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ABSTRACT

Improved Channel Probing for Secret Key Generation
with Multiple Antenna Systems

Britton Quist
Department of Electrical and Computer Engineering

Doctor of Philosophy

Establishing secret keys from the commonly-observed randomness of reciprocal wire-
less propagation channels has recently received considerable attention. In this work we
propose improved strategies for channel estimation between MIMO or beamforming systems
for secret key generation. The amount of mutual information that can be extracted from
the channel matrix estimates is determined by the quality of channel matrix estimates. By
allocating increased energy to channel estimation for higher gain beamforming combinations
at the expense of low-gain combinations, key establishment performance can be increased.
Formalizing the notion of preferential energy allocation to the most efficient excitations is
the central theme of this dissertation. For probing with beamforming systems, we formulate
a theoretically optimal probing strategy that upper bounds the number of key bits that can
be generated from reciprocal channel observations. Specifically, we demonstrate that the
eigenvectors of the channel spatial covariance matrix should be used as beamformer weights
during channel estimation and we optimize the energy allocated to channel estimation for
each beamformer weight under a total energy constraint. The optimal probing strategy is not
directly implementable in practice, and therefore we propose two different modifications to
the optimal algorithm based on a Kronecker approximation to the spatial covariance matrix.
Though these approximations are suboptimal, they each perform well relative to the upper
bound. To explore how effective an array is at extracting all of the information available in
the propagation environment connecting two nodes, we apply the optimal beamformer prob-
ing strategy to a vector current basis function expansion on the array volume. We prove that
the resulting key rate is a key rate spatial bound that upper bounds the key rate achievable
by any set of antenna arrays probing the channel with the same total energy constraint. For
MIMO systems we assume the channel is separable with a Kronecker model, and then for
that model we propose an improved probing strategy that iteratively optimizes the energy
allocation for each node using concave maximization. The performance of this iterative ap-
proach is better than that achieved using the traditional probing strategy in many realistic
probing scenarios.

Keywords: cryptography, covariance matrices, security, array signal processing, MIMO,
beamforming
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6.2 Average normalized difference between the key rate at algorithm convergence
and the key rate at the current iteration number as a function of the iteration
number for 500 randomly-realized systems. . . . . . . . . . . . . . . . . . . . 94

6.3 Average key rate as a function of Na when Nb = 5 for different values of the
SNR PT/σ

2
0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Ratio of the key rate achieved with equal energy allocation (Ik,E) to that
achieved using the iterative optimization for different values of Na when Nb =
5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Energy per key bit realized as a function of the total energy allocated to
probing (for fixed noise) for different values of Na when Nb = 5. . . . . . . . 98

x



6.6 Key rate as a function of the number of PAS clusters for two different SNR
values when Na = Nb = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Relative key rate as a function of the number of PAS clusters for two different
SNR values when Na = Nb = 5. . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.8 The performance of the iterative optimization technique relative to equal al-
location for Ricean and Rayleigh propagation when Na = Nb = 5. . . . . . . 101

xi



Chapter 1

Introduction

The pervasive nature of wireless communication has motivated increased efforts to

develop methods for preserving the confidentiality of sensitive data transmissions. Because

wireless communication cannot prevent unwanted access to the transmitted data stream,

secure protocols must encrypt data prior to transmission. While a variety of methods for

encryption exist, it is most common to use a symmetric approach in which both the data

encryption at the transmitter and decryption at the receiver use a commonly-known secret

key [1] that is often established using the Diffie-Hellman exchange [2, 3]. While this exchange

publicly discloses all information required to uniquely identify the key, it is considered to

be computationally secure since the discrete logarithm required to identify the key from the

observation is prohibitively costly for currently available hardware and algorithms. Naturally,

the security of this key establishment technique will be compromised if efficient methods

are discovered for efficiently computing such logarithms. Furthermore, the numbers used

to generate the keys are frequently derived from deterministic pseudo-random sequences,

introducing an additional security weakness [4].

One novel approach for key establishment between two nodes is key generation based

on commonly observed randomness [5, 6]. One source of such randomness is the reciprocal

nature of multipath electromagnetic propagation. In a wireless channel, the impulse response

or channel response between two antennas is the same, independent of which antenna is

transmitting. In a multipath environment, there will be several independent signal paths

and each will have a unique complex gain. The channel response between two antenna

positions is the coherent sum of the gain from these signal paths. Since the phase of each

path will vary with antenna position, the exact channel measurement is highly dependent

on the exact antenna placement. In fact, channel measurements usually decorrelate within
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only a few wavelengths, preventing key estimation by a nearby eavesdropper. Additionally,

the channel response is derived from the inherent randomness in nature which makes the

corresponding keys equally non-deterministic with any existing model.

When two nodes estimate a channel, the key rate, computed as the mutual infor-

mation between the channel estimates at the two nodes, represents the maximum number

of key bits that can be generated from a single channel estimate. Measuring performance

relative to this upper bound, initial work in this area focused on single-input single-output

(SISO) communication systems [7], with the main emphasis placed on practical algorithms

for generating key bits from realized channel estimates [8, 9, 10, 11]. More recent work on

SISO systems explores techniques for implementing the channel estimation to increase the

underlying key rate [12]. Additional recent research extends analysis of the key rate and

development of practical key establishment techniques from available channel estimates to

multiple-input multiple-output (MIMO) systems [13, 14, 15, 16]. Related work in optimal

channel probing has also demonstrated techniques for maximizing the accuracy of the chan-

nel estimate for standard multiple-input multiple-output (MIMO) communication [17], but

this differs from the idea of maximizing the mutual information between channel estimates

observed at two distinct locations.

In maximizing the key rate between channel matrix estimates, we consider two legit-

imate nodes, Alice and Bob, each using multiple antennas to estimate the channel. When

each node estimates the channel (probes) with a beamforming system, the antenna array

scales the signal transmitted or received with each array element, resulting in SISO commu-

nication. This differs from MIMO systems which are capable of transmitting or receiving an

independent signal from each array element with an arbitrary complex gain. When prob-

ing with different array element combinations, some configurations will be more effective

than others at transferring energy between the two nodes. Intuitively, performance can be

improved if more effective array configurations are preferentially allocated energy at the ex-

pense of the less productive configurations. The central objective of this dissertation is to

formalize the preferential energy allocation for beamforming and MIMO systems, with the

objective being maximization of the key rate.
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When probing with a beamforming system, the vector of complex gains of all the array

elements at a single point in time constitutes the beamformer weight. The probing scheme is

defined by the set of beamformer weights used to estimate all the desired channel coefficients.

A primary contribution of this research is the optimal sounding energy allocation (OSEA),

which is an optimal probing scheme that upper bounds the key rate achievable with any

set of beamformer weights. Unfortunately the OSEA scheme does not provide a method for

mapping the optimal probing vectors to actual beamformer weights. To address this, two

different suboptimal approximations to OSEA are developed that each achieve performance

near the upper bound. Extensive simulations are provided to characterize the performance

of OSEA and its practical adaptations relative to the traditional probing strategy.

The OSEA key rate provides an upper bound on the key rate that can be realized

between two beamformer fed arrays in a given propagation environment. This leaves open

the question of whether performance could be improved with a better choice of antenna

arrays. To answer this question, we develop a spatial bound on key rate that upper bounds

the performance achievable between two antenna arrays within constrained volumes. This

bound is formulated by applying OSEA to an antenna array where each element is actually

a vector current represented by Fourier basis functions. We prove that as the number of

basis functions becomes large, the solution upper bounds the key rate achievable in the

propagation environment by any other set of square integrable currents in the same volume

satisfying a common energy constraint.

MIMO systems are capable of estimating the channel response from all receive chan-

nels simultaneously, which results in more energy efficient key bit generation. One byproduct

of this parallel estimation is an asymmetric channel estimate signal-to-noise ratio (SNR) at

the two nodes. When trying to optimize the energy allocation at each node, this SNR

asymmetry creates an interdependency between the energy allocation at each node that pre-

vents direct application of the technique developed for optimal beamformer probing. To

circumvent this interdependence, this work proposes an iterative strategy where the energy

allocation at one node is fixed while that at the other node is optimized using traditional

concave maximization. An iterative procedure based on this principle allows specification of

the asymmetric probing strategy that in many cases increases the key rate.

3



1.1 Dissertation Organization

To provide context for the ideas presented in this dissertation, Chapter 2 presents a

high level view of current encryption and key exchange techniques as well as a more detailed

overview of key generation from reciprocal wireless probing. This discussion includes a

derivation of the key rate between two channel matrix estimates. This expression serves as

a launch point from which the proposed probing strategies are developed.

The derivation of the optimal beamformer probing strategy is provided in Chapter 3.

The first step in this development is a proof of the optimality of probing the channel with

beamformer weightings derived from eigenvectors of the full spatial covariance matrix. This

is followed by a proof of the optimality of the energy allocation strategy used in OSEA.

Since this algorithm is cannot be directly implemented in practical systems, we next provide

a physically realizable approximation – referred to as the Kronecker approximation – that

achieves performance near the upper bound. This is followed by analysis of how the proposed

probing strategy can be adapted to include the effects of mutual coupling.

In Chapter 4, the key rate achieved by OSEA and the Kronecker approximation

are evaluated through simulation of a number of propagation environments. The results

demonstrate that when a line of sight propagation path is present, the performance of the

Kronecker approximation degrades. To address this shortcoming, we propose a modification

to the Kronecker approximation that performs well with or without a line of sight signal

path present.

The presentation of the beamformer key rate spatial bound is given in Chapter 5.

The treatment first demonstrates that the OSEA key rate applied to an expansion of the

current using Fourier basis functions converges as the number of basis functions becomes

large. This is followed by a proof that this limiting value upper bounds what is achievable

by any set of square integrable current distributions satisfying the same energy constraint.

We then provide a generalization to OSEA that yields the optimal probing strategy when

the energy constraint accounts for the mutual resistance of the array elements. Results then

illustrate a number of aspects of the key rate spatial bound including performance achieved

with the alternative energy constraint as well as the algorithm convergence as a function of

the number of basis functions included in simulation.
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Chapter 6 provides the iteratively-optimized MIMO channel probing strategy. This

include a mathematical justification of the approach and a detailed discussion of the conver-

gence of the algorithm. Results then explore the performance achieved with the algorithm as

a function of SNR and propagation environment description. This is followed by conclusions

and a discussion of future work in Chapter 7.
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Chapter 2

Overview of Cryptography and Reciprocal Channel Probing

When considering the security of an encipherment technique, it is important to un-

derstand the level of protection desired. One notion of security, called unconditional security

is that a malicious node with unlimited time and unlimited computational resources would

be unable to decipher the concealed message. In his seminal work on security, Shannon [18]

showed that when a message M , often called plain text, is encrypted into a cypher text C,

the message is unconditionally secure if and only if

H(C|M) = H(C) (2.1)

where H(·) is the entropy function. This statement requires the mapping between the plain

text and the cypher text to be as random as the cypher text itself. This requirement is very

restrictive, and to date only the one-time pad [19, 20] has been shown to meet this criteria.

The approach requires that the entropy of the key be greater than the entropy of the message

and that each key be used only once. Since this requires both nodes to possess a common

secret key with more information than the data stream they want to exchange, the approach

has not been widely adopted in modern wireless communication.

If the requirements for unconditional security are overly taxing for a given system

configuration, it is still possible to ensure the privacy of communication within realistic con-

straints. One standard by which security can be measured is whether or not the encryption

technique prevents a malicious attacker with realistic computational resources from access-

ing the data for as long as the secrecy of the encrypted message is important. This form of

security is called computational security [2]. Since this metric is defined based on existing

technology and algorithms, developments in either can erode the security of an algorithm
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previously considered secure [21]. This is in contrast to unconditional security that does not

weaken with advancing capabilities. In spite of this important nuance, the widespread need

for practical encryption strategies motivates this as the most useful method for evaluating

the security of encypherment algorithms.

2.1 Symmetric Encryption

For centuries, computational security has been primarily achieved through symmetric

encryption [22], which is diagrammed in Fig. 2.0. In this diagram, Alice and Bob are the

legitimate nodes trying to maintain private communication in the presence of a malicious

eavesdropper called Eve. In symmetric encryption, Alice and Bob both possess a common

session key. This key is used to encrypt the plain text into the cypher text and then to

decrypt the cypher text back into the original plain text. With Eve having no access to the

session key, she will be unable to convert the cypher text into the original message. When the

keys are securely obtained, the greatest weakness of symmetric encryption come from linear

analysis [23] or differential analysis [24, 25] where Eve attempts to glean information about

a key by observing the relationship between similar input plain texts and the corresponding

outputs. While such an attack can reduce the time it takes for a malicious node to illegiti-

mately decipher a message, such vulnerabilities can often be overcome by simply increasing

the key length. This is because most attacks in practice only reduce the search space required

to decrypt the message from a brute force attack [26]. With the remaining search space still

quite large, widespread algorithms such as AES [27] are considered computationally secure

as long as key lengths are sufficient.

Presuming the encryption method provides a satisfactory level of security after ac-

counting for any known attacks, the primary vulnerability of symmetric encryption arises

from the generation and distribution of keys. If the keys are formed from deterministic

pseudo-random sequences than this exposes a security vulnerability [4]. So while promising

sources for digital randomness have been demonstrated, the widespread usage of pseudo-

random sequences continues to be a vulnerability in many communications systems.
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Encryp�on 

Plain Text Cypher Text 
Decryp�on 

Plain Text 

Decryp�on ? 

Alice Bob 

Eve 

Cypher Text 

Session Key Session Key 

No Key 

Figure 2.1: Symmetric encryption where the common session key is used for both encryption
and decryption

2.2 Key Distribution

The fundamental dilemma in key exchanges is that secure key distribution is needed

to establish secure communication. One possible way to ensure this security is to pre-

distribute keys between nodes that might need to communicate so that a secure key is

available whenever communication is required. This prearranged code can be part of a

code book allowing each node to securely communicate with all other nodes. A primary

difficulty of systems using prearranged keys between all node pairs is that the need for two

nodes to securely communicate must be known and accommodated well in advance. While

this assumption is reasonable for smaller networks, this requirement is prohibitive in many

situations.

If prearranging communication between every possible set of nodes is prohibitive, one

alternative approach is to set up a network where every node has a unique key that can

securely communicate with special key distribution centers [1]. When two nodes desire to

securely communicate, then each node securely obtains the session key from a key distribution

center that is aware of the nodes’ need to communicate. The downside of this approach is that

a trusted third party must be present to organize communication between any two nodes.

This requirement is a severe limitation in most wireless communication configurations.
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Encryp�on 

Plain Text Cypher Text 
Decryp�on 

Plain Text 

Decryp�on ? 

Alice Bob 

Eavesdropper 

Cypher Text 

Public Key 

Private Key Public Key 

Public Key 

Figure 2.2: Symmetric encryption where the common session key is used for both encryption
and decryption

2.2.1 Asymmetric Encryption

The primary shortcoming of the previous algorithms is that they did not allow two

nodes to securely identify a session key without the aid of prearranged secure symmetric

encryption. To overcome this drawback, one widely adopted protocol for key agreement is

asymmetric encryption shown in Figure 2.1. In this approach, the encryption is performed

with a public key which is openly communicated to all nodes. Once data is encrypted into

a cypher text, it can only be converted into plain text again with the use of the private

key that is only known by the target recipient. The private key and the public key are

naturally related, but by design the relationship between the two makes it very difficult to

extract the private key from a known public key. Two popular approaches for this encryption

are the Diffie Hellman key exchange [3] and RSA [28]. The security of these techniques is

derived from the non reciprocal computational burden of discrete logarithms in the case of

Diffie Hellman or prime factorization in the case of RSA. For discrete logarithms, if y =

mod (αx, p), where p and α are given, then computing y from x can be done in polynomial

time. The reverse operation of computing x from y can only be solved in exponential time

using existing hardware and algorithms.

Figure 2.2 shows a diagram of how the Diffie Hellman key exchange is performed.

In the exchange, α and p are known publicly and Alice and Bob respectively possess the
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numbers Xa and Xb which should be random and secret. From these, Alice computes Ya =

mod
(
αXa , p

)
, Bob computes Yb = mod

(
αXb , p

)
, and each transmits the computed value to

the other node. The exponential complexity of a discrete logarithm prevents anyone including

Alice or Bob from computing an unknown Xa or Xb from the transmitted information.

Following transmission, Alice computes the key denoted K as K = mod
(
YXb

a , p
)
and Bob

similarly computes K as K = mod
(
YXa

b , p
)
. Since

mod ((np + z)x , p) = mod (mod (np + z, p)x , p) = mod (zx, p) (2.2)

for integers n, z, and x, the equivalence of the two keys can be shown from

K = mod
(
YXb

a , p
)

(2.3)

= mod
(
mod

(
αXa , p

)Xb , p
)

(2.4)

= mod
((
αXa
)Xb , p

)
(2.5)

= mod
((
αXb

)Xa
, p
)

(2.6)

= mod
((

mod
(
αXb , p

))Xa
, p
)

(2.7)

K = mod
(
YXa

b , p
)
. (2.8)

With p, α, Ya, and Yb transmitted without encryption, Eve possesses all of the infor-

mation required to uniquely identify Xa and Xb. This makes the security of the exchange

inseparable from the computational burden of the discrete logarithm. If an efficient method

for computing a discrete logarithm is ever produced, the security of the exchange will be com-

pletely compromised. While currently not yet practical, early results in quantum computing

suggest that the discrete logarithm problem is solvable in polynomial time [29]. While the

details of RSA will not be discussed here, the work in [29] shows that the security achieved

through the computational burden of prime factorization would also be marginalized with

practical quantum computing. The possibility of this advancement makes finding an alter-

native to public key encryption for real time key exchanges an important topic of research.
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Figure 2.3: A diagram of the Diffie Hellman key exchange

For existing hardware and algorithms, asymmetric encryption suffers from drawbacks.

This is because Eve possesses all of the information necessary to systematically explore the

relationship between input plain texts and output cypher texts to gain information about

the private key. This strategy, called a chosen text attack, is a major vulnerability of public

key encryption techniques [30]. The possibility of Eve leveraging such an attack necessitates

that asymmetric encryption techniques use much larger keys than symmetric encryption to

achieve the same security. The work in [21] asserts that 1024-bit RSA encryption achieves the

same secrecy as 80-bit symmetric encryption. With keys of that length, public key encryption

techniques are much more computationally intense than comparable symmetric approaches.

So while asymmetric encryption is an independent alternative to symmetric encryption,

the computational complexity of the asymmetric encryption and decryption often motivates

hybrid techniques where only a session key is exchanged through asymmetric encryption.

A symmetric encryption technique then uses this session key to secure the subsequent data

transfer.

11



2.2.2 Key Generation From Common Randomness

One technique for potentially overcoming the vulnerabilities associated with tradi-

tional key exchange is to establish the key based on commonly-observed randomness [5,

6], particularly when the common randomness is derived from a physically-observed phe-

nomenon such as reciprocal multipath electromagnetic propagation. Reciprocal electromag-

netic propagation [31] provides that the complex gain observed between two antennas with

no active components is independent of which antenna is transmitting and which antenna

is receiving. With proper calibration, this allows two nodes to observe the same channel

response that can be quantized for key bit generation.

Keys formed from reciprocal channel response measurements can provide robust secu-

rity because the channel observed between the two legitimate nodes is uncorrelated with that

observed by a malicious eavesdropper only a few wavelengths away from either legitimate

node [16]. With the nodes themselves forming an important component of the scattering

environment, it is also impractical for an eavesdropper to accurately measure the channel

response previously observed by the legitimate nodes once either has relocated to a new

position. Furthermore this response will be determined by the interaction of the propagat-

ing waves with the entire scattering environment. The quantity and complexity of these

interactions make producing an accurate estimate of the channel response well out of reach

of any existing forward model. The complexity of these interactions also provides this key

generation scheme an inherent randomness derived from the inherent randomness in nature.

2.3 Mutual Information between Channel Estimates

In wireless propagation, the actual channel response depends on the constructive and

destructive superposition of a large number of impinging waves. The exact measurement of

this response evolves over the course of time in a fading environment, with an ensemble of

measurements characterized by some probability density function (pdf). When the receiving

node collects a measurement, the resulting observation is a measure of the true channel

response corrupted by noise. The characterization of the channel response as well as the

probabilistic characterization of the estimation error at each node determines the key rate,

or the maximum number of bits that can be extracted from channel estimates.
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In this work, the channel responses are assumed to be represented by a circularly

symmetric complex Gaussian distribution. If a node possesses several antennas, the channel

measurements observed by the different receiving antennas will be correlated and thus char-

acterized by a multivariate pdf. For this case, the response is assumed to be characterized

by a complex jointly Gaussian pdf.

For a SISO channel, let w ∼ CN (0, E2) represent that the quantity is the complex

channel gain between Alice and Bob, where ∼ CN (μ, σ2) denotes a complex Gaussian ran-

dom variable with mean μ and variance σ2. The receiver noise is assumed to be complex

additive white Gaussian noise (AWGN) with Alice’s error ηa characterized as ηa ∼ CN (0, σ2
a)

and Bob’s error similarly defined as ηb ∼ CN (0, σ2
b) . Letting Alice’s estimate of w be

ŵa = w + ηa and Bob’s estimate defined similarly as ŵb = w + ηb, the estimates can be

jointly characterized as ⎡
⎣ ŵa

ŵb

⎤
⎦ = CN

⎛
⎝
⎡
⎣ 0

0

⎤
⎦ ,KA,B

⎞
⎠ (2.9)

where

KA,B =

⎡
⎣ E2 + σ2

a E2

E2 E2 + σ2
b

⎤
⎦ . (2.10)

The key rate is given as

Ik = I (ŵa; ŵb) (2.11)

= H (ŵa) +H (ŵb)−H (ŵa, ŵb) (2.12)

where I (·; ·) is the mutual information of the two arguments. As the sum of two independent

Gaussian random variables, ŵa is defined as ŵa ∼ CN (0, E2 + σ2
a) with a corresponding

entropy in bits given as

H (ŵa) = 2 log2 (πe) + log2
(E2 + σ2

a

)
. (2.13)

The entropy of H (ŵa, ŵb) is similarly given as

H (ŵa, ŵb) = 4 log2 (πe) + log2 (|KA,B|) (2.14)
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where |·| represents a determinant. Substituting (2.14) and the Alice and Bob forms of (2.13)

into (2.12) and then canceling terms, the mutual information expression becomes

Ik = log2
(E2 + σ2

a

)
+ log2

(E2 + σ2
b

)− log2 (|KA,B|) (2.15)

= log2

(
(E2 + σ2

a) (E2 + σ2
b)

|KA,B|
)
. (2.16)

When multiple antennas are used with a MIMO or beamforming system, the channel

response becomes a channel response vector w with Alice’s estimate given as ŵa = w + ηa

where ηa is the a vector representing the estimation error. Bob’s estimate and estimation

error are denoted similarly with ŵb = w + ηb. The channel response correlation matrix is

given as W = E
{
ww†} where {·}† denotes a conjugate transpose, and the full covariance

of both channel estimates therefore becomes

KAB = E

⎧⎨
⎩
⎡
⎣ ŵa

ŵb

⎤
⎦ [ŵ†

a ŵ†
b]

⎫⎬
⎭ =

⎡
⎣ Ŵaa W

W Ŵbb

⎤
⎦ . (2.17)

The mutual information between ŵa and ŵb is

Ik = log2

∣∣∣Ŵaa

∣∣∣ ∣∣∣Ŵbb

∣∣∣
|KA,B| (2.18)

which is simply the the sum of the mutual information between independent combinations

of channel response estimates. Applying the determinant identities

∣∣∣∣∣∣
⎡
⎣ C11 C12

C21 C22

⎤
⎦
∣∣∣∣∣∣ = |C11|

∣∣C22 −C21C
−1
11 C12

∣∣ (2.19)

and

|D1 +D2D3| = |D1|
∣∣I+D3D

−1
1 D2

∣∣ (2.20)

leads to

|KA,B| =
∣∣∣Ŵaa

∣∣∣ ∣∣∣Ŵbb

∣∣∣ ∣∣∣I−WŴ−1
aa WŴ−1

bb

∣∣∣ . (2.21)
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When (2.21) is substituted into (2.18), the resulting expression for mutual information is

Ik = − log2

∣∣∣I−WŴ−1
aa WŴ−1

bb

∣∣∣ . (2.22)

2.4 Related Research

The expressions for mutual information in (2.22) upper bounds what is achievable

with given channel realizations. When two nodes attempt to extract the maximum amount

of mutual information from correlated random variables, a fundamental result observed by

Stepian and Wolf in [32] is that feedback between the two nodes is required to achieve the

key rate from (2.11). Specifically this work shows that the feedback from Alice to Bob

must be greater than H (ŵa|ŵb) if the bounding key rate is to be achieved. This result is

interesting from a theoretical perspective because it differs from what is seen in traditional

communications where feedback does not change the theoretically achievable data rate.

While the idea of key generation from a wireless channel has been known for nearly

twenty years [7], much of the work on this topic in the last decade focuses on understanding

the expression for available mutual information and on practical approaches for improving

the bit generation rate relative to the bound. In [33], Wilson et. al. consider the independent

channel measurements that can be made with an ultrawideband probing system. These

independent measurements arise from frequency dependent fading present in a wideband

multipath channel. Leveraging the orthogonal frequency division multiplexing (OFDM)

notion of orthogonal channels called frequency sub-carriers [34], Wilson’s work provides

some bounds on the mutual information in a wideband channel and then provides some

different approaches for feedback to ensure key agreement. In [9], Bloch et. al. provide a

comprehensive key establishment procedure that offers a method for channel estimation, key

generation and reconciliation, privacy amplification, and then message protection. The work

in [8] suggests a more suitable low density parity check (LDPC) code that achieves better

key agreement than previous coding methods.

One difficulty that a number of the works in key bit extraction do not address is

the need for relatively short codes to ensure key agreement. Specifically, reciprocal probing

may generate only 10 or 20 key bits per second which is much smaller than the typical code
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lengths used to achieve near capacity performance. To address this issue, the authors in [10]

propose a modified coding scheme that has a small code length and is designed to account

for the errors associated with the non-reciprocal error sources in realistic channel probing

configurations.

When considering channel probing for secret key generation using multiple antenna

systems, the body of research is much smaller. Work by Wallace et. al. in [13] first discussed

the information theoretic bounds for MIMO channel estimation and then proposed a feedback

strategy that improved key agreement. The work in [16] extends these ideas with additional

analysis of performance and improved insight into the impact of an eavesdropper on the secret

key rate. In [15] Chen and Jensen provide a strategy for multiple antenna key generation

in the presence of temporal and spatial correlation, where the concept exploits the fact that

just as the channel response from closely spaced antenna elements are correlated, so too

are responses observed by the same antenna over a short temporal window. With spatial

and temporal correlation, any key extraction algorithm must decorrelate in space and time

simultaneously in order to ensure that the observed key bits are uncorrelated.

While each of these prior efforts provides a valuable contribution to the general prob-

lem of reciprocal probing key establishment, they each address a different question than

that investigated in this work. This is because each considers the channel estimate quality

as predetermined and so the expression for key rate in (2.22) simply provides a maximum

number of bits for the presumed channel response and estimation error covariances. The

key rate expression in and of itself does not provide any insight into whether or not the

resources available for estimating the channel and determining the corresponding covariance

matrices have been intelligently allocated. To address this in a practical way, the work of

Wei et. al. in [14] proposes a probing scheme that uses a control loop with feedback about

the entropy in the channel to balance the tradeoff between the bit generation rate and the

available resource consumption. The contribution of that work is important from a practical

perspective, but it does not address the issue of what is theoretically possible with optimal

resource allocation.

The maximum possible key rate, called the key capacity in [35], is investigated by

Chou et. al. in [12]. This work considers optimal probing for an ultrawideband SISO system
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with a fixed number of independent channels with the same SNR. For this case, this work

determines the amount of energy to allocate to probing each sub-carrier to maximize the key

rate or to minimize the alternative performance metric, the energy per key bit. The amount

of energy allocated to probe each sub-carrier is modulated by adjusting the fraction of the

time in which the channel response of each sub-carrier is probed with full energy.

The contributions of Chou parallel some of what is provided in the optimal beam-

former probing development presented here with the key simplifying assumption that inde-

pendent channels are of the same quality. Such an assumption cannot be made with the

spatial channels present in multiple antenna systems because the relative channel qualities

will have a large dynamic range. For this more general case, our work provides an optimal

beamformer probing strategy for maximizing the key rate that can be extracted from the

available spatial channels. Building on the beamforming case, this work also considers im-

proved probing with MIMO systems, although the asymmetry between the channel estimate

quality for each node makes a provably optimal energy allocation strategy out of reach in

the MIMO case.
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Chapter 3

Optimal Channel Estimation in Beamformed Systems

The previous chapter provides a derivation of the key rate for a given channel corre-

lation matrix and error model and suggest that the key rate could be maximized through an

optimal allocation of the resources available for channel probing. In this chapter, we con-

sider optimal channel estimation for multi-antenna systems where the participating nodes

engage in SISO communication using array beamforming. Specifically, we formulate the

multi-dimensional channel estimation procedure as a sequence of transmissions, each of which

allows estimation of a unique coefficient representing one dimension of the multi-dimensional

channel. We first demonstrate that to maximize the key rate, each transmission should be

along an eigenvector of the spatial covariance of the channel matrix. Next, we develop a

simple procedure for determining the energy that should be allocated to each transmission

to maximize the key rate that accounts for the fact that the expression for the key rate is

non-concave. The resulting approach for the first time allows computation of the absolute

upper bound on the key rate. Because the optimization framework applies to an abstract

system without consideration of the actual transmit and receive beamformers that must be

applied during the channel estimation procedure, the resulting theoretical key rate is an

upperbound on key rate rather than a key capacity. However, we demonstrate application

of the technique to a real system by assuming that the channel spatial covariance is sepa-

rable into transmit and receive contributions. This discussion on practical application also

demonstrates how the technique can be applied to practical signal models, such as those

that include antenna array mutual coupling. Computational results demonstrate both the

nature of the solution as well as the performance benefit realized.
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3.1 Channel Estimation

3.1.1 Achievable Key Rate

In the system under consideration, Alice and Bob are each equipped with an antenna

array consisting of Na and Nb antenna elements, respectively. In complex baseband notation,

H is the Nb×Na matrix of narrowband channel transfer coefficients between the elements of

the two arrays, and the N ×1 vector h represents H stacked columnwise so that N = NaNb.

In a traditional key establishment system, Alice and Bob in turn send training data to each

other from which each estimates the channel coefficients h. For this case, w = h from the

treatment in Section 2.3.

More generally, Alice and Bob can each estimate a channel response vector w whose

elements represent unique linear combinations of the channel coefficients and use these values

for key establishment. To formulate the problem mathematically, we consider an abstract

representation of the channel estimation process. This abstraction makes no consideration

for practical implementation of the required channel estimation, but it allows us to mathe-

matically develop an upper bound on the key rate that in turn is used in Section 3.4.1 to

formulate a practical implementation procedure.

Let V represent an N ×M matrix of channel probing vectors with ith column vi,

where M ≤ N is the rank of V. In our abstract system, we assume that Alice and Bob can

each estimate the M × 1 response vector w, with the estimate given by

ŵξ = V†h+ ηξ = w + ηξ (3.1)

where {·}† denotes a conjugate transpose, w = V†h is the true channel response vector,

ξ ∈ {a, b} denotes Alice or Bob respectively, and ηξ is the estimation error whose elements

are modeled as zero-mean circularly-symmetric complex Gaussian random variables. With

this framework, the energy used to estimate the ith element of w is given by pi = v†
ivi,

and letting tr(·) represents the trace, the total energy used for channel estimation can be

expressed as

PT = tr(V†V) =
M∑
i=1

pi. (3.2)
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Alice and Bob will use their respective estimates of the channel response vector w

to generate bits that will contribute to the established secret key, and we therefore must

formulate the mutual information between these estimates. We assume that the errors on

different channel response vector elements are uncorrelated so that E
{
ηξη

†
ξ

}
= σ2

ξI where

σ2
ξ is the variance of the estimation error. We also assume that ηa and ηb are uncorrelated

with each other and with w. The covariances of the estimates are then

Ŵξξ = E
{
ŵξŵ

†
ξ

}
= V†RV + σ2

ξI = W + σ2
ξI, (3.3)

Ŵab = E
{
ŵaŵ

†
b

}
= V†RV = Ŵba = W (3.4)

where W = V†RV = E
{
ww†} and

R = E
{
hh†}. (3.5)

Substituting the expressions for Ŵaa and Ŵbb into (2.22 ) yield the key rate expression

Ik = − log2

∣∣∣I−W
(
W + σ2

aI
)−1

W
(
W + σ2

bI
)−1
∣∣∣ . (3.6)

This mutual information represents the key rate, or the maximum number of key bits that

can be established by Alice and Bob based on the observed channel estimates.

3.1.2 Optimal Basis

The key rate achieved in (3.6) depends on the choice of V. While in conventional

channel probing V would be a scaled orthonormal matrix, by properly selecting V under the

constraint that the total energy expressed in (3.2) is limited, we can potentially increase the

key rate. In this section, we demonstrate that maximization of the key rate is achieved if

each vector vi represents a scaled eigenvector of R, while in Section 3.2 we develop a strategy

for selecting the energy pi = v†
ivi. Together, this allows computation of the achievable upper

bound on the key rate under constrained total probing energy.

Since we bi-directionally probe the channel so that Alice and Bob can each generate

the same key from the reciprocal channel responses, we assume that they probe the channel
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using identical conditions so that σ2
a = σ2

b = σ2
0. We can therefore rearrange (3.6) to the

form

Ik = − log2

∣∣∣I− (I+ σ2
0W

−1
)−2
∣∣∣ . (3.7)

Suppose that we have an arbitrary covariance matrix R and a probing scheme rep-

resented by V that together uniquely define the channel response covariance matrix W.

Simple manipulation of (3.7) reveals that the key rate depends on the eigenvalues of W.

Therefore, suppose further that we identify an alternate probing scheme represented by a

different matrix Ṽ that results in a response covariance matrix W̃ such that W and W̃

have identical eigenvalues so that the two probing schemes achieve the same key rate. If

tr(V†V) ≤ tr(Ṽ†Ṽ), then the original probing scheme achieves the key rate with a reduced

total probing energy and can therefore be considered superior.

Let R = UΛU† represent the eigenvalue decomposition of R where Λ is the diagonal

matrix of real, non-negative eigenvalues and U is the unitary matrix of eigenvectors. By

choosing V = UP1/2 where P1/2 is diagonal with ith diagonal element
√
pi, we obtain

W = ΛP. Without loss of generality, we arrange Λ and W = ΛP so that the diagonal

elements are in decreasing order. We also emphasize that the values of P must be chosen

so that W = ΛP and W̃ have identical eigenvalues. Using the fact that AB and BA have

the same eigenvalues [36, p. 51], we see that R1/2ṼṼ†R1/2 and W̃ = Ṽ†RṼ have identical

eigenvalues, where since R is Hermitian we can write R = R1/2R1/2 with R1/2 formed using

the Cholesky factorization. Since our problem statement forces W and W̃ to have the same

eigenvalues, R1/2ṼṼ†R1/2 is Hermitian with eigenvalue matrix ΛP. Therefore, there exists

a unitary matrix Θ such that

R1/2ṼṼ†R1/2 = Θ†ΛPΘ (3.8)

or

ṼṼ† = R−1/2ΘΛPΘ†R−1/2. (3.9)
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Therefore

tr(ṼṼ†) =
N∑
i=1

λi(R
−1/2ΘΛPΘ†R−1/2), (3.10)

tr(Ṽ†Ṽ) =
N∑
i=1

λi(R
−1ΘΛPΘ†) (3.11)

where λi(·) represents the ith eigenvalue of the matrix argument ordered in decreasing value

and (3.11) is possible since 1) the arguments of λi(·) in both (3.10) and (3.11) have the same

eigenvalues [36, p. 51] and 2) commuting the two matrices on the left hand side is allowable

under the trace.

Now, for any positive semidefinite matrices A and B [37]

N∑
i=1

λi(AB) ≥
N∑
i=1

λN−i+1(A)λi(B). (3.12)

Combining (3.11) and (3.12) results in

tr(Ṽ†Ṽ) ≥
N∑
i=1

λN−i+1(R
−1)λi(ΘΛPΘ†). (3.13)

From (3.8), it follows that λi(ΘΛPΘ†) = Λiipi, where Λii is the ith diagonal element of

Λ. Likewise, since Λ is arranged in order of decreasing values, λN−i+1(R
−1) = Λ−1

ii . These

observations lead to

tr(Ṽ†Ṽ) ≥
N∑
i=1

pi = tr(P) = tr(V†V), (3.14)

proving our hypothesis that letting V = UP1/2 allows maximization of the key rate.

Given the optimality of this eigenvector basis, we can use that W = ΛP to express

(3.6) as

Ik = − log2

∣∣∣I− (I+ σ2
0P

−1Λ−1
)−2
∣∣∣ (3.15)

= log2

∣∣∣ΛPσ−2
0

(
2I+ σ2

0P
−1Λ−1

)−1
+ I
∣∣∣ (3.16)
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which can be further reduced to

Ik =
N∑
i=1

log2

[
1 +

piΛii/σ
2
0

2 + σ2
0/piΛii

]
. (3.17)

We pause here to emphasize that since the basis consists of the eigenvectors of the

covariance, in a practical scenario we must first estimate this covariance to enable optimal

channel estimation. If the channel coefficients represent wide-sense stationary random vari-

ables, then the covariance can be estimated once and then used for all subsequent channel

estimation exchanges.

3.2 Energy Allocation

While probing with the eigenvectors of R enables maximization of the mutual in-

formation, (3.17) explicitly shows that we need to determine the optimal energy allocation

variables pi that maximize the key rate. Finding this optimal allocation requires an un-

derstanding of the first and second derivatives of Ik in (3.17) with respect to the energy

allocations. Since (3.17) indicates that the key quantity is ρi = pi/σ
2
0, we work with the

derivatives

Ai(ρi) = ln 2
∂Ik
∂ρi

=
2Λii

Λiiρi + 1
− 2Λii

2Λiiρi + 1
(3.18)

=
2Λ2

iiρi
(Λiiρi + 1)(2Λiiρi + 1)

, (3.19)

A′
i(ρi) = ln 2

∂2Ik
∂ρ2i

=
4Λ2

ii

(2Λiiρi + 1)2
− 2Λ2

ii

(Λiiρi + 1)2
(3.20)

=
−4Λ4

iiρ
2
i + 2Λ2

ii

(Λiiρi + 1)2(2Λiiρi + 1)2
. (3.21)

We note that ∂2Ik/∂ρi∂ρj = 0 for i �= j.

3.2.1 Concavity

One standard approach for finding the global extremum of the mutual information

in (3.17) subject to the constraint in (3.2) is to use a Lagrange multiplier solution. While
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Figure 3.1: Normalized first and second partials of Ik as a function of the normalized mode
energy ρi = pi/σ

2
0 for several values of Λii.

such a solution always produces a local extremum, it is guaranteed to be a global maximum

only for a concave function over a convex solution set [38]. This observation motivates an

examination of the concavity of our problem.

If a multivariate equation is concave then the Hessian matrix ∇2Ik is negative semi-

definite. Since ∂2Ik/∂ρi∂ρj = 0 for i �= j, the Hessian matrix is diagonal, and its eigenvalues

are equal to the matrix diagonal elements. Therefore, the equation is concave if ∂2Ik/∂ρ
2
i ≤ 0

for all i. The bottom plot in Fig. 3.0 plots (3.20) as a function of ρi for three values of Λii.

These curves reveal that the second derivative is positive for small ρi but monotonically

decreases to zero with increasing ρi, reaching the value of zero at ρi = ρ̂i = 1/
√
2Λii. On

the concave interval ρi > ρ̂i, the expression is strictly negative, and therefore the mutual

information is a concave function of ρi on this interval. The closed interval [0, ρ̂i] represents

a convex complement to the concave interval, referred to as the convex interval. Note that

each mode only has one concave interval and one convex interval.

24



3.2.2 Lagrange Multiplier Optimization

Since each mode has both a convex and concave interval, application of an optimiza-

tion strategy requires particular care. However, to be able to explore the particular nuances

associated with optimization of the mutual information considered in this work, we must first

formulate our optimization strategy. Using a Lagrange multiplier formulation is a convenient

approach given that we are trying to optimize the mutual information in (3.17) subject to

the constraint in (3.2).

When formulating this solution, we first must decide how many modes should be

used. We refer to a mode as active when energy is allocated to that mode (pi > 0) and use

Nact to refer to the number of active modes. Examination of (3.17) reveals that if Λjj < Λii

but pj > pi, then the mutual information could be increased simply by swapping the energy

allocations to each mode. Therefore, if the eigenvalues of the N ×N covariance matrix are

ordered such that Λ11 ≥ Λ22 ≥ · · · ≥ ΛNN , modes must be activated in the order of their

indices. This does not indicate the proper value of Nact for a given scenario, and therefore

this will be considered in the following discussion. For now, the value of Nact is assumed to

be given.

Given Nact active modes, the optimization is performed through solution of

0 =
∂

∂ρi

[
Ik +

1

γ

(
PT

σ2
0

−
Nact∑
n=1

ρn

)]
ρi=Xi

(3.22)

=
1

ln 2
Ai(Xi)− 1

γ
(3.23)

for 1 ≤ i ≤ Nact, where 1/γ represents the Lagrange multiplier and Ai(ρi) is given in (3.18).

Letting α = γ/ ln 2, the solution to the Lagrange multiplier expression is

Xi =
2Λiiα− 3±√1− 12Λiiα + 4Λ2

iiα
2

4Λii

. (3.24)

The two possible values for Xi need to be interpreted carefully. The top plot in

Fig. 3.0 shows the first derivative from (3.18), with the straight line representing the value

1/α. With reference to (3.23), the two solutions for Xi correspond to the two points at which
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the line for 1/α in Fig. 3.0 crosses the curve for the ith derivative. Clearly, the upper and

lower signs in (3.24) correspond to solutions in the concave and convex intervals, respectively.

Of course, because Xi must be non-negative, depending on the value of α, it is possible that

the number of valid solutions is one or zero, with the latter case indicating that the mode

certainly will not be activated.

Naturally, if we constrain the solution so that all active modes lie within their con-

cave intervals, the Lagrange multiplier solution represents a global maximum under the

constraints. Similarly, if all active modes lie within their convex intervals, the solution rep-

resents a global minimum, which naturally is not of interest in this problem. We are therefore

left to explore the optimality of a solution with at least one mode in its convex interval. To

this end, we consider the situation of two modes with indices r and s and Λrr > Λss. Given

our argument above that modes should be activated in the order of decreasing eigenvalues,

we consider that mode r is active, and we wish to understand the implications of taking

energy from mode r to activate mode s.

For the following discussion, we ignore the scale factor ln 2 that appears in the deriva-

tives of (3.18) and (3.20), as it has no impact on the comparative analysis that we undertake

and its pervasive presence complicates the presentation. This simply means that changes in

mutual information below actually represent mutual information scaled by ln 2. Figure 3.1

plots representative forms of Ar(ρ) and As(ρ) as a function of ρ assuming Λrr = 2Λss = 10.

If Xs represents the energy allocated to mode s, then the increase in mutual information as

a result of this mode is given by

ΔIk,s =

∫ Xs

0

As(ρ)dρ. (3.25)

Similarly, the decrease in mutual information as a result of the energy taken from mode r

and allocated to mode s is given by

ΔIk,r =

∫ Xr+Xs

Xr

Ar(ρ)dρ. (3.26)
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mode As(ρ) in its convex interval.

The shaded areas in the top plot of Fig. 3.1 show the areas represented by these integrals. The

graphical interpretation of the Lagrange multiplier value from Fig. 3.1 helps us to recognize

that As(Xs) = Ar(Xr) = 1/α.

We need to show that (3.25) is always less than (3.26) for mode r in its concave

interval and mode s in its convex interval. To accomplish this, we introduce an auxiliary

function C(ρ) = 1/ρ and use the notation

C ′(ρC) =
dC(ρ)

dρ

∣∣∣∣
ρ=ρC

A′
r(ρr) =

dAr(ρ)

dρ

∣∣∣∣
ρ=ρr

. (3.27)

As a first step in our proof, we wish to show that

∫ XC+Xs

XC

C(ρ)dρ < ΔIk,r (3.28)

where C(ρ) = 1/ρ and XC is shown in the bottom plot of Fig. 3.1 as the solution to

C(XC) = 1/α.
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To explore (3.28), we first generally examine the slopes of our functions when Ar(ρr) =

C(ρC) = 1/ρC, which leads to

C ′(ρC) = − 1

ρ2C
= −A2

r(ρr). (3.29)

Using (3.19) and (3.21), we can express Ar(ρr) and A
′
r(ρr) in terms of the physical variables

Λrr and ρr, leading to the relationship

A′
r(ρr)− C ′(ρC) =

2Λ2
rr

(Λrrρr + 1)2(2Λrrρr + 1)2
. (3.30)

Now, we rewrite (3.28) as

∫ Xs

0

Ar(ρ+Xr)− C(ρ+XC)dρ. (3.31)

Based on the result in (3.30), whenever the integrand of (3.31) is zero, the slope of the

integrand must be positive. This occurs at ρ = 0, and may occur at other points along the

integration. What this means is that the integrand starts at a value of zero with positive

slope and then can never become negative. The mean value theorem tells us that a function

that is nonnegative cannot have a negative integral, meaning that (3.28) must be true.

While the top plot of Fig. 3.1 suggests that Xr lies in the concave interval of mode

r, the only requirement in this development is that Ar(ρr) = C(ρC), which occurs in the

Lagrange multiplier solution when ρC = XC and ρr = Xr where Xr can be either of the two

possible roots in (3.24). In other words, (3.28) is satisfied regardless of which of the two

possible values of Xr is selected.

As a second step in our proof, we wish to show that

ΔIk,s <

∫ XC+Xs

XC

C(ρ)dρ. (3.32)
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In this case, we know that As(Xs) = C(XC) = 1/XC or that XC = 1/As(Xs). Therefore,

the right hand side of (3.32) can be written as

∫ 1/As(Xs)+Xs

1/As(Xs)

1

ρ
dρ = ln [1 +XsAs(Xs)] . (3.33)

Using (3.18) in (3.25), the left hand side of (3.32) becomes

ΔIk,s = ln

[
1 +

Λ2
ssX

2
s

(2ΛssXs + 1)

]
. (3.34)

Given (3.33) and (3.34) and since ln(1+ y) is monotonic in y, proof of (3.32) reduces

to proving that
Λ2

ssX
2
s

(2ΛssXs + 1)
< XsAs(Xs). (3.35)

By using (3.19) to express As(Xs) in terms of the physical parameters, we can simplify (3.35)

to

Xs < 1/Λss = X̄s. (3.36)

In other words, provided that Xs < X̄s, (3.35) and therefore (3.32) are true. Based on

the analysis of Section 3.2.1, we know that the boundary between the convex and concave

intervals for mode s is at the point ρ̂s = 1/
√
2Λss, and therefore X̄s > ρ̂s which means that

X̄s lies in the concave interval for mode s.

With both (3.28) and (3.32) satisfied, it follows that ΔIk,s < ΔIk,r for Λss < Λrr and

Xs < X̄s. This means that the increase in mutual information due to allocation of energy to

mode s is smaller than the corresponding decrease in mutual information caused by taking

that energy from mode r. A few points regarding this finding are of significance for directing

the optimization strategy.

1. If mode r is active, it is suboptimal to activate mode s unless we can ensure that

ρs > X̄s = 1/Λss. Note that X̄s > ρ̂s where ρ̂s is the boundary between the convex

and concave intervals for mode s, which means that the energy allocation to mode s

is within its concave interval.
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2. Because it is suboptimal to have the energy allocated to mode r be smaller than that

allocated to mode s, activation of mode s should only occur when the energy allocated

to both modes r and s is larger than X̄s. We recognize that since X̄r < X̄s, this means

that the energy allocated to mode r must be above its threshold X̄r and will be within

the mode’s concave interval.

3. We recognize from the previous proof that (3.25) will also be less than (3.26) when

Xr is in its convex interval (smaller root in (3.24)). Therefore, if the available energy

PT is small, it must all be allocated to mode r, which may place the solution within

the convex interval of mode r. However, based on the arguments above, once multiple

modes are active, the solution must lie within their concave intervals and therefore

represents the global maximum.

3.2.3 Implementation

These results can be combined to formulate a relatively straightforward algorithm for

determining the energy allocation that maximizes the mutual information. For Nact active

modes and given our ordering of the eigenvalues, we know that all active modes must receive

an energy allocation larger than the threshold corresponding to the active mode with the

smallest eigenvalue X̄Nact = 1/ΛNactNact . Therefore, our Lagrange multiplier solution must

find the values of ρi that maximize Ik subject to the constraint ρi > X̄Nact for i ≤ Nact

and
∑Nact

i=1 ρi = PT/σ
2
0. Since this constraint leads to a convex solution set, the Lagrange

multiplier solution will be a global maximum. Furthermore, the constraint means that

we must have PT/σ
2
0 ≥ NactX̄Nact , an observation that allows us to quickly determine the

maximum number of active modes (Nact,m) that can be supported.

Given this upper bound on Nact, we now construct the Lagrange multiplier solution

for all possible values of Nact in the range 1 ≤ Nact ≤ Nact,m. For each possible value of

Nact, a numerical search must be used to find the value of α in (3.24) such that the energy

constraint
∑Nact

i=1 Xi = PT/σ
2
0 is satisfied. In this work, we begin by explicitly defining a cost
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function in the variable α, or

f(α) =
Nact∑
i=1

Xi(α)− PT/σ
2
0. (3.37)

Then, according to the Newton-Raphson method [39], we initialize α using α0 = 0 and

iteratively compute new values using αk+1 = αk − f(αk)/f
′(αk), where f

′(α) = df(α)/dα,

until |f(α)| < 10−8. The final value of αk is then used to compute the energy allocation and

the corresponding mutual information Ik for the specified value of Nact. Finally, we select

the value of Nact that achieves the highest value of Ik.

3.2.4 Interpretation

To interpret this optimal sounding energy allocation (OSEA) upper bound, consider

a correlation matrix with two eigenvalues, Λ11 = 10 and Λ22 = 1. The energy allocated

to each mode using a “waterfilling” solution, equal energy allocation (traditional sounding),

and OSEA is plotted as a function of the normalized total energy PT/σ
2
0 in the top plot in

Fig. 3.2. In the waterfilling solution used, the energy allocated to an active mode is given as

ρi = (ζ − 1/Λii)
+ (3.38)

where (x)+ = x if x > 0 and (x)+ = 0 if x ≤ 0 and ζ is chosen so that the total energy

constraint is satisfied. Therefore, for waterfilling the energy allocated to each active mode

always increases with the available energy. In contrast, for OSEA the solution suddenly

allocates a large amount of energy (ρ2 > 1/Λ22) to the second mode by taking the same

amount of energy from the already active mode once enough energy is available for both

modes to be active.

The bottom plot in Fig. 3.2 shows the difference Ik − Ik,E, where Ik,E represents the

mutual information when the modes receive equal energy (traditional probing). The perfor-

mance when all energy is allocated to a single mode is also shown. As can be seen, OSEA

and waterfilling achieve the same performance (equal to that for the single mode) until wa-

terfilling prematurely allocates energy to the second mode. When OSEA abruptly allocates
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energy to the second mode, the slope of the mutual information curve also changes abruptly.

At high SNR (large values of PT), OSEA, waterfilling, and equal energy approach the same

performance, as at this point the differences in energy allocation become a small portion of

the total energy allocated to each mode. While the differences in mutual information for

this scenario are small, this example illustrates the operation of OSEA.

3.3 Results

Some computational examples illustrate the impact of OSEA on the potential per-

formance of key establishment techniques. In these scenarios, Bob’s linear array consists of

Nb = 3 vertically-oriented dipoles with half-wavelength element spacing. Alice’s linear array

similarly consists of Na vertically-oriented dipoles equally spaced over a total aperture of

two wavelengths, where 2 ≤ Na ≤ 10.

Each channel realization is generated by assuming three clusters of multipaths propa-

gating in the horizontal plane between Alice and Bob. The average propagation environment
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is defined by its power angular spectrum (PAS) representing the average power per unit an-

gle in the horizontal plane. The contribution of each cluster to the PAS satisfies a truncated

Laplacian functional form with a variance of 30◦, with the departure angle φt,q and arrival

angle φr,q of the qth cluster generated as a realization of a uniformly distributed random vari-

able on [0, 2π). The qth cluster has a magnitude βq generated as a Rayleigh random variable

normalized such that
∑

q β
2
q = 1. The covariance for each random channel realization is then

computed using the closed-form integration technique in [40] that uses the radiation patterns

for the antenna elements and the PAS describing the propagation environment. All results

represent averages computed over 60 random channel realizations.

Fig. 3.3 plots the achieved average mutual information as a function of Na for three

different values of PT/σ
2
0 for both OSEA and equal energy allocation. As the number of

elements in Alice’s array increases, the new modes created tend to have reduced eigenvalues,

since the array elements are packed within the same total array aperture and therefore the

resulting channel coefficients will be increasingly similar. There will, however, be a slight

increase in the values of the dominant eigenvalues. Because OSEA considers the relative

values of these eigenvalues, it allocates the probing energy to properly exploit the strong

modes and de-emphasize or altogether ignore the weak modes. As a result, the bound on

the key length for OSEA increases with Na. In contrast, equally allocating the energy across

all modes (traditional probing) wastes resources on poor modes, leading to a reduction in

performance with Na for this strategy.

Fig. 3.4 plots the ratio Ik/Ik,E as a function of PT/σ
2
0 with Ik computed using OSEA

for three different values of Na. This plot reaffirms that the benefit of using optimal energy

allocation is substantial when the total energy available for probing is limited. As PT gets

large, however, the performance benefit decreases since the difference in energy allocated to

each mode becomes only a small fraction of the total allocated energy, as discussed previously.

3.4 Practical Implementation

3.4.1 Transmit and Receive Beamformers

As discussed in Section 3.1.1, the optimization developed in this paper is for an

abstract system that disregards how actual radios could estimate the required channels.
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equal energy allocation as a function of the number of antennas in Alice’s array.

More specifically, estimating the channel response vectors in (3.1) requires that we apply

transmit and receive beamformers that implement the probing vector vi, but in general vi

cannot be separated into distinct contributions at the transmitting and receiving nodes.

To modify the framework for practical implementation, consider now the real system

shown in Fig. 3.5 in which Alice’s and Bob’s arrays are connected to a beamformer. Al-

ice’s multi-antenna transmission to Bob represents the ith symbol xi from the information

sequence weighted by the Na × 1 beamforming vector ai, and the signals received on Bob’s

antennas are weighted by the Nb × 1 beamforming vector bi. Without loss of generality, it

is assumed that each ai and bi are unit length and that the energy allocated to probing the

beamformer weighting pair is specified through the magnitude of xi. The received symbol

can therefore be expressed as

ŵb,i = bT
i Haixi + ηb,i = (aT

i ⊗ bT
i )hxi + ηb,i (3.39)
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Figure 3.6: Block diagram of the beamforming system used for channel estimation and es-
tablishment of secret encryption keys.

where {·}T indicates a transpose and ⊗ represents a Kronecker product. It is possible that

the transmit and receive beamformer vectors remain constant over a block of symbols. A

similar description applies when Bob transmits to Alice.
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our numerical simulations we have observed generally that as K gets larger, the dominant

eigenvalue of R increases almost linearly with K and, given our normalization, that increase

occurs at the expense of the remaining eigenvalues. As this occurs, OSEA with or without

the Kronecker approximations devotes an increased fraction of the available energy to chan-

nel estimation when using the dominant eigenvector at the expense of channel estimation

when using other eigenvectors. Stated another way, as the LOS component increases in

relative importance, it becomes the single source of significant information between the two

channel estimates, reducing the relative importance of the multipath contributions for key

establishment.

This analysis helps us to explain the behavior of the curves in Fig. 4.6 that plots Ik

as a function of the Rician K-factor. Specifically, at low SNR significant energy is allocated

to the dominant mode, the relative importance of which increases with K. As a result, for

PT/σ
2
0 = 5 dB, Ik increases with K. In contrast, when the SNR is high, OSEA allocates

energy to estimation of a significant number of modes when K is small. As K increases,

the solution allocates additional energy to the dominant mode, which results in a slight

increase in the contribution to Ik due to this mode. However, higher-order modes experience

decreasing eigenvalues with increasing K, and less energy is available to estimation of these

modes due to the increased allocation to the dominant mode. The resulting decrease in the

number of active modes dramatically reduces Ik, and the overall result is a net reduction in

the key rate.

To reinforce these observations, we consider Fig. 4.7 that plots the average number of

active modes Nact as a function of K for the simulations used in Fig. 4.6. These results show

that at 5 dB SNR, only the dominant mode is active for K ≥ 6, confirming the importance

of the growth of this mode with K for small SNR. For high SNR, we observe a dramatic

reduction in the number of active modes with increasing K corresponding to the decrease in

Ik shown in Fig. 4.6.

The results in Fig. 4.6 also provide insight into the impact of the LOS component on

the performance of OSEA with the Kronecker approximations. In general, the accuracy of

the Kronecker approximation initially decreases with increasing K but then becomes more

accurate as K moves beyond a certain value. This trend is more clearly illustrated in the
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Figure 4.7: Key rate achieved using OSEA with the full covariance, Kronecker approximation,
and modified Kronecker approximation as well as with equal energy allocation as a function of
the Rician K-factor for several values of SNR.

top plot of Fig. 4.8 which shows the normalized difference between the performance achieved

using OSEA and that obtained using the Kronecker approximation. As K becomes large, the

covariance matrix R has a rank that steadily decreases and ultimately reduces to unity. At

this point, the Kronecker approximation is able to accurately model the unit-rank matrix,

and therefore the performance improves. For the modified Kronecker approximation, the

performance tracks the OSEA upper bound closely for all values of K. This is shown in
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the bottom plot in Figure 4.8, which shows that the relative error between the modified

Kronecker approximation and the OSEA upper bound is less than 5% for all K.

The preceding results demonstrate that when a notable LOS component is present,

the modified Kronecker approximation outperforms the original Kronecker approximation.

However, we have yet to quantify the relative performance of the two algorithms with no LOS

component. Figure 4.9 plots the normalized performance difference between each Kronecker

approach and OSEA in a Rayleigh environment. These results demonstrate that for SNR

values above a few dB, the original Kronecker approximation outperforms the modified

Kronecker approximation. This is expected since the modified Kronecker approximation

assumes the presence of a non-existent LOS component.

4.3 Chapter Summary

The results presented in this chapter explore the upper bound on the number of

key bits that can be established using reciprocal channel estimation between beamformed

multi-antenna nodes. Specifically, the performance of the upper bound as well as practical
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Figure 4.9: Normalized difference between the number of bits enabled by OSEA and by the
Kronecker approximation (top) or by the modified Kronecker approximation (bottom) as a
function of the Rician K-factor.

implementations are explored as a function of the propagation conditions. The results show

that for Rayleigh fading, the Kronecker approximation to OSEA works well, but that this

approximation suffers from performance difficulties when a LOS component is considered. To

overcome this limitation, a modified Kronecker approximation is proposed which performs

well in both Rician and Rayleigh environments. Detailed simulation results demonstrate the

impact of multipath richness, strength of the LOS component, SNR, and array size on the

performance.
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Chapter 5

A Spatial Bound on Key Rate for Beamformer Channel Probing

Given the channel coefficient matrix H – which is specified by the electromagnetic

propagation and the antenna arrays – and a constraint on the total energy available for

channel estimation, the OSEA solution constructs the beamforming weights (including en-

ergy applied to each combination of beamformers) that maximize the achievable key rate.

This is the upper bound achievable when the antenna array (and propagation channel) are

specified, and does not consider the optimal design of the antennas to further maximize

the achievable key rate for a given propagation channel. The objective of this chapter is

to apply the OSEA algorithm to determine the optimal array of currents that should exist

within constrained apertures at the transmitter and receiver to optimally exploit the degrees

of freedom in a multipath channel for the purposes of maximizing the achievable key rate.

The development builds on prior studies of the multi-antenna communication capacity [46],

but is fundamentally unique due to the differences between capacity and key rate mutual

information expressions.

The chapter proceeds by applying OSEA to a generic set of currents represented by a

set of basis functions that is complete over the finite aperture and determining the optimal

weighting coefficients for the basis expansion that maximize the key rate given a stochastic

description of the channel. The development demonstrates that the key rate converges to

a limiting value as the number of Fourier basis functions becomes large. This is followed

by a proof that this limiting key rate, called the key rate spatial bound, upper bounds the

key rate achievable by any set of square integrable currents in the same volume satisfying a

common energy constraint. The formulation also incorporates a modification to the OSEA

algorithm to accommodate the mutual coupling resulting from closely-arranged currents as

well as spatially-correlated estimation errors produced by interference. The treatment then
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provides a practical mechanism for limiting the number of basis functions that should be

used for computations. Simulations are used to explore the implications of the algorithm

modifications, the convergence properties of the technique, and the general behaviors of the

key rate spatial bound.

5.1 Antenna Representation

For simplicity in presentation, this work limits the discussion to two dimensions which

allows use of scalar currents. While the approach can naturally be extended to three-

dimensional vector currents, the notational complexity detracts from the presentation of

the core ideas. We define the mathematical representation for Alice transmitting to Bob,

recognizing that this implicitly defines the representation for the reverse link given the recip-

rocal nature of electromagnetic propagation and assuming reciprocal antennas. The currents

representing Alice’s antennas flow in the z direction and are confined to a rectangular region

Va of dimensions La,x and La,y in the x and y dimensions, respectively. Similarly, the cur-

rents representing Bob’s antennas flow in the z direction and are confined to the rectangular

region Vb of dimensions Lb,x and Lb,y in the x and y dimensions, respectively. We use the

vector notation ra = (xa, ya) to denote the coordinates relative to Alice’s coordinate frame,

with a similar definition rb for Bob’s coordinate frame.

Given this notation, the nth Fourier current basis function for Alice’s antenna is

defined as

fa,n (ra) =
1√
LxLy

exp

{
j

(
2π

La,x

nxxa +
2π

La,y

nyya

)}
(5.1)

where n is a two-dimensional index specifying the basis function orders nx and ny that

respectively represent the number of periods in x and y. Ignoring the usual cylindrical

wave behavior of the far-field radiation from this antenna, the current distribution can be

converted into a vertically polarized far-field radiation pattern ea,n (φa) using the integral [31]

ea,n (φa) =

∫
Va

G (φa, r
′
a) fa,n (r

′
a) dr

′
a (5.2)
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where φa is the angle in polar coordinates within Alice’s coordinate frame and G (φa, r
′
a) is

the two dimensional Green’s function given as

G (φa, r
′
a) = exp

{
j
2π

λ
(x′a cosφa + y′a sinφa)

}
(5.3)

where λ is the free space wavelength. The far-field radiation pattern becomes

ea,n (φa) =
√
La,xLa,ysinc

(
La,x

λ
cosφa + nx

)
sinc

(
La,y

λ
sinφa + ny

)
(5.4)

where sinc(x) = sin(πx)/πx.

With this representation, we can formulate the elements of the spatial covariance

matrix for the channel coefficient matrix H. Let β (φb, φa) represent the complex gain of

the vertically-polarized electric field departing Alice’s antenna at angle φa and impinging on

Bob’s antenna from angle φb. The complex gain observed between Alice’s nth basis functions

and Bob’s mth basis function is

Hmn =

∫ ∫
eb,m (φb) β (φb, φa) ea,n (φa) dφa dφb. (5.5)

Assuming that β(φb, φa) represents a zero-mean Gaussian random process, if the field depart-

ing into (arriving from) one angle is uncorrelated with that departing into (arriving from)

another angle, then the multipath gain function satisfies

E
{
β (φb, φa) β (φ

′
b, φ

′
a)

∗}
= B (φb, φa) δ (φa − φ′

a) δ (φb − φ′
b) (5.6)

where B (φb, φa) is the power azimuth spectrum (PAS). The covariance matrix element cor-

responding to Hmn and Huv is

R(mn),(uv) = E {HmnH
∗
uv} (5.7)

=

∫ ∫
eb,m (φb) e

∗
b,u (φb)B (φb, φa) ea,n (φa) e

∗
a,v (φa) dφa dφb. (5.8)
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5.2 Convergence

The OSEA solution applies to a finite set of antenna currents. Therefore, extending

the solution to a countably infinite basis function expansion of the antenna currents requires

a proof that the key rate converges as the number of basis functions becomes large. This

is accomplished here by first demonstrating that the mode gains converge as the number

of basis functions becomes large. It is then shown that when the mode gains converge, the

OSEA key rate also converges.

5.2.1 Mode Gain Convergence

Proving convergence of the eigenvalues of the covariance as the number of basis func-

tions grows requires formulation of the diagonal elements of the covariance matrix. From

(5.8), we have

R(mn),(mn) =

∫ ∫
|eb,m (φb)|2B (φb, φa) |ea,n (φa)|2 dφa dφb. (5.9)

To help make the notation explicit, we denote the full covariance matrix corresponding to an

infinite set of basis functions as countably infinite dimensional matrix R∞. To demonstrate

convergence, we first form the covariance matrix R(M) involving the lowest-order basis func-

tions with indices that satisfy {mx,my, nx, ny} ≤M , whereM is a positive integer. We then

define the covariance Re as the covariance matrix for the channel coefficients corresponding

to basis functions excluded from R(M). The full covariance R∞ can then be written as a

block matrix representation with R(M) and Re representing the matrices on the diagonal.

Naturally, there will be additional entries in R∞ represented by blocks off the diagonal, but

these are not important for the purposes of demonstrating convergence.

With this representation,

tr (R∞) = tr
(
R(M)

)
+ tr (Re) . (5.10)

Since both tr (R∞) and tr (Re) sum over an infinite number of elements, it is possible that

they can diverge. However, because they differ only by the constant tr
(
R(M)

)
, if one con-
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verges, then both will. For now, we assume that the trace of each exists and is finite. Since

the matrices are covariances, each is positive semi-definite. With R(M) forming a sub-matrix

along the diagonal of the Hermitian matrix R∞, it is shown in [47, p. 311] that

λi (R∞) ≥ λi
(
R(M)

)
(5.11)

where λi (·) denotes the ith largest eigenvalue of the matrix argument. Each λi (R∞) is

finite since the trace is assumed finite and tr (R∞) =
∑

i λi (R∞) where each λi (R∞) is

non-negative. Recognizing that tr
(
R(M)

)
=
∑

i λi
(
R(M)

)
allows (5.10) to be expressed as

∞∑
i=1

λi (R∞) = tr (Re) +
∞∑
i=1

λi
(
R(M)

)
(5.12)

where λi
(
R(M)

)
= 0 if i is larger than the dimension of R(M). Combining (5.11) with (5.12)

and recognizing that all the quantities in both are non negative, it can be shown for each i

that

λi (R∞) ≤ λi
(
R(M)

)
+ tr (Re) . (5.13)

Therefore, if tr (Re) is finite, it is possible to bound the eigenvalues of the correlation matrix

of the infinite basis function expansion. Furthermore, if it can be shown that increasing the

number of basis function included in R(M) can make tr (Re) arbitrarily small, then λi
(
R(M)

)
converges to λi (R∞) as the number of basis functions becomes large.

To bound the diagonal elements of Re, consider now the expression

√
La,xsinc[(La,x/λ) cosφa + nx] (5.14)

that forms part of the radiation pattern in (5.4). Defining Da,x(nx) as

Da,x (nx) =

⎧⎪⎨
⎪⎩
√
La,x |nx| ≤ La,x

λ
+ 1

√
La,x

|nx|−La,x
λ

|nx| > La,x

λ
+ 1

, (5.15)
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then for all nx,

Da,x (nx) ≥ max
φa∈[0,2π)

∣∣∣∣√La,xsinc

(
La,x

λ
cosφa + nx

)∣∣∣∣ . (5.16)

Using this definition along with a similar definition for Da,y(ny), it follows that for all n and

for all φa,

|ea,n (φa)| < Da,x (nx)Da,y (ny) . (5.17)

Since real propagation channels have finite gain, the PAS is uniformly bounded by

Γ = max
φa,φb∈[0,2π)

B (φb, φa) (5.18)

where Γ is a real, non-negative number. With these definitions, the variance of the channel

gain from Alice’s nth basis function and Bob’s mth basis function is upper bounded by

R(mn),(mn) < 4π2ΓD2
a,x(nx)D

2
a,y(ny)D

2
b,x(mx)D

2
b,y(my). (5.19)

Computations of tr
(
R(M)

)
and tr(Re) involve sums of R(mn),(mn), and we therefore

explore the convergence of sums that, based on (5.19), help us to establish the convergence

of these trace computations. First, defining τa,x = ceil(La,x/λ), where ceil(x) is the smallest

integer greater than x, we can write

∑
|nx|>M

D2
a,x(nx) < 2La,x

∫ ∞

M

1

(nx − τa,x)2
dnx (5.20)

=
2La,x

M − τa,x
. (5.21)

Similarly, if τa,y = ceil(La,y/λ), then

∞∑
ny=−∞

D2
a,y(ny) <

1+τa,y∑
ny=−1−τa,y

D2
a,y(ny) +

∑
|ny |>1+τa,y

D2
a,y(ny) (5.22)

< 2La,yτa,y + 3La,y + 2La,y

∫ ∞

1+τa,y

1

(ny − τa,y)2
dny (5.23)

= 2La,yτa,y + 5La,y. (5.24)
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Let R
(Mx)
e,a denote the covariance matrix for basis functions in Alice’s currents satis-

fying |nx| > M . Using (5.19), (5.24), and (5.21) and letting ϕ = 8π2ΓLa,xLa,yLb,xLb,y, we

can write

tr
(
R(Mx)

e,a

)
<
ϕ (2τa,y + 5) (2τb,x + 5) (2τb,x + 5)

M − τa,x
(5.25)

for M > τa,x, which tends to zero as 1/M . By the same argument, tr
(
R

(My)
e,a

)
, tr
(
R

(Mx)
e,b

)
,

and tr
(
R

(My)
e,b

)
, which have similar definitions, also decay as 1/M . Given our specification

of R(M), every diagonal element of Re involves basis functions whose integer orders satisfy

max {|nx| , |ny| , |mx| , |my|} > M. (5.26)

Consequently, any diagonal element of Re will also appear as a diagonal element in one or

more of R
(Mx)
e,a , R

(My)
e,a , R

(Mx)
e,b , R

(My)
e,b . Therefore

tr (Re) < tr
(
R(Mx)

e,a

)
+ tr

(
R(My)

e,a

)
+ tr

(
R

(Mx)
e,b

)
+ tr

(
R

(My)
e,b

)
(5.27)

<
Φ

M
(5.28)

for some constant Φ and for M > {τa,x, τa,y, τb,x, τb,y}, meaning that the trace of Re also

decays as 1/M . This means that tr (Re) and tr (R∞) exist and λi
(
R(M)

)
converges to

λi (R∞) because

λi (R∞)− λi
(
R(M)

)
<

Φ

M
. (5.29)

for M > {τa,x, τa,y, τb,x, τb,y}. In other words, we have proven that the eigenvalues of the

finite covariance matrix converge to those of the infinite dimensional covariance matrix as

the number of basis functions becomes large.

5.2.2 Key Rate Convergence

We now must show that since the covariance eigenvalues converge as the number of

basis functions increases, the resulting key rate converges as well. Since continuous functions

map convergent sequences to convergent sequences, proving that the key rate expression is

a continuous function of the covariance eigenvalues is sufficient to prove that the key rate

63



converges. The proof of continuity must account for the fact that in the OSEA solution,

the energy allocated to estimation of each mode changes as a function of the changing

eigenvalues, also referred to as mode gains.

For a finite set of basis functions, the OSEA solution computes the optimal energy

allocation for each possible number of active modes and then chooses the number of active

modes that achieves the best performance. As the number of basis functions becomes large,

the number of modes available for activation also increases. However, the lower bound on

the required energy to activate a mode is given as

pi ≥ max
j∈{Nact}

σ2
0

Λjj

(5.30)

where {Nact} is the set of indices of the active modes. This indicates that for finite total

available energy and finite mode gain, the number of modes that can be activated by the

OSEA solution is bounded. This means that even if an infinite number of modes is available,

the OSEA solution can be computed by considering a finite set of possible values of Nact.

Therefore, if the key rate for each value of Nact is a continuous function of mode gain, then

the maximum of the finite set of potentially optimal functions is also a continuous function

of mode gain.

We are therefore left to prove that for a fixed set of active modes, the key rate

from optimal energy allocation is a continuous function of mode gain. The optimal energy

allocated to estimation of the ith mode is given by (3.24) subject to the constraint in (5.30).

Suppose that we now increase the number of available modes leading to new eigenvalues Λ′
ii,

but we maintain the same number of active modes Nact. Furthermore, let p′i be computed

from (3.24) using the new eigenvalues Λ′
ii but with the value of α computed for the original

solution with eigenvalues Λii. The total difference in energy allocated to probing is ΔP =

−∑Nact

i=1 (pi−p′i). Since for fixed α the expression for pi in (3.24) is differentiable with respect

to Λii and therefore is a continuous function of Λii, then for every ε > 0 there exists a δ > 0

such that when
∑Nact

i=1 |Λii − Λ′
ii| < δ we have

Nact∑
i=1

|pi − p′i| <
ε

2
. (5.31)
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Now, let pi represent the optimal probing energy when α has been updated to enforce

the total energy constraint
∑Nact

i=1 pi = PT for the changed eigenvalues Λ′
ii. Because the total

available energy PT remains constant throughout this analysis,
∑Nact

i=1 (pi − p′i) =
∑Nact

i (pi −
p′i). However, since each value of p′i satisfies a Lagrange multiplier, any change in α to change

the solution from p′i to pi either adds energy to all active modes or removes energy from all

active modes, depending on the sign of ΔP , meaning that the sign of pi − p′i is the same for

all i ≤ Nact. This means that

Nact∑
i=1

|pi − p′i| =
∣∣∣∣∣
Nact∑
i=1

pi − p′i

∣∣∣∣∣ ≤
Nact∑
i=1

|pi − p′i| . (5.32)

The total change in energy across all modes is given as

Nact∑
i=1

|pi − pi| =
Nact∑
i=1

|pi − p′i + p′i − pi|

≤
Nact∑
i=1

|pi − p′i|+ |p′i − pi|

≤
Nact∑
i=1

2 |pi − p′i| (5.33)

where the last inequality stems from (5.32). From (5.31) it follows that whenever

Nact∑
i=1

|Λii − Λ′
ii| < δ (5.34)

we have
Nact∑
i=1

|pi − pi| < ε (5.35)

meaning that the optimal energy allocations are a continuous function of mode gain. There-

fore, the optimal energy pi allocated to estimation of the ith mode for a fixed number of

active modes converges as the number of elements in the basis function expansion becomes

large.

Since the actual mode gains Λii similarly converge, the elementwise product piΛii

converges as the number of basis functions becomes large for fixed Nact. Also, the expression
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for key rate in (3.17) is differentiable with respect to and therefore a continuous function of

piΛii, meaning that the convergent sequence of piΛii leads to convergence in the key rate for

fixed Nact. Since the OSEA solution simply chooses the maximum from a finite number of

key rates each computed for a different number of active modes Nact, the OSEA key rate

from the finite basis function expansion converges as the number of Fourier basis functions

becomes large.

5.3 Current Approximation

Demonstrating that the key rate converges as the number of basis functions becomes

large does not guarantee that the key rates achieved with two different sets of basis functions

are the same, or equivalently that the resulting key rate for the Fourier basis set is optimal.

The objective of this section is to demonstrate that the spatial bound on the key rate

upper bounds what is achievable for any finite set of square integrable currents satisfying

a total energy constraint. To accomplish this, we consider the key rate observed for a

finite set of square-integrable current functions at Alice and Bob, with each current function

representing an antenna at each node. We first demonstrate that the eigenvalues of the

covariance achieved using a finite basis expansion of the currents converge to the eigenvalues

of the actual covariance as the number of basis functions becomes large. We then show

that the transmission energy achieved using the basis expansion matches that of the actual

currents. As these proofs require understanding of the convergence of the radiation pattern

associated with each current distribution, we first study this convergence.

Let ga,�(ra) represent Alice’s current distribution from the �th current pair. Because

of its convergence properties, we approximate this current distribution function as a finite

Cesaro sum which is simply the arithmetic mean of partial Fourier series that converges to

the Fourier series as the number of terms increases [48, p. 154]. For 2M +1 basis functions,

this series can be expressed as

g
(M)
a,� (ra) =

M∑
nx,ny=−M

(
1− |nx|

M + 1

)(
1− |ny|

M + 1

)
c(�)a,nfa,n(ra) (5.36)
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where the coefficients c
(�)
a,n represent the standard Fourier series coefficients

c(�)a,n =

∫
Va

fa,n (ra) ga,�(ra) dra. (5.37)

Under this approximation, whenever ga,�(ra) has a finite L1 norm, we have [49, Lemma 3]

lim
M→∞

∫
Va

∣∣∣ga,�(ra)− g
(M)
a,� (ra)

∣∣∣ dra = 0. (5.38)

Since any function with a bounded L2 norm on a compact set also has a bounded L1 norm [50,

p 53], it follows that (5.38) holds for square integrable ga,�(ra).

Convergence of the Fourier representation of the current distribution also leads to

convergence of its associated radiation pattern. Let sa,� (φa) and s
(M)
a,� (φa) respectively rep-

resent the radiation patterns for the current distributions ga,� (ra) and g
(M)
a,� (ra). The L1

norm of the difference between these two radiation patterns is

∫
φa

∣∣∣sa,�(φa)− s
(M)
a,� (φa)

∣∣∣ dφa =

∫
φa

∣∣∣∣
∫
Va

G(φa, r
′
a)
[
ga,�(r

′
a)− g

(M)
a,� (r′a)

]
dr′a

∣∣∣∣ dφa (5.39)

≤
∫
φa

∫
Va

∣∣∣G(φa, r
′
a)
[
ga,�(r

′
a)− g

(M)
a,� (r′a)

]∣∣∣ dr′adφa (5.40)

≤ 2π

∫
Va

∣∣∣ga,�(r′a)− g
(M)
a,� (r′a)

∣∣∣ dr′a (5.41)

where we have used the fact that |G(φa, r
′
a)| = 1. The result of (5.38) means that the L1

norm of the difference between radiation patterns also goes to zero as M → ∞. This fact

will be used to prove convergence of the covariance matrix elements as well as the energy

radiated by the current distributions.

Finally, the radiation pattern for the qth current distribution can be upperbounded

as

sa,� (φa) ≤
∫
Va

|G (φa, r
′
a)| |ga,�(r′a) | dr′a (5.42)

≤
∫
Va

|ga,�(r′a) | dr′a. (5.43)
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Since the L1 norm of ga,�(r
′
a) is assumed finite, the radiation patterns associated with the

current distributions are uniformly bounded.

5.3.1 Covariance Matrix Eigenvalues

LetX andX(M) represent the covariance matrix observed with the the original current

distributions and the finite Fourier approximation, respectively. We can compute X(mn),(uv)

using (5.8) with the basis function radiation pattern eξ,ζ(φξ) replaced with the pattern sξ,ζ(φξ)

for ξ ∈ [a, b] and ζ ∈ [m,n, u, v]. We similarly define

X
(M)
(m̃ñ),(ũṽ) =

∫ ∫
s
(M)
b,m (φb) s

(M)∗
b,u (φb)B (φb, φa) s

(M)
a,n (φa) s

(M)∗
a,v (φa) dφadφb (5.44)

where the subscript m̃ indicates that the radiation pattern inside the integral is the approx-

imate pattern s
(M)
b,m (φb) rather than the actual pattern sb,m(φb). We can then express the

difference between the covariance elements for the actual and approximate patterns as

∣∣∣X(mn),(uv) −X
(M)
(m̃ñ),(ũ,ṽ)

∣∣∣ ≤
∣∣∣X(mn),(uv) −X

(M)
(m̃n),(uv)

∣∣∣+ ∣∣∣X(M)
(m̃n),(uv) −X

(M)
(m̃ñ),(uv)

∣∣∣
+
∣∣∣X(M)

(m̃ñ),(uv) −X
(M)
(m̃ñ),(ũv)

∣∣∣+ ∣∣∣X(M)
(m̃ñ),(ũv) −X

(M)
(m̃ñ),(ũṽ)

∣∣∣ (5.45)

which arranges the expression so that the two covariance matrix elements within each term

of the form |μ− ν| on the right hand side differ only by use of one radiation pattern in the

integration. Each of these differences can be bounded by an expression similar to

∣∣∣X(mn),(uv) −X
(M)
(m̃n),(uv)

∣∣∣ < κ

∫ ∣∣∣sb,m (φb)− s
(M)
b,m (φb)

∣∣∣ dφb (5.46)

where

κ = max
φb

∣∣∣∣
∫
s∗b,u (φa)B (φb, φa) sa,n (φa) s

∗
a,v (φb) dφa

∣∣∣∣ . (5.47)

Since B (φb, φa) is bounded through (5.18) and s∗b,u (φb), sa,n (φa), and s
∗
a,v (φa) are uniformly

bounded through (5.43) for all values of φa and φb, κ is a finite constant. Equation (5.41)

coupled with (5.46) therefore means that the first term on the right hand side of (5.45) goes
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to zero as M increases. Since the same analysis applies to each of the terms on the right

hand side of (5.45), the approximation X
(M)
(m̃ñ),(ũṽ) converges to X(mn),(uv) asM becomes large.

While convergence of the covariance matrix elements suggests convergence of the

covariance matrix eigenvalues, a simple proof demonstrates this latter observation. Let

X = UΛXU
† be the eigenvector decomposition of X where U is the unitary matrix of

eigenvectors and ΛX is the diagonal matrix of real, non-negative eigenvalues of X arranged

in decreasing order. We consider the matrix U†X(M)U that has the same eigenvalues as

X(M). This matrix can be arranged as

U†X(M)U = ΛX +U† (X−X(M)
)
U︸ ︷︷ ︸

Δ(M)

. (5.48)

Because X and X(M) are of finite dimensions and since X(M) converges to X on an

elementwise basis, it follows that for every ε > 0 there exists a valueM ′ such that ifM > M ′

then for every m,n, u, v ∣∣∣X(mn),(uv) −X
(M)
(m̃ñ),(ũṽ)

∣∣∣ < ε

L3
(5.49)

where L is the total number of current distribution pairs. If ‖·‖max, ‖·‖2, and ‖·‖F respec-

tively represent the maximum (maximum element), L2, and Frobenius norm of the matrix

argument, then for matrices C and D we have [51, p. 56], [52, p. 279]

‖C‖max ≤ ‖C‖2 ≤ ‖C‖F , (5.50)

‖CD‖F ≤ ‖C‖F ‖D‖F (5.51)

and ‖C‖2F = tr
(
C†C

)
. Using these expressions, it is possible to upper bound the maximum

element of Δ(M) as

∥∥Δ(M)
∥∥
max

≤ ∥∥U†∥∥
F

∥∥X−X(M)
∥∥
F
‖U‖F (5.52)

≤ L
∥∥X−X(M)

∥∥
F

(5.53)

<
ε

L
. (5.54)
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Without loss of generality, let ε be chosen so that for all k, k̂ if λk (X) �= λk̂ (X) then

|λk (X)− λk̂ (X)| > 2ε. Further, define a set of closed disks in the complex plane with the

kth disk Tk defined as

Tk
(
X(M)

)
=

{
x ∈ C :

∣∣∣λk (X) + Δ
(M)
kk − x

∣∣∣ ≤ (L− 1) ε

L

}
. (5.55)

The Gershgorin circle theorem states that all of the eigenvalues of X(M) lie in the union of

these disks and that if there are K disks that are disjoint from all other disks then the union

of those disks contains K eigenvalues [53, p. 325]. With
∣∣∣Δ(M)

kk

∣∣∣ < ε/L for all k, each Tk can

be contained in the disk T ′
k defined as

T ′
k

(
X(M)

)
= {x ∈ C : |λk (X)− x| ≤ ε} . (5.56)

Having chosen ε so that the difference between any non-repeated eigenvalues is greater than

2ε and since each circle is of radius ε, for all k and k̂, if T ′
k

(
X(M)

) �= T ′
k̂

(
X(M)

)
then T ′

k

(
X(M)

)
and T ′

k̂

(
X(M)

)
are disjoint. This means that each λk

(
X(M)

)
is contained in a circle of radius

ε centered at λk (X) which indicates that
∣∣λk (X)− λk

(
X(M)

)∣∣ < ε or that the eigenvalues

of X(M) converge to the eigenvalues of X as the number of basis functions becomes large. In

Section 5.2 we show that when the eigenvalues of a covariance matrix converge to a set of

limiting values, the key rate converges to the key rate of those limiting eigenvalues.

5.3.2 Energy

This work considers the constrained energy as either L2 norm of the currents that

radiate the signal or the L2 norm of the radiation pattern, the latter of which actually

represents the radiated energy. We therefore examine the convergence behavior of the L2

norm for both of these quantities. The difference between the L2 norms of the actual and
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approximate radiation patterns is bounded as

∫ ∣∣sa,� (φa)
∣∣2 − ∣∣∣s(M)

a,� (φa)
∣∣∣2 dφa =

∫ (∣∣sa,� (φa)
∣∣+ ∣∣∣s(M)

a,� (φa)
∣∣∣) (∣∣sa,� (φa)

∣∣− ∣∣∣s(M)
a,� (φa)

∣∣∣) dφa

(5.57)

≤ Ξ

∫ (∣∣sa,� (φa)
∣∣− ∣∣∣s(M)

a,� (φa)
∣∣∣) dφa (5.58)

≤ Ξ

∫ ∣∣∣sa,� (φa)− s
(M)
a,� (φa)

∣∣∣ dφa (5.59)

where

Ξ = max
φa

(∣∣sa,� (φa)
∣∣+ ∣∣∣s(M)

a,� (φa)
∣∣∣) . (5.60)

Equation (5.41) provides that as M gets large that (5.59) goes to zero since Ξ is guaranteed

finite from (5.43). This means that the energy radiated by the approximation to the current

converges to that transmitted by the actual current distribution.

If we more loosely define the energy as the L2 norm of the current distribution, then

we can use Parseval’s theorem to demonstrate convergence. Specifically, for the approximate

current distribution we have

∫
Va

∣∣∣g(M)
a,� (ra)

∣∣∣2 dra =
M∑

nx,ny=−M

∣∣∣∣
(
1− |nx|

M + 1

)(
1− |ny|

M + 1

)
c(�)a,n

∣∣∣∣2 (5.61)

≤
M∑

nx,ny=−M

(
1− |nx|

M + 1

)2(
1− |ny|

M + 1

)2 ∣∣c(�)a,n

∣∣2 . (5.62)

Similarly, for the original current distribution, Parseval’s theorem gives

∫
Va

|ga,� (ra)|2 dra =
∞∑

nx,ny

∣∣c(�)a,n

∣∣2 . (5.63)

By inspection,

M∑
nx,ny=−M

(
1− |nx|

M + 1

)2(
1− |ny|

M + 1

)2 ∣∣c(�)a,n

∣∣2 < ∞∑
nx,ny

∣∣c(�)a,n

∣∣2
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for finite M which means that

∫
Va

∣∣∣g(M)
a,� (ra)

∣∣∣2 dra ≤ ∫
Va

|ga,� (ra)|2 dra. (5.64)

Equality in (5.64) applies as M gets large, which means that the energy represented by the

approximate current distribution converges to that of the actual current distribution as M

gets large.

This analysis demonstrates that the key rate achieved and the energy represented

by the complex exponential approximation converges to the respective quantities for the

original current function as the number of basis functions becomes large. Since any arbitrary

weighted combinations of basis functions are guaranteed to not outperform OSEA applied

to the corresponding basis function expansion, it follows that no set of square integrable

current distributions that satisfy a common energy constraint will outperform the OSEA

solution for the complex exponential basis function expansion as the number of included

basis functions becomes large. This means that the limiting key rate for OSEA applied

to a finite Fourier expansion is a spatial bound on the key rate that can be achieved with

reciprocal beamformer probing.

5.4 Modified OSEA

Our definition of H relates the open-circuit voltage at the receiver to the current

driving the transmitter with all other transmit elements terminated in an open circuit. The

signal xi in our model therefore represents driving current, and our constraint
∑Nact

i x2i = PT

actually constrains the currents rather than the radiated energy. If the antenna elements

are widely separated so that the mutual impedance is small, then the energy radiated is

proportional to the square of the current, making this constraint reasonable. While this

assumption is widely adopted in the signal processing literature [54], it is not valid for

closely spaced array elements or for the case studied here where the antennas are abstracted

as currents that can coexist within a single aperture.

Similarly, the original OSEA solution assumes that the estimation errors ηa and ηb

at Alice and Bob are spatially white (covariance matrix being a scaled identity), which
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is consistent with the noise creating the error arising due to the radio frequency receiver.

However, since radio frequency front-end noise can be reduced through careful design and

since the performance of most communication systems is limited by interference, we choose

to consider interference, which will generally result in spatially correlated estimation errors,

in this analysis. It is necessary for us to modify the formulation of OSEA to accommodate

these changes. For consistency, we consider currents that vary in the x-y plane, although

the derivation extends to three dimensions.

5.4.1 Spatially Correlated Estimation Error

With a beamforming system, let the vector of open-circuit noise voltages observed on

Bob’s array during the ith transmission be denoted νb,i so that the estimation error after

receive beamforming is ηb,i = bT
i νb,i where ηb,i is the i element of ηb. Let the interference

signal as a function of angle during the ith transmission be represented as ψi (φb). The

resulting open-circuit noise voltage observed by the mth array element is

νb,im =

∫
eb,m (φb)ψi (φb) dφb. (5.65)

Consistent with our signal model, we further assume that E {ψi(φb)ψ
∗
i (φ

′
b)} = σ2

IBI(φb)δ(φb−
φ′
b) where BI(φb) is the PAS of the interference. The error covariance matrix Kb then has

elements

Kb,mu = E
{
νb,imν

∗
b,iu

}
(5.66)

=

∫
eb,m (φb)BI(φb)e

∗
b,u (φb) dφb (5.67)

where we have used that the expectation is over the transmission index i which is a discrete

representation of time. If each antenna also contributes a thermal noise voltage that is

modeled as a zero-mean complex Gaussian random variable with variance σ2
Loss and assuming

that the thermal noise on each element is independent of that on the other elements as well

as of the interference, we can write that the total error covariance is K̃b = Kb + σ2
LossI.
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To illustrate the impact of this spatially correlated estimation error, we reformulate

the system model from Chapter 3. Specifically, we write the vector of open-circuit voltages

on Bob’s antennas (before application of the receive beamformer) as

yb,i = Haixi + νb,i. (5.68)

To be able to apply OSEA to this system, the receiver must first whiten the error estimate,

or

ỹb,i = K̃
−1/2
b yb,i = K̃

−1/2
b Haixi + K̃

−1/2
b νb,i︸ ︷︷ ︸
ν̃b,i

(5.69)

where K̃
1/2
b is the matrix square root defined such that K̃

1/2
b

(
K̃

1/2
b

)†
= K̃b. With this

representation, ν̃b,i has covariance I. If we now apply the receive beamformer b̃i, we obtain

w̃b,i = b̃T
i K̃

−1/2
b Haixi + b̃T

i ν̃b,i︸ ︷︷ ︸
η̃b,i

. (5.70)

The actual receive beamformer is therefore the combination of the whitening operation and

the post-whitened beamformer, or bT
i = b̃T

i K̃
−1/2
b .

5.4.2 Radiated Energy Constraint

For transmission with aixi, the far field radiation pattern of the array is given by

za,i (φa) =
Na∑
n=1

ai,nxiea,n (φa) . (5.71)

The radiated energy pa,i associated with za,i (φa) is

pa,i =
1

Z0

∫
z∗a,i (φa) za,i (φa) dφa (5.72)

= x2i

Na∑
n=1

Na∑
v=1

a∗i,n
1

Z0

∫
e∗a,n (φa) ea,v (φa) dφa︸ ︷︷ ︸

Θa,nv

ai,v (5.73)

= x2ia
†
iΘaai (5.74)
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where Z0 is the free-space wave impedance. The total energy radiated by Alice over all

training transmissions becomes

Pa,rad =
Nact∑
i=1

x2ia
†
iΘaai. (5.75)

For the total radiated energy to be proportional to the square of current for all ai, we

must have Θa ∝ I, which with reference to (5.73) means that the radiation pattern of each

element in Alice’s array is normalized and orthogonal to the radiation patterns of all other

array elements. Clearly this will not hold for an arbitrary array, although it is possible to

reformulate the problem to constrain the radiated energy rather than the currents.

We recognize from (5.73) that Θa represents the mutual resistance matrix for Alice’s

array. If each antenna element has the same resistive loss RLoss, then we can define Θ̃a =

Θa+RLossI as an effective resistance matrix for the array. The energy delivered to the array

for the ith excitation is then p̃a,i = a†
iΘ̃aai. We define the beamforming weights of a virtual

array

ãi = Θ̃1/2
a ai (5.76)

such that p̃a,i = x2i ã
†
i ãi. Our signal model therefore becomes

w̃b,i = b̃T
i K̃

−1/2
b HΘ̃−1/2

a ãixi + η̃b,i. (5.77)

5.4.3 OSEA Application

From (5.77), we can form the virtual channel H̃ = K̃
−1/2
b HΘ̃

−1/2
a and write

w̃b,i = b̃T
i H̃ãixi + η̃b,i (5.78)

=
(
ãi ⊗ b̃i

)T
h̃+ η̃b,i (5.79)

where h̃ represents H̃ stacked columnwise into a vector. If we apply OSEA to this equation,

the beamforming vectors b̃i will be unitary, and therefore E
{
η̃bη̃

†
b

}
= I, consistent with

the original OSEA formulation with σ2
0 = 1. Similarly, the energy delivered to the array

for the ith excitation becomes p̃a,i = x2i , which is also consistent with the original OSEA
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formulation. Of course, after application of OSEA, we construct the beamformers for the

actual arrays as ai = Θ̃
−1/2
a ãi and bT

i = b̃T
i K̃

−1/2
b .

The form of H̃ demonstrates our motivation for including loss resistance and antenna

thermal noise in the formulation. Specifically, for tightly coupled antennas (as might oc-

cur for overlapping currents), small eigenvalues of Θa and Kb can lead to problems when

the inverse is taken, problems that physically represent impractical supergain beamformer

weightings [55]. Including loss and thermal noise physically removes the possibility of these

supergain solutions, which mathematically represents itself as a regularization of the in-

verse [55].

One limitation of this formulation is that it can destroy the reciprocity of the channel

that is required for key establishment. Specifically, because the effective channel is trans-

formed, the transformation must be identical for transmission from Alice to Bob and for

transmission from Bob to Alice. Furthermore, the effective beamformers used by Alice and

Bob must be identical for channel estimation in both directions. For this to be the case, we

must have Θ̃a ∝ K̃b and Θ̃b ∝ K̃a.

To resolve this issue, we note that if BI(φb) = 1, then Kb = σ2
IZ0Θb where Θb

is obtained from (5.73) simply by changing the subscript a to b. Physically, this means

that the interference must be assumed to arrive from all directions. Furthermore, if we set

σ2
Loss = σ2

IZ0RLoss, then our requirement for reciprocal channel estimation is satisfied. We

assume these conditions are satisfied in the remainder of this work.

5.5 Finite Basis Function Expansion

The proof of convergence in Section 5.2 demonstrates that as the number of basis func-

tions becomes large, the eigenvalues of the correlation matrix converge to a limiting value.

While this is important mathematically, we must remember that application of OSEA to

currents represented by the basis functions requires computing the eigenvalues of matrices

whose dimensions scale as the product of the number of basis used at Alice and Bob. There-

fore, practical considerations require us to efficiently limit the number of basis functions

used. Naturally, this could be done by identifying the number of basis functions required
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eigenvalue convergence to within a specified tolerance, but experience shows that this results

in a large number of basis functions and high computational complexity.

We therefore resort to a more practical two-stage method for determining the number

of basis functions to include. In the first stage, we recognize that as the frequency of oscilla-

tion of the basis function representing the current increases, the radiated power associated

with that current decreases (for a fixed current peak magnitude), as such currents represent

supergain excitation. The power radiated by Alice’s nth individual basis function is specified

by Θa,nn, and therefore we can limit the range of Fourier basis functions to be those that

satisfy Θa,nn > 1/Q1, where Q1 represents a threshold (an identical thresholding is used for

Bob).

With the number of basis functions limited, we can construct the matrix Θa and

compute its eigendecomposition. Given our regularization to form Θ̃a, it is clear that if the

vth eigenvalue Λa,vv of Θa is very small, the radiation associated with that excitation will be

small compared to the loss represented by the loss resistance RLoss. Therefore, we can limit

the number of virtual array elements by constructing Θa using only those eigenvalues that

satisfy Λa,vv > 1/Q2, where again Q2 represents a threshold. We emphasize that Θa has

been computed from, and therefore includes the influence of, the large set of basis functions.

The dimensionality reduction is completed in the eigenspace to maintain computational

efficiency. Simulations demonstrating the impact of this dimension reduction are provided

in Section 5.6.3.

5.6 Results

We now use simulations to illuminate some fundamental behaviors of the key rate

spatial bound. The simulated channels are defined using the model described in Section 3.3.

The optimal antennas considered are defined over a square of side length L at both Alice and

Bob. Unless otherwise specified the aperture dimension is L = 1λ, with the virtual elements

for that area defined with an energy constraint. The value of RLoss in each is chosen so that an

antenna with radiation pattern e(φ) = 1 radiates 95% of the energy delivered to the antenna.

Furthermore, unless otherwise specified, the thresholds are chosen as Q1 = Q2 = 40, 000.
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Figure 5.1: The key rate spatial bound constructed when the energy or the current is con-
strained as a function of the aperture size.

5.6.1 Constrained Energy vs. Current

As a first case, we compare the key rate Ik achievable when the energy is constrained

to that achievable when the current is constrained. Figure 5.0 plots the performance for

both constraints as a function of aperture size for different values of the signal-to-noise

ratio (SNR) PT/σ
2
0. As expected, the performance increases with both array size and SNR,

although the dependence on aperture size is more pronounced under the current constraint.

This is because the energy radiated from the far field patterns in (5.0) is scaled by the term

L2 which means increased radiated energy as the aperture size increases.

5.6.2 Pulse Basis Functions

The key rate spatial bound represents the upper limit on performance for antennas

occupying the same volume (or area). Therefore, it is interesting to compare the performance

of the spatial bound based on Fourier basis function to the key rate for pulse basis function.

If we have M such basis functions per dimension, the nth basis function has a magnitude
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Figure 5.2: Ratio of the key rate achieved using OSEA for an M ×M array of square current
pulses and the key rate spatial bound as a function of aperture size for an SNR of 5 dB.

of M/L over a square region of side length L/M centered at xn = (nx − 1/2)L/M and

yn = (ny − 1/2)L/M and is zero elsewhere. The radiation pattern of a pulse centered at

(x, y) is

e(φa) =
L

M
sinc

(
L

Mλ
cosφa

)
sinc

(
L

Mλ
sinφa

)
ej(2π/λ)(x cosφa+y sinφa). (5.80)

For both the Fourier and pulse basis expansions, the radiated energy constraint is used to

compute the performance.

Figure 5.1 plots the ratio of the key rate achieved from OSEA using pulse basis

functions (Ik,PUL) to that achieved using Fourier basis functions (Ik,FOU) as a function of

aperture dimension for an SNR of 5 dB and three values of M . For all values of M , the

key rate for the pulse basis functions is close to the bound for small apertures. However, as

the aperture dimensions increase, the relative performance degrades because the relatively

small number of pulse functions are unable to fully exploit the spatial modes available in the

propagation environment.
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Figure 5.3: The OSEA key rate of an M ×M dipole array modeled by square current pulses
relative to key rate spatial bound as a function of SNR.

Figure 5.2 plots the same performance measure as a function of SNR for several

different values of M for an aperture dimension of L = 1λ. For each value of M , the relative

performance increases with SNR until PT/σ
2
0 = 1 after which the relative performance levels

off. Figure 5.3 plots the number of active modes used by the OSEA solution as a function

of SNR for the grid of pulse functions as well as for the key rate spatial bound. This result

shows that in the region where performance in Fig. 5.2 is most sensitive to SNR, there is

only one active mode. Manipulation of the key rate expression in (3.17) shows that when

Nact = 1 and s1 = PTΛ11/σ
2
0 is small, the key rate grows as log2(1 + s21), which is strongly

dependent on the SNR. As SNR increases, the multiple terms used in the sum of (3.17) grow

more slowly with SNR, resulting in the behavior observed in Fig. 5.2.

5.6.3 Simulated Convergence

While the convergence of the key rate spatial bound has been analytically proven, this

proof does not demonstrate the convergence behavior of the algorithm as the number of basis
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Figure 5.4: The number of active modes obtained from the OSEA solution for an M × M
array of pulse functions as well as for the key rate spatial bound as a function of SNR.

functions grows. This is particularly relevant given our discussion in Section 5.5 regarding

reduction of computational complexity by limiting the number of basis functions used in

the expansion. We recall from that discussion that our practical approach to computational

complexity reduction involves the thresholds Q1 and Q2, and therefore this study focuses on

the impact of these threshold values. For purposes of this analysis, the thresholds are swept

between the values Qmin = 100 and Qmax = 1, 000, 000. In the following simulations, key

rate convergence is quantified as the relative difference between the key rate Ik,Qmax obtained

when Q1 = Q2 = Qmax and the key rate Ik,Q achieved with the designated values of Q1 and

Q2.

Figure 5.4 plots the key rate convergence for Q1 = Q2 = Q for several different values

of SNR. These results show that there is only a 0.5% improvement observed when increasing

Q from 10, 000 to 1, 000, 000, suggesting that the performance achieved with any threshold

in this interval represents a good approximation to the performance achieved with a much

larger value of Q.
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Figure 5.5: Normalized difference between the key rate Ik,Qmax achieved using Q1 = Q2 =
Qmax and the key rate Ik,Q obtained using Q1 = Q2 = Q.

Figure 5.5 plots the convergence for an SNR of 5 dB when either Q1 or Q2 is swept

while the other is fixed at Qmax. When Q1 is fixed, there is negligible change in performance

as a function of Q2. Conversely, the convergence when only Q1 changes is almost identical to

that observed when both Q1 and Q2 change. These observations can be better understood by

exploring the number of basis functions and virtual elements (see discussion in Section 5.5)

used for the different thresholds. Figure 5.6 plots the number of Fourier basis functions

that satisfy the condition specified for the Q1 threshold, while Fig. 5.7 shows the number

of virtual elements that satisfy the constraints for the thresholds Q1 and Q2, where once

again when one is swept the other is fixed at Qmax. Figure 5.6 shows that for Q2 = Qmax,

the 3% improvement achieved over the range Qmin ≤ Q1 ≤ Qmax requires increasing the

number of Fourier basis functions from 25 to 4261. On the other hand, Fig. 5.7 reveals that

increasing Q2 when Q1 = Qmax only results in addition of two virtual elements that have

Λa,vv ≈ 1/5000, which is very small. These low quality excitations have negligible impact on

system performance.

82



102 103 104 105 106
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Q

1 
− 

I k,
Q

/I k,
Q

m
ax

Q1 = Q2 = Q
Q1 = Q
Q2 = Q

Figure 5.6: Normalized difference between the key rate Ik,Qmax achieved using Q1 = Q2 =
Qmax and the key rate Ik,Q obtained when sweeping Q1 or Q2 (or both) at an SNR of 5 dB.

5.7 Chapter Summary

This chapter applies the optimal beamformer channel estimation technique for secret

key establishment from Chapter 3 to beamforming arrays with elements defined by arbitrary

current distributions represented by an expansion using Fourier basis functions. The optimal

channel estimation scheme upper bounds the key rate achievable with any square-integrable

current distribution, and the key rate achieved with the basis function expansion converges

as the number of basis functions becomes large. This upper limit, referred to as the key rate

spatial bound, serves as a number against which the performance of practical arrays can be

compared. Simulations demonstrate the numerical convergence properties of the algorithm

and illustrate key behaviors of the key rate spatial bound in practical channels.
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Chapter 6

Improved Channel Estimation Resource Allocation for MIMO Sys-
tems

The existence of an optimal strategy for beamformer channel probing and the corre-

sponding key rate increases raise a question of whether similar results can be obtained when

probing with MIMO systems. In reformulating the problem to account for the enhanced

capabilities in MIMO systems, our work to date has been unable to define a globally optimal

MIMO channel probing strategy. Instead we propose an iterative technique that determines

an optimized allocation of energy used for each transmission in the channel estimation pro-

cess. Numerical simulations are used to explore the convergence properties of the iterative

algorithm as well as the impact of different system characteristics such as array size, signal-

to-noise ratio (SNR), and propagation characteristics on the achieved key rate. In all cases,

the key rate achieved using the algorithm is compared to that obtained when the energy is

equally allocated to estimation of all channel dimensions. The results show that at low SNR,

the proposed channel estimation approach provides dramatic improvement in the achieved

key rate. However as SNR becomes large, the performance of the proposed algorithm de-

grades relative to that achieved using equal allocation. This is most pronounced in a Ricean

propagation environment where equal allocation outperforms the iterative optimization by

a small margin at high SNR.

6.1 Channel Estimation

6.1.1 System Model

With the receiving nodes in the system under consideration capable of estimating

multiple modes simultaneously, we are required to carefully redefine how each node estimates

each element of the channel response vector. As before, Alice’s and Bob’s arrays consist of
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Figure 6.1: System diagram showing Alice transmitting the vector anxa,n from her Na anten-
nas and Bob applying the beamforming matrix B to the received signal to produce Nb channel
coefficient estimates ŵb,mn for 1 ≤ m ≤ Nb.

Na and Nb radiating elements, respectively. Suppose that Alice transmits the Na×Na matrix

AXa to Bob, where A is a unitary matrix with nth column an, as depicted in Fig. 6.0. The

diagonal matrix Xa is real with nth diagonal element xa,n =
√
pa,n, where pa,n represents

the energy allocated to transmission of vector an. After receiving the nth transmission, Bob

applies a set of weighting vectors represented by the Nb × Nb matrix B/xa,n, where B is

a unitary matrix with mth column bm. We refer to A and B as beamformer matrices and

their column vectors as beamformers.

Let H represent the Nb ×Na matrix of narrow band channel coefficients between the

elements of the two arrays. Application of the mth receive beamformer to the received signal

for the nth transmit beamformer leads to the result

ŵb,mn = bT
mHan +

1

xa,n
bT
mνb,n (6.1)

where {·}T is a transpose. The vector νb,n represents zero-mean Gaussian noise with covari-

ance σ2
bI, where I is the identity matrix, observed during reception of the nth transmission.

If we let the NaNb × 1 vector h represent H stacked columnwise, then the received signal
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can be expressed as

ŵb,mn =
(
aT
n ⊗ bT

m

)
h+

1

xa,n
ηb,mn (6.2)

where ⊗ indicates a Kronecker product and ηb,mn = bT
mνb,n. Arranging the coefficients ŵb,mn

as well as the noise ηb,mn into column vectors leads to

ŵb =
(
AT ⊗BT

)
h+

(
X−1

a ⊗ I
)
ηb (6.3)

where because B is unitary, the zero-mean noise vector ηb has covariance σ2
bI. When Bob

transmits to Alice, he does so using the beamformers B and Alice receives with the beam-

formers A. Application of an analysis similar to that shown above for transmission from

Alice to Bob and ensuring that the ordering of Alice’s estimates of the channel response

vector matches that of Bob’s leads to Alice’s estimate

ŵa =
(
AT ⊗BT

)
h+

(
I⊗X−1

b

)
ηa (6.4)

where ηa is zero-mean estimation error with covariance σ2
aI.

We pause here to emphasize a subtle complexity associated with MIMO channel

estimation. Suppose that we wish to directly estimate the channel coefficients h by letting

A = I and B = I. When Alice transmits a single vector (corresponding here to excitation

from a single antenna element), Bob is able to estimate a column of the channel matrix H. In

contrast, when Bob transmits a vector to Alice, Alice is able to estimate a row of the channel

matrix. Unless Xa and Xb are scaled identity matrices, the energy allocated to enable Bob’s

estimate of a specific channel coefficient (element of H) likely differs from that allocated to

enable Alice’s estimate of that same coefficient. In other words, the accuracy of Alice’s and

Bob’s estimates of each channel coefficient will differ. This asymmetry is represented by the

different matrix forms of the noise vectors in (6.3) and (6.4).

6.1.2 Key Rate

The key rate, which represents the maximum number of key bits that can be generated

when Alice and Bob respectively possess the estimates ŵa and ŵb, is computed from the mu-
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tual information between ŵa and ŵb. Assuming that the elements of the channel coefficient

matrix H are zero-mean complex Gaussian random variables, computation of the mutual

information requires construction of the covariance of the channel response estimates [16].

Let R = E
{
hh†} represent the covariance of the channel coefficients and V = A∗ ⊗ B∗.

Relevant covariance matrices are then constructed using

Ŵaa = E
{
ŵaŵ

†
a

}
= V†RV +Υa = W +Υa, (6.5)

Ŵbb = E
{
ŵbŵ

†
b

}
= W +Υb, (6.6)

Ŵab = E
{
ŵaŵ

†
b

}
= W = Ŵba (6.7)

where W = E
{
ww†} and

Υa = E
{
(I⊗X−1

b )ηaη
†
a(I⊗X−1

b )†
}

(6.8)

= σ2
a(I⊗P−1

b ), (6.9)

Υb = σ2
b(P

−1
a ⊗ I) (6.10)

with Pξ = XξX
†
ξ, ξ ∈ [a, b].

Substituting the expressions for Ŵaa and Ŵbb into (2.22) yield the key rate expression

Ik = − log2
∣∣I−W (W +Υa)

−1 W (W +Υb)
−1
∣∣ . (6.11)

Note that this equation is identical to the key rate expression in (3.6) but the structure of

W, Υa and Υb have changed to account for the parallel channel estimates that can be made

by a MIMO system.

6.1.3 Beamformer Matrices

Because W depends on the channel estimation beamformer matrices A and B and

because Υa and Υb depend on the energy allocated to transmission of each beamforming

vector through the matrices Pa and Pb, the key rate in (6.11) directly depends on these

channel estimation quantities. The objective of this chapter is to determine the beamformer
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matrices and energy allocations that maximize the key rate when the total energy used for

channel estimation is constrained.

When the transmitter and receiver are constrained to use beamforming for communi-

cation rather than full MIMO processing, the beamforming work in Chapter 3 demonstrated

that the optimal choice for the beamforming vectors are the eigenvectors of the covariance

matrix R. Let R = UΛU† represent the eigenvalue decomposition of R, where U is the

unitary matrix of eigenvectors and Λ is the diagonal matrix of real eigenvalues. If V = U

we obtain W = Λ, which is diagonal. Since Υa and Υb are also diagonal, this will diagonal-

ize the matrix inside the determinant in (6.11) and provide a result that is dependent only

on the eigenvalues of R along with the noise variances and the channel estimation energy

allocations.

However, our formulation requires that V = A∗ ⊗B∗, meaning that the eigenvectors

of R must have this Kronecker structure. If we apply the common assumption that the

full covariance can be expressed as R = Ra ⊗ Rb where Ra and Rb represent one-sided

covariance matrices observed at Alice and Bob, respectively [41], then we have

U = Ua ⊗Ub, (6.12)

Λ = Λa ⊗Λb (6.13)

where Uξ and Λξ are respectively the eigenvectors and eigenvalues of Rξ. In this case,

choosing A = U∗
a and B = U∗

b achieves V = U = A∗ ⊗B∗.

More generally, real channels do not conform to this separable Kronecker form [42].

However, the Kronecker approximation for beamformed systems demonstrates that if we

construct the one-sided covariance matrices to minimize ‖R−Ra ⊗Rb‖F where ‖·‖F is a

Frobenius norm [43], then the difference between the key rate achieved using the actual

covariance and that obtained using the Kronecker approximation to the covariance is very

small for Rayleigh fading with the errors becoming larger for Ricean fading. In Sec. 6.3.4

we compare the performance of the proposed MIMO algorithm in the presence of both

Ricean and Rayleigh fading. We emphasize that choosing the one-sided covariances in this
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fashion produces a different result from that obtained by estimating the one-sided covariances

directly from the channel coefficients in H.

Under the assumption of separability of the covariance matrix, the key rate in (6.11)

becomes

Ik =

Nb∑
m=1

Na∑
n=1

log2
(ρa,nΛmn + 1)(ρb,mΛmn + 1)

ρa,nΛmn + ρb,mΛmn + 1
(6.14)

where ρa,n = pa,n/σ
2
b, ρb,m = pb,m/σ

2
a, and Λmn = Λa,nΛb,m. The total energy used by each

node to transmit all beamforming vectors is limited to PT according to

Na∑
n=1

pa,n =

Nb∑
m=1

pb,m = PT. (6.15)

Each term in the sum in (6.14) represents the contribution to the key rate associated with

transmission/reception with the beamformers an and bm that have been formed from the

eigenvectors of R. This form explicitly shows that the corresponding eigenvalues of R and

the energy allocated to transmission using these beamformers determine the number of bits

contributed through channel estimation with each beamformer pair.

While diagonalizing the matrix W and achieving the relatively simple result for the

key rate in (6.14) is convenient, this does not prove that deriving the beamformers from the

eigenvectors of the covariance is optimal. Unfortunately, we have been unable to generate a

rigorous proof demonstrating the optimality of this choice for MIMO systems. However, the

fact that this choice can be proven optimal for beamformed systems is a strong motivation

to use this approach here. Furthermore, the results in Section 6.3 demonstrate that this ap-

proach leads to significant increases in the achieved key rate, reinforcing that the technique

has merit. Finally, the eigenvector decomposition identifies the dimensions of R with the

largest possible variance (largest eigenvalues), which means that the largest eigenvalue cor-

responds to the largest variance for any combination of transmit and receive beamformers,

and the second largest eigenvalue corresponds to the largest variance for any beamformers

orthogonal to the first. It is therefore reasonable that we should allocate transmission energy

based on this efficient representation of the variances associated with the different dimensions

of R.
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6.1.4 Equal Energy Allocation

To further reinforce that use of the eigenvectors is a reasonable if not optimal ap-

proach, consider the case where the total energy is evenly allocated to each transmission so

that pa,n = pa = PT/Na and pb,m = pb = PT/Nb, an approach to which we refer as equal

allocation. In this case, Υa = (σ2
a/pb)I and Υb = (σ2

b/pa)I are scaled identity matrices and

the eigenvectors of W can be factored out of the matrix inside the determinant in (6.11).

The resulting key rate reduces to the form in (6.14) with the substitutions pa,n = pa and

pb,m = pb. In other words, we obtain this form for the key rate, that depends only on the

eigenvalues of R and the noise variances at each node, provided only that the chosen beam-

formers are unitary. The fact that only the eigenvalues of R are important suggests that in

the more complicated case where the energies pa,n and pb,m are unequal, the form used in

(6.14) wherein these energies are allocated according to the eigenvalues of R is reasonable.

6.2 Iterative Optimization for Energy Allocation

Our objective is now to identify the values of pa,n and pb,m that maximize the key

rate in (6.14) subject to the total node energy constraint in (6.15). This optimization can

be accomplished using a Lagrange multiplier if the objective function is concave, which is

satisfied if the Hessian of the multivariate function is negative semi-definite. Unfortunately,

the function in (6.14) is not concave for simultaneous optimization of the energy allocations

for both nodes. However, if we fix Bob’s set of energy allocations, then the Hessian of Ik

with respect Alice’s energy allocations is a diagonal matrix with the nth diagonal element

given as

ln 2
∂2Ik
∂ρ2a,n

=

Nb∑
m=1

1

(ρa,n + ρb,m + 1/Λmn)
2

− 1

(ρa,n + 1/Λmn)
2 . (6.16)

Since the denominator of the first term is greater than or equal to the denominator of the

second term, the sum is never positive. Consequently the key rate in (6.14) is a concave

function of Alice’s energy allocation when Bob’s energy allocation is fixed.
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A similar result applies in determining Bob’s energy allocation when Alice’s energy

allocation is fixed, guaranteeing that a Lagrangian multiplier solution will produce the opti-

mal energy allocation at one node when that at the other is fixed. This suggests an iterative

optimization technique where the energy allocation at one node is initialized, and a Lagrange

multiplier optimization is performed at the second node. The energy allocation at the sec-

ond node is then fixed while that at the first node is obtained through optimization. Since

each optimized function is concave, performance is guaranteed to improve (or at least not

degrade) with each iteration.

The optimal energy allocation for Alice given that Bob’s energy allocation is fixed

must satisfy the Lagrange multiplier equation

∂

∂ρa,n

[
Ik +

γ

ln 2

(
PT

σ2
b

−
Na∑
i=1

ρa,i

)]
= 0 (6.17)

for all n, where γ is the Lagrange multiplier and the factor of ln 2 is included for convenience.

This expression simplifies to ∂Ik/∂ρa,n = γ/ ln 2 or

γ =

Nb∑
m=1

1

ρa,n + 1/Λmn

− 1

ρa,n + ρb,m + 1/Λmn

(6.18)

=

Nb∑
m=1

ρb,m
(ρa,n + 1/Λmn)(ρa,n + ρb,m + 1/Λmn)

(6.19)

for all n. Eq. (6.19) makes it clear that since the sum must produce the same value γ for

each value of n, if Λa,r > Λa,s for two different values r and s, then pa,r > pa,s (ρa,r > ρa,s). In

other words, the solution will allocate more energy to transmit beamformer vectors associated

with larger eigenvalues of the covariance. A similar expression to that in (6.18) applies when

solving for Bob’s energy allocations with Alice’s allocations fixed.

Iterative determination of the energy allocations pa,n and pb,m begins with an initial-

ization of pb,m. Then, we apply the Newton-Raphson method [39] to determine the value of

γ that satisfies the energy constraint in (6.15), where at each step of the computation we also

apply the Newton-Raphson method to determine the values of pa,n that satisfy (6.18). Since

the expression for the total energy in (6.15) is not a differentiable function of γ, application of
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Newton-Raphson for determination of γ requires numerical approximation of the derivative.

We next solve the corresponding set of nonlinear equations for pb,m using an identical proce-

dure. This procedure is repeated iteratively until the solutions converge. Let ρ
(υ)
ξ,� represent

the normalized energy allocation for the �th mode of node ξ ∈ [a, b] at the υth iteration and

let C
(υ)
ξ represent the diagonal matrix with �th diagonal element C

(υ)
ξ,� =

{
ρ
(υ+1)
ξ,� − ρ

(υ)
ξ,�

}2

.

Convergence is achieved for the iteration index υ at which

{
tr
[
C(υ)

a

]}1/2
+
{
tr
[
C

(υ)
b

]}1/2

< 10−8 (6.20)

where tr[·] is the trace.

To demonstrate the convergence of the iterative optimization technique, we apply the

algorithm to 500 randomly-realized system descriptions. Specifically, the number of elements

in Alice’s and Bob’s arrays is drawn from a discrete uniform distribution on [2, 9], and the

eigenvalues of the covariance matrices Λa and Λb as well as the total allowed transmission

energy PT are randomly drawn from an exponential distribution with a variance of 2. Bob’s

energy allocation is initialized to transmit all energy for the beamformer associated with the

largest covariance eigenvalue. In all cases, we find that the simulation has converged within

5 iterations. However, we run the simulation for an additional 3 iterations and define the

final achieved key rate as I
(max)
k . Figure 6.1 plots the averaged normalized difference between

I
(max)
k and the key rate I

(υ)
k achieved at the υth iteration as a function of the iteration number.

As can be observed, the iterative algorithm converges quickly.

Our development shows that the cost function for the energy allocation at one node

with that at the other node fixed is concave, meaning that the solution to the Lagrange

multiplier problem represents a global maximum. However, because we iteratively solve this

problem, there is no guarantee that the final solution represents a global maximum of the

joint optimization. Proving global optimality requires either demonstrating existence of a

single local maximum or proving convergence to the global maximum. Because we have not

been able to prove either of these analytically, we resort to numerical analysis to explore this

issue. Specifically, we apply a steepest ascent (gradient search) algorithm to numerically

maximize the mutual information from a number of different initial energy allocations called
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Figure 6.2: Average normalized difference between the key rate at algorithm convergence
and the key rate at the current iteration number as a function of the iteration number for 500
randomly-realized systems.

starting points. Because we know that the energy associated with larger eigenvalues should

be larger than that associated with smaller eigenvalues, the solution space is restricted to

the Cartesian product of an Na + 1 simplex and an Nb + 1 simplex. The vertices of these

simplexes are the points where all probing vectors receiving any energy receive equal energy.

All pairs of vertices from the solution space are used as starting points for the search to

guarantee that the search will approach the maximum from different directions. For over

250,000 randomly generated systems, each steepest ascent search converged to the same

solution as that generated by the iterative allocation scheme for every starting point. This

provides strong evidence that the cost function contains a single global maximum that is

properly identified by the iterative optimization.

6.3 Results

To explore the impact of the preceding developments, we compare the performance

realized with equal energy allocation to that obtained when estimating the channel using
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the eigenvectors of the covariance matrices as the beamformer matrices coupled with the

iterative energy optimization. For these simulations, both Alice and Bob use uniform linear

arrays of vertically oriented dipoles with a total array length of 2λ, where λ is the free space

wavelength. For all simulations, we assume σ2
a = σ2

b = σ2
0 and define the SNR as PT/σ

2
0.

For simplicity, we assume that the propagation is confined to the horizontal plane.

The channel realizations are based on the work in [40] where the channel covariance matrix

is formed directly from the PAS. The PAS description used for Rayleigh propagation is

mathematically defined in Section 3.3 and the PAS description for Ricean propagation is

defined in Section 4.1.1. Unless otherwise specified, each channel realization consists of

Q = 5 multipath clusters and the propagation environment is assumed Rayleigh.

6.3.1 Array Size

We first consider how the number of elements in each array impacts performance by

sweeping the size of Alice’s array over the interval 2 ≤ Na ≤ 10 and leaving Bob’s array fixed

with Nb = 5 elements. Figure 6.2 plots the key rate achieved for equal energy allocation and

for the energy allocation obtained using iterative optimization as a function of Na for three

different values of SNR. These results show that the achieved key rate increases substantially

with SNR for both techniques, although the performance achieved using iterative optimiza-

tion is superior, particularly for larger array sizes. The relative performance is more clearly

observed in Fig. 6.3 which plots the ratio of the key rate achieved with equal allocation (Ik,E)

to that obtained with iterative optimization as a function of SNR for different values of Na.

At an SNR of −10 dB, the iterative optimization produces a key rate that is roughly five

times that achieved using equal energy allocation. As the SNR increases, the relative benefit

of the iterative optimization decreases.

6.3.2 Energy per Key Bit

The key rate, representing the maximum number of bits that can be generated using

reciprocal channel estimation, is a nonlinear function of the total allocated energy. We can

define a measure of efficiency as the energy per key bit generated, which is simply the ratio

of the total energy to the key rate, or PT/Ik. Figure 6.4 plots the normalized energy per bit
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Figure 6.3: Average key rate as a function of Na when Nb = 5 for different values of the SNR
PT/σ

2
0.

(PT/σ
2
0Ik) as a function of SNR for two values of Na when in both cases Nb = 5. This result

shows that allocating either too little or too much energy reduces the energy efficiency of

key bit generation. This is in contrast to the situation in communications where the highest

energy efficiency is achieved using low-rate communication with low signal energy. The

major reason for this difference is that when the SNR is very low, the resulting poor channel

estimates observed at both nodes lead to reduced key generation efficiency, and therefore

there is an optimal SNR in terms of maximizing the efficiency. These results further reinforce

the improvement in performance enabled by the iterative optimization approach that is most

significant at low SNR.

6.3.3 Number of PAS Clusters

Next, we explore the impact of the propagation environment on the performance of

MIMO channel estimation for key establishment. The number of significant eigenvalues of

the covariance, which directly impacts the key rate, is directly tied to the number of clusters

present in the PAS description. Therefore, we set Na = Nb = 5 and sweep the number of
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Figure 6.4: Ratio of the key rate achieved with equal energy allocation (Ik,E) to that achieved
using the iterative optimization for different values of Na when Nb = 5.

clusters over the range 1 ≤ Q ≤ 100. Figure 6.5 plots the key rate achieved by the iterative

optimization and by equal energy allocation as a function of the number of clusters averaged

over 180 channel realizations for two values of the SNR. The relative performance is more

clearly observed in Fig. 6.6 which shows the ratio of the key rates achieved using the two

methods.

For both SNR values, the performance advantage achieved with iterative optimization

decreases as the number of clusters increases. This occurs because the iterative optimization

allocates the energy to accurately estimate the subspace of the channel associated with the

strong covariance eigenvalues, as these are the eigenvalues that contribute most to the key

rate. Equal allocation, on the other hand, evenly spreads the resources to estimation of the

entire channel. However, as the number of clusters increases, an increasing number of eigen-

values become significant, and therefore accurately estimating the entire channel becomes

important. The result is that the iterative optimization equalizes the energy allocated to

probing of each vector, and therefore the result converges to that of equal allocation.
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Figure 6.5: Energy per key bit realized as a function of the total energy allocated to probing
(for fixed noise) for different values of Na when Nb = 5.

One interesting observation from Fig. 6.5 is that at low SNR, the performance de-

grades with the number of clusters while at higher SNR, an opposite trend is observed.

This behavior stems from our normalization on the cluster amplitudes βq which makes it so

that as the number of clusters increases, the strength of the dominant scatterers decreases.

Mathematically this translates to the energy represented in the dominant eigenvalues for

small values of Q being spread over a larger number of weaker eigenvalues as Q increases.

The iterative technique at low SNR exploits these large eigenvalues created by the dominant

clusters to produce a large key rate. As the number of clusters grows, however, at low SNR

the scheme does not have the energy to properly exploit a large number of similarly-valued

eigenvalues, and the key rate therefore decreases.

6.3.4 Line of Sight Propagation

In Chapter 4, simulation results show that when a line of sight component is present,

the performance of the Kronecker approximation to OSEA is degraded. With that same

approximation applied in the iteratively optimized MIMO probing strategy, it is important
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Figure 6.6: Key rate as a function of the number of PAS clusters for two different SNR values
when Na = Nb = 5.

to understand how well the iteratively optimized energy allocation performs with Ricean

propagation. This analysis is more difficult than in the beamforming case because our

work has not generated a bound on the MIMO key rate against which performance can be

measured.

To understand the effects of LOS propagation, Fig. 6.7 plots the performance of equal

allocation relative to that of the iterative algorithm as a function of SNR for several values

of the Ricean K-factor. At low SNR, we see that for all propagation descriptions, iterative

optimization outperforms equal allocation. As SNR increases however, the performance ad-

vantage of the iterative algorithm fades. Finally, when SNR is large and a LOS component

is present, the performance of equal allocation eclipses that achieved by the iterative opti-

mization by as much as 8%. When no LOS component is present, the iterative optimization

outperforms equal allocation, although the relative difference becomes very small.

For OSEA, the reduced performance observed for the Kronecker approximation in

the presence of LOS propagation leads to an alternative energy allocation strategy that

isolates the LOS component of the correlation matrix and then allocates energy to that
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Figure 6.7: Relative key rate as a function of the number of PAS clusters for two different
SNR values when Na = Nb = 5.

component as a separate channel. This is possible with beamformer probing because a

practical probing strategy must only be able to separate each composite probing vector

into Alice and Bob’s beamformer weightings. In essence, each probing vector must be the

Kronecker product of two beamformer weightings. The Kronecker approximation in the

iterative MIMO probing strategy relies on the fact that the entire covariance matrix is the

Kronecker product of two separate matrices in order to form both the energy allocation

and the probing vectors. This is why it is possible to find a bounding key rate with OSEA

when no approximation is made while the approximation must be made in order to find the

performance of the iteratively optimized algorithm. With this more restrictive limitation,

the addition of an isolated probing vector corresponding to line of sight propagation cannot

be integrated into the required Kronecker structure. Consequently, the degradation observed

with LOS propagation at high SNR is an algorithm limitation which should be considered

when adopting the iterative strategy for operation at high SNR when a LOS signal path may

be present.
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Figure 6.8: The performance of the iterative optimization technique relative to equal alloca-
tion for Ricean and Rayleigh propagation when Na = Nb = 5.

With these results demonstrating that equal allocation outperforms the iterative op-

timization with the Kronecker approximation under specific conditions, it is important to

understand that the optimality of eigenvector probing with a MIMO system having Kro-

necker structured covariance matrix is a separate issue from the validity of the Kronecker

approximation to an arbitrary matrix when implementing our proposed MIMO probing strat-

egy. This subtlety is important when interpreting the results in this section which primarily

illustrate the performance as the Kronecker approximation and the associated channel sep-

arability break down due to presence of a LOS signal path.

6.4 Chapter Summary

This chapter provides a strategy that increases the achievable number of key bits

established by a MIMO system using reciprocal channel estimation. The algorithm uses the

eigenvectors of the transmit and receive covariance matrices as beamforming vectors and

then uses an optimization to determine the energy allocated to transmission of each vector.

The development shows that the cost function for the optimal energy at one node with that
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at the other node fixed is concave and uses this notion to implement an iterative optimization

strategy, with numerical analysis providing strong evidence that the optimization converges

to the single global optimum solution. Simulation results using the technique show significant

increases in the achieved key rate at low SNR and further explore the relationship between

the minimum energy per key bit and the total available energy for traditional and iteratively

optimized energy allocations. Additional results explore the utility of the proposed algorithm

with different propagation environment characteristics.
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Chapter 7

Conclusion

This dissertation provides new strategies for optimally probing a wireless channel

with multiple antenna systems to maximize the key rate. For these systems, certain antenna

excitations are more efficient than others at coupling energy between the transmitting and

receiving nodes. For MIMO and beamforming systems, the proposed probing strategies

preferentially allocate energy to the more efficient excitations at the expense of the less

efficient excitations.

For beamforming systems, Chapter 3 develops a theoretically optimal probing strat-

egy called OSEA that upper bounds the key rate achievable by any set of beamformer

weightings satisfying a given energy constraint. This technique solves for the optimal com-

posite probing vectors that encapsulate the beamformer weightings applied at each node.

The optimal composite probing vectors are the eigenvectors of the spatial covariance matrix,

and the energy allocated to each is chosen from one of a few locally optimal energy allocation

configurations. To implement OSEA in practice requires converting the composite probing

vectors back into beamformer weightings. This cannot be done directly, and so therefore

propose a physically realizable modification to OSEA based on a Kronecker approximation

to the spatial covariance matrix. Simulations demonstrate the utility of OSEA and the

Kronecker approximation when compared to traditional probing strategies.

In Chapter 4, simulations are used to evaluate the performance of OSEA for a variety

of propagation environment descriptions. These results show that the performance of the

Kronecker approximation to OSEA degrades when a line of sight propagation path is present.

This shortcoming is addressed with a modification to the Kronecker approximation, which

separately accounts for the effects of the line of sight path. Extensive results compare

the modified Kronecker approximation, the original Kronecker approximation, traditional
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probing, and OSEA. These results demonstrate that the modified algorithm performs well

in all propagation environments.

In essence the OSEA probing strategy bounds the key rate achievable when probing

the propagation channel connecting two arrays. This leaves open a question of how well

Alice and Bob’s arrays do at extracting all of the information available in the connecting

propagation environment. Constraining the physical dimensions of the the antenna arrays,

the work in Chapter 5 answers this question by applying OSEA to a finite vector current

Fourier basis function expansion of the aperture volume. As the number of basis functions

included in the expansion becomes large, the OSEA key rate of the expansion converges to

a key rate spatial bound. We prove that the key rate spatial bound upper bounds the key

rate achievable by any other antenna arrays within the same volume that satisfy a common

energy constraint. Simulation results explore the effect of truncating the number of basis

functions and the effect of optimizing with respect to an alternative energy constraint.

Chapter 6 defines a sophisticated resource allocation strategy for MIMO probing. The

proposed technique requires a Kronecker approximation to the spatial covariance matrix to

determine the energy allocation strategy. The energy allocation is computed through an

iterative technique that uses concave maximization to optimize Alice’s energy allocation

while Bob’s energy allocation is fixed. A similar procedure is then used to optimize Bob’s

energy allocation with Alice’s allocation fixed. This process is iterated until the energy

allocations at both nodes converge. The convergence of the algorithm is analyzed as well as

the performance as a function of several relevant system parameters.

For the proposed beamforming and MIMO probing strategies, results demonstrate

that the relative performance improvement is greatest at low SNR. In the beamforming

case, OSEA produces a twenty fold improvement in key rate over traditional probing for

very low SNR. As SNR increases, the advantage decreases so that the difference between

the key rate achieved using OSEA and that obtained using traditional probing is less than

10% at high SNR for the array parameters simulated. For the MIMO case, the key rate

achieved by iterative optimization is more than five times larger than that obtained using

traditional probing at low SNR. As the SNR increases, this difference decays to zero when

no line of sight signal path is present. For MIMO probing at high SNR when a line of sight
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path is present, the results demonstrate that traditional probing can outperform the iterative

technique by as much as 8%.

7.1 Future Work

The work presented here is a first step toward understanding how to better use the

resources available to a multiple antenna system to maximize the key rate. This first step

leaves open several possible directions for future research related to optimal multiple antenna

channel probing.

1. The work in this dissertation considers how MIMO or beamforming systems should

probe a channel with spatial correlation between antenna elements. In real systems,

the channel response is correlated in both time and space. While OSEA applied to

the full spatial and temporal correlation matrix upper bounds the key rate that can be

achieved by a beamforming system, the practical beamformer implementations such

as the Kronecker approximation would not directly extend to this more general case.

The iteratively optimized MIMO probing strategy would also require significant modi-

fication. One thing that might be addressed by a new probing strategy accounting for

spatial and temporal correlation is the rate at which different subspaces decorrelate

and if the response between some antenna excitations should be probed more regularly

than the response between others.

2. One key limitation of the probing strategies we propose is that each is computed using

the full spatial covariance matrix. In practice each node’s estimate of the spatial

covariance matrix is produced using actual measurements of the channel response. In

other words, probing the channel is required to find the optimal way to probe the

channel. A next step in future research would be defining a strategy for increased key

rate that does not require an estimate of the full spatial covariance matrix.

3. The work in beamforming arrays is a significant theoretical contribution, but the im-

plications are limited by the cost and complexity of beamforming systems. Antenna

pattern reconfigurability is more easily achieved using parasitic array elements with
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switchable loads. Because the load does not directly govern the current on each el-

ement, arbitrary currents cannot be achieved. The optimality of the OSEA solution

is provable because the optimal choice of currents diagonalizes the covariance matrix,

a result that is unachievable with the parasitic loads. This fundamental modification

makes it nearly impossible to find a tight upper bound on key rate for parasitic arrays.

Using insights gained from OSEA, it may be possible to determine a practical probing

scheme that performs well over a range of parameters.

4. The results presented in this dissertation are entirely based on simulation. Previous

work in [15] demonstrates that it is possible to use reciprocal estimates of the chan-

nel response to generate key bits. Implementing the Kronecker approximation for

beamformer channel probing or the iterative optimization for the MIMO case would

provide insight into each algorithm’s utility in practice and help to uncover additional

difficulties associated with practical implementation.
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