A fast, integrated model to explore multiple futures and pathways for the Bangladesh Delta

Bhuiya Md Tamim Al Hossain
Utrecht University, cetamim@gmail.com

Marjolijn Haasnoot
Delft University of Technology, marjolijn.haasnoot@deltas.nl

Hans Middelkoop
Utrecht University, h.middelkoop@uu.nl

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Hossain, Bhuiya Md Tamim Al; Haasnoot, Marjolijn; and Middelkoop, Hans, 'A fast, integrated model to explore multiple futures and pathways for the Bangladesh Delta' (2018). International Congress on Environmental Modelling and Software. 2.
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-F/2
A fast, integrated model to explore multiple futures and pathways for the Bangladesh Delta

Bhuiya Md. Tamim Al Hossaina, Marjolijn Haasnootb and Hans Middelkoopc

a Department of Physical Geography, Utrecht University, Utrecht, the Netherlands and Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh (cemtamim@gmail.com, b.tamimalhossain@uu.nl)

b Deltares and Faculty of Technology, Policy and Management, Delft University of Technology, Delft, the Netherlands (marjolijn.haasnoot@deltares.nl)

c Department of Physical Geography, Utrecht University, Utrecht, the Netherlands (h.middelkoop@uu.nl)

Abstract: Bangladesh is one of the largest active deltas in the world, heavily dependent on the rivers and water resources for agriculture and other economic activities. Currently, the country is under threat from growing numbers of natural hazards and uncertainties due to climate change, sea level rise, population growth and socio-economic development. Bangladesh has recently formulated the Bangladesh Delta Plan 2100 focusing on the long term adaptive planning. To ensure sustainable development under the deep uncertainties, long term adaptive planning is required. Adaptive planning requires that the strategies/ policies are robust and flexible with changing future conditions. To explore different future conditions that may arrive due to certain course of action, a fast, integrated model of the overall deltaic system is required. Fast integrated models can be applied for large number of scenarios and actions over time (pathways) to understand the implications of different policy and measures adopted for delta development under uncertain future conditions. In this paper, a theory motivated metamodel for Bangladesh is presented. It is a simplified and integrated physical process-based dynamic model that can be used to simulate multiple futures over long (100-yr) time periods. For implementation of the model, python and pcraster is being used. The model is expected to provide quick insights of different policy actions/ measures and their implications on the overall system and thus assist in adaptive delta management under deeply uncertain future. The model development is still on-going and it is expected to be available in the future.

Keywords: Deep uncertainty; metamodel; adaptive delta management; pathway exploration.