Jun 27th, 10:40 AM - 12:00 PM

Using a shared conceptualisation and data platform to facilitate integrated socio-economic-environmental modelling.

Stephen Knox
The University of Manchester, stephen.knox@manchester.ac.uk

Julien Harou
The University of Manchester

Philipp Meier
EAWAG

Jim Yoon
Stanford University

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/44

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Using a shared conceptualisation and data platform to facilitate integrated socio-economic environmental modelling.

Stephen Knoxa, Julien J. Haroua, Philipp Meierb, Jim Yoonc

a School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK, stephen.knox@manchester.ac.uk, julien.harou@manchester.ac.uk

b The Swiss Federal Institute of Aquatic Science and Technology (EAWAG) (philipp@diemeiers.ch)

c Stanford University (jimyoon@gmail.com)

Abstract: Developing, sharing and using models to address socio-environmental problems requires both a common vocabulary and agreement on the scope of the modelled domain. One approach to this is the use of a single, shared conceptual model and a centralised data store where the inputs and outputs of each submodel are stored. For network-based models, the Pynsim python library facilitates this structure by allowing modellers to build a shared network structure using object-oriented design, and allowing submodels models to be ‘plugged-in’ to a Pynsim simulation. Building a shared conceptual model can be difficult if collaborators work remotely or some collaborators are inexperienced in software architecture design. By combining Pynsim with a web-based collaborative tool, some of these difficulties can be addressed. The Hydra Platform is a web-based data management system for network structures and data. Using templates, a shared structure can be developed where all the nodes, links, institutions (groupings of nodes & links) and their associated attributes can be defined. Using this template, a network topology can then be defined and its attributes parameterised. This network acts as the common conceptualisation and as the storage facility for input and output data. Using the a web interface, the template and network can be managed visually and shared visually amongst users, allowing all users to have a visual reference to the shared conceptualisation. Using web requests, a client can extract the network from Hydra Platform and create a Pynsim network, thereby creating an input for the shared simulation. Once complete, results are pushed back to Hydra Platform for analysis either through the web UI’s built-in analysis tools or for download by the collaborators.

Keywords: Network Simulation, Collaboration, Integrated Modelling, Model Coupling