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Abstract: Urban population growth is expected to continue into the 21st century, bringing about drastic 
changes to urban landscapes across the globe. Our particular focus is to understand and evaluate 
urban growth patterns through parcel splitting in the Oklahoma City Metropolitan Area (OKCMA). To 
this end, we present the background and methodology used to develop the absent land parcel history 
information in the OKCMA using parcel data from the previous two years. OKCMA multiyear parcel data 
does not align spatially due to shifts and distortions. We developed a method to identify parent:child 
parcel relationships using their attribute and geometry information. This method generates two sets of 
indicators by searching the neighbors of each child parcel to find the most likely parent parcel and by 
extracting area portions of intersecting parcels. The algorithm performed well based on our initial test 
results, however, large-scale performance would depend on the quality of the underlying geometry and 
attribute information. We observe that while the current parcel data of OKCMA is useful, it is not 
sufficient to extract an accurate representation of parcel history or provide discussion of suggested data 
management practices. Based on our limited test results, our method successfully provides a historical 
ledger that can be used as a decision making tool for managing and enhancing multiyear parcel 
information. 
 
Keywords: Urban development, parcel level, Oklahoma City, pattern detection   
 
 
1 INTRODUCTION 
 
Urban sprawl (Radeloff, Hammer, and Stewart 2005) and infill development (McConnell and Wiley 
2010; Steinacker 2003) are two main means of population growth in urban environments. This is 
discussed in urbanization literature exploring themes such as smart growth (Susanti et al. 2016; Geller 
2003), compact cities (Dempsey and Jenks 2010; Randolph 2006), and new urbanism (Ellis 2002; 
Trudeau 2013; Talen 2005; Boone et al. 2014). Furthermore, social impacts such as health, crime, and 
culture (Talen 2002; Geller 2003; Cozens 2008; Eid et al. 2008) and efficiency concerns such as those 
of economic, environmental and energy (Marshall 2008; Cervero 2001; McConnell and Wiley 2010) are 
investigated within urban development research.  
 
New development, through sprawl  and infill, is often achieved by splitting existing land parcels to allow 
for more buildings in a smaller area (McConnell and Wiley 2012). Modeling efforts at the local scale are 
important as they address issues and dynamics that cannot be captured with coarse resolution data 
(Irwin, Bell, and Geoghegan 2003; Zhou and Troy 2008; Tepe and Guldmann 2017; Abolhasani et al. 
2016). Operating at the local scale, which can be achieved using high resolution data such as parcel 
data, is crucial to be able to capture urban growth dynamics more accurately. While this level of 
resolution provides a lot of flexibility and power in terms of detailed model representations, it has certain 
limitations and challenges. These include obtaining large and detailed datasets, growing modeling 
complexities, high computational costs, and susceptibility to sensitivity which may result in over-
predictions and under-predictions (Beven and Freer 2001; Zhao et al. 2016).  
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In this study, we develop parent:child relationships of parcels across time by looking at their attribute 
and geometric information. This was done with the ultimate goal of improving understanding of historical 
urban change at the parcel level in the OKCMA. Over time, parcel geometries within the OKCMA have 
been inconsistently maintained and little current attribute information exists to aid in tracking these 
parent:child relationships. Therefore, in order to take on this task, we proposed a method to fully employ 
both the limited attribute and geometric information available. 

 
 
2 MATERIALS AND METHODS 
 
2.1 Study Area 
 
Our study area encompasses Oklahoma, Cleveland and Canadian Counties in the State of Oklahoma, 
in the US (Figure 1). This is the most populous area of the State with a cumulative population of 
1,178,723 and an area of 5,651 km2 (Table 1).  

 
Figure 1. The study area and its location within the state of Oklahoma and the contiguous United 

States 
 

Table 1. Population and area indicators of the counties in the study area. Population estimates and 
projections based on Barker  (2012) 

County Area 
(km2) 

Estimated 
Population 2018 

Density 2018 
(people/km2) 

Projected 
Population 2050 

Density 2050 
(people/km2) 

Oklahoma 1,860   762,218  410  919,584  495  

Cleveland 1,445   286,632  198  418,414  290  

Canadian 2,347   129,873  55  187,385  80  

Total / General 5,651   1,178,723  209  1,525,383  270  

 
The extent of the study area ranges 105 km west to east, and 87 km north to south. While being the 
most populous area in the state, it has a low population density of 209 people/km2 compared to other 
cities such as New York City with 10,892 people/km2 and San Francisco with 7,174 people/km2 (U.S. 
Census Bureau 2016). Oklahoma City spreads over large swaths of land in the form of low density 
housing which indicates sprawl type development as quantified by e.g. Hamidi and Ewing (2014), 
Ewing, Pendall, and Chen (2002) and Laidley (2016). It is plausible to link some of the health and urban 
issues in Oklahoma (Janitz et al. 2016; Tutor and Campbell 2004; Li, Campbell, and Tutor 2004; Weedn 
et al. 2014) and other potential issues to the sprawl type development of Oklahoma City. This is 
supported by extensive studies conducted on impacts of sprawl type development on quality of life, 
environmental impacts and economic costs (Van Holt 2006; Wilson and Chakraborty 2013; Concepción 
et al. 2016).   
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2.2 Data and Study Design 
 
Based on our objective of defining parent:child relationships of parcels over time, we obtained two 
parcel datasets of OKCMA for 2014 and 2015, which included 467,981 and 469,638 parcels, 
respectively. These would then be conceptualized as “one-to-many” relationships. We faced two 
immediate problems. First, these datasets do not have any information to build a ledger that tracks 
parcel splits. A ledger tracks the history of each parcel and records all modifications to it, such as change 
of ownership, boundaries, or splitting. This allows for reconstruction of the parcels at any given date 
using ledger information. To our knowledge, every county in each state maintains their own parcel 
records with no national standards available (Meyer and Jones 2013). Second, the parcels from 
different years do not align spatially. The shifts across years are not uniform and increase or decrease 
across space. 

 
 

 
 

Figure 3. An example of non-uniform parcel shifts between 2014 and 2015. 
 
The existing data has unique Parcel Identification Numbers (PIN) numbers that stayed the same for 
each parcel in both datasets. Split parcels are assigned new PIN numbers. However, this numbering 
system does not reveal which new parcel was split from which parent parcel. Based on the unique PIN 
within the parcel datasets, we first identify new parcels generated in 2015. This is achieved by joining 
the 2014 parcel layer to the 2015 parcel layer, and selecting and exporting records with null PIN values. 
This step identified 4,479 newly generated parcels (by splitting or some other form) in 2015. 
 
2.3 Algorithm 
We developed a method using geometric characteristics of new parcels and existing parcels to identify 
the parent:child relationship. This required identification of the parent parcel and its PIN number within 
the 2014 dataset for each newly generated parcel from the 2015 dataset. We then developed our 
methods based on several assumptions: 

a. Whenever a parcel is split, its existing PIN number is assigned to one of the split parcels (usually 

the largest one), and the other, new parcel(s) is assigned a unique, newly generated PIN 

number. 
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b. Most of the parcels align well spatially. Despite the geometric shifts, visual examination can 

discern which parcels are the same across two datasets.  

c. Aggregate size of children parcels is close to the size of the parent parcel.  

Based on these assumptions, we construct two methods. Both methods generate a test of “parenthood”. 
  
2.3.1 Neighborhood Based Test Method 

We designed this method to identify parent:child parcel relationships. It evaluates the neighborhood in 
the 2015 parcel layer for each new parcel. The logic of this method is that each of the neighbors are 
potentially siblings that were split from a common parent, with the potential sibling sharing the PIN 
number of the parent. A potential sibling is any parcel that shares a boundary with the child parcel. 
 
The following steps are executed: 

a. The area of each potential sibling in the recent date parcel layer is added to the new parcel and 

divided by the area of the potential parent in the older date parcel layer for each neighbor.  

b. The absolute value of the aggregate area is calculated and then divided by parent parcel area 

to calculate ratios. They are added to an array along with the PIN numbers from both datasets. 

The assumption is that the sum area of the new parcel and the real sibling parcel will be close 

to the area of the parent parcel.  

c. The array from step b are then sorted based on the ratios and the two smallest ratios are used 

to calculate two indicators for parenthood tests.  

d. The first indicator is the smallest ratio from step c. The second one is calculated as the 

difference between the smallest ratio and the second smallest ratio (differential indicator). The 

assumption is that the larger the difference is between the fitness of the best and second fitness 

of potential siblings, the higher the confidence regarding the parenthood. 

e. Two indicators from steps d, along with the PIN number of the best fitting potential sibling, and 

the number of neighbors (potential siblings) are added to the layer as new attributes in the new 

parcel layer. 

 
2.3.2 Intersection Based Parenthood Test Method 

This method uses union information of parcels from two different dates. As input information, we first 
conduct a union operation of the two parcel layers, and then dissolve it using the unique id combinations 
from the two layers.  The following steps are executed: 

a. We store the area of the child parcel in a variable for each new parcel. 

b. For each union combination of the new parcel PIN with old parcel PIN, we extract the old PIN 

number and the area. If there is no underlying old parcel data, that means it is empty, and we 

call it “EMPTYAREA” 

c. We divide the area of the combination with the new parcel area, and store it in an array. 

d. We sort the array and find the largest intersection area along with the old parcels PIN number. 

If there is no associated PIN number, it is called “EMPTYAREA”. 

 
3 RESULTS, LIMITATIONS AND DISCUSSIONS 

We initially evaluate and assess the results using face validity testing to identify instances of successful 
and unsuccessful detections. The neighborhood based method yielded results with mixed success. An 
example for a successful match is illustrated in Figure 3(a), with the new parcel highlighted. The parcel 
to its right is found to be the sibling parcel, which inherited the parent parcel’s PIN. In this particular 
case, the first indicator generated is 0.999995, which is the aggregate area of two sibling parcels to the 
area of the parent parcel. The second indicator (differential) is 0.551038, which indicates how far the 
second closest match is from the parent parcel. These indicators can be interpreted as signifying a very 
good match since the first match is close to 1 and the second best match for sibling has a less successful 
match rate, thereby revealing unambiguity. 
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Figure 3. Four scenarios that highlight parent parcel detection using the neighborhood based method. 

(a) exemplifies an unambiguous detection; (b) illustrates ambiguous detection; (c) and (d) 
demonstrate incorrect detections 

 
This can be contrasted with another example illustrated in Figure 3(b). The large parcel above was split 
into two, and the highlighted parcel was assigned a new PIN and therefore identified as a new parcel. 
The indicators in this case are 1.000000 and 0.023625 for the two measures respectively. The very 
small value of the differential indicator suggests that the second potential sibling may have inherited the 
parent’s PIN as well. The potential for confusion exists due to the regularity of parcels in this particular 
area. It is plausible to infer that a larger parcel was first split by the bottom third in a prior year, and then 
by the second third eventually. Since we have only two datasets, and no prior ones, we cannot verify 
this. Figure 3(c) illustrates another common problem with the parcel files. In some situations, a 
neighboring parcel is so large, that the relatively small sized child parcel appears to have split from this 
very large neighboring parcel.  
 
Another frequently observed problem was the generation of new parcels, which technically preexisted, 
but were added in order to fix or complete the parcel layer. This often happened for publicly owned 
areas, such as highways or railways, with parcels not existing in the 2014 dataset. We illustrate this 
issue with Figure 3(d), which shows a new state-owned highway parcel that had been added in 2015. 
There is no corresponding record from 2014, and the underlying geometry in the prior year is empty. 
However, this process did not enter all the missing parcels. As can be deduced from the Figure 3(d), 
the road parcels to the southwest of the new parcel in the center are still nonexistent and empty in 2014. 
This situation causes the algorithm to pick a wrong parent parcel from neighboring parcels instead of 
concluding that it was parentless and is a new parcel. This final type of problem prompted us to add the 
second method to distinguish new parcels (Section 2.3.2). 
 
The second method, or the intersection based method, was developed due to low success rates and 

yielded results with better success. It automatically identified that 3,436 parcels out of 4,479 parcels 

were parcels that were created on empty area and are not children of previous parcels. This helped 

with excluding these parcels from the new parcel set. Using attribute queries and face validity testing 

of the output from the two methods, we were able to identify additional issues with the data. The first 

one is entry of incorrect PIN Numbers. This occurs when a parcel does not change, but the operator 

puts the wrong PIN number in a more recent year. The second issue was merging of multiple 2014 

parcels into a single parcel in the 2015 dataset.  

With the combination of both methods, we identified 884 parcels that our algorithmic approach identified 
as split from parent parcels. As we are interested in shape characteristics and relative positions of split 
parcels across the urban space, we generated some basic descriptive statistics of children parcels as 
shown in Table 2. 
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Table 2. Statistics regarding the children parcel identified by the algorithm in meter squares and meters 

 Area 
Distance to 

Primary Roads 
Distance to 

Primary Rivers 
Distance to 
Pop Center 

Distance to 
Large Lakes 

Minimum 19.3  0.0 0.0 0.0  175.5  

Q1 654.9  418.2  1,490.4  401.2  5,175.1  

Median  1,250.2  1,030.4  3,268.4  810.4  8,380.9  

Q3  4,392.1  1,855.2  6,068.8  2,604.7  11,848.9  

Max 873,554.6  10,794.5  16,846.3  25,536.4  46,796.8  

Standard Dev.  61,588.6  1,910.8  3,608.6  4,827.0  6,084.0  
 
Table 2 shows that area statistics of children parcels show high levels of variance, potentially due to 
irregularities in the data. It demonstrates that the distance to primary roads and population centers are 
relatively smaller, making those two factors the primary reason for splitting new parcels. Proximity to 
primary rivers and large lakes are comparatively high, implying lower impacts of those two factors.  
 
Finally, we take a random sample of 20 children parcels, and we manually test if the algorithm identified 
the correct parent. Using face validity testing, we found that all 20 had correct parent parcel PINs 
assigned to them. Manual evaluation requirement is the primary limitation of this study. While the test 
results were satisfactory in the random test data, more rigorous and extensive tests should be 
conducted to further test the rigor of the methods and potential shortcomings. We believe the rate of 
success of our algorithm would vary depending on each state and region since currently there are not 
well established standards for such record keeping. 
 
We suggest the following practices to take place: (a) Currently there are spatial gaps in the parcel data, 
which usually are observed in public land. Initially, such gaps should be completed; (b) We observed 
that the PIN numbers are occasionally mistyped across the years. Similarly, there is also use of non-
unique identifiers in the 2015 dataset which limits the use of the data. We suggest use of enterprise 
geodatabases and using field specifications to make sure such fields are unique, and in a certain format; 
(c) At least in the case of Oklahoma City, the geometry of parcels seems to change based on the year. 
It would help not only for the purposes of urban history analyses, but also for other areal analyses to 
maintain the geometry so that the results are accurate and consistent; (d) All updates (i.e. splits, 
unifications) to the data should be made to a single parcel dataset, which should be archived regularly 
(i.e. monthly). This approach would ensure persistent identifiers and geometries; (e) A changes table 
which records attribute and geometry changes to the parcels along with descriptions and dates of 
changes should be maintained. Using the latest single version of the parcels layer and this changes 
table, one would be able to reconstruct a parcels layer of any date. This process can be facilitated and 
automated by the use of an enterprise geodatabase from a platform such as ESRI, which would have 
the “editor tracking” option to keep record of all geometrical and attribute changes to each feature or 
record. 
 
4 CONCLUSIONS 
 
We implement and test an automated approach to detect modifications to parcels. Our algorithm is 
successful in extracting the information required. To succeed, we use both geometric and attribute 
information in parcel datasets of two distinct years. We conclude that while we were able to extract 
sufficiently useful information for our future modeling work for the OKCMA area, the underlying data is 
not suitable to extract the splitting history of parcels for record keeping purposes. We learn that there 
are data issues and exceptions across the parcel datasets that are easily revealed by developing and 
implementing our algorithm. We finally conclude that such automated approaches, potentially with 
additional methods that further utilize the attribute and geometric information, can be used to reveal 
missing and incorrect data and facilitate improving parcel records to increase the parcel stewardship 
maturity. 
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