices. We have |Cx ∪ Cg2| ≤ 4, |Lx| ≤ 3 and

|Lg1| ≤ 3, and also |Rx| = |Rg1| = 0 by Lemma 4.4, so that

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1| ≤ 4 + 3 + 3 + 0 + 0 = 10.

When we consider y, we have 2 ≤ m ≤ n/3, |Cy| ≤ m − 2, |Lx| ≤ m − 2, and |Ry| ≤ n/m
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so that

|Cy ∪ Ly ∪Ry| ≤ m+ (m+ n/m)− 4 ≤ n/3 + (n/2 + 2)− 4 = 5n/6− 2.

This gives us |Cx∪Lx∪Rx∪Cg1∪Lg1∪Rg1|+ |Cy∪Ly∪Ry| ≤ 5n/6+8. And since 6 ·8 < 256,

by Lemma 4.9 we know that the product xy is determined when x is an involution and k = 4.

When x is not an involution, we have x ∼ x−1 and x 6= x−1, so that x−1 ∈ xG \ {x} =

{xy, xy−1, z}. Because (x, y) is ND, we know x is not a power of y, and y is not a power

of x. Because x−1 = xy implies x2 = y−1, and x−1 = xy−1 implies y = x2, we must

have x−1 = z. Also xy and xy−1 must be inverses, hence 1 = (xy)(xy−1) = x(yx)y−1 =

x(xy−1)y−1 = x2(y−1)2, so that x2 = y2. If o(y) = 3 then x4 = (y2)2 = y, a contradiction.

So, when x is not an involution, we must in fact have x2 = y2, o(x) = o(y) = 4, and

xG = {x, xy, xy2, xy−1}.

Using the facts that yx = y−1 and x2 = y2, it follows from straightforward calculations

that xGxG = {x2, x2y, x2y2, x2y3} = {1, y, y2, y3}. Thus 〈y〉 is a product of sets which are

normal in G and hence 〈y〉 is a normal subgroup of G. We have yx = y−1 and we know

o(y) 6= o(y2), so we have yG = {y, y3}. This implies that [G : CG(y)] = 2, so that CG(y)CG.

And n ≥ 256 > 10 so that CG(y) \ 〈y〉 6= ∅. Fix g ∈ CG(y) \ 〈y〉. Arguments similar to those

of Case C show that we can determine yg, x(yg) and g1g from the NDICT, so that in the

case where x is not an involution, xy is determined from the NDICT by Lemma 4.7.

Case E: k = 5 and m even. Because (x, y) is an ND pair, we know x ∼ x−1. But

k = |xG| is odd, so x must be an involution. By Lemma 4.5 we have x〈y〉 ⊆ xG. And y is

not an involution, so o(y) ∈ {3, 4, 5}. We write xG = {x, xy, xy−1, xz, xt} for some z, t ∈ G.

Here we have not ruled out the possibility that xz = xy2, etc.

We want to bound m = |yG|. Because x2 = 1 and yx = y−1, we get the following
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multiplication table for xG times xG.

x xy xy−1 xz xh

x 1 y y−1 z h

xy y−1 1 y y−1z y−1h

xy−1 y y2 1 yz yh

xz zx zxy zxy−1 1 zxh

xh hx hxy hxy−1 hxz 1

We note that y occurs as an entry of this table at least 3 times, so that each element of

yG must also occur at least 3 times as an entry of the table. So 3m ≤ 20 and m ≤ 6.

By Lemma 4.4 we have |Cx ∪ Cg1 | ≤ 5. |Lx| ≤ 4, |Lg1 | ≤ 4, |Rx| = |Rg1| = 0, so that

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1| ≤ 13.

Also, by Lemma 4.4 we have |Cy| ≤ m− 2, |Ly| ≤ m− 2, |Rx| ≤ n/m. And m ∈ {2, 4, 6}

so that |Cy ∪ Ly ∪Ry| ≤ m− 2 +m− 2 + n/m ≤ 4 + 4 + n/2 = n/2 + 8.

Thus |Cx ∪ Lx ∪ Rx ∪ Cg1 ∪ Lg1 ∪ Rg1| + |Cy ∪ Ly ∪ Ry| ≤ 13 + n/2 + 8 = n/2 + 21 and

2 · 21 < 256, so xy is determined by Corollary 4.9.

Case F: m = 2, k ≤ n/4. Because yx = y−1, in this case we must have yG = {y, y−1}.

We know [G : CG(y)] = 2 and so N = CG(y) is normal in G, and x 6∈ N because x and y do

not commute. So that xG ∩N = ∅.

For every g ∈ N \ yG, we know g 6∼ y and yg = gy, so that yg is determined. Also, since

yG = {y, y−1}, we know yg for any g ∈ yG. So the NDICT determines yg for any g ∈ N .

Fix g ∈ N . Then g 6∈ xG and g 6∼ gg1, so g 6∈ Rg1 . Similarly, because yg ∈ N , we have

yg 6∈ xG and yg 6∈ Rx. This is true for any g ∈ N . From Lemma 4.4(b) we have |Lx| ≤ k− 1

and |Lg1| ≤ k−1. So |N\(Cx∪Cg1∪Lx∪Lg1∪Rx∪Rg1)| ≥ n/2−2(k−1) ≥ n/2−2(n/4)+2 = 2.

So there exists g ∈ N for which yg, x(yg) and g1g can be calculated, and it follows from

Lemma 4.7 that xy is determined in this case.

Case G: m = 4, 6 ≤ k ≤ n/6. This case follows from a size argument. We have
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|Cx ∪ Cg1| ≤ k, |Lx| ≤ k − 1, |Lg1| ≤ k − 1, |Rx| ≤ n/k, |Rg1| ≤ n/k and |Cy| ≤ 2, |Ly| ≤ 2,

|Ry| ≤ n/4. This gives us the bound we need:

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ k + 2(k + n/k)− 2 + 4 + n/4

≤ n/6 + 2(6 + n/6) + 2 + n/4

= 3n/4 + 14.

And 4 · 14 < 256, so xy is determined by Corollary 4.9.

Case H: |xG| = |G|
2

. In this case G = N o C2 is generalized dihedral with N abelian of

odd order. As shown in Theorem 3.23, G is determined by the NDICT in this case.

Case J: m = n
5
, 6 ≤ k ≤ n

6
. When m = n/5 then o(y) = 5. We have |Cx ∪ Cg1| ≤ k,

|Lx| ≤ k − 1, |Lg1 | ≤ k − 1, |Rx| ≤ n/k, |Rg1| ≤ n/k and |Cy| ≤ n/5− 1, |Ly| = 0, |Ry| ≤ 5.

This gives us the bound:

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ k + 2(k + n/k)− 2 + 4 + n/5

≤ n/6 + 2(6 + n/6) + 2 + n/5

=
7n

10
+ 14.

And (10/3) · 14 < 256, so xy is determined by Corollary 4.9.

Case K: m = n
4
, 6 ≤ k ≤ n

6
. For this case, we consider separately the subcases k = 6,

7 ≤ k ≤ n/7, k = n/6.

Subcase: k = 6 follows from a pure size argument. We have |Cx ∪ Cg1 | ≤ 6, |Lx| ≤ 5,

|Lg1| ≤ 5, |Rx| ≤ n/6, |Rg1| ≤ n/6. Also, we have |Cy| ≤ n/4− 1, |Ly| ≤ n/4− 1, |Ry| ≤ 4.

This gives us the bound:

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ 16 +
n

3
+
n

2
+ 2

=
5n

6
+ 18.
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And 6 · 18 < 256, so xy is determined by Corollary 4.9.

Subcase: 7 ≤ k ≤ n/7 also follows from a pure size argument. We have |Cx ∪Cg1| ≤ k,

|Lx| ≤ k − 1, |Lg1| ≤ k − 1, |Rx| ≤ n/k, |Rg1| ≤ n/k and |Cy| ≤ n/4 − 2, |Ly| ≤ n/4 − 2,

|Ry| ≤ 4 by Lemma 4.4. This gives us the bound:

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ k + 2(k + n/k)− 2 + 2 + n/2

≤ n/7 + 2(7 + n/7) + n/2

=
13n

14
+ 12.

And 12 · 14 = 256 < n, so xy is determined.

Subcase: k = n/6, however, requires a little finesse, and then a size argument. The

finesse involves showing that x must be an involution. Because |CG(x)| = 6, we know x has

order 2, 3, or 6, but (x, y) is an ND pair, so o(x) 6= 3. Suppose, by way of contradiction, that

o(x) = 6. Then yx
2

= (yx)x = (y−1)x = y so x2 ∈ CG(y). But o(x2) = 3 and |CG(y)| = 4, a

contradiction. It follows that x must be an involution.

So, we have |Cx ∪ Cg1| ≤ n/6, |Lx| ≤ n/6 − 1, |Lg1| ≤ n/6 − 1, |Rx| = |Rg1| = 0 and

|Cy| ≤ n/4− 2, |Ly| ≤ n/4− 2, |Ry| ≤ 4. This gives us the bound:

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ 3(n/6)− 2 + 2(n/4)− 4 + 4

= n− 2 < n.

Thus xy is determined by Lemma 4.8.

Case L: m = n
3
, 6 ≤ k ≤ n

6
. This case also follows from a size argument. When m = n/3

then o(y) = 3. We have |Cx ∪Cg1| ≤ k, |Lx| ≤ k− 1, |Lg1| ≤ k− 1, |Rx| ≤ n/k, |Rg1| ≤ n/k
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and |Cy| ≤ n/3− 1, |Ly| = 0, |Ry| ≤ 3. This gives us the bound:

|Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1|+ |Cy ∪ Ly ∪Ry| ≤ k + 2(k + n/k)− 2 + 4 + n/3

≤ n/6 + 2(6 + n/6) + 2 + n/3

=
5n

6
+ 12.

And 6 · 12 < 256, so xy is determined by Corollary 4.9.

4.6 The final k = n
4 cases

In this section, we conclude the proof of Theorem 4.1. We show that when k = n/4 and m

is one of 4, 6, 8, n/9, n/8, n/7, n/6, n/5, n/4, n/3 or 10 ≤ m ≤ n/10, then the product xy is

determined for the ND pair (x, y).

Throughout this section, (x, y) is an ND pair with k = |xG|, m = |yG|. Also, g1 ∈

{xy, yx}, so g−1
1 ∈ {yx−1, y−1x−1}. We let t = o(y) and define α ∈ {1,−1} by g−1

1 = yαx−1.

All cases will use the fact that when k = n/4, then o(x) ∈ {2, 4}, and CG(x) is a group of

order 4, so it is either cyclic of order 4 or CG(x) = {1, x, xs, s} for some involution s ∈ G.

Finite groups with a self centralizing subgroup of order 4 have been classified by Wong

[28] who built on work by Suzuki [23], and the groups that we are considering in this section

definitely fall in this category. But, in the ‘algorithmic’ spirit of this proof, I am going to,

when possible, show the existence of the element that allows us to fill in the entry of the

table without referencing these results.

In this section we are mainly working from the left, but we pay closer attention to Cx,

Lx, Rx, etc. in order to find better size estimates for the set x(Cx ∪ Lx ∪ Rx ∪ Cg1 ∪ Lg1 ∪

Rg1) ∪ (Cy ∪ Ly ∪Ry). In particular, we get:

Proposition 4.11. Let (x, y) be an ND pair with |xG| = n/4, |yG| = m, and t = o(y). Then

for s = |x (Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1) ∪ (Cy ∪ Ly ∪Ry)| we have the following bounds:

(i) If o(x) = 2 and o(y) is odd, then s ≤ 3n
4

+m+ n
m
− 2t− 2.
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(ii) If o(x) = 2 and o(y) is even, then s ≤ 3n
4

+ 2m+ n
m
− 2t− 4.

(iii) If o(x) = 4 and o(y) is odd, then s ≤ 3n
4

+m+ n
m
− 4t+ 6.

(iv) If o(x) = 4 and o(y) = 4 , then s ≤ 3n
4

+ 2m+ n
m
− 12.

(v) If o(x) = 4 and o(y) > 4 is even, then s ≤ 3n
4

+ 2m+ n
m
− 2t+ 4.

Proof. Let G be a finite group and (x, y) an ND pair of elements in G with |xG| = n/4,

|yG| = m, and t = o(y), we let F = Cx ∪ Cg1 ∪ Rx ∪ Rg1 ∪ Lx ∪ Lg1 and E = Cy ∪ Ry ∪ Ly.

With this notation, we have s = |xF ∪ E|.

In this proof we use repeatedly the fact that when A,B are finite sets, then |A ∪ B| =

|A|+ |B| − |A ∩B|.

Case 1: o(x) = 2 and o(y) is odd. We write

xG = {x, xy, xy2, . . . , xyt−1, xh1, xh2, . . . , xhq},

where q = k − t and the xyi, xhj are all distinct, so that

x−1xG = {1, y, y2, . . . , yt−1, h1, h2, . . . , hq} and

g−1
1 xG = {1, y, y2, . . . , yt−1, yαh1, y

αh2, . . . , y
αhq}.

In this case, because o(x) = 2, we know Rx = Rg1 = ∅ by Lemma 4.4(d). Also, Cx∪Cg1 ⊆

xG, by Lemma 4.4(f) and Lx ⊆ x−1xG \ {1}, Lg1 ⊆ g−1
1 xG \ {1} by Lemma 4.4(b). We note

that {y, y2, . . . , yt−1} ⊆ (x−1xG \ {1}) ∩ (g−1
1 xG \ {1}), so |(x−1xG \ {1}) ∪ (g−1

1 xG \ {1})| ≤

(n/4− 1) + (n/4− 1)− (t− 1) = n/2− t− 1.

We let T = xG ∪ (x−1xG \ {1}) ∪ (g−1
1 xG \ {1}). Then F ⊆ T and {y, y2, . . . , yt−1} ⊆ T .

Also,

|T | ≤ |xG|+ |(x−1xG \ {1}) ∪ (g−1
1 xG \ {1})| ≤ n

4
+ (

n

2
− t− 1) =

3n

4
− t− 1.
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It then follows that xF ⊆ xT , {xy, xy2, . . . , xyt−1} ⊆ xT , and |xT | = |T | ≤ 3n/4− t− 1.

Now we consider E = Cy ∪ Ly ∪Ry. By Lemma 4.4(a), Cy ⊆ yG \ {y, y−1} and, because

y has odd order Ly = ∅, by Lemma 4.4(e). Also, Ry ⊆ CG(y)x by Lemma 4.4(i). Because

〈y〉 ∈ CG(y), we have {xy, xy2, . . . , xyt−1} ⊆ CG(y)x. Let S = (yG \ {y, y−1}) ∪ CG(y)x.

Then E ⊆ S, {xy, xy2, . . . , xyt−1} ⊆ S, and |S| = |(yG \ {y, y−1})∪CG(y)x| ≤ m− 2 +n/m.

Finally, consider the set xT ∪ S, which certainly contains xF ∪ E. Because

{xy, xy2, . . . , xyt−1} ⊆ xT ∩ S,

it follows that

|xT ∪ S| ≤ (
3n

4
− t− 1) + (m− 2 +

n

m
)− (t− 1) =

3n

4
+
n

m
−m− 2t− 2.

And because xF ∪E ⊆ xT ∪S this shows that s = |xF ∪E| ≤ 3n/4 + n/m+m− 2t− 2

in this case.

Case 2: o(x) = 2 and o(y) is even. In this case we have o(y) = t = 2r for some positive

integer r. Because (yr)x = y−r = yr we know that yr and x commute and (x, yr) is not an

ND pair. We know x 6= yr, because x and y do not commute.

In this case, we still write

xG = {x, xy, xy2, . . . , xyt−1, xh1, xh2, . . . , xhq},

for q = k − t, where the elements xyi, xhj are all distinct, so that

x−1xG = {1, y, y2, . . . , yt−1, h1, h2, . . . , hq} and

g−1
1 xG = {1, y, y2, . . . , yt−1, yαh1, y

αh2, . . . , y
αhq}.

Because o(x) = 2, we have Rx = Rg1 = ∅ by Lemma 4.4(d), Cx ∪ Cg1 ⊆ xG by

Lemma 4.4(f), and Lx ⊆ x−1xG \ {1, yr}, Lg1 ⊆ g−1
1 xG \ {1, yr} by Lemma 4.4(g). Also

73



{y, y2, . . . , yt−1} \ {yr} ⊆ (x−1xG \ {1, yr}) ∩ (g−1
1 xG \ {1, yr}), so that

|(x−1xG \ {1, yr}) ∪ (g−1
1 xG \ {1, yr})| ≤ (n/4− 2) + (n/4− 2)− (t− 2) = n/2− t− 2.

In this case, we let T = xG ∪ (x−1xG \ {1, yr}) ∪ (g−1
1 xG \ {1, yr}) and have F ⊆ T ,

{y, y2, . . . , yt−1} \ {yr} ⊆ T , so that

|T | ≤ |xG|+ |(x−1xG \ {1}) ∪ (g−1
1 xG \ {1})| ≤ n/4 + (n/4− t− 2) = 3n/4− t− 2.

We also have xF ⊆ xT , {xy, xy2, . . . , xyt−1}\{xyr} ⊆ xT and |xT | = |T | ≤ 3n/4− t−2.

Now we consider E = Cy ∪ Ly ∪Ry. By Lemma 4.4 (a) we have Cy ⊆ yG \ {y, y−1} and,

because y has even order, from Lemma 4.4(b) we know that Ly ⊆ y−1yG \ {1, y2}. We set

S =
(
yG \ {y, y−1}

)
∪
(
y−1yG \ {1, y2}

)
∪ CG(y)x, so that E ⊆ S and we have

|S| ≤ (m− 2) + (m− 2) + n/m = n/m+ 2m− 4.

Finally, we consider the set xT ∪ S. Because {xy, xy2, . . . , xyt−1} \ {yr} ⊆ xT ∩ S, we

know

|xT ∪ S| ≤ (
3n

4
− t− 2) + (

n

m
+ 2m− 4)− (t− 2) =

3n

4
+
n

m
+ 2m− 2t− 4.

And because xF ∪E ⊆ xT ∪ S we have s ≤ 3n/4 + n/m+ 2m− 2t− 4 in this case.

Case 3: o(x) = 4 and o(y) is odd. As a consequence of (x, y) being an ND pair, we have

x−1 = x3 ∈ xG. In fact for all i, 0 ≤ i ≤ t− 1, we have (x3yi)(xyi) = x3(xy−i)yi = x4 = 1, so

x3yi = (xyi)−1 ∈ xG. Because g1 ∈ {xy, yx}, and (xy)2 = (yx)2 = x2, we know that g2
1 = x2.

Also yx
2

= (yx)x = (y−1)x = y so that x2 ∈ CG(y). Thus we can write

xG = {x, xy, xy2, . . . , xyt−1, x3, x3y, . . . , x3yt−1, xh1, xh2, . . . , xhq},
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for q = k − 2t, where the elements xyi, x3yi, and xhj are all distinct, so that

x−1xG = {1, y, y2, . . . , yt−1, x2, x2y, . . . , x2yt−1, h1, h2, . . . , hq} and

g−1
1 xG = {1, y, y2, . . . , yt−1, x2, x2y, . . . , x2yt−1, yαh1, y

αh2, . . . , y
αhq}. (4.1)

We have Lx ⊆ x−1xG \{1, x2} and Lg1 ⊆ g−1
1 xG \{1, x2} by Lemma 4.4(b). From Lemma

4.4 (c) we know that |Rx| ≤ 4, |Rg1| ≤ 4. And, as always, Cx ∪ Cg1 ⊆ xG, by Lemma 4.4(f).

We note that {y, y2, . . . , yt−1, x2y, x2y2, . . . , x2yt−1} ⊆ (x−1xG \ {1, x2}) ∩ (g−1
1 xG \ {1, x2}),

so that |(x−1xG \ {1, x2})∪ (g−2
1 xG \ {1})| ≤ (n/4− 2) + (n/4− 2)− (2t− 2) = n/2− 2t− 2.

Let T = xG ∪ (x−1xG \ {1, x2}) ∪ (g−1
1 xG \ {1, x2}) ∪Rx ∪Rg1 .

Then we have F ⊆ T and

|T | ≤ |xG|+ |(x−1xG \ {1, x2}) ∪ (g−1
1 xG \ {1, x2})|+ |Rx|+ |Rg1|

≤ n/4 + (n/2− 2t− 2) + 4 + 4 = 3n/4− 2t+ 6.

Also, we have xF ⊆ xT , {xy, xy2, . . . , xyt−1, x3y, x3y2, . . . , x3yt−1} ⊆ xT , and |xT | ≤

3n/4− 2t+ 6.

Now we consider E = Cy ∪ Ly ∪ Ry. By Lemma 4.4(a) we have Cy ⊆ yG \ {y, y−1}

and, because y has odd order we have Ly = ∅ by Lemma 4.4(e). Also, Ry ⊆ CG(y)x

by Lemma 4.4(i). Let S = (yG \ {y, y−1}) ∪ CG(y)x. Because 〈y, x2〉 ∈ CG(y), we have

{xy, xy2, . . . , xyt−1, x3y, x3y2, . . . , x3yt−1} ⊆ CG(y)x ⊆ S. Also, we have E ⊆ S, and |S| ≤

m− 2n+ n/m.

Finally, consider the set xT ∪ S. Because {xy, xy2, . . . , xyt−1, x2y, x2y2, . . . , x2yt−1} ⊆

xT ∩ S, we have

|xT ∪ S| ≤ (
3n

4
− 2t+ 6) + (m− 2 +

n

m
)− (2t− 2) =

3n

4
+
n

m
+m− 4t+ 6.

And because xF ∪ E ⊆ xT ∪ S we have s ≤ 3n/4 + n/m+m− 4t+ 6 in this case.
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Case 4: o(x) = 4 and o(y) = 4. This case must be considered separately, because when

o(x) = o(y) = 4, we have (y2)x = y−2 = y2, so that y2 ∈ CG(x) and hence y2 = x2. Also, we

note that xy = xy2 = x3 = x−1 and (xy)y = x−1y = xx2y = xy3 = yx = (xy)−1. We will use

this fact later when determining Rx and Rg1 . We can write

xG = {x, xy, x3, x3y, xh1, xh2, . . . , xhq},

for q = k− 4, where the elements x, xy, x3 = xy2, x3y = xy3, and xhj are all distinct, so that

x−1xG = {1, y, y2, y3, h1, h2, . . . , hq} and

g−1
1 xG = {1, y, y2, y3, yαh1, y

αh2, . . . , y
αhq}. (4.2)

Noting that x2 = y2, we see that Lx ⊆ x−1xG \ {1, y2} and Lg1 ⊆ g−1
1 xG \ {1, y2} by

Lemma 4.4(b) and also we have Cx ∪ Cg1 ⊆ xG, by Lemma 4.4(f). From Lemma 4.4 (c)

we know that Rx ⊆ CG(x)y, Rg1 ⊆ CG(g1)y. But if g ∈ CG(x)y = {y, xy, x2y, x3y}, then

g 6∼ gx, and if g ∈ CG(g1)y = {y, xy2, x2y, x}, then g 6∼ gg1. So we have Rx = Rg1 = ∅. Let

T =
(
x−1xG ∪ g−1

1 xG
)
\ {1, x2} ∪ xG. By inspection, we see that Rx ∪ Rg1 ⊆ T , so that in

fact F ⊆ T .

Because {y, y3} ⊆ (x−1xG \ {1, x2}) ∩ (g−1
1 xG \ {1, x2}), we have |(x−1xG \ {1, x2}) ∪

(g−1
1 xG \ {1, x2})| ≤ (n/4− 2) + (n/4− 2)− 2 = n/2− 6, and

|T | ≤ |xG|+ |(x−1xG \ {1, x2}) ∪ (g−1
1 xG \ {1, x2})|

≤ n/4 + (n/2− 6) = 3n/4− 6.

Also, xF ⊆ xT , {xy, xy3} ⊆ xT , and |xT | ≤ 3n/4− 6.

Now we consider E = Cy∪Ly∪Ry. By Lemma 4.4(a) we have Cy ⊆ yG \{y, y−1} and, by

Lemma 4.4 (b) we have Ly ⊆ y−1yG \ {1, y2}. Also, Ry ⊆ CG(y)x by Lemma 4.4(i). Because

〈y〉 ∈ CG(y), we have {xy, xy3} ⊆ CG(y)x. Let S = (yG\{y, y−1})∪y−1yG\{1, y2}∪CG(y)x,
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so that E ⊆ S, {xy, xy3} ⊆ S, and |S| ≤ (m− 2) + (m− 2) + n/m = n/m+ 2m− 4.

Finally, consider the set xT ∪ S. Because {xy, xy3} ⊆ xT ∩ S, we have

|xT ∪ S| ≤ (
3n

4
− 6) + (2m+

n

m
− 4)− 2 =

3n

4
+
n

m
+ 2m− 12.

And because xF ∪ E ⊆ T ∪ S we have s ≤ 3n/4 + n/m+ 2m− 12 in this case.

Case 5: o(x) = 4 and o(y) > 4 is even. We let o(y) = t = 2r for some non-negative

integer r. We see that (yr)x = y−r = yr, so that yr and x commute. Because yr ∈ CG(x) =

〈x〉, we have yr = x2 and x−1 = xx2 = xyr. Thus, in this case we can write

xG = {x, xy, xy2, . . . , xyt−1, xh1, xh2, . . . , xhq},

for q = k − t, where the elements xyi, xhj are all distinct, so that

x−1xG = {1, y, y2, . . . , yt−1, h1, h2, . . . , hq} and

g−1
1 xG = {1, y, y2, . . . , yt−1, yαh1, y

αh2, . . . , y
αhq}.

Again in this case, we have |Rx| ≤ 4, |Rg1| ≤ 4 by Lemma 4.4(c), Cx ∪ Cg1 ⊆ xG, by

Lemma 4.4(f), and Lx ⊆ x−1xG \ {1, yr}, Lg1 ⊆ g−1
1 xG \ {1, yr} by Lemma 4.4(b), where we

have yr = x2. Also {y, y2, . . . , yt−1} \ {yr} ⊆ (x−1xG \ {1, yr}) ∩ (g−1
1 xG \ {1, yr}), so that

|(x−1xG \ {1, yr}) ∪ (g−1
1 xG \ {1, yr})| ≤ (n/4− 2) + (n/4− 2)− (t− 2) = n/2− t− 2.

So in this case we let T = xG ∪ (x−1xG \ {1, yr}) ∪ (g−1
1 xG \ {1, yr}) and have F ⊆ T ,

where

|T | ≤ |xG|+ |(x−1xG ∪ g−1
1 xG \ {1, yr})|+ 8 ≤ n

4
+ (

n

4
− t− 2) + 8 =

3n

4
− t+ 6.

Also, we note that xF ⊆ xT , {xy, xy2, . . . , xyt−1} \ {xyr} ⊆ xT and |xT | = |T | ≤

3n/4− t+ 6.

Now we consider E = Cy ∪ Ly ∪Ry. By Lemma 4.4 (a) we have Cy ⊆ yG \ {y, y−1} and,
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because y has even order from Lemma 4.4(b) it follows that Ly ⊆ y−1yG \ {1, y2}, so that

|Ly| ≤ m − 2. From Lemma 4.4 (c) we have Ry ⊆ CG(y)x. We set S = yG \ {y, y−1} ∪

y−1yG \{1, y2}∪CG(y)x, so that E ⊆ S and |S| ≤ (m−2)+(m−2)+n/m = n/m+2m−4.

Finally, consider the set xT ∪ S. We have {xy, xy2, . . . , xyt−1} ⊆ CG(y)x ⊆ S, so that

{xy, xy2, . . . , xyt−1} \ {yr} ⊆ xT ∩ S, from which it follows that

|xT ∪ S| ≤ (
3n

4
− t+ 6) + (

n

m
+ 2m− 4)− (t− 2) =

3n

4
+
n

m
+ 2m− 2t+ 4.

And because xF ∪ E ⊆ xT ∪ S we have s ≤ 3n/4 + n/m+ 2m− 2t+ 4 in this case.

This concludes consideration of all cases.

We are now ready to prove Case M, which we do in three subcases.

Case M1: k = n/4,m = 4, 6, 8, 10 ≤ m ≤ n/10, excluding m = 4, o(y) = 6, o(x) = 4.

For the cases m=4,6,8 and 10 ≤ m ≤ n/10 we cannot in general say anything about the

order of y. We are going to work these cases in parallel and record our work in a table.

The rows of the table are labelled in the first column by cases, based on the orders of x

and y. In the second column, we use the facts that when o(y) is odd, then t ≥ 3 and

when o(y) is even, then t ≥ 4, and the results of Proposition 4.11 to get bounds for s =

|x [Cx ∪ Lx ∪Rx ∪ Cg1 ∪ Lg1 ∪Rg1 ] ∪ (Cy ∪ Ly ∪Ry)| in each of those cases. These bounds

are listed in the second column of the table. In the third, fourth, and fifth columns, we

plug in m = 4, 6, 8 respectively to get the bounds for s corresponding to each m. We apply

Lemma 4.10, which tells us that if 10 ≤ m ≤ n/10, then m + n/m ≤ 10 + n/10, to get the

bounds on s which are listed in the last column.
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Case General m = 4 m = 6 m = 8 10 ≤ m ≤ n
10

o(x) = 2, o(y) odd 3n
4

+ n
m

+m− 8 n− 4 11n
12
− 2 7n

8
17n
20

+ 2

o(x) = 2, o(y) even 3n
4

+ n
m

+ 2m− 12 n− 4 11n
12

7n
8

+ 4 19n
20
− 2

o(x) = 4, o(y) odd 3n
4

+ n
m

+m− 6 n− 2 11n
12

7n
8

+ 2 17n
20

+ 4

o(x) = 4, o(y) = 4 3n
4

+ n
m

+ 2m− 11 n− 3 11n
12

+ 1 7n
8

+ 5 19n
20
− 1

o(x) = 4, o(y) = 6 3n
4

+ n
m

+ 2m− 8 n 11n
12

+ 4 7n
8

+ 8 19n
20

+ 2

o(x) = 4, o(y) ≥ 6 even 3n
4

+ n
m

+ 2m− 10 n− 2 11n
12

+ 2 7n
8

+ 6 19n
20

Using this table, we see by Lemma 4.8 that when (x, y) is an ND pair in a finite group

G with |G| > 64, such that |xG| = 4, |yG| = m, and m ∈ {4, 6, 8, 10, . . . , n/10}, then xy is

determined by the NDICT of G by Lemma 4.8 unless o(x) = 4, o(y) = 6 and m = 4. We

consider the case o(x) = 4, o(y) = 6 and m = 4 later in this section.

Case M2: k = n/4,m = n/9, n/8, n/7, n/6, n/5, excluding m = n/6, o(y) = 6. In these

cases, we do know something about the order of y. When m = n/9, then y has order 3 or

4. When m = n/8, then y has order 8 or 4. When m = n/7 then o(y) = 7. When m = n/6

then y has order 3 or 6. And finally, when m = n/5, then o(y) = 5. We are going to build

another table, with rows corresponding to different cases based on the orders of x and y, and

columns corresponding to values of m. For some values of o(y), it will be impossible to have

certain m values, and when this occurs, we will put an N/A in the table. For example, when

o(y) = 4, then it is impossible to have m = n/5. Also, in this table, when o(y) is known, we

use that value for t, and when o(y) is odd, we use t ≥ 3. From Proposition 4.11 we get the

following bounds on s.
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Case General m = n
9

m = n
8

m = n
7

m = n
6

m = n
5

o(x) = 2, o(y) odd 3n
4

+ n
m

+m− 8 31n
36

+ 1 N/A 25n
28
− 1 11n

12
− 2 19n

20
− 3

o(x) = 2, o(y) = 4 3n
4

+ n
m

+ 2m− 12 N/A n-4 N/A N/A N/A

o(x) = 2, o(y) = 6 3n
4

+ n
m

+ 2m− 16 N/A n-8 N/A 13n
12
− 10 N/A

o(x) = 2, o(y) = 8 3n
4

+ n
m

+ 2m− 20 N/A n-12 N/A N/A N/A

o(x) = 4, o(y) odd 3n
4

+ n
m

+m− 6 31n
36

+ 4 N/A 25n
28

+ 1 11n
12

19n
20

o(x) = 4, o(y) = 4 3n
4

+ n
m

+ 2m− 12 N/A n− 4 N/A N/A N/A

o(x) = 4, o(y) = 6 3n
4

+ n
m

+ 2m− 8 N/A N/A N/A 13n
12

N/A

o(x) = 4, o(y) = 8 3n
4

+ n
m

+ 2m− 12 N/A n− 4 N/A N/A N/A

Using this table, we see by Lemma 4.8 that when (x, y) is an ND pair in a finite group

G with |G| > 64, such that |xG| = 4, |yG| = m, m ∈ {n/9, n/8, n/7, n/6, n/5}, then xy is

determined by the NDICT of G unless o(y) = 6 and m = n/6.

Case M3: k = n/4,m = 4, and o(y) = 6, o(x) = 4 or k = n/4,m = n/6, and o(y) = 6.

We consider the subcase m = 4, and then the subcase m = n/6.

First, we suppose m = 4, o(x) = 4, o(y) = 6. We know that y2 is determined by the

NDICT of G. Next we show that g1y
2 is determined by the NDICT.

Because o(y2) = 3 is odd, and o(g1) = o(x) = 4, we know both that y2 6∼ g1 and that

(y2, g1) cannot be an ND pair. So the only way that g1y
2 can fail to be determined is

if (g1, y
2) is an ND pair. Suppose (g1, y

2) is an ND pair. Because CG(y) ⊆ CG(y2), and

|CG(y)| = n/4, we know that |CG(y2)| ≥ n/4 and so |(y2)G| ⊆ {1, 2, 4}. By assumption,

(g1, y
2) is an ND pair so y2 is not central. If |(y2)G| = 2, then the ND pair (g1, y

2) satisfies

|gG1 | = n/4, |(y2)G| = 2, and it follows from case F of this proof that g1y
2 is determined by

the NDICT. If |(y2)G| = 4, then by Case M1 applied to the ND pair (g1, y
2), we know that

g1y
2 is determined by the NDICT of G, so that in this case g1y

2 is also determined by the

NDICT of G, so that g1y
2 is alwayss determined by the NDICT.

We recall that g1 ∈ {xy, yx = xy−1}, and that this set is determined by the NDICT of G.

If g1 = xy−1, then g1y
2 = xy−1y2 = xy = g2. If g1 = xy then g1y

2 = xyy2 = xy3 6= g2 = xy−1.
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Thus, when g1y
2 is known, we know whether g1 = xy or g1 = xy−1, so that xy is determined

by the NDICT of G in this case.

Now, we consider the case where m = n/6, o(y) = 6, o(x) ∈ {2, 4}. Again we show that

g1y
2 is determined by the NDICT of G. Then it will follow from the above argument that

xy is determined. Because o(y2) = 3, we know y2 6∼ g1 and (y2, g1) is not an ND pair. Thus

g1y
2 is determined unless (g1, y

2) is an ND pair. Suppose (g1, y
2) is an ND pair. We have

|gG1 | = n/4 and |(y2)G| ≤ |yG| ≤ n/6. It follows from one of the cases M1, M2, B or F that

g1y
2 is determined by the NDICT. This shows that we can always determine g1y

2 in this

subcase, so that xy is determined by the NDICT in this case as well.

Thus, in either subcase xy is determined by the NDICT of G.

In our next two cases, we use the classifications mentioned in the introduction. Groups

with a self centralizing subgroup of order 4 were classified by Suzuki [23]. He shows:

Theorem 4.12 (Suzuki). Let G be a finite group containing an element y of order 4. If y

commutes only with its powers, then either G contains a normal subgroup of index 2 which

does not contain y, or G contains an abelian normal subgroup G0 of odd order such that

the factor group G/G0 is one of the following groups: SL(2,3), SL(2,5), LF(2,7), or the

alternating groups A6 or A7.

Case N: k = n/4 and m = n/4. We use Theorem 4.12 to show that no finite groups G,

|G| ≥ 256, has elements x, y ∈ G for which (x, y) is an ND pair and k = m = n/4.

When k = m = n/4 we know that ∼ 〈y〉x, yx = y−1, |yG| = n/4, o(y) = 4 and |xG| = n/4.

We note that yx
2

= (yx)x = (y−1)x = y, so that x2 ∈ CG(y) = 〈y〉 so that x2 = 1 or x2 = y2.

Subcase 1: G contains a normal subgroup N of index 2 with y 6∈ N . Suppose xG ⊆ N .

Then x(xy) = y ∈ N2, a contradiction. Suppose xG 6⊆ N . Then yx ∈ G\N = yN so x ∈ N ,

a contradiction.

Subcase 2: G has an abelian normal subgroup G0 such that the factor group G/G0 is

one of the groups SL(2, 3), SL(2, 5), LF (2, 7) = PSL(2, 7), A6, and A7.

The groups SL(2, 3), SL(2, 5), LF (2, 7) = PSL(2, 7), A6, and A7 are well understood.
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They all have exactly n/4 elements of order 4, and have no more than n/8 involutions. The

n/4 elements of order 4 correspond to the elements of yG, so for these groups it is impossible

to have xG of size n/4. This gives a contradiction.

Thus, it is impossible for a group to have (x, y) an ND pair with |xG| = |yG| = n/4.

For the final case we use another classification theorem. Groups with a self centralizing

subgroup of order 3 were classified by Feit and Thompson [6]. They show

Theorem 4.13 (Feit,Thompson). Let G be a finite group which contains a self-centralizing

subgroup of order 3. Then one of the following statements is true.

(i) G contains a nilpotent normal subgroup N such that G/N is isomorphic to either A3

or S3.

(ii) G contains a normal subgroup N which is a 2-group such that G/N is isomorphic to

A5.

(iii) G is isomorphic to PSL(2, 7).

Case O: k = n/4 and m = n/3.

Because yx
2

= (y−1)x = y, we have x2 ∈ CG(y) = {1, y, y2}, so that in fact we must

have o(x) = 2 in this case. Also, we must have CG(x) = {1, x, t, xt} where o(t) = 2. To see

this, suppose by way of contradiction that CG(x) = 〈t〉 where t2 = x. Then CG(t) = CG(x),

but x 6∼ t, so that we have two classes of size n/4 in addition to the class of y which has

size n/3. Because CG(t) = 〈t〉, we can apply Suzuki’s result (Theorem 4.12). If G has

a normal subgroup N of index 2 that does not contain t, then x = t2 ∈ N , so xy ∈ N ,

and x(xy) = y ∈ N , so y ∈ N and hence we also have yG ⊆ N . But this implies |N | ≥

|yG|+ |xG| = n/4 +n/3, a contradiction. And, as we mentioned earlier, the groups SL(2, 3),

SL(2, 5), LF (2, 7) = PSL(2, 7), A6, and A7 do not have n/4 involutions, and neither can

any group which has them as a quotient. Thus, we must have CG(x) = {1, x, t, xt} where

o(t) = 2.
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We consider the cases of Theorem 4.13 separately to determine those finite groups, G,

which have elements x, y ∈ G for which x ∼ 〈y〉x, yx = y−2, |yG| = n/3 and |xG| = n/4.

Subcase 1: G/N = S3 for N nilpotent.

By size considerations xG 6⊆ N , yG 6⊆ N . Because x, xy, xy2 ∈ xG and y, y2 ∈ yG, it

follows that y, y2, xy, xy2, x 6∈ N , so that the cosets N, yN, y2N, xN, xyN, xy2N of N must

be distinct. The set K = N ∪ yN ∪ y2N is closed under products, and so is a subgroup

of G. Because it has 2 in G it is normal, so that in fact K = N ∪ yG. We know that

CG(x) = {1, x, xt, t} for some involution t, and we can assume without loss of generality that

t ∈ K. (If t, x ∈ G \K, then xt ∈ K, and we relabel.)

We work from the right with t ∈ K to show that xy can be determined in this case. We

know by order consideration that y 6∼ t, and because t2 = 1 we also know that (y, t) is not

an ND pair. Because yg = y−1 implies g ∈ {x, xy, xy2}, and t 6∈ {x, xy, xy2}, it follows from

Lemma 4.4(c) that (t, y) is not an ND pair. Thus, yt is determined by the NDICT of G.

Because t ∈ K and g1 ∈ G \K, we know that g1 6∼ t. Because t and g1 are involutions,

(t, g1) and (g1, t) cannot be ND pairs. Thus g1t is determined by the NDICT of G.

We noted earlier that yt 6= y−1. From this it follows that (yt)2 = ytyt = yyt 6= 1, so that

yt 6∼ x. Because t 6∈ CG(y), we know that (yt)x = y−1t 6= ty−1 = (yt)−1, so (x, yt) cannot

be an ND pair. And (yt, x) cannot be an ND pair because x is an involution. So x(yt) is

determined by the NDICT of G. Thus x(yt) and g1t are determined from the NDICT of G,

so xy is determined by the NDICT of G by Theorem 4.7.

Subcase 2: G/N = A3.

In this case, we know g3 ∈ N for all g ∈ G. Because x3 = x, it follows that x ∈ N and

also xG ∈ N . From this it follows that xy ∈ N and x(xy) = y ∈ N . From this it follows

that yG ⊂ N , a contradiction, because |yG ∪ xG| > n/3 = |N |. Thus, it is not possible for a

group of this type to have an ND pair (x, y) with |xG| = n/4 and |yG| = n/3.

Subcase 3: G/N = A5, N a 2-group.

By size considerations xG 6⊆ N , yG 6⊆ N . If N = {1} so that G = A5, then |G| < 256.
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(We did this case in the example in section 4.2.) If N 6= {1}, consider CG(x) = 〈x, t〉 where

x2 = t2 = (xt)2 = 1. Because x normalizes N , 〈N, x〉 is a 2-group, and so it has center. That

center can only be 〈t〉 or 〈xt〉, and it follows that either t ∈ N or xt ∈ N . Without loss of

generality, we assume t ∈ N .

We can work from the left with t to determine xy. We know that t 6∼ x because t ∈ N ,

x 6∈ N , and that (x, t) and (t, x) are not ND pairs because t2 = x2 = 1. So the product

tx is determined. Next, we know that t 6∼ g1 because t ∈ N , g1 6∈ N , and that (t, g1) and

(g1, t) are not ND pairs because t2 = g2
1 = 1. So tg1 is also determined by the NDICT of G.

Finally, we have tx 6∼ y because tx and y have different orders and (y, tx) is not an ND pair

because xt is an involution. Also, (tx, y) is not an ND pair because t 6∈ CG(y), which implies

that ytx = yxt = (y−1)t 6= y−1.

Because tx, tg1 and (tx)y are determined by the NDICT, it follows from Lemma 4.7 that

xy is determined by the NDICT when G/N = A5 for some normal 2-group N .

Subcase 4: G = PSL(2, 7). This group has order 168 and so is not in consideration in

this section.

This concludes consideration of all groups with a class of size n/3 and shows that when

there is an ND pair (x, y) with |xG| = n/4, |yG| = n/3, the product xy is determined by the

NDICT of G.

As this was our final case, we have shown that for any ND pair (x, y) of G, G a finite

group with |G| ≥ 256, G not generalized dihedral of order 2n, n odd, that the product xy is

determined by the NDICT of G.

Chapter 5. Character Theory of 2-S-rings

In this chapter we present some results on the characters of the 2-S-rings of finite groups.

Classically, an S-ring (or Schur-ring) T on a finite group G is a subring of the group ring

ZG characterized by a partition G = Γ1 ∪ · · · ∪ Γt of G into non-empty trivially intersecting
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subsets of G, called principal sets with the following properties:

(i) Γ1 = {e}

(ii) For every i ∈ {1, . . . , t} there is a j ∈ {1, . . . , t} such that Γ−1
i := {g−1|g ∈ Γi} = Γj.

(iii) The elements τi =
∑

g∈Γi
g, (i ∈ {1, . . . , t}) are a Z basis for T .

The definition we have used in this paper of a Schur-ring is what classically would have

been called a Schur-algebra:

Definition 5.1 (Tamaschke). Let T be a Schur-ring on the finite group G. Then the set CT

of all linear combinations of the T -class sums with complex numbers as coefficients forms a

subalgebra of the group algebra CG which is called a Schur-algebra on G over C.

Thus, k-S-rings as we have defined them are actually Schur-algebras and not Schur-rings.

But we continue to call them rings by convention.

If F : CT → Mn(C) is a representation (ring homomorphism) of CT (as a C-algebra),

then the character of the representation is defined as follows:

Definition 5.2 (Tamaschke). For any representation F : CT →Mn(C) the complex valued

function φ : g 7→ trace
(
F
(
Ci

|Ci|

))
where g ∈ Ci, is called the T -character of G related to F .

The character is called irreducible if the representation is irreducible.

We are also going to consider the relationship of characters of the 2-S-ring of G both to

the characters of G2 and to the Frobenius 2-characters.

Much of the work in this section was motivated by attempting to understand the char-

acters of the 2-S-ring of S3, including their relationship to the characters of S2
3 and the

2-character of S3. We present that example in the first section.

In the next section we prove generalized results for the character tables of 1- and 2-S-

rings of finite groups. We build on the work on character tables of S-rings done by Olaf

Tamaschke [24], who was a graduate student of Helmut Wielandt.
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We apply some of those results in the third section, in which we determine the character

table of the 2-S-ring of G where G is dihedral of order 2n, n odd.

Finally, we show that each Frobenius 2-character of a finite group corresponds in a natural

way to a character of the 2-S-ring of G.

5.1 An example with S3

In this section we consider the 2-S-ring of the group G = S3 := 〈a, b|a3 = b2 = 1, ab = a2〉.

Calculations are suppressed in this section to facilitate understanding the big picture, but

all calculations are carried out in a later section when we determine the character table of

the 2-S-ring of generalized dihedral groups of order 2n, n odd.

The group S3 has three 1-classes: {e}, {a, a2}, {b, ab, a2b}, and three pairwise non-isomorphic

representations ρ1, ρ2, ρ3 corresponding to the characters χ1, χ2, χ3 of the character table of

S3. 

e a b

χ1 1 1 1

χ2 1 1 −1

χ3 2 −1 0


Each representation ρi of S3, induces a representation of Z(CG). The ring Z(CG) has

C basis {e, a + a2, b + ab + a2b}, and all irreducible representations of this ring are linear.

In particular, the irreducible group representation ρ3 induces a reducible representation of

Z(CG) which is two copies of the same linear representation of Z(CG). This is a well known

consequence of Schur’s Lemma.

The 1-S-ring and Z(CG) are the same ring, but we think of the standard basis of the 1-S-

ring as being the average class sums. Thus, for this example we have τ0 = 1, τ1 = 1
2
(a+ a2),

τ2 = 1
3
(b+ ab+ a2b) as the basis of S

(1)
G .
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For CT (S
(1)
S3

) we have the character table



Class Sizes 1 2 3

zi e a b

χ1 1 1 1 1

χ2 1 1 1 −1

χ3 4 1 −1/2 0


.

Let ρr be the regular representation of S3. Then ρ̂r is a degree six representation of CG,

which reduces as ρ̂r = χ1 + χ2 + 4χ3, so that zi is the coefficient of χi in this sum. We also

see that 〈χ3, χ3〉 = 1
6

[
1 + 2(1

4
) + 0

]
= 1

4
= 1

z3
. These characters are orthogonal (because

the irreducible characters of G are orthogonal), but this calculation shows that they are

not ‘orthonormal.’ However, they do have the desirable characteristic that for the linear

character χi : G→ C : g 7→ χ(g), the map χ̂i : S
(1)
G → C is a representation of the 1-S-ring.

For S3, the 2-S-ring is commutative. There are many groups, however, which have non-

commutative 2-S-rings. There are relatively few groups with commutative 3-S-ring. We

discuss groups with commutative 3-S-rings in Chapter 6.

It is easy to verify that S3 has eight 2-classes:

C1 = {(e, e)};

C2 = {(e, a), (e, a2), (a, e), (a2, e)};

C3 = {(a, a), (a2, a2)};

C4 = {(a, a2), (a2, a)};

C5 = {(e, b), (e, a2b), (e, ab), (b, e), (a2b, e), (ab, e)};

C6 = {(b, b)(a2b, a2b), (ab, ab)};

C7 = {(b, a)(a2b, a), (ab, a), (b, a2)(a2b, a2), (ab, a2), (a, b), (a, a2b), (a, ab), (a2, b),

(a2, a2b), (a2, ab)};

C8 = {(b, a2b), (b, ab), (a2b, b), (a2b, ab), (ab, b), (ab, a2b)}.

The character table of the 2-S-ring of S3 is given below. The zi have meaning similar to
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their meaning in the 1-S-ring case, which we discuss below.

Size of 2-class 1 2 2 4 3 6 6 12

zi (e, e) (a, a2) (a, a) (e, a) (b, b) (e, b) (b, ab) (a, ab)

ψ1 1 1 1 1 1 1 1 1 1

ψ2 1 1 1 1 1 1 −1 1 −1

ψ3 2 1 1 1 1 −1 0 −1 0

ψ4 4 1 −1/2 1 −1/2 1 0 −1/2 0

ψ5 4 1 −1/2 1 −1/2 −1 0 1/2 0

ψ6 8 1 1 −1/2 −1/2 0 0 0 0

ψ7 8 1 −1/2 −1/2 1/4 0 1/2 0 −1/4

ψ8 8 1 −1/2 −1/2 1/4 0 −1/2 0 1/4

These characters also have the property that ψ̂i : S
(2)
S3
→ C is a representation of the

2-S-ring. We want to understand the relationship of characters of the 2-S-ring of S3 both to

the characters of S2
3 = S3 × S3 and to the Frobenius 2-characters of S3.

We first discuss the relationship to the Frobenius 2-character. We see that for any

(g, h) ∈ S2
3 , ψ5(g, h) = 1

2
χ

(2)
3 (g, h), so that the scaled Frobenius 2-character is in fact the

character of a representation of S3. We show in section 5.4that the Frobenius 2-character

always corresponds to a representation of the 2-S-ring.

Recall that for an r× s matrix A = (aij), and p× q matrix B the tensor product A⊗B

is the rp× sq matrix defined by

A⊗B =



a11B a12B · · · a1sB

a21B a22B · · · a2sB

...
...

. . .
...

ar1B ar2B · · · arsB


.
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The group S2
3 has 9 irreducible representations. These representations can be obtained

by taking pairwise tensor products of the representations ρ1, ρ2, ρ3 of S3 [11, Theorem 19.18].

We use χi⊗χj to denote the character of ρi⊗ρj, so that we have χi⊗χj(g, h) = χi(g)χj(h).

Then S2
3 has the following character table:

S2
3 (e, e) (e, a) (e, b) (a, e) (a, a) (a, b) (b, e) (b, a) (b, b)

χ1 ⊗ χ1 1 1 1 1 1 1 1 1 1

χ1 ⊗ χ2 1 1 −1 1 1 −1 1 1 −1

χ2 ⊗ χ1 1 1 1 1 1 1 −1 −1 −1

χ2 ⊗ χ2 1 1 −1 1 1 −1 −1 −1 1

χ3 ⊗ χ3 4 −2 0 −2 1 0 0 0 0

χ1 ⊗ χ3 2 −1 0 2 −1 0 2 −1 0

χ3 ⊗ χ1 2 2 2 −1 −1 −1 0 0 0

χ2 ⊗ χ3 2 −1 0 2 −1 0 −2 1 0

χ3 ⊗ χ2 2 2 −2 −1 −1 1 0 0 0

If we take the representation ρi ⊗ ρj of S2
3 and extend to representations of the group

algebra Z(CS2
3), then restrict to representations of the 2-S-ring of S3, we get a representation

ρ̂i ⊗ ρj of the 2-S-ring. With a slight abuse of notation, we will denote the character of ρ̂i ⊗ ρj

by χ̂i ⊗ χj.

In this way we get the following (not necessarily irreducible) characters of the 2-S-ring.
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(e, e) (a, a2) (a, a) (e, a) (b, b) (e, b) (b, ab) (a, ab)

χ̂1 ⊗ χ1 1 1 1 1 1 1 1 1

χ̂1 ⊗ χ2 1 1 1 1 −1 0 −1 0

χ̂2 ⊗ χ1 1 1 1 1 −1 0 −1 0

χ̂2 ⊗ χ2 1 1 1 1 1 −1 1 −1

χ̂3 ⊗ χ3 4 1 1 −2 0 0 0 0

χ̂1 ⊗ χ3 2 −1 −1 1/2 0 1 0 −1/2

χ̂3 ⊗ χ1 2 −1 −1 1/2 0 1 0 −1/2

χ̂2 ⊗ χ3 2 −1 −1 1/2 0 −1 0 1/2

χ̂3 ⊗ χ2 2 −1 −1 1/2 0 −1 0 1/2

We see that χ̂i ⊗ χj(g, h) = 1
2

(χi(g)χj(h) + χi(h)χj(g)), which doesn’t surprise us con-

sidering the symmetric nature of the 2-classes. It is also straightforward to verify that:

χ̂1 ⊗ χ1 = ψ1;

χ̂2 ⊗ χ2 = ψ2;

χ̂1 ⊗ χ2 = ψ3;

χ̂2 ⊗ χ1 = ψ3;

χ̂3 ⊗ χ3 = ψ4 + ψ5 + 2ψ6;

χ̂1 ⊗ χ3 = 2ψ7;

χ̂3 ⊗ χ1 = 2ψ7;

χ̂2 ⊗ χ3 = 2ψ8;

χ̂3 ⊗ χ2 = 2ψ8.

The regular representation ρr of S3 decomposes as a direct sum ρr = ρ1 + ρ2 + 2ρ3.

The regular representation ρ2
r = ρr ⊗ ρr of S2

3 also decomposes as a sum of irreducible

representations

ρ2
r = ρ1⊗ρ1 +ρ1⊗ρ2 +ρ2⊗ρ1 +ρ2⊗ρ2 + 2ρ1⊗ρ3 + 2ρ3⊗ρ1 + 2ρ2⊗ρ3 + 2ρ3⊗ρ2 + 4ρ3⊗ρ3.
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And ρ̂2
r also decomposes as a direct sum of the ρ̂i ⊗ ρj:

ρ̂2
r = ρ̂1 ⊗ ρ1 + 2ρ̂1 ⊗ ρ2 + ρ̂2 ⊗ ρ2 + 4ρ̂1 ⊗ ρ3 + 4ρ̂2 ⊗ ρ3 + 4ρ̂3 ⊗ ρ3.

Using the table above to finish decomposing the regular representation, we can further

decompose ρ̂2
r as a sum of linear representations (characters):

ρ̂2
r = ψ1 + ψ2 + 2ψ3 + 4(ψ4 + ψ5 + 2ψ6) + 8ψ7 + 8ψ8.

Thus, the zi in the character table of S
(2)
G are just the coefficient of ψi in the above sum.

If we calculate, for example, 〈ψ8, ψ8〉 we get

〈ψ8, ψ8〉 =
1

36

(
1 · 1 + 2 · 1

4
+ 2 · 1

4
+ 4 · 1

16
+ 3 · 0 + 6 · 1

4
+ 6 · 0 + 12 · 1

16

)
=

1

8
=

1

z8

.

It is true for all the characters of the 2-S-ring of S3 that 〈ψi, ψj〉 = δij
1
zj

.

This work sheds light on work done previously by Ken Johnson in [12]. In that paper

Johnson defines the extended 2-characters of a finite group G as follows:

Definition 5.3. Let G be a finite group with Irr(G) = {θ1, . . . , θr}. For g, h in G we define

(i) θ
(2)
i (g, h) = θi(g)θi(h)− θi(gh), for each θi of degree > 1.

(ii) θ
(2,+)
i (g, h) = θi(g)θi(h) + θi(gh), for each θi of degree > 1.

(iii) θi ◦ θj(g, h) = θi(g)θj(h) + θi(h)θj(g), for θi, θj distinct.

These functions are the extended 2-characters of G.

He shows that these functions are constant on 2-classes and notes [12, Proposition 2.2,

2.3] that the extended 2-characters are pairwise orthogonal, in the sense that if ψ, φ are two

distinct extended 2-characters, then

∑
x∈G2

ψ(x)φ(x) = 0.
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He also defines the 2-character table of a finite group G using the extended 2-characters.

Definition 5.4. Let G be a finite group. The 2-character table of G has rows indexed by

the extended 2-characters and columns labeled by an element in each 2-class, with entries

the extended 2-character values.

He also defines a norm ||ψ|| =
∑

x∈G2 |ψ(x)|2, for ψ an extended 2-character.

We give the 2-character table of S3 = D6 = 〈a, b|a3 = b2 = 1, ab = a2〉. This 2-character

table is not exactly the character table given in [12], but has been modified according to

corrections annotated by Ken Johnson.

Class Order 1 2 2 4 3 6 6 12

Representative (e, e) (a, a2) (a, a) (e, a) (b, b) (e, b) (b, ab) (a, ab)

Character Norm

1
2
χ1 ◦ χ1 36 1 1 1 1 1 1 1 1

χ1 ◦ χ2 72 2 2 2 2 −2 0 −2 0

χ1 ◦ χ3 72 4 −2 −2 1 0 2 0 −1

1
2
χ2 ◦ χ2 36 1 1 1 1 1 −1 1 −1

χ2 ◦ χ3 72 4 −2 −2 1 0 −2 0 1

χ
(2,+)
3 108 6 3 0 −3 2 0 −1 0

χ
(2)
3 36 2 −1 2 −1 −2 0 1 0

Orthogonal 54 0 3 −3 0 −2 0 1 0

Complement

The paper does not assign any type of meaning to the norm, nor does it explain why he

chose certain multiples of extended k-characters for certain rows. He notes that when using

only the extended 2-characters, this 2-character table is not square, and finds an orthogonal

complement using row orthogonality. The paper also gives a character table for D8 and

explains why D8 and Q8 do not have the same 2-character table. The 3-character table is

also defined.
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When we compare the 2-character table of S3 to the character table of S
(2)
S3

, however,

we see that, with the exception of χ
(2,+)
3 , each of the extended 2-characters is a multiple of

an irreducible character of the 2-S-ring. Also χ
(2,+)
3 = 2(ψ4 + 2ψ6) is a sum of multiples of

characters, and also corresponds to a representation of the S
(2)
S3

.

Using this information, we see that in fact there is a missing row on this 2-character

table because χ
(2,+)
3 corresponds to a sum of irreducible representations, and hence does not

correspond to an irreducible character. Essentially, in this table the character of χ3 ⊗ χ3

has been split into two characters, one of which (the Frobenius character) corresponds to an

irreducible representation, so that χ
(2,+)
3 is just ‘everything else.’

In the remainder of this chapter, our primary goal is to generalize the results of this

example as much as possible, and also, when we fail to get a generalization, to give a counter

example. In particular, our work with the character tables of 2-S-rings will allow us to

determine the extended 2-characters, in particular the Frobenius 2-characters, as characters

of representations of S
(2)
G in a natural way.

Monica Vazarani [25] also did extensive work with extended k-characters. She found

various representations which had as characters the extended k-characters. However, she

also produced the same ‘non-square’ 2-character table for S3 as Ken Johnson.

As we mentioned, there are groups with non-commutative 2-S-rings, and for these groups

we will not get a square character table for the 2-S-ring of the group. However, when the

2-S-ring of a group is commutative, then the 2-S-ring will have a square character table.

5.2 Character tables of G, G2, S
(1)
G and S

(2)
G

In this section, we formalize some of the ‘coincidences’ of the last chapter. Many of our results

will rely heavily on the work of Olaf Tamaschke in [24] regarding the character theory of

S-rings.

Throughout this section G is a finite group and T is an S-ring of G = C1 ∪C2 ∪ · · · ∪Cs

where the Ci are the principal sets. We let CT be the associated Schur-algebra, which will
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have standard basis
{
τj =

Cj

|Cj |

}
, 1 ≤ j ≤ s.

Also, we let ρr denote the regular representation of G, and for ρ a representation (either

of G or T ), we let χρ represent the character of the representation.

We let {Fi}, 1 ≤ i ≤ r, be a complete set of pairwise non-isomorphic irreducible repre-

sentations of CT , and yi denote the dimension of the representation. For each Fi we define

zi to be the multiplicity of Fi as a factor of ρ̂r, so that ρ̂r =
r∑
i=0

ziFi. Also, we let φi be the

character of G rel T associated with Fi.

Because it is possible that T is not a commutative ring, the number of principal sets, s,

need not be equal to r, the number of distinct irreducible representations of T .

Every Schur-algebra CT is semisimple [26, p.386, footnote]. Thus, every representation

of CT is completely reducible, and hence each character of CT (T character of G) is a linear

combination of the irreducible characters of CT with non-negative integral coefficients [24,

p. 342]. Also, it follows from semisimplicity that dim(CT ) =
r∑
i=1

y2
i .

The following result is due to Tamaschke [24, Theorem 1.5]. We use the notation we have

introduced to make the statements clearer:

Theorem 5.5 (Tamaschke). Let G be a finite group and T an S-ring over G. If Fi, Fj are

irreducible representations of T and φi, φj are their characters of G rel T , then

〈φi, φj〉 = δij
yi
zj
.

In the S3 example, we saw that the multiplicity of each irreducible representation of S
(2)
S3

as a factor of the regular representation of S2
3 was equal to the reciprocal of the norm of the

representation. This theorem generalizes that fact.

In the 1-S-ring case, the relationship between representations of G and representations

of the 1-S-ring is well understood.

Proposition 5.6. Let ρ be a degree n representation of G. Then ρ̂ is a completely reducible

representation of S
(1)
G , with ρ̂

(
Ci

|Ci|

)
= 1

n
χρ(gi)In, where gi ∈ Ci.
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Proof. When Ci is a conjugacy class of a finite group G, then Ci is central in CG, and so

by Schur’s Lemma ρ(Ci) must be a scalar matrix. It is easy to verify that one must have

ρ
(
Ci
)

= 1
n
|Ci|χρ(gi)In, where gi in Ci. For more details, see [5, pp. 233-238].

Corollary 5.7. If each row of the character table of G is divided by the degree of the character

in that row, then the result is CT (S
(1)
G ).

Proof. Let τi = Ci

|Ci| , gi ∈ Ci. From Proposition 5.6 we see that τi 7→ 1
n
χρ(gi) is a linear

representation of S
(1)
G and hence g 7→ 1

n
χρ(g) is a linear character of S

(1)
G . Because the

dimension of the 1-S-ring equals the number of conjugacy classes, this is a complete set of

irreducible representations.

For the 2-S-ring, the relationship of the character table of S
(2)
G and G2 is not so straight-

forward. We can always find characters of S
(2)
G from the character table of G2, but in general,

as we saw in the example, these characters are not irreducible characters.

For the remainder of the section, we let {ρ1, . . . , ρt} be a complete set of irreducible

representations of G and let {χ1, . . . , χt} be the associated irreducible characters of G.

At this point, we want to discuss the three types of 2-classes that can occur for any finite

group G. We let K(g, h) denotes the 2-class of the element (g, h) ∈ G2.

First, there is the diagonal type class D = K(g, g). In the discussion, it will be useful to

write D = 1
2

∑
[(x, x)+(x, x)] where the sum is over all x ∈ D. Next, there is the ‘conjugate’

type class C = K(g, h) where g ∼ h, g 6= h. Because of the S22 action of G̃2 = G × S2

on G2, (x, y) ∈ C if and only if (y, x) ∈ C and (x, y) 6= (y, x) for (x, y) ∈ C. We can

write C = 1
2

∑
[(x, y) + (y, x)] where the sum is over all (x, y) ∈ C. Finally, we have classes

B = K(g, h) where g 6∼ h. We define Bg = {(x, y) ∈ B|x ∼ g}. For this type of class we

have B =
∑

(x,y)∈Bg

[(x, y) + (y, x)]. Thus we have:

Lemma 5.8. Fix (g, h) ∈ G2 and let K = K(g, h), Kg = {(x, y) ∈ K|x ∼ g}. Then for the
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average class sum τ of K(g, h) we have

τ =
K

|K|
=

1

2|Kg|
∑

(x,y)∈Kg

[(x, y) + (y, x)].

This lemma allows us to use the same format to represent any of the three types of classes

and allows us to avoid using cases in the proofs of this section.

Fix (g, h) ∈ G2, and let B = K(g, h), τ = B
|B| . Then

ρi ⊗ ρj(τ) =
1

2|Bg|
∑

(x,y)∈Bg

[ρi(x)⊗ ρj(y) + ρi(y)⊗ ρj(x)].

And because tr(M ⊗N) = tr(M)tr(N) for any square matrices M,N , it follows that:

tr(ρi ⊗ ρj(τ)) = 1
2|Bg |

∑
(x,y)∈Bg

[tr(ρi(x)⊗ ρj(y)) + tr(ρi(y)⊗ ρj(x))]

= 1
2|Bg |

∑
(x,y)∈Bg

[tr(ρi(x))tr(ρj(y)) + tr(ρi(y)tr(ρj(x))]

= 1
2|Bg |

∑
(x,y)∈Bg

[χi(x)χj(y) + χi(y)χj(x)]

= 1
2|Bg |

∑
(x,y)∈Bg

[χi(g)χj(h) + χi(h)χj(g)]

= 1
2|Bg | |Bg|[χi(g)χj(h) + χi(h)χj(g)]

= 1
2
[χi(g)χj(h) + χi(h)χj(g)].

We have shown the following:

Proposition 5.9. With the notations defined above we have

χ̂i ⊗ χj(g, h) =
1

2
[χi(g)χj(h) + χi(h)χj(g)].

Corollary 5.10. If χi, χj are characters of a finite group G, then the generalized 2-character

χi ◦ χj is a character of the 2-S-ring of G.

If θ is a linear representation of G and ρ is any other representation, it is also straight-
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forward to calculate the representation θ̂ ⊗ ρ.

Lemma 5.11. Let G be a finite group. If θ : G → C is a linear representation of G and ρ

is a degree n representation of G, then θ̂ ⊗ ρ(g, h) = 1
2n

(θ(g)χρ(h) + χρ(g)θ(h))In, where χρ

is the character of ρ.

Proof. Fix g, h ∈ G. We use the notation θ, ρ to denote both the representations of G and

the representation of CG, where θ is a linear representation and ρ is a representation of

degree n.

Fix g, h ∈ G. We let A = K(g, h) and let τ = 1
2|Ag |

∑
(x,y)∈Ag

[(x, y) + (y, x)] be the average

class sum of A. (Recall that Ag = {(x, y) ∈ A|x ∼ g}. Then we have

θ ⊗ ρ(τ) = 1
2|Ag |

∑
(x,y)∈Ag

[θ(x)⊗ ρ(y) + θ(y)⊗ ρ(x)]

= 1
2|Ag |

∑
(x,y)∈Ag

[θ(x)ρ(y) + θ(y)ρ(x)]

= 1
2|Ag |

∑
(x,y)∈Ag

[θ(g)ρ(y) + θ(h)ρ(x)]

= 1
2|Ag |

( ∑
(x,y)∈Ag

θ(g)ρ(y) +
∑

(x,y)∈A
θ(h)ρ(x)

)

= 1
2|Ag |

(
θ(g)

∑
(x,y)∈Ag

ρ(y) + θ(h)
∑

(x,y)∈Ag

ρ(x)

)
= 1

2|Ag |

(
θ(g) |A

G|
|hG| ρ(hG) + θ(h) |Ag |

|gG|ρ(gG)
)

= 1
2|Ag |

(
θ(g) |A

G|
|hG|

(
|hG|
n
χρ(h)In

)
+ θ(h) |Ag |

|gG|

(
|gG|
n
χρ(g)In

))
= 1

2n
[θ(g)χρ(h) + θ(h)χρ(g)]In.

In the next section we apply these results to help us determine the character table of the

2-S-ring of dihedral groups of order 2n, n odd.
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5.3 2-character table of Dihedral groups of order 2n, n odd

Throughout this section, G = 〈a, b|an = b2 = 1, ab = a−1〉 is the dihedral group of order 2n

with n > 1 odd. We let m = n−1
2

, N = 〈a〉 /G, 〈a〉b = Nb = G \N , and G̃2 = G×S2, where

S2 = 〈σ〉, σ = (12). We think of G̃2 as acting on G2 where G acts by diagonal conjugation

and S2 acts by permuting elements, so that the 2-classes are the orbits of G2 under the action

of G̃2. We will use the information about the classes, character table, and representations of

D2n given in [11, pp. 181-182].

We will determine the character table of the 2-S-ring of G. Because Theorem 5.5 guar-

antees that each irreducible representation of S
(2)
G occurs as a factor of ρ̂2

r, after we have

determined the 2-classes of G, we will start with the irreducible representations of G2 in

order to determine the irreducible representations of S
(2)
G .

Because n is odd, G = D2n has m+ 2 = (n+ 3)/2 conjugacy classes. They are

{e}, {ar, a−r}(1 ≤ r ≤ m), {b, ab, . . . , anb}.

Also, G has 2 linear representations. They are

ρ1 : G→ C∗ : g 7→ 1;

ρ2 : G→ C∗ : arbj 7→ (−1)j.

Let ξ = e2πi/n. For 1 ≤ k ≤ n, we let

A =

 ξ 0

0 ξ−1

 , Ak = Ak =

 ξk 0

0 ξ−k

 , B =

 0 1

1 0

 .
For 1 ≤ k ≤ m there are irreducible degree 2 representations of G defined by

νk : G→ GL2(C) : arbj 7→ ArkB
j,
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and these m+2 representations ρ1, ρ2, νk, 1 ≤ k ≤ (n−1)/2 are a complete set of irreducible

representations of G.

Thus for G = D2n, n > 1 odd, we have the following character table, where αkr =

ξkr + ξ−kr = χk(a
r):

|gGi | 1 2 n

gi 1 ar(1 ≤ r ≤ m) b

ψ1 1 1 1

ψ2 1 1 −1

χk 2 αkr 0

In order to find the 2-classes of G, we consider first the 2-classes in N × N . Consider

(ar, as) ∈ N × N , where 1 ≤ r, s ≤ n − 1. For any g ∈ N we know (ar, as)g = (ar, as),

and for h ∈ Nb we know (ar, as)h = (a−r, a−s), so the orbit of the G action of diagonal

conjugation is {(ar, as), (a−r, a−s)}. Also, (ar, as)σ = (as, ar), so the G̃2 orbit of (ar, as) is

{(ar, as), (a−r, a−s), (as, ar), (a−s, a−r)}.

As we consider the possibilities that s = r, s = −r, s 6= r, s = 0, or r = 0, we see that

in addition to the diagonal classes K(e, e), K(ar, ar), (1 ≤ r ≤ m) in N × N , we get the

following 2-classes in N ×N for 1 ≤ r ≤ n, 1 ≤ |s| < r:

K(ar, a−r) = {(ar, a−r), (a−r, ar)};

K(ar, as) = {(ar, as), (a−r, a−s), (as, ar), (a−s, a−r)};

K(e, ar) = {(e, ar), (e, a−r), (ar, e), (a−r, e)}.

It is straightforward to verify that every element of N ×N is in exactly one of these classes.

Now we consider the 2-classes in (N × Nb) ∪ (Nb × N). By 1.28(i) we have K(e, b) =

{(e, aib), (aib, e)}ni=0 with |K(e, b)| = 2n. For 1 ≤ r, s ≤ m, (ar, b)a
s

= (ar, a−2sb). Because n

is odd, it follow that (ar, b)N = {(ar, akb)}n−1
k=0 = {ar} × Nb. Also, (ar, akb)b = (a−r, a−kb),

so (ar, b)Nb = {(a−r, akb)}n−1
k=0 = {a−r} × Nb. When we consider the S2 action, we see that
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K(ar, b) = ({ar, a−r}×Nb)∪(Nb×{ar, a−r}). Because each element of (N×Nb)∪(Nb×N)

is in K(ar, b) for some r, 0 ≤ r ≤ m, these classes are all the 2-classes in (N×Nb)∪(Nb×N).

Now we consider the 2-classes in Nb × Nb. We will have the diagonal class K(b, b).

Consider (b, arb) ∈ Nb × Nb, for 1 ≤ r ≤ m. We know that (b, arb)a
s

= (a−2sb, ar−2sb), so

(b, ar)N = {(akb, ar+kb)}n−1
k=0 . Also (akb, ak+rb)b = (a−kb, a−k−rb), so that we have (b, ar)Nb =

{(akb, ak−rb)}n−1
k=0 . Finally, note that the set {(akb, ar+kb)}n−1

k=0 ∪ {(akb, ak−rb)}
n−1
k=0 is closed

under the S2 action, so that K(b, arb) = {(akb, ar+kb), (akb, ak−rb)}n−1
k=0 . For a fixed r, 1 ≤

r ≤ m, we get K(b, arb) = {(aib, ai+rb)} ∪ {(aib, ai−rb)} which has size 2n. Because each

element of Nb × Nb is an element of K(b, arb) for some r, 0 ≤ r ≤ m, these are all the

2-classes of Nb×Nb.

For 1 ≤ r ≤ m, 1 ≤ |s| < r, we define

C1 = K(e, e), τ1 = (e, e);

C2,r = K(e, ar), τ2,r = 1
4

[(e, ar) + (e, a−r) + (ar, e) + (a−r, e)] ;

C3,r = K(ar, ar), τ3,r = 1
2

[(ar, ar) + (a−r, a−r)] ;

C4,r = K(ar, a−r), τ4,r = 1
2

[(ar, a−r) + (a−r, ar)] ;

C5,r,s = K(ar, as), τ5,r,s = 1
4

[(ar, as) + (a−r, a−s) + (as, ar) + (a−s, a−r)] ;

C6 = K(e, b), τ6 = 1
2n

n−1∑
t=0

[(e, atb) + (atb, e)];

C7,r = K(b, ar), τ7,r = 1
4n

n−1∑
t=0

[(atb, ar) + (atb, a−r) + (ar, atb) + (a−r, atb)];

C8 = K(b, b), τ8 = 1
n

n−1∑
t=0

[(atb, atb)];

C9,r = K(b, arb), τ9,r = 1
2n

n−1∑
t=0

[(atb, at+rb) + (atb, at−rb)].

Proposition 5.12. The 2-S-ring of G = D2n is generated by the average class sums listed

above where 1 ≤ r ≤ m and 1 ≤ |s| < r. It has dimension m2 + 4m+ 3.

Proof. By definition the τi form a basis. Because 1 ≤ r ≤ m and 1 ≤ |s| ≤ r, there are

m(m− 1) basis elements τ5,r,s. Thus S
(2)
G has dimension 1 +m+m+m+m(m− 1) + 1 +

m+ 1 +m = m2 + 4m+ 3.
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We now want to find the irreducible representations of S
(2)
G . The group G2 has (m+ 2)2

irreducible representations, which are ρi⊗ρj, ρi⊗νk, νk⊗ρi, νk⊗νl, 1 ≤ i, j ≤ 2, 1 ≤ k, l ≤ m.

These representations extend to representations of CG2, which in turn can be restricted to

representations ρ̂i ⊗ ρj, ρ̂i ⊗ νk, ν̂k ⊗ ρi, ν̂k ⊗ νl, of S
(2)
G . Thus we find the representations

ρ̂i ⊗ ρj, ρ̂i ⊗ νk, ν̂k ⊗ ρi, ν̂k ⊗ νl, for 1 ≤ i, j ≤ 2, 1 ≤ k, l ≤ m, by evaluating ρi⊗ ρj, ρi⊗ νk,

etc., on these average class sums.

We can use Lemma 5.11 to determine the representations for ρ̂i ⊗ ρj(τα) = ρ̂j ⊗ ρi(τα),

ρ̂i ⊗ νk(τα) = ν̂k ⊗ ρi(τα), for 1 ≤ i, j ≤ 2, 1 ≤ k ≤ m using the values of the character table

of D2n. For ρi ⊗ ρj we get the following linear representations/characters:

1 4 2 2 4 2n 4n n 2n

τ1 τ2,r τ3,r τ4,r τ5,r,s τ6 τ7,r τ8 τ9,r

ρ̂1 ⊗ ρ1 1 1 1 1 1 1 1 1 1

ρ̂1 ⊗ ρ2 1 1 1 1 1 0 0 −1 −1

ρ̂2 ⊗ ρ2 1 1 1 1 1 0 0 1 1

Before going on to compute the other representations, we pause to compute some inner

products.

Let φ, χ be S
(2)
G characters of G2, and C1, C2, . . . Cs be the 2-classes of G. Fix (gi, hi) ∈ Ci.

The inner product is defined to be

〈φ, χ〉 =
1

|G2|
∑

(g,h)∈G2

φ(g)χ(h).

But because the φ, χ are constant on 2-classes, we can write

〈φ, χ〉 = 1
|G2|

(
s∑
i=1

∑
(g,h)∈Ci

φ(g)χ(h)

)
= 1
|G2|

(
s∑
i=1

|Ci|φ(gi)χ(hi)

)
,

This simplifies the calculations that we will make to compute inner products. Because
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the character values ρ̂i ⊗ ρj(τk,r), k ∈ {2, 3, 4, 7, 9}, and ρ̂i ⊗ ρj(τ5,r,s) , i, j ∈ {1, 2}, do not

depend on r or s we can further simplify the calculation of inner products in this case,

multiplying the number of classes of each of the nine ‘types’ by |Ci|φ(g)χ(h), (where (g, h)

is a class representative) then taking the sum over the nine types of 2-classes.

We get

〈ρ̂1 ⊗ ρ1, ρ̂1 ⊗ ρ1〉 =
1

4n2
(1 · 1 + 4 · 1 ·m+ 2 · 1 ·m+ 2 · 1 ·m+ 4 · 1 · m(m−1)

2

+4 · 1 · m(m−1)
2

+ 2n · 1 · 1 + 4n · 1 ·m+ n · 1 · 1 + 2n · 1 ·m),

so that

〈ρ̂1 ⊗ ρ1, ρ̂1 ⊗ ρ1〉 =
1

4n2
(1 + 8m+ 8m(m−1)

2
+ 2n+ 4nm+ n+ 2nm

=
1

4n2
(1 + 8m+ 4m2 − 4m+ (3 + 6m)(2m+ 1))

=
1

4n2
(1 + 4m+ 4m2 + 12m2 + 12m+ 3)

= 4(4m2+4m+1)
4n2 = 1.

Also, we have

〈ρ̂1 ⊗ ρ1, ρ̂1 ⊗ ρ2〉 =
1

4n2
(1 · 1 · 1 + 4 · 1 ·m+ 2 · 1 ·m+ 2 · 1 ·m+ 4 · 1 · m(m−1)

2

+4 · 1 · m(m−1)
2

+ 2n · 0 · 1 + 4n · 0 ·m+ n · −1 · 1 + 2n · −1 ·m),

so that

〈ρ̂1 ⊗ ρ1, ρ̂1 ⊗ ρ2〉 = 1
4n2

(
1 + 8m+ 8m(m−1)

2
− n− 2nm

)
= 1+4m+4m2−(1+2m)(2m+1)

4n2 = 0.

And finally

〈ρ̂1 ⊗ ρ2, ρ̂1 ⊗ ρ2〉 =
1

4n2
(1 · 1 · 1 + 4 · 1 ·m+ 2 · 1 ·m+ 2 · 1 ·m+ 4 · 1 · m(m−1)

2

+4 · 1 · m(m−1)
2

+ 2n · 0 · 1 + 4n · 0 ·m+ n · 1 · 1 + 2n · 1 ·m),
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so that

〈ρ̂1 ⊗ ρ2, ρ̂1 ⊗ ρ2〉 = (1 + 8m+ 8m(m− 1)/2 + n+ 2nm)/(4n2)

= 1 + 4m+ 4m2 + (1 + 2m)(2m+ 1))/(4n2) = 2n2/(4n2)

= 1/2.

This agrees with the results of Theorem 5.5.

Next we consider the degree 2 representations, ρ1 ⊗ νk, ρ2 ⊗ νk, for 1 ≤ k ≤ m. These

representations can also be determined using the results of Lemma 5.11.

First we have

ρ1 ⊗ νk(τ1) = I2, 1 ≤ k ≤ m;

ρ2 ⊗ νk(τ1) = I2, 1 ≤ k ≤ m.

For the average class sum τ2,r = 1
4

[(e, ar) + (e, a−r) + (ar, e) + (a−r, e)] we get

ρ1 ⊗ νk(τ2,r) = 1
2·2(ψ1(e)χk(a

r) + ψ1(ar)(χk(e))I2 = 1
4
(αkr + 2)I2;

ρ2 ⊗ νk(τ2,r) = 1
4
(ψ2(e)χk(a

r) + ψ2(ar)(χk(e))I2 = 1
4
(αkr + 2)I2.

For τ3,r, τ4,r, τ5,r,s, we get the following:

ρ1 ⊗ νk(τ3,r) = 1
4
(ψ2(ar)χk(a

r) + ψ2(ar)(χk(a
r))I2 = 1

2
(αkr)I2;

ρ2 ⊗ νk(τ3,r) = 1
2
(αkr)I2.

ρ1 ⊗ νk(τ4,r) = 1
4
(ψ1(ar)χk(a

−r) + ψ1(a−r)χk(a
r))I2 = 1

2
(αkr)I2;

ρ2 ⊗ νk(τ4,r) = 1
2
(αkr)I2.

ρ1 ⊗ νk(τ5,r,x) = 1
4
(ψ1(ar)χk(a

s) + ψ1(as)χk(a
r))I2 = 1

4
(αkr + αks)I2;

ρ2 ⊗ νk(τ5,r,x) = 1
4
(αkr + αks)I2.
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For the class τ6 = 1
2n

n−1∑
t=0

[(e, atb) + (atb, e)],

ρ1 ⊗ νk(τ6) = 1
4
(ψ1(e)χk(a

rb) + ψ1(arb)(χk(e))I=
1
4
(0 + 2)I2 = 1

2
I2.

ρ2 ⊗ νk(τ6) = −1
2
I2.

Then, τ7,r = 1
4n

n−1∑
t=0

[(atb, ar) + (atb, a−r) + (ar, atb) + (a−r, atb)], and so

ρ1 ⊗ νk(τ7,r) = 1
4
αkrI2;

ρ2 ⊗ νk(τ7,r) = −1
4
αkrI2.

Finally, for τ8 = 1
n

n−1∑
t=0

[(atb, atb)] and τ9,r = 1
2n

n−1∑
t=0

[(atb, at+rb) + (atb, at−rb)], we have

ρ1 ⊗ νk(τ8) = ρ1 ⊗ νk(τ9,r) = 0;

ρ2 ⊗ νk(τ8) = ρ2 ⊗ νk(τ9,r) = 0.

The representations ρ̂1 ⊗ νk, ρ̂2 ⊗ νk, for 1 ≤ k ≤ m are all scalar matrices, and so each

is a sum of two copies of the same linear representation, say ρ̂i ⊗ νk = 2ψi,k. Thus we have

2m more linear characters ψ1,k, ψ2,k to add to our 2-S-ring character table.

1 4 2 2 4 2n 4n n 2n

τ1 τ2,r τ3,r τ4,r τ5,r,s τ6 τ7,r τ8 τ9,r

ρ̂1 ⊗ ρ1 1 1 1 1 1 1 1 1 1

ρ̂1 ⊗ ρ2 1 1 1 1 1 0 0 −1 −1

ρ̂2 ⊗ ρ2 1 1 1 1 1 0 0 1 1

ψ1,k 1 1
2

+ 1
4
αkr

1
2
αkr

1
2
αkr

1
4
(αkr + αks)

1
2

1
4
αkr 0 0

ψ2,k 1 1
2

+ 1
4
αkr

1
2
αkr

1
2
αkr

1
4
(αkr + αks) −1

2
−1

4
αkr 0 0

Finally, we consider the degree 4 representations. We consider the cases νk ⊗ νk and

νk⊗νl for k 6= l separately, where 1 ≤ k ≤ m. We will write D(a1, a2, a3, a4) for the diagonal
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matrix with entries a1, a2, a3, a4 on the main diagonal. Throughout, 1 ≤ k, l ≤ m, k 6= l.

First, for (arbi, asbj) ∈ G2 we have:

νk ⊗ νl(arbi, asbj) = ArkB
i ⊗ AslBj, 1 ≤ k, l ≤ m.

To simplify calculations we note that

Ark ⊗ Asl =



ξkrξls 0 0 0

0 ξkrξ−ls 0 0

0 0 ξ−krξls 0

0 0 0 ξ−krξ−ls


;

A−rk ⊗ A
−s
l =



ξ−krξ−ls 0 0 0

0 ξ−krξls 0 0

0 0 ξkrξ−ls 0

0 0 0 ξkrξls


.

Or,

Ark ⊗ Asl + A−rk ⊗ A
−s
l = D(αkr+ls, αkr−ls, αkr−ls, αkr+ls).

For τ1 = (e, e) we get

νk ⊗ νl(τ1) = I4;

νk ⊗ νk(τ1) = I4.

For τ2,r = 1
4

[(e, ar) + (e, a−r) + (ar, e) + (a−r, e)] we get

νk ⊗ νl(τ2,r) = νk ⊗ νl(1
4

[(e, ar) + (e, a−r) + (ar, e) + (a−r, e)])

= 1
4
(I ⊗ Arl + I ⊗ A−rl + Ark ⊗ I + A−rk ⊗ I)

= 1
4
(ξlr + ξ−lr + ξkr + ξ−kr)I4 = 1

4
(αkr + αlr)I4;

νk ⊗ νk(τ2,r) = 1
2
αkrI4.
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The results for τ3,r and τ4,rare obtained similarly:

νk ⊗ νl(τ3,r) = 1
2
D(αkr+lr, αkr−lr, αkr−lr, αkr+lr);

νk ⊗ νk(τ3,r) = 1
2
D(α2kr, 2, 2, α2kr);

νk ⊗ νl(τ4,r) = 1
2
D(αkr−lr, αkr+lr, αkr+lr, αkr−lr);

νk ⊗ νk(τ4,r) = 1
2
D(2, α2kr, α2kr, 2).

For τ5,r,s we get

νk ⊗ νl(τ5,r,s) = 1
4
D(αkr+ls + αks+lr, αkr−ls + αks−lr, αkr−ls + αks−lr, αkr+ls + αks+lr));

νk ⊗ νk(τ5,r,s) = 1
2
D(αkr+ks, αkr−ks, αkr−ks, αkr+ks).

Next, we consider the class τ6 = 1
2n

n−1∑
t=0

[(e, atb)+(atb, e)]. Recall that Atk = diag(ξkt, ξ−kt),

so that
n−1∑
t=0

Atk = diag

(
n−1∑
t=0

ξkt,
n−1∑
t=0

ξ−kt

)
= 02.

Also, for any q × q matrices Mt, and any matrix N , it is a property of tensor products that

n−1∑
t=0

(Mt ⊗N) =

(
n−1∑
t=0

Mt

)
⊗N.

Then we use these two facts to help us simplify the next few cases:

νk ⊗ νl(τ6) = νk ⊗ νl( 1
2n

n−1∑
t=0

[(e, atb) + (atb, e)]) = 1
2n

n−1∑
t=0

[I ⊗ AtlB + AtkB ⊗ I] = 04;

νk ⊗ νk(τ6) = 04.
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Also, for τ7,r = 1
4n

n−1∑
t=0

[(atb, ar) + (atb, a−r) + (ar, atb) + (a−r, atb)]:

νk ⊗ νl(τ7,r) = νk ⊗ νl
(

1
4n

n−1∑
t=0

[(atb, ar) + (atb, a−r) + (ar, atb) + (a−r, atb)]

)
= 1

4n

n−1∑
t=0

[(AtkB ⊗ Arl ) + (AtkB ⊗ A−rl ) + (Ark ⊗ AtlB) + (A−rk ⊗ AtlB)] = 04;

νk ⊗ νk(τ7,r) = 04.

To simplify calculations for the τ8 case we note that

AtkB ⊗ AtlB =



0 0 0 ξkt+lt

0 0 ξkt−lt 0

0 ξ−kt+lt 0 0

ξ−kt−lt 0 0 0


.

And 1 ≤ k, l ≤ m, so when l 6= k, then ξk+l, ξk−l 6= 1 are non-identity nth roots of unity

(usually not primitive). Also, ξ2kr is a non-identity nth root of unity, so we have

AtkB ⊗ AtkB =



0 0 0 ξ2kt

0 0 1 0

0 1 0 0

ξ−2kt 0 0 0


.
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For τ8 = 1
n

n−1∑
t=0

[(atb, atb)], we have

νk ⊗ νl(τ8) = νk ⊗ νl
(

1
n

n−1∑
t=0

(atb, atb)

)
= 1

n

n−1∑
t=0

AtkB ⊗ AtlB = 0;

νk ⊗ νk(τ8) = νk ⊗ νk
(

1
n

n−1∑
t=0

(atb, atb)

)
= 1

n

n−1∑
t=0

AtkB ⊗ AtkB

=



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


.

Finally, for τ9,r = 1
4n

n−1∑
t=0

[(atb, at+rb) + (atb, at−rb) + (at+r, atb) + (at−r, atb)], we have

νk ⊗ νl(τ9,r) = νk ⊗ νl
(

1
4n

n−1∑
t=0

[(atb, at+rb) + (atb, at−rb) + (at+rb, atb) + (at−rb, atb)]

)
= 1

4n

n−1∑
t=0

[AtkB ⊗ At+rl B + AtkB ⊗ At−rl B + At+rk B ⊗ AtlB + At−rk B ⊗ AtlB]

= 04;

νk ⊗ νk(τ9,r) = νk ⊗ νk
(

1
4n

n−1∑
t=0

[(atb, at+rb) + (atb, at−rb) + (at+rb, atb) + (at−rb, atb)]

)
= 1

4n

n−1∑
t=0

[AtkB ⊗ At+rk B + AtkB ⊗ At−rk B + At+rk B ⊗ AtkB + At−rk B ⊗ AtkB]

= 1
4n

n−1∑
t=0

[(AtkB ⊗ AtkB)(I ⊗ Akr) + (AtkB ⊗ AtkB)(I ⊗ A−kr)

+(AtkB ⊗ AtkB)(Akr ⊗ I) + (AtkB ⊗ AtkB)(A−kr ⊗ I)]

=



0 0 0 0

0 0 1
2
αkr 0

0 1
2
αkr 0 0

0 0 0 0


.

Because we are interested in finding a complete set of irreducible representations for D2n,

n odd, we need to find the invariant subspaces of these representations.
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First we consider νk ⊗ νl for k 6= l:

νk ⊗ νl(τ1) = I4;

νk ⊗ νl(τ2,r) = 1
4
(αkr + αlr)I4;

νk ⊗ νl(τ3,r) = 1
2
D(αkr+lr, αkr−lr, αkr−lr, αkr+lr);

νk ⊗ νl(τ4,r) = 1
2
D(αkr−lr, αkr+lr, αkr+lr, αkr−lr);

νk ⊗ νl(τ5,r,s) = 1
4
D(αkr+ls + αks+lr, αkr−ls + αks−lr, αkr−ls + αks−lr, αkr+ls + αks+lr));

νk ⊗ νl(τ6) = 04;

νk ⊗ νl(τ7,r) = 04;

νk ⊗ νl(τ8) = 04;

νk ⊗ νl(τ9,r) = 04.

These matrices are all diagonal, and by observation, we see that these representations are

the sum of two copies each of two distinct linear representations, which we denote χk,l,1, χk,l,2.

1 4 2 2 4 2n 4n n 2n

τ1 τ2,r τ3,r τ4,r τ5,r,s τ6 τ7,r τ8 τ9,r

χk,l,1 1 1
4
(αkr + αlr)

1
2
(αkr+lr)

1
2
(αkr−lr)

1
4
(αkr+ls + αks+lr) 0 0 0 0

χk,l,2 1 1
4
(αkr + αlr)

1
2
(αkr−lr)

1
2
(αkr+lr)

1
4
(αkr−ls + αks−lr) 0 0 0 0
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In the k = l case, we will see that ν̂k ⊗ νk is also a sum of four linear representations.

νk ⊗ νk(τ1) = I4;

νk ⊗ νk(τ2,r) = 1
2
αkrI4;

νk ⊗ νk(τ3,r) = D(1
2
α2kr, 1, 1,

1
2
α2kr);

νk ⊗ νk(τ4,r) = D(1, 1
2
α2kr,

1
2
α2kr, 1);

νk ⊗ νk(τ5,r,s) = 1
2
D(αkr+ks, αkr−ks, αkr−ks, αkr+ks));

νk ⊗ νk(τ6) = 04;

νk ⊗ νk(τ7,r) = 04;

νk ⊗ νk(τ8) =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


;

νk ⊗ νk(τ9,r) =



0 0 0 0

0 0 1
2
αkr 0

0 1
2
αkr 0 0

0 0 0 0


.

Because each of the four vectors v1 = (0, 1, 1, 0), v2 = (0, 1,−1, 0), v3 = (1, 0, 0, 0),

v4 = (0, 0, 0, 1) are eigenvectors of each matrix in the representation, they are four 1-

dimensional modules. The collection of eigenvalues corresponding to these eigenspaces are

irreducible characters/representations of S
(2)
G . For each vector v1 we let χk,k,i be the char-

acter corresponding to the module span(vi). We note that χk,k,3 = χk,k,4, so we only include

one of these two in our final character table.
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1 4 2 2 4 2n 4n n 2n

τ1 τ2,r τ3,r τ4,r τ5,r,s τ6 τ7,r τ8 τ9,r

ρ̂1 ⊗ ρ1 1 1 1 1 1 1 1 1 1

ρ̂1 ⊗ ρ2 1 1 1 1 1 0 0 −1 −1

ρ̂2 ⊗ ρ2 1 1 1 1 1 0 0 1 1

ψ1,k 1 1
2

+ 1
4
αkr

1
2
αkr

1
2
αkr

1
4
(αkr + αks)

1
2

1
4
αkr 0 0

ψ2,k 1 1
2

+ 1
4
αkr

1
2
αkr

1
2
αkr

1
4
(αkr + αks) −1

2
−1

4
αkr 0 0

χk,l,1 1 1
4
(αkr + αlr)

1
2
(αkr+lr)

1
2
(αkr−lr) βkrls 0 0 0 0

χk,l,2 1 1
4
(αkr + αlr)

1
2
(αkr−lr)

1
2
(αkr+lr) γkrls 0 0 0 0

χk,k,1 1 1
2
αkr 1 1

2
α2kr

1
2
αkr−ks 0 0 1 1

2
αkr

χk,k,2 1 1
2
αkr 1 1

2
α2kr

1
2
αkr−ks 0 0 −1 −1

2
αkr

χk,k,3 1 1
2
αkr

1
2
α2kr 1 1

2
αkr+ks 0 0 0 0

Where 1 ≤ r ≤ m, 1 ≤ |s| < r, 1 ≤ k ≤ m, 1 ≤ l < m, and βkrls = 1
4
(αkr+ls + αks+lr),

γkrls = 1
4
(αkr−ls+αks−lr). This gives us 3+m+m+m(m−1)/2+m(m−1)/2+m+m+m =

m2 + 4m + 3 (irreducible) linear representations of S
(2)
G , which was a ring of dimension

m2 + 4m+ 3.

Voila! We have the 2-character table for an infinite family of groups. Because all repre-

sentations of S
(2)
G are linear, this ring is commutative.

5.4 On the representation of S
(2)
G corresponding to a Frobe-

nius 2-character

In this section we finish the proof that all extended 2-characters of a finite groupG correspond

to representations of the 2-S-ring of G. Recall that if Irr(G) = {θ1, θ2, . . . , θk}, then the

extended 2-characters are the functions:
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(i) θ
(2)
i (g, h) = θi(g)θi(h)− θi(gh), for each θi of degree > 1.

(ii) θ
(2,+)
i (g, h) = θi(g)θi(h) + θi(gh), for each θi of degree > 1.

(iii) θi ◦ θj(g, h) = θi(g)θj(h) + θi(h)θj(g), for θi, θj distinct.

In Theorem 5.9 we showed that if ρi, ρj are representations corresponding to characters

θi, θj, then 1
2
θi ◦ θj(g, h) is the S

(2)
G character of G2 corresponding to the representation

ρ̂i ⊗ ρj.

Throughout this section, let G be a finite group. Let V be an n dimensional CG module

with character χ. Fix B = {e1, e2, . . . , en} as a basis of V . We are consistently going to work

with our fixed basis B in this section. In particular, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),

etc.

Now consider V ⊗ V . The symmetric basis elements {ei ⊗ ej + ej ⊗ ei, 1 ≤ i ≤ j ≤ n} of

V ⊗ V form a basis for a subspace S = S(V ⊗ V ) of V ⊗ V , and the anti-symmetric basis

elements {ei ⊗ ej − ej ⊗ ei, 1 ≤ i < j ≤ n} form a basis for A = A(V ⊗ V ). We prove:

Theorem 5.13. Let G be a finite group and V a n-dimensional CG module with character

χ, n ≥ 2. Then A(V ⊗ V ) is an S
(2)
G module with character 1

2
χ(2)(g, h).

Thus, for any non-linear representation ρ of G, the representation ρ̂⊗ ρ is a reducible

representation of S
(2)
G . When ρ is a linear representation, then ρ̂⊗ ρ is also a linear repre-

sentation, and A(V ⊗ V ) = ∅. If χ is a linear character, then χ(2) = 0.

Because V ⊗V is a direct sum of S and A, and χ(2,+) +χ(2) = χ̂⊗ χ, it follows that χ(2,+)

is the character of the S
(2)
G module S(V ⊗ V ). It follows from this result and Corollary 5.10

that:

Theorem 5.14. Every extended 2-character of a finite group G corresponds to a represen-

tation of the 2-S-ring of G.

Theorem 5.14 isn’t surprising. It is well known that G acts on V ⊗ V by g(ei ⊗ ej) =

gei ⊗ gej, and the character χ2 of G can be broken up as the sum of a symmetric part and
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an antisymmetric part by considering the action of G on the symmetric and antisymmetric

parts of V ⊗ V respectively. (See, for example, [11, p. 196-208]). We show that under the

(standard) action of G2 on V ⊗ V defined by (g, h)(ei ⊗ ej) = g(ei) ⊗ h(ej), A is an S
(2)
G

module with character 1
2
χ(2), where χ(2) is the Frobenius 2-character.

Lemma 5.15. Let V be a CG-module and let A be the anti-symmetric part of V ⊗V . Then

A is an S
(2)
G -module with the action inherited from the CG action.

Proof. We note that for any (x, y) ∈ G2,

[(x, y) + (y, x)](ei ⊗ ej − ej ⊗ ei) = (xei ⊗ yej − yej ⊗ xei) + (yei ⊗ xej − xej ⊗ yei) ∈ A.

If τ is the average class sum of B = K(g, h) ∈ G2, then by Lemma 5.8 we have

τ(ei ⊗ ej − ej ⊗ ei) =
1

2|Bg|
∑

(x,y)∈Bg

[(x, y) + (y, x)](ei ⊗ ej − ej ⊗ ei).

Thus, τ(ei ⊗ ej − ej ⊗ ei) is a linear combination of elements of A, and so is in A.

In order to calculate character values we use the basic fact about tensor products that if

A = (aij), B = (bij) are n× n matrices, then

(A⊗B)(ei ⊗ ej) =
n∑
r=1

n∑
s=1

aribsjer ⊗ es. (***)

Using this fact, we can prove the following proposition:

Proposition 5.16. Let A = (aij), B = (bij) be n× n matrices. Then

(A⊗B +B ⊗ A)(ei ⊗ ej − ej ⊗ ei) =∑
1≤r<s≤n

(aribsj + briasj − arjbsi − brjasi)(er ⊗ es − es ⊗ er).

Proof. We set

P = (A⊗B +B ⊗ A)(ei ⊗ ej − ej ⊗ ei).
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Distributing, we get

P = (A⊗B)(ei ⊗ ej) + (B ⊗ A)(ei ⊗ ej)− (A⊗B)(ej ⊗ ej)− (B ⊗ A)(ej ⊗ ei).

It follows from (***) that we have

P =
n∑
r=1

n∑
s=1

[aribsj + briasj − (arjbsi + brjasi)]er ⊗ es.

Next, we note that when r = s, then the coefficient aribsj + briasj − (arjbsi + brjasi) is 0,

so we have

P =
n∑
r=1

n∑
s=1

[aribsj + briasj − (arjbsi + brjasi)]er ⊗ es

=
∑

1≤r<s≤n
[aribsj + briasj − (arjbsi + brjasi)]er ⊗ es

+
∑

1≤s<r≤n
[aribsj + briasj − (arjbsi + brjasi)]er ⊗ es.

We can rewrite the second term using a change of variables to get:

∑
1≤s<r≤n

[aribsj+briasj−(arjbsi+brjasi)]er⊗es =
∑

1≤r<s≤n

[asibrj+bsiarj−(asjbri+bsjari)]es⊗er,

and when we substitute this in to the equation above, we get

P =
∑

1≤r<s≤n
[aribsj + briasj − (arjbsi + brjasi)]er ⊗ es

+
∑

1≤r<s≤n
[asibrj + bsiarj − (asjbri + bsjari)]es ⊗ er.

Factoring a negative out of the second term, we get

P =
∑

1≤r<s≤n
[aribsj + briasj − (arjbsi + brjasi)]er ⊗ es

−
∑

1≤r<s≤n
[asjbri + bsjari − (asibrj + bsiarj)]es ⊗ er.
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But these coefficients are equal, so in fact we have

P =
∑

1≤r<s≤n

(aribsj + briasj − arjbsi − brjasi)(er ⊗ es − es ⊗ er).

And because P = (A⊗B +B ⊗ A)(ei ⊗ ej − ej ⊗ ei), this concludes the proof.

We are now ready to prove Theorem 5.13.

Proof. Let χ be the character of a representation ρ corresponding to an n-dimensional module

V , n ≥ 2. We have shown that A(V ⊗V ) is a S
(2)
G module. We let χ̂ denote the S

(2)
G character

of G2 corresponding to this module.

Fix (g, h) ∈ G2 and let B = K(g, h) so that Bg = {(x, y) ∈ B|x ∼ g}. We write

Bg = {(g1, h1), (g2, h2), . . . , (gm, hm)}, and let ρ(gi) = Ai, ρ(hi) = Bi, ρ(g) = A, ρ(h) = B.

We let At = (a
(t)
ij ), Bt = (b

(t)
ij ).

By Lemma 5.8 the average class sum of B is τ = 1
2m

m∑
t=1

[(gt, ht) + (ht, gt)], and

ρ(τ) =
1

2m

m∑
t=1

(At ⊗Bt +Bt ⊗ At).

By Proposition 5.16 we have

ρ(τ)(ei⊗ ej − ej ⊗ ei) =
1

2m

m∑
t=1

∑
1≤r<s≤n

(a
(t)
ri b

(t)
sj + b

(t)
ri a

(t)
sj − a

(t)
rj b

(t)
si − b

(t)
rj a

(t)
si )(er ⊗ es− es⊗ er).

We are looking for the character χ̂ associated to this module, which is the trace of this

representation. Since A(V ⊗ V ) has basis {ei ⊗ ej − ej ⊗ ei|1 ≤ j < i ≤ n}, we will get χ̂(τ)

by taking the sum of the coefficient of ei⊗ ej − ej ⊗ ei in ρ(τ)(ei⊗ ej − ej ⊗ ei) over all basis

elements {ei ⊗ ej − ej ⊗ ei|1 ≤ j < i ≤ n}.

This coefficient is

1

2m

m∑
t=1

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji ),
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so

χ̂(τ) =
∑

1≤i<j≤n

1
2m

m∑
t=1

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji )

= 1
2

( ∑
1≤i<j≤n

1
2m

m∑
t=1

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji )

)

+1
2

( ∑
1≤j<i≤n

1
2m

m∑
t=1

(a
(t)
jj b

(t)
ii + b

(t)
jj a

(t)
ii − a

(t)
ji b

(t)
ij − b

(t)
ij a

(t)
ij )

)
Where the final two terms are equal, but we have changed variables, relabeling i with j and

j with i in the second term.

When i = j, a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji = a

(t)
ii b

(t)
ii + b

(t)
ii a

(t)
ii − a

(t)
ii b

(t)
ii − b

(t)
ii a

(t)
ii = 0,

so we can write

χ̂(τ) = 1
2

( ∑
1≤i,j≤n

1
2m

m∑
t=1

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji )

)

= 1
4m

(
m∑
t=1

∑
1≤i,j≤n

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji )

)
.

Now we fix t and consider the sum
∑

1≤i,j≤n

(
a

(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji

)
.

Because

tr(At) =
n∑
i=1

a
(t)
ii , tr(Bt) =

n∑
j=1

b
(t)
jj , and tr(AtBt) =

n∑
i=1

n∑
j=1

a
(t)
ij b

(t)
ji ,

we see that

∑
1≤i,j≤n

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj −a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji ) = tr(At)tr(Bt)+tr(Bt)tr(At)− tr(AtBt)− tr(BtAt).

But (gt, ht) = (g, h)α for some α ∈ G, so gt ∼ g, ht ∼ h, and gtht ∼ gh, all via conjugation

by α. Thus, At, Bt, and AtBt are similar to A = ρ(g), B = ρ(h), and AB respectively. So

∑
1≤i,j≤n

(a
(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji ) = 2[tr(A)tr(B)− tr(AB)].
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Because this is true for all t, 1 ≤ t ≤ m, we have

χ̂(τ) = 1
4m

m∑
t=1

∑
1≤i,j≤n

(
a

(t)
ii b

(t)
jj + b

(t)
ii a

(t)
jj − a

(t)
ij b

(t)
ji − b

(t)
ij a

(t)
ji

)
= 1

4m

m∑
t=1

2[tr(A)tr(B)− tr(AB)] = 1
2

[χ(g)χ(h)− χ(gh)] .

So the 2-character χ(2) is the character of the module A(V ⊗ V ).

5.5 The Character Table of a Commutative k-S-ring.

If S
(k)
G is commutative, then it is possible to find the character table of the k-S-ring by

solving equations determined by the structure constants of the S
(k)
G .

In his work, Frobenius shows [4, Prop 3.2] that if T is an associative, commutative algebra,

of dimension r, then there are exactly r non-trivial solutions vi = (vi1, vi2, . . . , vir), 1 ≤ i ≤ r,

over the complex numbers to the set of equations

xixj =
∑
k

λijkxk,

where the λijk are the structure constants of the algebra and the xu are independent com-

muting variables. He also shows that these solution vectors are linearly independent.

For an arbitrary (not necessarily commutative) S-ring T we can still look at the set

of complex solutions of these equations, however one may not get a full set of r linearly

independent such solutions. If the solutions are vi = (vi1, vi2, . . . , vir), 1 ≤ i ≤ s ≤ r, then

one gets a matrix of solutions of size s × r that we denote by M(T ). We note that if the

sizes of the principal sets of S are n1, . . . , nr, then (n1, n2, . . . , nr) is a solution. We always

make this the first row.

If the S-ring in question is S
(k)
G , then we will denote the matrix one obtains by CT

(k)
G .

Example 5.17. For G = S3, a = (1, 2, 3), b = (1, 2) and the 2-classes with representatives
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in the order

(e, e), (e, a), (e, b), (a, a), (a, a−1), (a, b), (b, b), (b, ab),

we have:

CT
(2)
S3

=



1 4 6 2 2 12 3 6

1 4 −6 2 2 −12 3 6

1 4 0 2 2 0 −3 −6

1 −2 0 2 −1 0 −3 3

1 −2 0 2 −1 0 3 −3

1 −2 0 −1 2 0 0 0

1 1 −3 −1 −1 3 0 0

1 1 3 −1 −1 −3 0 0


If G is commutative, this matrix will give us a normalized version of the character table

CT (S
(k)
G ) of S

(k)
G . To get the character table we need only divide the entries in each column

by the size of the principal set corresponding to that column.

The following is a generalization of the fact that the information that is contained in the

character table of a group G is the same as the information contained in Z(CG):

Theorem 5.18. Let k ≥ 1. If G has a commutative k-S-ring, then CT
(k)
G and S

(k)
G determine

each other and so contain the same information about G (in the weaker sense of being

algebraically isomorphic, see example 1.12).

Proof. We let λijm be the structure constants for S
(k)
G (relative to a fixed ordering of the

basis of k-classes), which is assumed to be a commutative ring. Note, as before, that [4, Prop

3.2] shows that there are exactly r non-trivial solutions vi = (vi1, vi2, . . . , vir) ∈ Cr, i ≤ r,

over the complex numbers to the set of equations

xixj =
∑
m

λijmxm,

where the xu are commuting independent variables. It was also shown that these solution
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vectors are linearly independent, so that the matrix V = (vij) is non-singular.

Consider the column vectors Vj = (v1j, v2j, . . . , vrj)
T . Then the above shows that V1, . . . , Vr

are linearly independent and span Cr. For two column vectors U = (u1, . . . , ur), W =

(w1, . . . , wr) ∈ Cr we let U ◦W = (u1w1, u2w2, . . . , urwr). Then the fact that each vi is a

solution shows that each Vj is a solution vector in the following sense:

Vi ◦ Vj =
∑
m

λijmVm.

Since the Vi form a basis, the λijm are completely determined by the basis V1, . . . , Vr. Thus

CT
(k)
G determines the structure constants for S

(k)
G , as required. Conversely, by definition S

(k)
G

determines CT
(k)
G .

It should be noted that there are groups G with S
(2)
G not commutative, the Frobenius

group of order 20 being such an example. However, when S
(2)
G is commutative, this gives us

a method of computing the character table using MAGMA.

Chapter 6. Finite groups with commutative k-S-rings

It is well known that the 1-S-ring of any finite group is commutative. There exist finite

groups with non-commutative 2-S-rings, for example the Frobenius group of order 20. Finite

groups with commutative 2-S-rings have not been completely classified. However, finite

groups with commutative 3-S-rings are understood. In this chapter, we classify finite groups

with commutative 3-S-rings.

We will need the following definition:

Definition 6.1. A finite group G will be called a 3-S-ring group if for all ordered pairs

x, y ∈ G we have one of:

(1) xy = yx;

(2) x and y are conjugate;
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(3) xy = x−1;

(4) yx = y−1.

First, we show that the notion of a 3-S-ring-group arises naturally when studying groups

with commutative 3-S-ring.

Proposition 6.2. Let G be a group with commutative 3-S-ring. Then G is a 3-S-ring group.

Proof. Let g, h ∈ G. We wish to show that the pair g, h satisfies one of (1),. . . ,(4). We

consider the elements x = (g, 1, g), y = (h, h, 1) ∈ G3 and let A = K(3)(x), B = K(3)(y)

denote their 3-classes. We have xy = (gh, h, g) ∈ AB , so that (gh, h, g) is a term of

AB. But because S
(3)
G is commutative, we know (gh, h, g) is a term of BA as well, so that

(gh, h, g) ∈ BA.

Now the elements of A = K(3)(x) have the form

(i) (ga, 1, ga), (ii) (ga, ga, 1), (iii) (1, ga, ga),

for some a ∈ G, and the elements of B = K(3)(y) have the form

(i′) (hb, 1, hb), (ii′) (hb, hb, 1), (iii′) (1, hb, hb),

for some b ∈ G. It follows that xy = (gh, g, h) occurs in BA as one of the following possible

products:

Case (i), (i’): here

(hb, 1, hb)(ga, 1, ga) = (gh, h, g),

and so h = 1, giving [g, h] = 1.

Case (i), (ii’): here

(hb, hb, 1)(ga, 1, ga) = (gh, h, g),

and so hbga = gh, hb = h, ga = g, giving [g, h] = 1.
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Case (i), (iii’): here

(1, hb, hb)(ga, 1, ga) = (gh, h, g),

and so ga = gh, hb = h, hbga = g giving ga = h−1g = gh, so that hg = h−1.

Case (ii), (i’): here

(hb, 1, hb)(ga, ga, 1) = (gh, h, g),

and so ga = h, giving g ∼ h.

Case (ii), (ii’): here

(hb, hb, 1)(ga, ga, 1) = (gh, h, g),

and so g = 1, giving [g, h] = 1.

Case (ii), (iii’): here

(1, hb, hb)(ga, ga, 1) = (gh, h, g),

and so hb = g, giving g ∼ h.

Case (iii), (i’): here

(hb, 1, hb)(1, ga, ga) = (gh, h, g),

and so ga = h, giving g ∼ h.

Case (iii), (ii’): here

(hb, hb, 1)(1, ga, ga) = (gh, h, g),

and so hb = gh, hbga = h, ga = g, giving gh = hb = hg−1. We thus have gh = g−1.

Case (iii), (iii’): here

(1, hb, hb)(1, ga, ga) = (gh, h, g),

and so gh = 1. We thus have [g, h] = 1.

This concludes consideration of all cases.
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6.1 Classification of 3-S-ring groups

Now we characterize 3-S-ring groups. In particular, we prove:

Theorem 6.3. A finite group G is a 3-S-ring group if G satisfies one of the following

conditions:

(i) G is abelian;

(ii) G is generalized dihedral of order 2n, n odd. Recall that a group G is generalized

dihedral if G ∼= N oC2, where N is a finite abelian group and C2 = 〈t〉 acts on y ∈ N

by yt = y−1.

(iii) G ∼= Q8 × Cr
2 , where C2 is the cyclic group, r ≥ 0, and Q8 is the quaternion group of

order 8.

We note that each of the above groups have irreducible characters of degree at most 2,

such groups having been characterized by Amitsur [1].

We will be constantly referring to conditions (1)-(4) of Definition 6.1 for an ordered pair

of elements x, y ∈ G. We let ∼H denote conjugacy in the subgroup H of G.

Proof. Suppose that G is a group satisfying (i), (ii) or (iii) of Theorem 6.3. We show that

G is a 3-S-ring group, i.e. that any pair x, y ∈ G satisfies one of (1),(2),(3) or (4). This is

clear if G is abelian.

Assume that G satisfies (ii). Then we have G ∼= N o C2 for some abelian subgroup N

and C2 = 〈t〉. Because N has odd order, we know that G \N is a single class of G, and any

element x ∈ G \ N can be written x = x′t for some x′ ∈ N . If g, h ∈ N , then [g, h] = 1.

If g, h ∈ G \ N , then g ∼ h. If g ∈ N, h ∈ G \ N , then h = h′t for some h′ ∈ N and

gh = gh
′t = gt = g−1. So G is a 3-S-ring group.

Lastly, we now suppose that G ∼= Q8 × Cr
2 , where Q8 = 〈x, y|xy = x−1, yx = y−1, x4 =

y4 = 1〉 for some x, y ∈ G. If u, v ∈ G = Q8 × Cr
2 , where [u, v] 6= 1, then it is easy to see

that we can assume u = xu1, v = yv1, where u1, v1 ∈ Z(G). Then u2
1 = v2

1 = 1 and we have

122



uv = (xu1)yv1 = xyu1 = x−1u−1
1 = u−1. Thus any u, v ∈ G either commute or satisfy one of

uv = u−1 or vu = v−1.

Thus each of the groups listed is a 3-S-ring-group.

In any group, let y be any element of odd order and suppose xy = x−1 for some x 6= 1.

Then x = xy
2

= xy
4

= · · · = xy, a contradiction. Thus we have:

Proposition 6.4. If x, y ∈ G, G a 3-S-ring group, and o(y) is odd, then either x ∼ y,

[x, y] = 1, or yx = y−1. If both x and y have odd order and x 6∼ y, then [x, y] = 1.

Let N ⊆ G be the set of elements having odd order. Using the observations of the

proposition 6.4, we can prove the following:

Proposition 6.5. Let G be a 3-S-ring group of even order. If y ∈ G has odd order, then y

is central or yG = {y, y−1}.

Proof. If x ∈ G \ yG, then [x, y] = 1 or yx = y−1.

Suppose y 6∼ y−1. Then every element of G either commutes with y or is conjugate to

y, i.e. G = yG ∪ CG(y). If CG(y) = G, then y is central. If not, then by size consideration

we must have |yG| = |CG(y)| = |G|/2, and so |G| = |yG||CG(y)| = |G|2/4 and |G| = 4, a

contradiction, because G is not abelian.

Now suppose yx = y−1 for some x ∈ G. Then for any g ∈ G either [g, y] = 1, y ∼ g,

or yg = y=1, so that G = yG ∪ CG(y) ∪ xCG(y). We know y is not central, so CG(y) is a

proper subgroup of G. Suppose by way of contradiction that |yG| > 2. Because y has odd

order, we know |CG(y)| ≥ 3 and |yG| ≤ |G|/3. Also, y ∼ y−1, so we must have |yG| ≥ 4

from which it follows that |CG(y)| ≤ |G|/4. And G = yG ∪ CG(y) ∪ xCG(y) so we have

|G| ≤ |G|/3 + |G|/4 + |G|/4, which gives the contradiction.

Corollary 6.6. If N is the set of elements of odd order, then N is an abelian, normal

subgroup of G.
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Proof. Let x, y ∈ G be elements of odd order. It follows from Proposition 6.5 that yx ∈

{y, y−1}. From Proposition 6.4 we know yx 6= y−1, so in fact x and y commute. It follows

both that N is a subgroup, and that N is abelian.

We will also need the following lemma:

Lemma 6.7. Let x ∈ G \N . Then there is ε = ε(x) = ±1 such that yx = yε for all y ∈ N .

Proof. Suppose that there are y1, y2 ∈ N \ {1} such that yx1 = y1, y
x
2 = y−1

2 . Then (y1y2)x =

y1y
−1
2 . But by Lemma 6.4 we have either (a) (y1y2)x = y1y2; or (b) (y1y2)x = (y1y2)−1. If we

have (a), then y1y
−1
2 = y1y2, shows that y2

2 = 1. But y2 ∈ N, y2 6= 1, is a contradiction.

If we have (b), then y1y
−1
2 = y−1

2 y−1
1 , showing that y

y−1
2

1 = y−1
1 , which again gives a

contradiction, by Proposition 6.4.

We are now ready to prove the following:

Theorem 6.8. If G is a 3-S-group, then one of the following is true:

(i) G is abelian;

(ii) G is generalized dihedral of order 2n, n odd.

(iii) G ∼= Q8 × Cr
2 , where C2 is the cyclic group, r ≥ 0, and Q8 is the quaternion group of

order 8.

Proof. Let S2 = S2(G) be a Sylow 2-subgroup of G. The proof is by induction on |S2| ≥ 1.

The case where |S2| = 1 is covered by Corollary 6.6. This starts the induction. So now

assume that we have a 3-S-ring group G with S2(G) 6= {1} and that the result is true for

such groups with smaller S2. We may also assume that G is not abelian.

First consider the situation where G is a 2-group. Let z ∈ Z(G), |z| = 2. Then

G/〈z〉 is also a 3-S-ring group with smaller S2. Thus the induction shows that either (A)

G/〈z〉 is abelian; or (B) G/〈z〉 ∼= Q8 × Cr
2 , r ≥ 0.
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Suppose we have (A). Then the classes of G are either central elements or cosets of

the central subgroup 〈z〉. In particular, elements of the same class commute. Thus we can

write G as a disjoint union of classes:

G = Z(G) ∪ g1〈z〉 ∪ g2〈z〉 ∪ · · · ∪ gs〈z〉.

Lemma 6.9. (i) If |gi| = |gj| = 2, i 6= j, then [gi, gj]) = 1.

(ii) If |gi| = 2, |gj| > 2, then [gi, gj] = 1.

In particular, all involutions are central in G.

Proof. (i) If, for the pair of involutions gi, gj, we have (1), (3) or (4), then [gi, gj] = 1.

However we cannot have (2), since i 6= j. This gives (i).

(ii) For the pair gi, gj we cannot have (2), and (3) implies that [gi, gj] = 1.

So suppose that we have (4): gg12 = g−1
2 . We next note that g1g2〈z〉 is either a central

set or is a conjugacy class. If g1g2 is central then (g1, g1g2) = 1, showing that [g1, g2] = 1.

So now suppose that g1g2〈z〉 is a class. Note that in fact g1g2〈z〉 6= g1〈z〉. Thus the pair

g1, g1g2 does not satisfy (2) (in G). If g1, g2 satisfies (3), i.e. gg1g21 = g−1
1 = g1, then we have

(g1, g2) = 1, as required. Lastly, if g1, g1g2 satisfies (4), then

(g1g2)g1 = g−1
2 g−1

1 = g−1
2 g1.

Then using gg12 = g−1
2 we see that this gives g1g

−1
2 = g1g

g1
2 = (g1g2)g1 = g−1

2 g1, showing that

[g1, g2] = 1.

Lemma 6.10. Let x, y ∈ G where (x, y) 6= 1. Then we have

x4 = y4 = 1, x2 = y2 = z, [x, z], [y, z], xy = x−1, yx = y−1. (6.1)

and 〈x, y〉 ∼= Q8.
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Proof. If we can show these relations, then certainly 〈x, y〉 ∼= Q8. Since z ∈ Z(G) we have

[x, z] = [y, z] = 1.

For the pair x, y of Lemma 6.10we do not have (1). If we have (2), x ∼ y, then G/〈z〉

abelian means that either x = y or x = yz, and in either case we have [x, y] = 1, a

contradiction. Thus we must have xy = x−1 or yx = y−1. By symmetry there is no loss in

assuming xy = x−1. But xy 6= x implies that xy = xz. Then we have xz = xy = x−1, giving

x2 = z and x4 = 1.

Now consider the pair yx, yx. If we have (yx, yx) = 1 for this pair, then one gets [x, y] = 1.

If we have (2): yx ∼ yx, then we have yx = yxz and so [yx, yx] = 1 again. If we have (3) for

this pair, then

x−1y−1x · yx · x−1yx = x−1y−1,

and so z = x2 = y−2 and we are done, since yx = y−1 follows.

If we have (4), then

x−1y−1 · x−1yx · yx = x−1y−1x,

which gives yx = y−1, which in turn gives y2 = z and y4 = 1.

Corollary 6.11. Let x, y ∈ G where [x, y] 6= 1. Let u ∈ CG(〈x, y〉). Then u2 = 1. In

particular Z(G) = CG(〈x, y〉) is an elementary 2-group.

Proof. By Lemma 6.10 we see that x, y satisfy (6.1). Consider the pair xu, yu. This pair

cannot satisfy (1) or (2). If we have (3), then (xu)yu = u−1x−1 gives xyu = x−1u−2. But

from the above we have xy = x−1, and so u2 = 1. We similarly obtain u2 = 1 if we have (4)

for this pair. This shows that CG(〈x, y〉) has exponent 2 and so is an elementary 2-group.

We clearly have Z(G) ⊆ CG(〈x, y〉), and if u ∈ CG(〈x, y〉), then u2 = 1 and so Lemma

6.9 shows that u ∈ Z(G).

Proposition 6.12. Let x, y ∈ G where (x, y) 6= 1. Then G = 〈x, y, CG(x, y)〉 ∼= Q8 × Cr
2 .
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Proof. Lemma 6.10 shows that x, y satisfy (6.1). Let w ∈ G \ 〈x, y, CG(x, y)〉; then one of

[x,w], [y, w] is non-trivial. Assume, without loss, that [w, x] 6= 1. By Lemma 6.10 we have

the relations

w4 = 1, w2 = z, (w, z), xw = x−1, wx = w−1. (6.2)

If we also have [y, w] 6= 1, then by Lemma 6.10 we have the relations (6.1) and

yw = x−1, wy = w−1. (6.3)

The group satisfying (6.1), (6.2) and (6.3) has the property that xyz ∈ CG(x, y) and so

w ∈ 〈x, y, CG(x, y)〉, a contradiction.

If [w, y] = 1, then the group satisfying (6.1), (6.2) and [y, w] = 1 has yw ∈ CG(x, y) and

so w ∈ 〈x, y, CG(x, y)〉, a contradiction. This shows that G = 〈x, y, CG(x, y)〉.

Now from Lemma 6.11 we have Z(G) = CG(〈x, y〉) = Cr+1
2 , r ≥ 0. Now Z(〈x, y〉) = 〈z〉 ⊂

Z(G) and so we may write Z(G) = 〈z〉×Cr
2 ; it follows that G = 〈x, y, CG(x, y)〉 = 〈x, y〉×Cr

2 ,

as required.

This concludes consideration of (A).

Now suppose that we have (B): Since G/〈z〉 = Q8 × Cr
2 there are x, y ∈ G such

that π(〈x, y〉) = Q8. Here π : G → G/〈z〉 is the projection. Thus H = 〈x, y, z〉 is a normal

subgroup of G of order 16, where H/〈z〉 ∼= Q8 for some z ∈ Z(H). One can check that the

only possibilities for H are: (I) G = Q8 × C2; and (II) the group

J = 〈x, y, u, v|x2 = v, y2 = u, u2, v2, yx = yu, [u, x], [u, y][v, x], [v, y]〉.

We now look at each case separately:

(I) H = Q8 × C2 = 〈x, y〉 × 〈u〉. Then the only possibilities for z are (a) z = u or (b)

z = ux2, since these are the only elements of H of order 2 with H/〈z〉 non-abelian. In both
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cases we see that x, y satisfy the relations x4 = y4 = 1, xy = x−1, yx = y−1.

Lemma 6.13. If u ∈ CG(〈x, y〉), then u2 = 1. In particular CG(〈x, y〉) ∼= Cs
2.

Proof. If u ∈ H, then u ∈ Z(H) = 〈x2, z〉 and we certainly have u2 = 1.

If u /∈ H, then we consider the pair ux, uy. Now ux 6∼ uy, as one can see by considering

the quotient G → Q8 × Cr
2 → Q8. Clearly we have [ux, uy] 6= 1. If we have (3), then

(ux)uy = u−1x−1 gives ux−1 = uxy = (ux)uy = u−1x−1, giving u2 = 1. Condition (4)

similarly gives u2 = 1.

The last statement follows from the fact that CG(〈x, y〉) has exponent 2.

Lemma 6.14. G = 〈x, y, CG(〈x, y〉)〉.

Proof. Let u ∈ G \ 〈x, y, CG(〈x, y〉)〉. Then either [x, u] 6= 1 or [y, u] 6= 1. Assume without

loss that [x, u] 6= 1. We also have u /∈ H, so that u 6∼ w for all w ∈ H / G. Thus the pair

x, u satisfies (3) or (4). Further, the pair y, u satisfies one of (1), (3), (4). We consider the

six cases so determined.

(3), (1): xu = x−1, yu = y. Here we have ux = x2u = y2u, so that (yu)x = y−1y2u = yu.

Thus yu ∈ CG(〈x, y, 〉) and so u ∈ 〈x, y, CG(〈x, y〉)〉, a contradiction

(3), (3): xu = x−1, yu = y−1. Here we have (xyu)x = xy−1(y2u) = xyu and (xyu)y =

x−1yx2u = xyu, giving xyu ∈ CG(〈x, y〉) and so u ∈ 〈x, y, CG(〈x, y〉)〉.

(3), (4): xu = x−1, uy = u−1. Here we consider the pair xy, u: If (xy, u) = 1, then

xyu ∈ CG(〈x, y〉); if (xy)u = (xy)−1, then yu ∈ CG(〈x, y〉). Thus in each case we get

u ∈ 〈x, y, CG(〈x, y〉)〉. We are left with the case uxy = u−1. Here we consider the pair

u, yu: if we impose any of the relations (1), (3), (4) on u, yu, then we get |〈x, y〉| = 4, a

contradiction.

(4), (1): ux = u−1, yu = y. Here we consider the pair x, xu: if [x, xu] = 1, then u ∈

CG(〈x, y〉). If xxu = x−1 or (xu)x = (xu)−1, then yu ∈ CG(〈x, y〉). Thus in each case we get

u ∈ 〈x, y, CG(〈x, y〉)〉.
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(4), (3): ux = u−1, yu = y−1. Here we consider the pair xy−1, u: if [xy−1, u] = 1, then

xyu ∈ CG(〈x, y〉). If (xy−1)u = (xy−1)−1, then xu ∈ CG(〈x, y〉). If uxy
−1

= u−1, then

|〈x, y〉| = 4, a contradiction. Thus again we get u ∈ 〈x, y, CG(〈x, y〉)〉.

(4), (4): ux = u−1, uy = u−1. Here we consider the pair x, xu: if [x, xu] = 1, then

u ∈ CG(〈x, y〉). If xxu = x−1 or (xu)x = (xu)−1, then xyu ∈ CG(〈x, y〉).

This concludes consideration of all cases.

It follows easily from the fact that H = Q8×C2 = 〈x, y〉×〈u〉/G, together with Lemmas

6.13 and 6.14 that G = Q8 × Cr
2 .

(II) H = J . Here one can check that if the pair x, xy satisfies any of (1), (3), (4), then

|H| = 8, a contradiction. However x ∼H xy implies x ∼Q8 xy, a contradiction. Thus the

case H = J does not happen.

This concludes consideration of the case where G is a 2-group.

Now for the situation where G is not a 2-group: |N | > 1. We continue to assume

that G is non-abelian. From Lemma 6.7 we obtain a homomorphism ε : S2 → {±1}, x 7→

ε(x). Let K = ker ε.

If K = S2, then G = S2 × N . Since G is not abelian, we see that S2 is not abelian.

But G/N ∼= S2 is also a 3-S-ring group and so S2 = Q8 × Cr
2 by what we have done above.

Let Q8 = 〈x, y〉, where x, y satisfy (6.1). Let u ∈ N, u 6= 1. Then it is easy to see that

the pair xu, yu does not satisfy (1) or (2). If it satisfies (3), then (xu)yu = x−1u−1, giving

x−1u = x−1u−1, so that u2 = 1, a contradiction. Similarly (4) gives the same contradiction.

Thus K 6= S2. Thus there is some element x ∈ S2 with ε(x) = −1.

We may also assume that S2 6= {1}, since G is not abelian.

If K = {1}, then S2 = C2 = 〈x〉, for the x ∈ S2 chosen above with ε(x) = −1; this gives

us the result that we want: such a group is generalized dihedral of order 2n, n = |N | odd.

Thus we may assume that K 6= {1}, so that there is some z ∈ K ∩ Z(S2), |z| = 2.

Note that z centralizes elements of N , and is central in S2, and so z ∈ Z(G). Note that

G/〈z〉 is also a 3-S-ring group, and so the inductive hypothesis shows that either
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(i) G/〈z〉 ∼= N o C2 (where the action of C2 is inversion); or

(ii) G/〈z〉 is abelian.

In case (i) we have C2 = 〈x′〉, x′ ∈ S2(G/〈z〉). Let x ∈ S2(G) such that x′ = x〈z〉. There

are two possibilities for 〈x, z〉:

(a) 〈x, z〉 ∼= C4; or

(b) 〈x, z〉 ∼= C2
2 .

Since G is not abelian and z ∈ K we see that we have ε(x) = −1. We now deal with the

following cases:

Case (i) and (a): Here we have G = 〈x,N〉 and we also have 〈x, z〉 = 〈x〉 and z = x2.

We now consider the pair x, xyz for any y ∈ N, y 6= 1. We note that (x, y) 6= 1 and so

(x, xyz) 6= 1. Thus we do not have (1) for the pair x, xyz. If we have x ∼G xyz, then there

is g ∈ G = 〈x,N〉 such that xg = xyz. Now g can be written as g = xay1, y1 ∈ N , and so we

have

xy1 = xx
ay1 = xg = xyz.

Thus x−1y−1
1 xy1 = yz, which gives y2

1 = yz. But yz has even order gives y1 = 1, and so

x = xy1 = xyz, a contradiction; thus we do not have (2) for the pair x, xyz.

Now (3) for the pair x, xyz is xxyz = x−1 = xz, which gives xy = xz so that x−1y−1xy = z.

But this is y2 = z, a contradiction.

If we have (4), then (xyz)x = z−1y−1x−1 = zy−1x−1, so that xy−1z = zy−1x−1. This gives

xy−1 = y−1x−1 and so

y−1 = x−1y−1x−1 = x−1y−1x · x2 = yz,

giving y−2 = z, a contradiction.

Case (i) and (b): We leave the details to the reader as this is similar to the above, the

only difference being that you get y2 = 1 as the contradiction in (3) and (4).

Case (ii): Since G is not abelian there is some x ∈ S2 such that ε(x) = −1. Let y ∈ N, y 6= 1.
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Since G/〈z〉 is abelian we have yx〈z〉 = y〈z〉 ∈ G/〈z〉 and so

y−1 = yx ∈ {y, yz}.

The two cases y−1 = y and y−1 = yz both give contradictions.

This concludes the proof of (B) and so of Theorem 6.8.

6.2 The 3-S-ring groups with commutative 3-S-rings

We have shown that all groups with commutative 3-S-rings are 3-S-ring groups, and have

classified those groups. To finish our proof, we classify those 3-S-ring groups which have

commutative 3-S-rings. First we show the following:

Lemma 6.15. A group of the form G = Q8 × Cr
2 does not have a commutative 3-S-ring.

Proof. Let π : G = Q8 × Cr
2 → Q8 be the projection. Then π induces a homomorphism of

3-S-rings, π : S(3)(G) → S(3)(Q8). Since π(S(3)(G)) = S(3)(Q8) we need only show that

S(3)(Q8) is not commutative. Suppose that Q8 = 〈x, y〉, where x, y satisfy the relations

(6.1). Let α be the 3-class of (x, x, 1) and β be the 3-class of (xy, xy, 1). Then one can check

that αβ 6= βα.

Lemma 6.16. A 3-S-ring group G not of the form G = Q8×Cr
2 has a commutative 3-S-ring.

Proof. This is clearly true if G is abelian. Thus we may now assume that G is not abelian.

So from Theorem 6.8 that we have G = NoC2, where N is an abelian group of odd order

and that C2 = 〈x〉 acts on N by inversion. Elements of G will be written nxε, n ∈ N, ε = 0, 1.

If α ∈ G3, then K(3)(α) contains an element of one of the following four types:

(A) : (n1, n2, n3), (B) : (n1x, n2, n3), (C) : (n1x, n2x, n3), (D) : (n1x, n2x, n3x).

Here ni ∈ N, i = 1, 2, 3.
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Let α, β ∈ G3. We thus have some cases to consider to show that K(3)(α)K(3)(β) =

K(3)(β)K(3)(α):

Case: (A) × (A). Here α = (n1, n2, n3), β = (n′1, n
′
2, n

′
3) and in this case we have αβ = βα,

so we certainly have K(3)(α)K(3)(β) = K(3)(β)K(3)(α).

Case: (A) × (B). Here α = (n1, n2, n3), β = (n′1x, n
′
2, n

′
3). To prove this case we just need

to show that αβ ∈ K(3)(β) ·K(3)(α). Now for n ∈ N we have xn = n−2x and so

(n′1x, n
′
2, n

′
3)n = (n′1n

−2x, n′2, n
′
3),

Since |N | is odd and N is abelian the map n 7→ n2 gives a surjection of N , and so the element

n ∈ N can be chosen so that

βnα = (n′1n
−2x, n′2, n

′
3)(n1, n2, n3) is equal to (n1n

′
1x, n2n

′
2, n3n

′
3) = αβ.

Case: (A) × (C). Here α = (n1, n2, n3), β = (n′1x, n
′
2x, n

′
3). Let β′ = βx, so that β′ has

type (B). Then from the above case (A)× (B) we have αβ′ = β′α. Thus we have

αβ = αβ′x = β′αx = β′x · xαx = βαx ∈ K(3)(β) ·K(3)(α), (6.4)

as required.

Case: (A) × (D). Here α = (n1, n2, n3), β = (n′1x, n
′
2x, n

′
3x). Let β′ = βx, so that β′ has

type (A). Then from the case (A)× (A) we have αβ′ = β′α. Thus (6.4) again gives this case.

Case: (B) × (B). Here we need to consider subcases:

(i) α = (n1x, n2, n3), β = (n′1x, n
′
2, n

′
3). Then αβ = (n1(n′1)−1, n2n

′
2, n3n

′
3). But

βnα = (n′1n
−2x, n′2, n

′
3)(n1x, n2, n3) = (n′1n

−2n−1
1 , n2n

′
2, n3n

′
3),

and we can find n ∈ N such that this is equal to αβ, as required.
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(ii) α = (n1x, n2, n3), β = (n′1, n
′
2x, n

′
3). For n,m ∈ N we have

βmαn = (n′1, n
′
2m
−2x, n′3)(n1n

−2x, n2, n3) = (n′1n1n
−2x, n′2m

−2n−1
2 x, n3n

′
3),

and we can choose n,m ∈ N such that this is equal to αβ = (n1(n′1)−1x, n2n
′
2x, n3n

′
3).

Case: (B) × (C). Here α = (n1x, n2, n3), β = (n′1x, n
′
2x, n

′
3). Let β′ = βx. Then β′ has

type (B) and so we have αβ′ = β′α. The result now follows from (6.4).

The remainder of the cases can be proved by reducing to cases that we have already

considered, and then using (6.4).

From Proposition 6.2 and Lemmas 6.15 and 6.16 it follows that:

Theorem 6.17. A finite group G has commutative 3-S-ring if and only if G is abelian or G

is generalized dihedral of order 2n, n odd.

Chapter 7. Conclusion and Unanswered Questions

In this paper we showed that the 3-S-ring determines a finite group and that the NDICT

determines an FC group. We also showed that a UTCCI map between FC groups is an

isomorphism. In addition, we referred to the group determinant and the 1−, 2−, and 3-

characters, which also determine a finite group. We did not explore the relationship between

UTCCI maps of a finite group and the 1-, 2-, and 3-characters of the group, but would like

to understand whether it is possible to show directly that either one determines the other.

It is shown in [12] that D8 and Q8 do not have the same 2-character table. We showed

both that D8 and Q8 have the same 2-S-ring, and that the extended 2-characters correspond

to representations of the 2-S-ring. This apparent contradiction is explained by the fact that

the character table of the 2-S-ring is missing the labeling as to which of the characters of the

2-S-ring corresponds to the Frobenius 2-character of the group. We would like to understand

what trait(s) of a character of a 2-S-ring make it a candidate to be a Frobenius 2-character.
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We discussed the extended 2-characters and their relationship to characters of the 2-S-

ring. If it can be shown that the 3-character corresponds to a representation of the 3-S-ring,

then it might be possible to show that the 3-S-ring determines the group by relying on the

result in [8] that 1-,2-, and 3-characters determine the group. We say maybe because of the

labeling issues which arise in the 2-S-ring case which may or may not carry over to the 3-S-ring

case. As with 2-S-rings, we do not know if there is a way to determine whether a character

of the 3-S-ring is the Frobenius 3-character based on some inherent characteristic(s).

We showed that the CICT of a finite group corresponded to the Cayley Table of a unique

group. We wonder what can be said about a loop which results from filling in the CICT of

a group as the multiplication table of a loop.

We classified finite groups with commutative 3-S-rings were classified, but only touched

on commutativity of 2-S-rings. It would be interesting to classify the finite or FC groups

which have a commutative 2-S-ring. When a group has a non-commutative 2-S-ring, and

we find all complex solutions to the equations we get from the structure constants of the

k-S-ring, are there solutions corresponding to non-linear irreducible representations? What

is the relationship? We also wonder if, given a non-commutative 2-S-ring, there is a subring

of the 2-S-ring which is commutative and which is constant on k-classes, and whether it

would be fruitful to study such subrings.

Finally, we have very few results on what the k-characters and k-S-rings tell us about

finite groups. For example, Steve Humphries [9] has shown that the 2-S-ring and 2-characters

together determine the derived length of a group. One wonders if it would be possible to

get information about normal groups, Sylow p-subgroups, derived length, or other groups

characteristics from the 2-S-ring character table, etc. It is our hope that with future study

the characters of the 2- or 3-S-ring of a finite group may be useful in proving more general

results about groups.
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