Evaluating uncertainty in stormwater control measures (SCMs) using the EPA Stormwater Management Model linked with Markov Chain Monte Carlo uncertainty technique

Tyler Dell
Colorado State University - Fort Collins, tyler.dell@colostate.edu

Alfy Joseph George
Colorado State University - Fort Collins, alfy.joseph.george@colostate.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Evaluating uncertainty in stormwater control measures (SCMs) using the EPA Stormwater Management Model (SWMM) linked with Markov Chain Monte Carlo uncertainty technique

Alfy Joseph-GeorgeA, Tyler DellB, and Dr. Sybil Sharvelle Ph.D.C

AColorado State University (alfy.joseph_george@colostate.edu)
BColorado State University (tyler.dell@colostate.edu)
CColorado State University (sybil.sharvelle@colostate.edu)

Abstract: Stormwater Control Measures (SCMs) are commonly used to mitigate the effects of urban development on floods and water quality. SCMs have been shown to reduce stormwater volume and peak discharge from impervious areas, and through using natural processes, improve the water quality. With increasing adoption across the U.S. due largely to flood control regulations, SCMs are installed in most newly developed or redeveloped areas. Simultaneously, since the promulgation of the total maximum daily loads (TMDLs) program municipalities seek to prevent stormwater pollution to the nation's water bodies through implementation of SCMs. This study aims to investigate the effectiveness of SCMs for simultaneous flood and water control purposes. Specifically, we examine the role of modeling uncertainties on the estimated effects of SCMs. Statistically rigorous methods were used to propagate modeling uncertainties forward into the design of practices. The Storm Water Management Model (SWMM) was linked with a Markov Chain Monte Carlo (MCMC) uncertainty analysis technique to quantify predictive uncertainty in the estimated effectiveness of SCMs from varying types of urban drainage areas. The assessment was conducted for eight commonly used SCMs to inform design guidelines. The effectiveness of practices, modeling uncertainties, and the effects of climate change were carefully examined and synthesized using robust system reliability and resilience metrics.

Keywords: Stormwater; SWMM; Uncertainty; Performance