Jun 27th, 2:00 PM - 3:20 PM

A Web-Based Tool for GRACE Satellite Data Processing and Visualization

Travis Clinton McStraw
Brigham Young University, travis.mcstraw@gmail.com

Sarva Pulla
NASA, spulla@usra.edu

Norm Jones
Brigham Young University, njones@byu.edu

Steve Evans
Brigham Young University, stevenwevans2@gmail.com

Dan Ames
Brigham Young University, dan.ames@byu.edu

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

McStraw, Travis Clinton; Pulla, Sarva; Jones, Norm; Evans, Steve; Ames, Dan; and Nelson, Jim, "A Web-Based Tool for GRACE Satellite Data Processing and Visualization" (2018). *International Congress on Environmental Modelling and Software*. 83.
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-C/83

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
A Web-Based Tool for GRACE Satellite Data Processing and Visualization

Travis Clinton McStrawa Sarva Pullab, Norm Jonesc, Steve Evansd, Dan Amese, Jim Nelsonf
a: Brigham Young University (travis.mcstraw@gmail.com)
b: NASA (spulla@usra.edu)
c: Brigham Young University (njones@byu.edu)
d: Brigham Young University (stevenweans2@gmail.com)
e: Brigham Young University (dan.ames@byu.edu)
f: Brigham Young University (jimn@byu.edu)

Abstract: Since 2002, NASA’s GRACE Satellite mission has allowed scientists of various disciplines to analyze and map the changes in Earth’s total water storage on a global scale. Although the raw data is available to the public, the process of viewing, manipulating, and analyzing the GRACE data can be tedious and difficult for those without strong technological backgrounds in programming or other related fields. In addition, simply knowing the changes in total water storage in a particular region typically isn’t enough to plan remediation efforts as there is no indication of whether the changes in storage are occurring in the groundwater, surface water, or soil moisture (groundwater being one of the most difficult of these components to estimate). The GRACE Web-based application helps bridge the technical gap for decision makers by providing a user interface to visualize (in both map and time series format), not only the data collected from the GRACE mission, but the individual components of water storage as well. Using the GLDAS Land Surface model, the application allows the user to isolate and identify the changes in surface water and groundwater storage that makeup the total water storage quantities measured by the raw GRACE data. The application also includes the capability to upload a custom shapefile in order to perform a regional analysis of these changes allowing decision makers to aggregate and analyze the change in groundwater, surface water, and total water storage within their own personal regions of interest.

Keywords: GRACE; groundwater; groundwater modeling