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Results from a Differential Equation Model for Cell
Motion with Random Switching Show that the Model
Cell Velocity is Asymptotically Independent of Force

J. C. Dallona, Emily J. Evansa,∗, Christopher P. Granta, W. V. Smitha

aDepartment of Mathematics, Brigham Young University, Provo, Utah 84602, USA

Abstract

Numerical simulations suggest that average velocity of a biological cell depends
largely on attachment dynamics and less on the forces exerted by the cell. We
determine the relationship between two models of cell motion, one based on
finite spring constants modeling attachment properties (a randomly switched
differential equation) and a limiting case (a centroid model-a generalized random
walk) where spring constants are infinite. We prove the main result of this
paper, the Expected Velocity Relationship theorem. This result shows that the
expected value of the difference between cell locations in the differential equation
model at the initial time and at some elapsed time is proportional to the elapsed
time. We also show that the relationship is time invariant. Numerical results
show the model is consistent with experimental data.

Keywords: randomly switched equations, Markov chain, expectation, velocity,
discrete process, continuous process, exponential distribution, poisson
distribution

1. Introduction

Numerical simulations and experimental measurements suggest that the
speed at which a biological cell moves is far more dependent on the binding
dynamics of the adhesion sites the cell creates on substrate materials (and other
cells) than on the magnitude of force it exerts on those surroundings. Those
dynamics are the key to predicting cell speed. In [4] we introduced an ordinary
differential equation model for cell motion relative to a probability distribution
η on some outcome space Ω,

µx′ =

n∑
i=1

−αi(x− ui)ψi(t),
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where x is a vector process defining the cell center in “cell space,” and the αi are
Hookian (spring) constants that model forces exerted by adhesion sites located
at ui (also a vector process). This model incorporates the nature of adhesion
sites using the randomly switched functions ψi which take the values 0 or 1
depending on whether the ith site is detached or attached to the substrate.

In [2] we considered a limiting case of this differential equation model—as
the spring constants αi increase without bound— which results in a discrete-
time centroid model that tracks the centroid of the attachments sites of the
cell after each site attachment or detachment event. The discrete-time centroid
model is a Markov chain and is generated by a transition kernel. In that paper
we also introduced the expected average velocity relationship conjecture (EVR
conjecture) which states that, in the limiting case, the expected average veloc-
ity of the cell is independent of the cell forces and dependent on the binding
dynamics for the differential equation model.

In [1], we extended our results from the discrete-time centroid model to a
continuous-time centroid model which tracks the location of the centroid by
time instead of event. We showed that the continuous-time centroid model is
in fact a pure jump-type continuous-time Markov process generated by a rate
kernel and gave a formula for the velocity of the expected value of the centroid.

In this paper we state and prove the EVR conjecture for the differential
equation model. The EVR conjecture is reasonable because of the saltatory
nature of cell adhesion. Effectively motion is lost when speeds and velocities
are averaged over short periods of time. That average is largely independent of
cell force and highly dependent on the on-off nature of adhesion. This is the
EVR conjecture which is stated and proved in Section 4. We begin in Section 2
with a review of the differential equation model. Then in Section 3 we review
the results of the continuous-time centroid model and its relationship to the
differential equation model. The proof of the EVR theorem is based on a series
of lemmas given in Section 4.2 and is completed in Section 4.3. We conclude
with discussions of numerical techniques, the biological relevance of the results,
and future mathematical challenges.

2. Differential Equation Model

The cell is modeled as a nucleus and multiple interaction sites which exert
forces on the nucleus as illustrated in Figure 1. These interaction sites are known
as integrin based adhesion sites (I-sites) [6, 7, 10]. I-sites attach to an external
substrate and once attached remain fixed to that substrate location for a period
of time. The duration of the attachment is determined by a given probability
distribution. The same is true for the time the I-site remains unattached, al-
though the distributions need not be the same. The differential equation model
assumes the I-sites exert forces on the nucleus according to Hooke’s law; that
is, the force is proportional to distance. Thus it is as if the I-sites are attached
to the cell center with springs which have a rest length assumed to be zero.
Moreover there is a drag force (proportional to the velocity) on the cell nucleus
which is modeled assuming the center (nucleus) is a sphere in a liquid with low
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Figure 1: The left panel depicts the way a cell is modeled mathematically. The right panel is
a fibroblast in a collagen lattice. Note the similarity of the model formation with the typical
spindal morphology of a fibroblast in a three dimensional lattice. The cell is a center location
(nucleus) with attached springs. The other end of the springs are attached to sites which can
interact with the extracellular matrix (membrane bound adhesion sites) depicted by “x”.

Reynolds number. The cell center x is considered to be a point in RN . Likewise
the location of each I-site ui is a point in RN , where i ranges from 1 to n. The
small scale allows the assumption of low Reynolds number and therefore any
acceleration term may be neglected [3]. The equation defining the cell center as
given in the introduction is

µx′ =

n∑
i=1

−αi(x− ui)ψi(t). (1)

Here µ is the drag coefficient for the nucleus. The equation for the location of
the ith I-site is

ui(t) = lim
y↗ap,i

x(y) + bp,i for ap,i ≤ t < ap+1,i.

For each i the sequence {ap,i} of random variables are the times when ψi makes
the transition from 0 to 1, and {dp,i} is the sequence of random variables of the
times when ψi makes the transition from 1 to 0. Of course, the two sequences are
not independent since ap,i < dp∗,i < ap+1,i where p∗ = p if the initial state starts
with the ith I-site detached and p∗ = p+1 if it starts out attached. The vectors
bp,i are independent, identically distributed random vectors with respect to the
assumed distribution η and b has mean b. Although the equations of motion
are independent of the location of the I-site when it is detached, for convenience
we assume the location does not change until it reattaches.

3. Centroid Model

The differential equation model may be approximated heuristically by a
problem that tracks the centroid of the attachment sites (or the center if no
attachments exist). This new problem is motivated by informally considering
the limit of the differential equation model as the spring constants become
very large. In this limit, one expects the smooth motion of the cell nucleus to
disappear and the centroid to jump from position to position. Let c denote the

3



centroid. It is defined by

0 =

n∑
i=1

αi(c− ui)ψi

which may be written as

c =

n∑
i=1

αi∑n
j=1 αjψj

uiψi.

3.1. Notational Conventions

Let Ψ = (ψ1, ψ2, · · · , ψn), |Ψ| =
∑n
i=1 ψi, u = (u1, · · · ,un) and ω be the

outcome variable. The subscript Z indicates variables from the continuous-time
centroid model and the subscript DE indicates variables from the differential
equation model. The variable c is used to denote the location of the centroid for
either model and the variable x denotes the location of the cell center in either
model (as indicated by the subscript). We define the cell center in the centroid
model to be the centroid, that is, xZ = cZ . Let

yDE = (xDE , cDE ,uDE) : [0,∞)→ RN × RN × (RN )n

and
yZ = (xZ , cZ ,uZ) : [0,∞)→ RN × RN × (RN )n

be, respectively, the differential equation solution and the continuous-time cen-
troid solution corresponding to the same initial conditions and same outcome
ω. We assume that these solutions (and the accompanying Ψ(t)) are right-
continuous and have left-hand limits, with the left-hand limit at time t being
represented by evaluation at t−. Let ‖ · ‖ be the norm on RN × RN × (RN )n

defined by

‖y‖ = ‖(x, c, (u1,u2, . . . ,un))‖ = max{|x|, |c|, |u1|, |u2|, . . . , |un|},

where | · | is the Euclidean norm on RN .

3.2. Continuity Properties of the Expectation

We now review important results for the continuous-time centroid model
introduced in [1]. Assume that the wait time for an attached I-site to de-
tach (ap+1,i − dp∗,i) is exponentially distributed with parameter θd (so that the
mean time to detach is 1/θd), and the wait time for a detached I-site to attach
(dp∗,i− ap,i) is exponentially distributed with parameter θa. Each of these wait
times is assumed to be independent of the other wait times and of the model’s
other random parameters. When an I-site attaches, it does so at a point whose
displacement from the centroid of attached I-sites is a bounded random quantity
with distribution η. In [1], the following was shown: for arbitrary initial condi-
tions there is a pure-jump type Markov process that obeys this evolution law.

4



There is a corresponding pure-jump type Markov process with finite state space
{0, 1, . . . , n} that tracks only how many I-sites are attached (|Ψ|). Let’s call the
first process the “full process” and the second process the “projected process”.
The projected process has a unique invariant distribution σ, and regardless of
the initial distribution of the projected process, the distribution of the process
at time t will converge to σ as t → ∞. If the full process is equipped with an
initial distribution that is compatible with σ and such that the locations of the
I-sites and of the centroid of attached I-sites all have well-defined expected val-
ues, then the derivative with respect to t of the expected location of the centroid
of attached I-sites at time t is

∂

∂t
E(c(t)) =

bbbθd
(θd + θa)n

((θd + θa)n − θnd ) . (2)

4. The Expected Average Velocity Relationship Theorem

4.1. EVR Theorem

Numerical simulations suggested and helped to formulate the EVR. Assume
that αi = α for all i. Simulations of a single cell indicate that the speed of
the cell is essentially independent of the spring constant α (see Figure 2) for a
wide range of relevant values. Of course, when α = 0, the cell does not move
and for values near zero the speed will approach zero. A precise mathematical

Figure 2: The speed of a single cell is plotted against the mean attach time and strength of
the cell. The cell speed is remarkably constant with respect to the strength of the cell. The
contour lines are plotted over the shading. The plot shows the average of 50 random runs for
each data point. The mean detach time is 25 seconds with a ”continuous Poisson distribution”
and the attach time is taken from a continuous Poisson distribution. The continuous Poisson
distribution is a distribution which when rounded to the integers is a Poisson distribution [9].
The speed was calculated in the simulations by averaging over a 60 second time interval. The
smallest value for α plotted is 0.01.

formulation of this phenomenon is as follows.

Theorem 4.1 (EVR Theorem). Assume the initial configuration for (1) is ran-
domly distributed in a way that is compatible with the steady-state distribution
σ. Moreover assume αi = α for all i and that xDE(0) = xZ(0) (corresponding
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to the equilibrium position of the deterministic problem). For any fixed time
t > 0,

lim
α
µ→∞

E[x(t)− x(0)] = ζζζt,

where ζζζ is independent of α but depends on the number (n) of I-sites, their
mean time to attach (1/θa), their mean time to detach (1/θd), and the mean
(b̄bb) of their perturbations when a new attachment occurs. More specifically,

ζζζ =
bbbθd

(θd + θa)n
((θd + θa)n − θnd ) .

4.2. Preliminary Lemmas

Prior to the proof of the EVR theorem we need two preliminary lemmas.
The first lemma bounds the distance between yZ and yDE and thus the distance
between xZ and xDE . More precisely, given the distance between yZ and yDE
at the instant before a binding event occurs we find a bound on the distance
between yZ and yDE at the instant before the next binding event occurs.

Lemma 4.2. Assume that an attachment/detachment event occurs at time t1 >
0, that t2 > t1, and that no attachment/detachment events occur on (t1, t2).
Define

M := ‖yDE(t−1 )‖,

and let B be such that η(B(0, B)) = 1. Then

‖yDE(t−2 )− yZ(t−2 )‖ ≤ ‖yDE(t−1 )− yZ(t−1 )‖

+ (2M +B) exp

(
− (t2 − t1) mini αi

µ

)
a.s.

Proof. Almost surely for small δ > 0, changes (if any) in uDE , uZ , cDE , cZ ,
and xZ on (t1 − δ, t2) occur only at t1. On the other hand, xDE is continuous
and relaxes towards cDE(t1) during the time interval [t1, t2) according to the
formula

xDE(t) = cDE(t1) + (xDE(t1)− cDE(t1)) exp

(
−

(t− t1)
∑n
i=1 αiψi(t1)

µ

)
. (3)

Without loss of generality, we can assume that the attachment/detachment
event at time t1 involves I-site 1. It is convenient to consider 3 cases:

1. ψ1(t1) = 0 and |Ψ(t1)| = 0;

2. ψ1(t1) = 0 and |Ψ(t1)| > 0;

3. ψ1(t1) = 1.

In case 1 (the only attached I-site detaches),

(uZ(t),uDE(t), cZ(t), cDE(t),xZ(t)) = (uZ(t−1 ),uDE(t−1 ), cZ(t−1 ), cDE(t−1 ),xZ(t−1 ))
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for every t ∈ [t1, t2), so (3) gives

xDE(t) = cDE(t−1 )+(xDE(t−1 )−cDE(t−1 )) exp

(
−

(t− t1)
∑n
i=1 αiψi(t1)

µ

)
= xDE(t−1 ).

Thus,
‖yDE(t−2 )− yZ(t−2 )‖ = ‖yDE(t−1 )− yZ(t−1 )‖.

Before proceeding to cases 2 and 3, we derive some estimates that hold in both
cases. Let t ∈ [t1, t2) and note that

|cDE(t)− cZ(t)| =

∣∣∣∣∣
n∑
i=1

(
αiψi(t)∑n
j=1 αjψj(t)

)
(uDE)i(t)−

n∑
i=1

(
αiψi(t)∑n
j=1 αjψj(t)

)
(uZ)i(t)

∣∣∣∣∣
≤

n∑
i=1

(
αiψi(t)∑n
j=1 αjψj(t)

)
|(uDE)i(t1)− (uZ)i(t1)|

≤
n∑
i=1

(
αiψi(t)∑n
j=1 αjψj(t)

)
max
j
|(uDE)j(t1)− (uZ)j(t1)|

= max
j
|(uDE)j(t1)− (uZ)j(t1)|. (4)

Similarly,

|cDE(t1)| =

∣∣∣∣∣
n∑
i=1

(
αiψi(t1)∑n
j=1 αjψj(t1)

)
(uDE)i(t1)

∣∣∣∣∣ ≤
n∑
i=1

(
αiψi(t1)∑n
j=1 αjψj(t1)

)
|(uDE)i(t1)|

≤
n∑
i=1

(
αiψi(t1)∑n
j=1 αjψj(t1)

)
max
j
|(uDE)j(t1)| = max

j
|(uDE)j(t1)|. (5)

Using (3), (4), and (5), we have

|xDE(t−2 )− xZ(t−2 )| =
∣∣∣∣cDE(t1) + (xDE(t1)− cDE(t1)) exp

(
−

(t2 − t1)
∑n
i=1 αiψi(t1)

µ

)
−xZ(t−2 )

∣∣
≤ |cDE(t1)− xZ(t−2 )|+ (|xDE(t1)|+ |cDE(t1)|) exp

(
−

(t2 − t1)
∑n
i=1 αiψi(t1)

µ

)
≤ |cDE(t1)− cZ(t1)|+ (|xDE(t−1 )|+ |cDE(t1)|) exp

(
− (t2 − t1) mini αi

µ

)
≤ max

j
|(uDE)j(t1)− (uZ)j(t1)|

+ (M + max
j
|(uDE)j(t1)|) exp

(
− (t2 − t1) mini αi

µ

)
. (6)

Now, consider case 2 specifically (an attached I-site detaches leaving other at-
tached sites). Here, (uZ(t),uDE(t)) = (uZ(t−1 ),uDE(t−1 )) for every t ∈ [t1, t2),
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so

|(uDE)i(t
−
2 )−(uZ)i(t

−
2 )| = |(uDE)i(t1)−(uZ)i(t1)| = |(uDE)i(t

−
1 )−(uZ)i(t

−
1 )|,
(7)

for every i, and combining (4) with (7) gives

|cDE(t−2 )− cZ(t−2 )| ≤ ‖yDE(t−1 )− yZ(t−1 )‖. (8)

Combining (6) with (7) and the fact that maxj |(uDE)j(t1)| = maxj |(uDE)j(t
−
1 )| ≤

M gives

|xDE(t−2 )−xZ(t−2 )| ≤ ‖yDE(t−1 )−yZ(t−1 )‖+2M exp

(
− (t2 − t1) mini αi

µ

)
. (9)

Using (7), (8), and (9), we have

‖yDE(t−2 )− yZ(t−2 )‖ ≤ ‖yDE(t−1 )− yZ(t−1 )‖+ 2M exp

(
− (t2 − t1) mini αi

µ

)
.

Finally, consider case 3 specifically (a detached I-site attaches), and let t ∈
[t1, t2). Here,

((uZ)1(t), (uDE)1(t)) = (cZ(t−1 ) + bp,1,xDE(t−1 ) + bp,1)

for some bp,1 ∈ RN satisfying |bp,1| ≤ B, while

((uZ)i(t), (uDE)i(t)) = ((uZ)i(t
−
1 ), (uDE)i(t

−
1 ))

for every i 6= 1 a.s. Thus,

|(uDE)i(t
−
2 )− (uZ)i(t

−
2 )| =

{
|(uDE)i(t

−
1 )− (uZ)i(t

−
1 )| if i 6= 1

|xDE(t−1 )− cZ(t−1 )| if i = 1
(10)

≤ ‖yDE(t−1 )− yZ(t−1 )‖.

Combining (4) with (10) gives

|cDE(t−2 )− cZ(t−2 )| ≤ ‖yDE(t−1 )− yZ(t−1 )‖. (11)

Combining (6) with (10) and the fact that

max
j
|(uDE)j(t1)| ≤ max{max

j 6=1
|(uDE)j(t

−
1 )|, |xDE(t−1 )|+ |bp,1|} ≤M +B

gives

|xDE(t−2 )−xZ(t−2 )| ≤ ‖yDE(t−1 )−yZ(t−1 )‖+(2M+B) exp

(
− (t2 − t1) mini αi

µ

)
.

(12)
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Using (10), (11), and (12), we have

‖yDE(t−2 )−yZ(t−2 )‖ ≤ ‖yDE(t−1 )−yZ(t−1 )‖+(2M+B) exp

(
− (t2 − t1) mini αi

µ

)
.

Combining the results of all 3 cases, we see that

‖yDE(t−2 )−yZ(t−2 )‖ ≤ ‖yDE(t−1 )−yZ(t−1 )‖+(2M+B) exp

(
− (t2 − t1) mini αi

µ

)
holds a.s.

The second lemma bounds the norm of the state variables after k attach-
ment/detachment events in terms of the initial state and properties of the dis-
tribution η.

Lemma 4.3. Assume that k ≥ 1 attachment/detachment events occur at times
0 < t1 < t2 < · · · < tk in the interval [0, t) and no other attachment/detachment
events occur. Define

Mi := ‖yDE(t−i )‖ for i = 1, . . . , k

and let B be such that η(B(0, B)) = 1. Then

Mi ≤M1 + (i− 1)B a.s.

Proof. First we find bounds on the location of the cell center x. From (3) the
location of the cell center for t ∈ [ti, ti+1) is

xDE(t) = cDE(ti)

+ (xDE(ti)− cDE(ti)) exp

(
−

(t− ti)
∑n
j=1 αψj(ti)

µ

)
.

Since

|cDE(ti)− xDE(ti)| =

∣∣∣∣∣
∑n
j=1 αj [(uDE)j(ti)− xDE(ti)]ψj(ti)∑n

j=1 αjψj(ti)

∣∣∣∣∣
=

∣∣∣∣∣
∑n
j=1 αjb

i,jψj(ti)∑n
j=1 αjψj(ti)

∣∣∣∣∣
< B

a.s., xDE can be bounded by

|xDE(t)| ≤ |cDE(ti)− xDE(ti)|+ |cDE(ti)| ≤ B +Mi. (13)

Next we find bounds on the location of the centroid. Using the bound just
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found in (13),

|cDE(ti)| =

∣∣∣∣∣
∑n
j=1 αj(uDE)j(ti)ψj(ti)∑n

j=1 αjψj(ti+1)

∣∣∣∣∣
=

∣∣∣∣∣
∑n
j=1 αj(xDE(ti) + bi,j)ψj(ti)∑n

j=1 αjψj(ti)

∣∣∣∣∣
≤ |xDE(ti)|+ max

j
|bi+1,j | < B +Mi.

Finally we bound the location of the I-sites in the same manner as above,

|(uDE)j(ti)| = |xDE(ti) + bi,j |
≤ |xDE(ti)|+ |bi,j | < B +Mi

Thus we have
Mi+1 = ‖y(t−i+1)‖ < B +Mi a.s.

4.3. Proof of EVR Theorem

With a bound on the “distance” between the centroid model and the dif-
ferential equation model between attach/detach events, we can consider a time
interval partitioned by some finite number of events to prove the EVR Theorem.

Proof. Lemma 4.2 gives a.s.

‖yDE(t−)−yZ(t−)‖ ≤ ‖yDE(s−)−yZ(s−)‖+(2‖yDE(s−)‖+B)e−C(t−s) (14)

if an attachment/detachment event occurs at time s < t, and no such events
occur on the interval (s, t), where B bounds the support of the perturbation
distribution η, and C = α/µ is a measure of the spring strength that will
eventually be sent to ∞. The quantities yDE and yZ are random, but (14)
holds along each sample path.

We can choose the initial state of the centroid model, so we let yDE(0) =
yZ(0). Recall that xDE(0) = xZ(0) since xDE(0) is at equilibrium position.
From [1] we know the value of E[xZ(t)− xZ(0)] = E[cZ(t)− cZ(0)] in terms of
θa, θd, and b (under reasonable restrictions on the initial data). We want to
show that

lim
C→∞

E[xDE(t)− xDE(0)] = E[xZ(t)− xZ(0)]. (15)

Consider

E[xDE(t)− xDE(0)] = E[xDE(t)− xZ(t) + xZ(t)− xZ(0) + xZ(0)− xDE(0)].

Regrouping terms we have

E[xDE(t)−xDE(0)] = E[xDE(t)−xZ(t)]+E[xZ(0)−xDE(0)]+E[xZ(t)−xZ(0)].

10



Due to the hypotheses, the middle term is zero and if

lim
C→∞

E[xDE(t)− xZ(t)] = 0, (16)

then (15) is valid. By (2) we would then have the desired result

lim
C→∞

E[x(t)]− E[x(0)] =
bbbθd

(θd + θa)n
((θd + θa)n − θnd ) t.

In order to show (16) it suffices to show that the differential equation model
and the centroid model, when starting at the same state, in the limit evolve to
the same state; that is to say

lim
C→∞

E‖yDE(t)− yZ(t)‖ = 0. (17)

We show this using the Dominated Convergence Theorem and the results of
Lemmas 4.2 and 4.3.

Let f(C,ω) := ‖yDE(t)− yZ(t)‖. For each nonnegative integer i, let Ai be
the event that there are precisely i attachments and detachments in the time
interval from 0 to t, and let A∞ be the complement of A0 ∪A1 ∪A2 ∪ · · · .

We will show that P(A∞) = 0, that limC→∞ f(C,ω) = 0 for each ω /∈ A∞,
and that there is an integrable function g of ω alone such that f(C,ω) ≤ g(ω)
for every ω /∈ A∞. The Dominated Convergence Theorem will then establish
(17).

The event Ai is the event that i attachment/detachments occur in the the
time interval [0, t]. The time between the (k−1)th and kth attachment/detachments
is of the form γk/Θk, where the γk are independent standard exponential ran-
dom variables and the Θk are random variables that are bounded above by
DI := nmax{θa, θd}. If the event Ai is realized, then

t ≥
i∑

k=1

γk/Θk ≥
∑i
k=1 γk
DI

,

so Ei :=
∑i
k=1 γk ≤ DIt. But Ei is Erlang-distributed with shape parameter

i and rate parameter 1, which means that its distribution function is x 7→
e−x

∑∞
k=i(x

k/k!) [5]. If more than i events occur in the time interval, the same
inequality holds. Thus,

P(A∞ ∪
∞⋃
k=i

Ak) ≤ exp(−DIt)

∞∑
k=i

(DIt)
k

k!
.

By the Ratio Test and the Divergence Test, this gives P(A∞) = 0.
For ω ∈ A0, no events happen and all variables of the ODE model and the

centroid model stay at the same place, since they started at the same state and
xDE is at equilibrium. Thus f(C,ω) = 0. For ω ∈ Ak where k ≥ 1, k events
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occur in the interval [0, t]. Thus k events occur in the open interval (0, t) a.s.
since the wait times are exponentially distributed. Let 0 < t1 < t2 < · · · < tk,
be the times that the events occur, t0 = 0, and tk+1 = t. Since no events occur
a.s. at t, f(C,ω) = ‖yDE(t−)− yZ(t−)‖, and applying Lemma 4.2

‖yDE(t−)− yZ(t−)‖ = ‖(yDE(t−k+1)− yZ(t−k+1))‖
≤ ‖yDE(t−k )− yZ(t−k )‖+ (2Mk +B) exp (−(tk+1 − tk)C) .

Applying Lemma 4.2 recursively gives

‖yDE(t−k+1)− yZ(t−k+1)‖ ≤
k∑
j=1

(2Mj +B) exp (−(tj+1 − tj)C)

where Mj = ‖yDE(t−j )‖. Let T (ω) = minj(tj − tj−1) and the above equations
give

‖yDE(t−k+1)− yZ(t−k+1)‖ ≤
k∑
j=1

(2Mj +B) exp (−T (ω)C) .

Applying Lemma 4.3 gives for k ≥ 2,

‖yDE(t−k+1)− yZ(t−k+1)‖ ≤ 2k {B(k + 1) +M1} exp (−T (ω)C) .

So for a fixed k ≥ 0, f(C,ω) ≤ 2(B(k+ 1) +M1)k a.s. for ω ∈ Ak. Furthermore
limC→∞ f(C,ω) = 0 a.s.

Finally let g(ω) =
∑∞
k=0 2(B(k + 1) +M1)k1Ak(ω) ≥ 0.

E [g] ≤
∞∑
k=0

2(B(k + 1) +M1)k exp(−DIt)

∞∑
j=k

(DIt)
j

j!
.

Stirling’s formula gives j! ≥
√

2πjj+
1
2 exp(−j) ≥ jj+ 1

2 exp(−j). Thus

∞∑
j=k

(DIt)
j

j!
≤
∞∑
j=k

(eDIt)
j

jj+
1
2

≤
∞∑
j=k

(
eDIt

j

)j
.

Thus

E [g] ≤
∞∑
k=0

2(B(k + 1) +M1)k exp(−DIt)

∞∑
j=k

(
eDIt

j

)j
. (18)

For k ≥ 4eDIt, we have

∞∑
j=k

(DIt)
j

j!
≤
∞∑
j=k

(
eDIt

j

)j
≤
∞∑
j=k

(
1

4

)j
=

∞∑
j=0

(
1

4

)j+k
=

4

3

(
1

4

)k
.
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Applying the ratio test to the series in (18) shows that E [g] <∞. The conditions
for the Dominated Convergence Theorem are met and ((17)) is valid.

Due to the time invariance of the processes and distributions, the time in-
terval [0, t] can be translated without affecting the results. This is stated in the
following corollary

Corollary 4.4. Assume the configuration at time t0 for (1) is randomly dis-
tributed in a way that is compatible with the steady-state distribution σ. More-
over assume αi = α for all i and that xDE(t0) = xZ(t0). For a fixed time
t > t0,

lim
α
µ→∞

E[x(t+ t0)]− E[x(t0)] = ζζζt.

In the case where x(0) is not an equilibrium, the following corollary applies.

Corollary 4.5. Let d0 = xDE(0)− xZ(0). Then

lim
α
µ→∞

‖E[x(t)− x(0)]‖ ≤ 2‖d0‖+ ‖ζζζ‖t.

Proof. By a simple modification of the proof of the EVR theorem,

E[xDE(t)− xDE(0)] = E[xDE(t)− xZ(t)] + E[xZ(t)− xZ(0)] + E[xZ(0)− xDE(0)]

= E[xDE(t)− xZ(t)] + ζζζt+ d0.

Taking the norm of both sides

‖E[xDE(t)− xDE(0)]‖ = ‖E[xDE(t)− xZ(t)] + ζζζt+ d0‖
≤ E[‖xDE(t)− xZ(t)‖] + ‖ζζζ‖t+ ‖d0‖.

The function in the expectation is dominated by g(ω) + ‖d0‖. Taking the limit
as α

µ →∞ gives the result.

5. Numerical Results

Numerical simulations confirm the theoretical results and suggest a different
result for non-Markov processes. The differential equation is solved using the
software CVODE [11], in one second intervals. If an attachment event is due
or past due, the differential equation with the new state is solved. Figure 3
shows 5 realizations where the cell is starting at (0, 0). The distribution for the
perturbation vector b is isotropic, so on average there should be no motion. The
vector b is chosen by randomly choosing an angle from a uniform distribution
and a radius from a uniform distribution. Wait times are also chosen from a
specified distribution.

Figure 4 shows a graph of the equation for ζ from the EVR theorem in both
panels and in the left panel simulation results where different values for α

µ are

13



Figure 3: Five realizations for cells are shown for simulations of about 35 hours. The ran-
dom perturbations b are isotropic with mean radius 2.5 microns. The wait distributions are
exponential with θd = 1

20s
, θa = 1

60s
, αi = 0.2nN/micron for all i, i = 30, and µ = 2.8−7

kg/s. The initial configuration for each realization was created by running a simulation which
started with all I-sites attached for at least 1000 hours and translating the resulting position
to the origin. Thus the projection of the initial state (starting from the 1000 hours) should be
converging to the steady state distribution assumed in the EVR theorem. The cell location is
plotted every 10 minutes.

used and in the right panel simulation results with different wait time distribu-
tions are shown. In the left panel one can see the convergence to the theoretical
results. In the right panel the exponential wait times fit fairly well with the the-
ory, although the simulation results are consistently slower than the theoretical
results for more I-sites. This is expected since the differential equation has a
viscous drag which should slow the cells down. (The drag contribution disap-
pears only in the limit. Thus in the left panel the lower values of α

µ are slower

than the theoretical results.) The other non-Markovian distributions indicate
that the Markov property is essential in our current work.
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Figure 4: Simulations showing the convergence to the theoretical result are shown in the left
panel and simulations with different wait time distributions are shown on the right. The time
derivative of the expected value of the x coordinate of the cell center is plotted in microns
per hour against the number of I-sites. In both panels the gray line shows ζ as given in the
EVR theorem. In the left panel expected velocity of simulations are shown with α

µ
= 740,

7.4, .074, and 7.4 × 10−4 in units of 1/seconds with circles, *, +, and × respectively. In the
right panel simulations with wait time drawn from exponential, normal, continuous Poisson,
and uniform distributions are shown by boxes, circles, +, and

`
respectively. The simulations

were run for 3,333 hours to avoid error due to initial conditions and then the average velocity
was taken over a time period of 6,666 hours. Due to the time homogeneity this is the same as
averaging many simulations. The mean time to detachment is 60 seconds and the mean time
to attachment is 20 seconds for all the simulations. The normal distributions had deviation of
1 second (and were truncated to prevent negative and very long positive times). The random
vector b has a propensity to be in the x direction.
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In Figure 5, the x coordinate of the velocity is plotted against the force.
As can be readily seen in the figure the velocity is asymptotically constant
with respect to the cell force. Realistic forces range from 0.1 nN to thousands
of nanoNewtons which is in the region where the velocity is almost constant.
These simulations used a continuous Poisson distribution for the wait times and
thus do not fit into the framework of the theory given in this paper. Yet the
qualitative result is similar for the exponential wait times, that is, the velocity
quickly approaches a constant value at forces much lower than experimentally
measured values.

Figure 5: The average x coordinate of the velocity is plotted against the average force the cell
exerts on the substrate. Each data point is the average of 30 simulations with the same spring
constant α. The spring constant was varied from 2.0×10−7−0.3 nN/micron. Notice the scale
on the x axis is logarithmic. Realistic forces for cells range from 0.1-2000 nN all forces where
the velocity has already reached a constant value for these simulations. For each simulation
the number of sites is fixed at 20. The other parameters are the same as the previous figure
with the continuous Poisson distribution. Each simulation was run for 100 hours and then
data was collected for the next 200 hours.

Finally, in Figure 6 we compare experimental data of cell motion vs the
model cell motion taken from [4]. Results from simulations of the differential
equation model (1) are used to calculate average cell speed for a range of cell
strengths and a range of mean attach times. The mean detach time is fixed
and the cell forces for each I-site are set to be the same, i.e. α = αi for all i.
The model cells exhibit speeds and forces which agree with experimental data.
The range of values for α and for the mean attach time respectively are 0.232-
4.44 nN/micron and 810-1210 seconds for fibroblasts, 1.17-2.33 nN/micron and
28-88 seconds for neutrophils, 0.233-0.614 nN/micron and 230-408 seconds for
murine dendritic cells, 1.17-1.18 nN/micron and 206-408 for endothelial cells,
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and 0.116-0.348 nN/micron and 18-70 seconds for Dd cells.

Figure 6: The boxes roughly outline the regions where experimental data has been reported for
different cells types. The scatter plots are simulation results with parameters used to mimic the
behavior of the different cells using the differential equation model. Red denotes fibroblasts,
black denotes murine dendritic cells, cyan denotes neutrophils, green denotes endothelial cells,
and blue denotes Dd cells. Figure taken from [4] with permission.
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6. Discussion

The models discussed in this paper represent part of a broader approach
to cell motion dynamics, advancing the application of probabilistic arguments
outside the common core of treatments (Brownian motion) for stochastic media
[8]. In cell migration, it has been known for some time that higher cell force
does not correlate in an obvious way with cell velocity. The models analyzed
here encode this fact in several ways. Our previous work suggested that cell
adhesion/binding behavior was at the heart of the problem of modeling cell
velocity. Cell strength (force exerted on a substrate) impacts mechanosensing
properties of the cell, but is less important in cell velocity [4]. Numerical simu-
lations in [4] led to our conjecture of the EVR, which symbolically models the
decoupling of cell strength and velocity by considering average cell velocity over
a fixed time interval, as cell strength increases relative to drag force. In [2],
we introduced a limit version of the differential equation model (a discrete-time
centroid model) of [4], and analyzed this centroid model and the EVR using
Markov chain theory. A heuristic argument in [2] reinforced the idea that the
EVR conjecture holds in the case of the original random differential equation
model. There, the decoupling of force and speed is suggested by the centroid
model showing that new adhesion sites cause the cell to shift quickly after a cell
attachment/detachment event (even though between shifts, substrate tension
remains high). We formalized the relationship between a centroid model and
the differential equation model by studying the problem in the framework of dy-
namical systems, first by passing to an intermediate continuous-time centroid
model [1]. The mathematical formalization of the models allows for a rigorous
treatment of the EVR conjecture in the differential equation model using our
previous work for the discrete models. The present work breaks ground in the
rigorous study of randomly switched differential equations with the proof of the
EVR conjecture in Theorem 4.1.

This work provides a rigorous modeling environment for cell motion at the
macro level (it does not treat the internal biophysical mechanisms in an individ-
ual cell). We plan to investigate non-Markov scenarios in future work. Future
work also promises the possibility of rigorously linking microcellular processes
with macrocellular motion. Moreover, the differential equation model may be
shown to provide insight into multicellular environments. Future work will
demonstrate this and provide effective modeling of important macro-cellular
processes like cancer metastases, conglomerate cell motion (for example, Dic-
tyostelium discoideum [3]) and other types of cell migration. Additionally, this
model could have applications in the motion of swarms and schools including
crowd behavior, aggregate cell motion, and certain types of neural nets. All
these systems have centrally organized motion which could fit into our model
framework. Man-made centrally controlled or centrally referenced motion occurs
in monetary markets, the movement of troops or equipment on the battlefield,
and the evolution of social networks. These applications will be investigated in
future work.
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