
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2012-05-16

Support Vector Machines for Classification and Imputation Support Vector Machines for Classification and Imputation

Spencer David Rogers
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Statistics and Probability Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Rogers, Spencer David, "Support Vector Machines for Classification and Imputation" (2012). Theses and
Dissertations. 3215.
https://scholarsarchive.byu.edu/etd/3215

This Selected Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsarchive.byu.edu%2Fetd%2F3215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3215?utm_source=scholarsarchive.byu.edu%2Fetd%2F3215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Support Vector Machines for Classification and Imputation

Spencer D. Rogers

A selected project submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

William F. Christensen, Chair
Scott D. Grimshaw

John S. Lawson

Department of Statistics

Brigham Young University

June 2012

Copyright c© 2012 Spencer D. Rogers

All Rights Reserved

ABSTRACT

Support Vector Machines for Classification and Imputation

Spencer D. Rogers
Department of Statistics, BYU

Master of Science

Support vector machines (SVMs) are a powerful tool for classification problems.
SVMs have only been developed in the last 20 years with the availability of cheap and
abundant computing power. SVMs are a non-statistical approach and make no assumptions
about the distribution of the data. Here support vector machines are applied to a classic
data set from the machine learning literature and the out-of-sample misclassification rates
are compared to other classification methods. Finally, an algorithm for using support vector
machines to address the difficulty in imputing missing categorical data is proposed and
its performance is demonstrated under three different scenarios using data from the 1997
National Labor Survey.

Keywords: support vector machines, SVM, imputation, binary classification, handwritten
digit recognition, EM algorithm, NLSY97

ACKNOWLEDGMENTS

I would like to thank everyone who has helped me on this project. Particularly Dr.

Christensen, my advisor, and the other committee members, Dr. Grimshaw and Dr. Lawson,

for their time and input. Finally, I want my wife to know how thankful I am for her putting

up with me during tough weeks and late nights and for encouraging me every step of the

way, I literally could not have done this without her.

CONTENTS

Contents . iv

1 Introduction . 1

2 Technical Background and Literature Review . 2

2.1 Overview . 2

2.2 Foundations of Support Vector Machines . 4

2.3 Generalized Portraits for Linearly Separable Data 4

2.4 Optimal Marginal Classifiers for Nonlinear Classification 6

2.5 Support Vector Machines for Soft-Margin Classification 8

3 Example Using Classic Machine Learning Dataset 10

3.1 Two-Digit Classification . 12

3.2 Ten-Digit Classification . 13

4 Imputation . 16

4.1 Categorical Data Imputation Using SVMs 16

4.2 The SVM Imputation (SVMI) Algorithm . 17

4.3 The NLSY97 Data . 19

4.4 Demonstration of SVMI and the EM Algorithm 21

4.5 Imputation on the Full NLSY97 Data Set . 28

5 Conclusion . 31

Bibliography . 32

iv

Appendices . 35

Appendix A: R Code . 36

A.1 R Code for Zip Code Example . 36

A.2 R Code for Imputation Algorithm . 38

v

chapter 1

INTRODUCTION

In many fields of science there are important questions that involve classifying observations

into one of two categories. Examples in everyday life include a bank deciding whether a

potential customer will default on a loan, a biologist deciding whether a particular gene is

related to cancer, an email program deciding whether to label an incoming email as spam,

or an insurance company deciding whether an individual should be classified as high-risk.

These types of problems are called binary classification problems. Myriad methods have

been devised by statisticians and other researchers to approach these types of problems,

including discriminant function classification, logistic regression, neural networks, regression

trees, and random forests, to name a few.

In this paper another binary classification method will be presented. This method

is called Support Vector Machines (SVMs). First, the method will be motivated and the

details of the SVM classification technique will be presented including a review of the relevant

academic literature. An extended example using a classic data set from the machine learning

literature to compare SVMs to the aforementioned competing methods will demonstrate that

SVMs perform quite well relative to other methods in terms of out-of-sample misclassification

rates.

The final portion of the paper will be devoted to extending SVMs into the realm

of data imputation. Here a new algorithm for imputing missing categorical data will be

proposed and compared to the results obtained by naively applying the EM algorithm.

1

chapter 2

TECHNICAL BACKGROUND AND LITERATURE REVIEW

2.1 Overview

It is important to note that SVMs were developed by computer scientists under the machine

learning paradigm and not by statisticians in a regression or probabilistic paradigm. Thus,

the terminology related to SVMs can sometimes be confusing to statisticians. In this paper

SVMs will be discussed using the terminology of statistics wherever possible instead of

the traditional lexicon of machine learning. The area of machine learning that deals with

questions of classification is called “supervised learning”. Supervised learning refers to the

situation where the researcher fits a model using training data and then tests his or her model

on a test set of data to see how well it does at predicting class membership. In statistics this

is referred to as model fitting and prediction using cross-validation. SVM regression does

exist—the responses are continuous as opposed to categorical—but that type of SVM will

not be addressed in this paper.

In the case of SVMs, the training data will be a set of n points, (yi,xi), where i =

1,...,n. Each yi is a tag that assigns one of two classes to the observation. Each xi is a vector

of p covariates taking values in R that represent different features of the observation. Thus

each of the n observations is a single row of the data matrix that is comprised of p covariates

coupled with a tag indicating which of the two responses that observation corresponds to.

Each observation can be thought of as a point or vector in p space. In order to understand

what the SVM algorithm does to classify observations, let us look at a simple case where

there are only two columns of x. Some fabricated sample data points are plotted in Figure

2.1 below.

2

Figure 2.1: Linearly Separable Data

Although this example is trivial, as these data points are very easily separable into

their respective categories, it demonstrates an important first assumption with SVMs: that

the points are linearly separable by a hyperplane. This assumption will be relaxed later on.

In R2 this separation can be made using a line, as demonstrated above. In higher dimensions

this line becomes a plane or hyperplane. The classification rule is then simply to assign any

future data point to Class 1 if it falls below the hyperplane and to Class 2 if it falls above

the hyperplane. The difficulty then lies in choosing which hyperplane, or decision boundary,

best separates the data into their respective classes such that future observations will be

classified correctly as often as possible. That task is at the heart of SVMs.

3

2.2 Foundations of Support Vector Machines

The first paper to propose a method for linear classification was by R.A. Fisher, who in 1936

proposed the use of the discriminant function, a = S−1pl (x̄1 − x̄2), in order to predict group

membership (Fisher 1936). Then in 1957 Frank Rosenblatt came up with a new idea for

pattern recognition and linear classification that he called the “perceptron” and he published

a book on it in 1962 (Rosenblatt 1962). Rosenblatt’s perceptron laid the groundwork for

neural networks and, later, SVMs. The perceptron was based on the following decision

function:

f(x) =

1, if w · x+ b > 0

0, otherwise.

(2.1)

where w is a vector of weights, w · x is a dot product, and b is a bias term. The algorithm

changes the vector of weights at each iteration until the observations are all classified cor-

rectly. Because this is a linear classifier, if the training data is not linearly separable the

algorithm will fail to converge.

2.3 Generalized Portraits for Linearly Separable Data

Building on the perceptron concept, in 1963 Vladimir Vapnik and A. Lerner proposed an

algorithm for pattern recognition and classification that they referred to as a “generalized

portrait” (Vapnik and Lerner 1963). In their paper they explained that if observations in

the training data are linearly separable then a good classification algorithm would maximize

the margin between the decision boundary and the nearest points of each class. Once the

margins have been maximized they come to rest on (or are supported by) a small subset

of the n observations, hence the phrase support vectors. This concept is demonstrated in

Figure 2.2.

To understand how this margin space is maximized to find an optimal decision func-

tion, some mathematical notation is needed. First we convert the class values of the response,

4

Figure 2.2: Generalized Portrait Algorithm on Linearly Separable Data

y, to numeric values according to the following rule:

yi =

1, if yi ∈ Class 1

−1, if yi ∈ Class 2.

The equation of the decision boundary hyperplane is then given by f(x) ≡ w ·x+b =

0, where w is an orthogonal vector to the hyperplane and b is an offset parameter, note

the similarity to the perceptron algorithm. The decision function will then be represented

as D(xi) = sign(f(xi)). In general there will be infinitely many hyperplanes separating the

data, thus one must maximize this function in order to find the hyperplane with the “fattest”

5

margins. The perpendicular distance between the two margins is given mathematically as

2 × margin = 2(w · w)−1/2. Finally, the optimization problem of finding the maximum

margin can be shown to be equivalent to minimizing 1
2
(w ·w) subject to the constraint that

yi ∗ (w · xi + b) ≥ 1 ∀i. Solving this optimization in its dual form involves the calculation

of the gram matrix, G, which is just the matrix of dot products of all of the xi’s. Although

the details of how this optimization is carried out are important, it is outside the scope of

this paper to present them here. The interested reader can find the details in Boser et al.

(1992); Hamel (2009); Press et al. (2007).

2.4 Optimal Marginal Classifiers for Nonlinear Classification

Although generalized portraits were a powerful new development in classification analysis

they remained largely unused for many years due to the unrealistic assumption that the data

must be linearly separable. Until this assumption was relaxed, SVMs were rather useless in

practice as real data are typically too noisy to be neatly separated by a line.

That was until the early 1990s, when Vladimir Vapnik was working at AT&T Bell

Laboratories on the problem of handwriting identification. He and his collaborators were

working with the U.S. Postal Service to create an algorithm that could identify the zip code

digits on U.S. mail. While working on this problem, Vapnik and his collaborators came up

with an idea they called Optimal Marginal Classifiers (OMC). OMC was the logical extension

to the generalized portrait algorithm in that it allowed for a nonlinear separation boundary

between the classes. In 1992, at a workshop on machine learning, Vapnik presented a paper

along with Bernhard Boser and Isabelle Guyon on OMC (Boser et al. 1992).

The generalization that was made with OMC, in order to allow for nonlinear decision

boundaries, was that the p dimensional covariate vector, xi, can be mapped into a much

higher dimensional space using a kernel function (Aizerman et al. 1964). The resulting

algorithm is quite similar to that described in Section 2.3 except that the dot products in

the gram matrix, xi ·xj, are replaced with a nonlinear kernel function denoted k(xi,xj). The

6

basic idea is that even if the data points are far from being linearly separable in the p space

in which they reside, they can almost always be mapped into a much higher dimensional

space where they can be separated by a linear hyperplane. Even though the classifier is still

a linear hyperplane in this higher dimensional space, it will be nonlinear in the original p

space. The concept is demonstrated in the plot below.

Figure 2.3: Kernel Mapping

Although the implementation of the kernel trick is fairly straight forward, the details

of it are beyond the scope of this paper. The theory surrounding this kernel mapping is

complicated, involving the use of reproducing kernel Hilbert spaces and other topics from

topology; the reader is referred to Boser et al. (1992); Mangasarian (1965); Aronszajn (1950);

Aizerman et al. (1964); and Press et al. (2007) for more details. The most common kernel

functions that are used for SVMs are the linear, polynomial, sigmoid, and Gaussian radial

basis functions. These kernels are easily computable and generalize well to work with al-

most any dataset. It is this kernel trick that gives SVMs their power, bringing them into

mainstream use.

7

2.5 Support Vector Machines for Soft-Margin Classification

Although it allowed for a separating hyperplane to be found for any data set, no matter

the level of noise, the kernel trick had the inevitable effect of over-fitting models to the

training data at the expense of poor out-of-sample performance. In 1995, three years after

his initial paper on optimal marginal classifiers, Vapnik published another paper on the topic

along with Corinna Cortes entitled Support Vector Networks (Cortes and Vapnik 1995). In

this paper Vapnik relaxed the assumption that all the training data necessarily be classified

correctly by the separating hyperplane. This is the point at which he began calling this type

of classifier a support vector machine instead of an optimal margin classifier or generalized

portrait.

In order to allow for misclassification in the model, Vapnik and Cortes introduced a

slack variable, ξi, for each data point (Smith 1968). If the data point is classified correctly by

the hyperplane, then ξi = 0; if it is not, then ξi > 0 in the amount of the discrepancy. Now

the optimization problem also becomes a regularization problem. Here another parameter, λ,

is introduced representing the “cost” trade-off of misclassification. As λ is varied in the range

0 < λ <∞, a trade-off curve is explored. As λ approaches 0 a “wiggly” separation between

classes is formed classifying every data point correctly at the cost of potentially being over-fit.

As λ gets larger a smooth boundary between the two classes is formed allowing outliers, or

otherwise difficult data points, to be misclassified. Finally, it can be shown that optimizing

this problem becomes equivalent to minimizing 1
2
w ·w + λ

∑
i ξi subject to the constraints

that ξi ≥ 0 ∀i and yi ∗ (w · xi) + b) ≥ 1− ξi ∀i. Again, the kernel trick can be used here to

map this problem into a higher dimensional space. In the present vernacular, this type of

SVM, which relaxes the assumption of linear separability, is referred to as a soft-margin SVM

while the former implementation, requiring all the training data to be classified correctly, is

referred to as a hard-margin SVM.

8

Statistical Properties of Soft-Margin Support Vector Machines

In no place have there been any assumptions made regarding statistical distributions. Thus,

it should be clear that the classifications made by an SVM algorithm are not probabilistic in

nature. That is to say, the SVMs do not produce estimates of P (yi = 1|xi), they simply state

whether an observation falls on one side or the other of a decision boundary. That being

said, some efforts have been made in recent years to understand the statistical properties of

SVMs.

In 2004, Wu and his collaborators showed that when certain assumptions are made an

SVM model can indeed yield P (yi = 1|xi) or the posterior probabilities of class membership

(Wu et al. 2004). In 2008, Jiang and his collaborators derived the consistency and asymptotic

normality of the prediction error estimators as well as propose a procedure that allows for

confidence intervals to be obtained on the out-of-sample misclassification rates (Jiang et al.

2008). Also in 2008, Steinwart and Christmann showed the consistency and robustness of

SVMs under certain conditions and derived their learning rates (Steinwart and Christmann

2008).

9

chapter 3

EXAMPLE USING CLASSIC MACHINE LEARNING DATASET

There is a package in R for doing SVMs; the package is titled e1071 and is built upon

an award-winning implementation of SVMs written in C++ called libsvm (Xie 2007).

The data that will be used here to demonstrate support vector machines is the same zip

code data for which SVMs were invented and is a classic data set used in the machine

learning literature. On the website <http://www-stat.stanford.edu/~tibs/ElemStat

Learn/datasets/> there is a dataset called zip.digits that contains two data files: a

training data set and a test data set of handwritten zip code digits scanned from U.S. mail.

The scanned images have automatically been de-slanted and normalized to all be the same

size and orientation. The training and test data contain 7,291 and 2,007 observations re-

spectively. The observations in each dataset are distributed among the digits as follows:

0 1 2 3 4 5 6 7 8 9 Total
Training 1,194 1,005 731 658 652 556 664 645 542 644 7,291
Test 359 264 198 166 200 160 170 147 166 177 2,007

There are 257 columns in the data; the first corresponds to the digit number and the

remaining 256 columns of the data correspond to a measure of darkness of each pixel in a

16×16 grid whose values range from −1 to 1. A value of −1 indicates that there was no

writing found in the pixel and a value of 1 indicates that the given pixel was completely

colored in. By transforming the pixel values to a scale from 0 to 1, they can be used as

gray-scale values in order to plot the handwritten digit on a grid. To give the reader an idea

of the layout of the data, a plot of a single observation is given in Figure 3.1 below and the

average values at each pixel for each digit in the training data are plotted in Figure 3.2.

10

Figure 3.1: First Observation in Training Data Set

Figure 3.2: Average Grayscale Values for Each Digit

11

Reassuringly the average values of the ten digits resemble the ten digits 0–9. Since

the SVM algorithm was designed for binary classification problems, it will be applied first to

the problem of tellings fours and nines apart. The numbers four and nine are purposefully

chosen here because these two digits share the most pen strokes and are heuristically the

most difficult to tell apart. After this is done, the example will be generalized to the true

objective of recognizing any given digit.

3.1 Two-Digit Classification

In order to run the SVM algorithm, one must first decide which kernel function will work well

for the data and then tune the values for the parameters corresponding to that particular

kernel function. The cost parameter λ, which controls the tradeoff between overfit and

underfit, also has to be tuned. In the svm function in R, the user has the following choices

of kernel functions:

Linear = u′ ∗ v

Polynomial = (γ(u′ ∗ v) + β0)
d

Radial Basis (Gaussian) = exp
{
γ(u− v)2

}
Sigmoidal = tanh (γ(u′ ∗ v) + β0)

In the case of the zip code digit data, it has been shown that the Gaussian and

polynomial kernels work well (Christianini and Shawe-Taylor 2000). In order to tune the

parameters of these kernels, the tune.svm function is employed. The way this tuning function

works is that the user first feeds the function vectors of possible parameter values. Then

tune.svm does a greedy search comparing the leave-one-out cross validation error rate of all

possible models of the svm function using each of the possible combinations of parameter

values (Chang and Lin 2011). The user must be careful here as the number of combinations

gets large very quickly. For example, if three parameters are being tuned and the user

provides ten different candidate values for each parameter, the tuner will have to fit 103 =

1000 different models in order to report the best fit!

12

After running the tuner on the four and nine training data, the following parameter

values seemed to work best for each kernel. For the Gaussian kernel (using the notation

from above) γ = 0.003 and λ = 100. For the polynomial kernel γ = 0.004, β0 = 0, d = 4,

and λ = 10. Running the svm algorithm with these kernels and parameter values yielded

the following prediction results:

In-Sample Out-of-Sample
Kernel Misclassification Rate Misclassification Rate

Digit 4
Gaussian 0.000 0.030
Polynomial 0.000 0.020

Digit 9
Gaussian 0.000 0.028
Polynomial 0.000 0.028

Table 3.1: Classification Comparison of Digits 4 and 9

No matter which kernel function is used, the algorithm will mis-classify an observation

about 3% of the time. It is interesting to note that both kernels were able to perfectly

separate the training data, and the classification of digit four improved moving from a

Gaussian kernel to a polynomial kernel but stayed the same for digit nine. Now that it

has been shown that the algorithm works well at telling two digits apart, the real goal of

identifying any given digit is addressed.

3.2 Ten-Digit Classification

It has been made clear that SVMs are used for binary classification problems. In the zip

code data however, the problem is a ten-way classification problem. There have been several

different methods proposed for extending SVMs to multi-class situations, including a “one-

against-one” approach, a “one-against-all” approach, and an approach called DAGSVM. The

svm algorithm in R implements the one-against-one approach because research indicates that

this approach performs as well or better than the other methods in most instances (Hsu and

Lin 2002). The one-against-one method is implemented by breaking the k-way classification

problem down into
(
k
2

)
= k(k−1)

2
binary classification problems. In this example k = 10 so

the algorithm will fit
(
k
2

)
= 45 binary classification models. Once the algorithm has fit the

13

45 models, it uses a voting scheme and assigns the classification tag to an observation based

on which digit it was most often assigned to in the 45 models. In the case of a tie, the

algorithm is less thoughtful and simply assigns the class based on which class appears first

in the array holding the class names (Chang and Lin 2011).

The same process of choosing kernels and tuning parameters was followed for the ten-

way classification as in the two-way classification mentioned previously. For the Gaussian

kernel γ = 0.009 and λ = 100. For the polynomial kernel γ = 0.004, β0 = 0, d = 4, and

λ = 100. After fitting this model, several other competing methods were employed in order

to appreciate how SVMs perform in comparison. The results of svm as well at the other

methods are summarized in the Table 3.2 below. They are placed in order of out-of-sample

misclassification rates, from best to worst.

Table 3.2: Classification Prediction Comparisons

Classification In-Sample Out-of-Sample
Method Error Rate Error Rate
SVM (Polynomial) 0.00014 0.04584
SVM (Gaussian) 0.00014 0.04684
K-Nearest Neighbors (k = 5) 0.02057 0.05531
Random Forests 0.02963 0.06129
Neural Networks 0.00000 0.07225
Discrim Classification (Linear) 0.07800 0.11430
Discrim Classification (Quadratic) 0.03240 0.14310
Discrim Classification (Normal Kernel) 0.00000 0.17890
Discrim Classification (3 Nearest Neighbors) 0.10990 0.22560
Rpart (Regression Tree) 0.23138 0.27504

As shown in the table above, SVMs outperform all competitors in predicting out-

of-sample class membership for this particular data set. As an aside, more time was spent

tuning the parameters of the SVM model than the others, thus k-nearest neighbors, random

forests, and neural networks can all be seen as performing as well or nearly as well as SVMs

on this particular dataset. Interestingly, despite performing best out-of-sample, SVMs do not

have the lowest in-sample misclassification rate, as there is one observation that is failing to

14

fit. Closer examination of this data point reveals one of the strengths of the SVM algorithm.

The observation that the algorithm is failing to classify correctly in the training data is

plotted in Figure 3.3.

Figure 3.3: This observation is coded as a four in the training data but the SVM model
classifies it as a one

The digit above is coded as a four in the training data but it clearly does not resemble

a four. It is reassuring to see that the SVM algorithm does not sacrifice out-of-sample

prediction by trying to overfit this in-sample observation. This demonstrates the value of

relaxing the linear separability assumption and including the slack parameter ξ when fitting

an SVM model.

15

chapter 4

IMPUTATION

4.1 Categorical Data Imputation Using SVMs

An important new area of applicability for SVMs is in the imputation of missing data. Almost

all data sets have missing values, especially social science data and data coming from surveys.

One simplistic way of dealing with the problem of missing data is to delete any observation

with a missing value. The problem with this approach is that even with a modest rate of

missingness, a researcher may end up having to throw away sizable portions of his or her

data, which obviously affects any inferences made using the data. The deletion of missing

data is particularly egregious if the data are not missing-at-random, as the observations being

deleted are systematically different from the complete observations and thus inferences based

on the reduced data set will be necessarily biased.

Several approaches have been taken to impute missing values in order to avoid the

deletion of observations. As imputation is not the core focus of this paper, not all of these

methods will be discussed. Early methods for imputing missing data values included simply

substituting the mean in for the missing value, or the “hot deck” approach where another

observation with similar characteristics is randomly selected to replace the observation with

the missing value. One of the most popular algorithms for imputing missing data is the

expectation maximization (EM) algorithm (Dempster et al. 1977). Although EM is a more

general algorithm, when it is referred to henceforth in this paper it will be understood to be

the method that calculates the maximum likelihood estimator for the missing values using

multivariate regression. One problem with this implementation of the EM algorithm is that

it assumes multivariate normality; it is not intended to impute categorical values (in fact

the algorithm will not even run if the categorical variables are not coded numerically). A

16

method for imputing missing values using SVMs will be proposed and demonstrated in the

following sections.

4.2 The SVM Imputation (SVMI) Algorithm

The idea behind SVMI is fairly simple. SVM models are tuned and fit on each of the

categorical variables in the data set using the observations that do not contain any missing

values. Subsequently, initial guesses are generated for each of the missing values in the entire

data set. Finally, the algorithm then performs SVM prediction for the missing values of the

categorical variables, followed by multivariate regression to impute the missing values of

the continuous variables. This process iterates until some convergence criteria is met. The

algorithm is formally laid out in the boxed figure on the next page. SVMI was written in

the statistical computing package R and the code can be found in the appendix.

In SVMI, convergence is defined as[
n∑

i=1

∑
j∈cat.vars.

I{oldi,j 6=newi,j} +
n∑

i=1

∑
j∈cts.vars.

abs(oldi,j − newi,j)/sj

]
< ε

where oldi,j is the entry in the ith row and the jth column of the data matrix in the previous

iteration, newi,j is the entry in the ith row and the jth column of the data matrix in the

current iteration, and sj is the sample standard deviation of the jth column of the data

matrix in the previous iteration. Convergence is chosen in this way so that the difference in

the non-imputed values will be zero, the penalty for changing the imputation of a categorical

variable is 1, and the penalty for changing the imputation of a continuous value is the scaled

absolute difference between the old value and the new value. The algorithm iterates until

the sum of these penalties falls below some user-defined tolerance level, ε. Since ε will always

be less than one, this ensures that the algorithm will not converge until all of the imputed

categorical values have stopped changing from iteration to iteration.

17

SVM Imputation Algorithm (SVMI)

1. Initialize the algorithm providing the following objects:

a) A data matrix with missing values, preferably with the continuous variables pre-
transformed to normality using Box-Cox transformations (Box and Cox 1964)

b) A list of pre-tuned and fitted SVM models for each of the categorical variables that
contain missing values; the training data for these models are the observations in
the data that contain no missing values

c) A vector indicating the column numbers of the categorical variables

d) A tolerance threshold for convergence and maximum permitted iterations; the
defaults are 1×10−5 and 100, respectively

2. Impute the missing values for any observation that has only one single missing value
on a categorical variable.

3. Fill in all of the remaining missing values with an initial guess; for continuous variables
use the mean. For categorical variables, use the mode.

4. Begin Loop:

1) Cycle through each of the categorical variables column by column imputing the
missing values using the previously fitted SVM models

2) Impute the missing values of the continuous variables using multivariate regression

3) Check for convergence

4) If convergence criteria is met, break from loop; if not, repeat loop

5. Return the complete imputed dataset.

18

4.3 The NLSY97 Data

The data on which SVMI will be demonstrated come from a national longitudinal sur-

vey conducted by the Bureau of Labor Statistics (BLS) and can be obtained at the URL

<http://www.bls.gov/nls/nlsy97.htm>. The data set is called NLSY97 and it is described

on the BLS web page as follows.

“The NLSY97 consists of a nationally representative sample of approximately

9,000 youths who were 12 to 16 years old as of December 31, 1996...The NLSY97

is designed to document the transition from school to work and into adulthood.

It collects extensive information about youths’ labor market behavior and edu-

cational experiences over time...Aside from educational and labor market experi-

ences, the NLSY97 contains detailed information on many other topics. Subject

areas in the questionnaire include: Youths’ relationships with parents, contact

with absent parents, marital and fertility histories, dating, sexual activity, onset

of puberty, training, participation in government assistance programs, expecta-

tions, time use, criminal behavior, and alcohol and drug use.”

There are literally thousands of variables in the NLSY97 survey data, but for this

analysis, only 15 variables will be used. The reason for the limited scope is that this impu-

tation question was motivated by a BYU public policy master’s student who is using these

particular variables to build a logistic regression model for predicting whether or not a youth

will graduate from high school based on a set of covariates.

Of the 9,000 youths initially enrolled in the survey, 8,983 were followed to the end

of the study. Table 4.1 defines the 15 variables used in this analysis and Table 4.2 contains

summary statistics for these variables.

19

Table 4.1: Description of NLSY97 Variables

Variable Description
absent # of days absent during the most recent fall term
tchrgood My teacher is good: 1=strongly agree, 2=agree, 3=disagree, 4=strongly disagree
gender 0 = female, 1 = male
ethnicity 1 = Hispanic, 0 = not Hispanic
race 1=White, 2=Black, 3=Native American, 4=Asian/Pacific Islander, and 5=Other
PTA How often parent participates in PTA: 1 = often, 2 = sometimes, 3 = never
PVolClass How often parent volunteers in class: 1 = often, 2 = sometimes, 3 = never
age Age in years
region 1 = Northeast, 2 = Central, 3 = South, 4 = West
momeduc # of years of education of biological mother
RaceEthn 1 = Black, 2 = Hispanic, 3 = Mixed (non-Hispanic), 4 = non-Black/non-Hispanic
asvab Armed Services Vocational Aptitude Battery math/verbal percentile
hs20 1 if youth graduated high school by age 20, 0 otherwise
FamStruc97 4=Two biol. parents, 3=Two parents, one biol., 2=One biol. parent only, 1=Other
avginc10k Average income of household measured in ten thousand dollars

Table 4.2: Summary Statistics of NLSY97 Variables

Variable Type Min Max Mean Mode # Missing
absent Continuous 0 200 4.89 0 297
tchrgood Categorical 1 4 1.98 2 19
gender Indicator 0 1 0.51 1 0
ethnicity Indicator 0 1 0.21 0 24
race Categorical 1 5 1.81 1 80
PTA Categorical 1 3 2.05 2 1322
PVolClass Categorical 1 3 2.37 3 1322
age Continuous 12 18 14.35 15 0
Region Categorical 1 4 2.64 3 0
momeduc Continuous 1 20 12.44 12 694
RaceEthnicity Categorical 1 4 2.79 4 0
asvab Continuous 0 100 45.31 – 1891
hs20 Indicator 0 1 0.86 1 1422
FamStructure97 Categorical 1 4 3.06 4 31
avginc10k Continuous 0 42.56 5.08 – 289

20

4.4 Demonstration of SVMI and the EM Algorithm

There are 4,979 observations in the NLSY97 data set that contain no missing values. Since

these values are all known, they will be referred to as the test data matrix. Using the data

described in section 4.3, the performance of SVMI, as well as a naive application of the EM

algorithm, will be demonstrated under three different scenarios which will be referred to as

cases A, B, and C, respectively. In case A, values in the test data matrix will be deleted

to mimic the missingness in the full data set. In case B, values will again be deleted in a

way that attempts to recreate the multivariate missingness of the full data but at a much

higher rate. This will be done in order to see how sensitive the algorithm is to higher rates

of missingness. Finally, in case C, values in the test data matrix will be deleted univariately

in order to preserve the column by column rates of missingness in the full data but without

regard for any multivariate relationships in the missingness. In each of these cases, SVMI

and the EM algorithm will be applied, and then the imputed values from the two methods

will be compared to the true values in order to investigate the success of the algorithms in

correctly imputing the missing values.

Case A: Mimic the Missingness of the Full Data

In attempting to mimic the missingness of the full data set, the following method was

used. First a matrix of equal dimension to the full data matrix was created containing a 1

anywhere there was a missing value and 0’s everywhere else. After doing this it was possible

to calculate a correlation matrix of this missing table. This correlation matrix describes

the joint missingness of the various variables of the data. For each row of the test data a

row from this missing matrix was randomly sampled and values were set to missing in the

test data at the same places as the rows sampled from the missing matrix. In this way the

multivariate missingness of the full data was preserved. In the full data set 4,979/8,983 =

55.4% of the rows did not have missing values. In the test data set, after performing this

21

procedure to recreate the missingness of the full data set, 2,775/4,979 = 55.7% of the rows

were complete. To determine whether the multivariate rates of missingness were mimicked

successfully, the correlation matrices of the missing matrix of the full data set as well as

that of the test data set were examined and found to be quite similar. Table 4.3 compares

the column-by-column rates of missingness of the full and test data sets, illustrating their

similarity.

Table 4.3: Missingness in Case A

Rate Missing Rate Missing
Full Data Case A Data

absent 0.0331 0.0337
tchrgood 0.0021 0.0024
gender 0.0000 0.0000
ethnicity 0.0027 0.0014
race 0.0089 0.0121
PTA 0.1472 0.1549
PVolClass 0.1472 0.1547
age 0.0000 0.0000
Region 0.0000 0.0000
momeduc 0.0773 0.0779
RaceEthnicity 0.0000 0.0000
asvab 0.2105 0.2113
hs20 0.1583 0.1497
FamStructure97 0.0035 0.0024
avginc10k 0.0322 0.0299

Once the values are set to missing, it is possible to pass the case A data through

SVMI and verify how well it did at imputing the missing values. Different metrics are used

to assess the performance of the algorithm depending on whether the variable is continuous

or categorical. If the variable is categorical, the metric to assess performance is simply the

number of correctly imputed values divided by the number of values that were imputed.

If the variable is continuous, the metric used is called average scaled error (ASE) and is

calculated as follows:

ASEj =
∑
i

|trueij − imputedij|/sj
n

22

where i = 1,...,n, n is the number of imputed values on the jth continuous variable, and sj is

the sample standard deviation of the true values of variable j. Dividing the errors by their

standard deviations in this way “normalizes” the error rates and allows us to compare ASE

across variables.

For case A these metrics were calculated for each variable after applying the SVMI

algorithm. These metrics were also calculated for the variables after applying the EM algo-

rithm. It should be noted that the imputed values of the categorical variables returned by

the EM algorithm have been rounded to the nearest integer value in order to compare them

to SVMI. The results are reported in Table 4.4 below. The variables gender, age, Region,

and RaceEthnicity are not reported since there were no values imputed for these variables.

Table 4.4: Comparison of Imputation Techniques Under Case A

Variable Missing % Correct % Correct ASE ASE
Rate SVMI EM SVMI EM

tchrgood 0.0024 0.7500 0.7500 – –
ethnicity 0.0014 1.0000 1.0000 – –
race 0.0121 0.8667 0.7667 – –
PTA 0.1549 0.4293 0.4462 – –
PVolClass 0.1547 0.5208 0.4532 – –
hs20 0.1497 0.8899 0.8899 – –
FamStructure97 0.0024 0.5833 0.5833 – –
absent 0.0337 – – 0.7375 0.7345
momeduc 0.0779 – – 0.6686 0.6790
asvab 0.2113 – – 0.6551 0.6534
avginc10k 0.0299 – – 0.6674 0.6567

As the table demonstrates, SVMI performs about as well or better for every cate-

gorical variable. This is reassuring since the objective of the algorithm is to improve the

imputation for the categorical variables. For the continuous variables, the two imputation

methods performed quite similarly, which makes sense since both algorithms are using it-

erative multivariate regression to impute the missing values. It is also reassuring that in

performing the SVM imputation on the categorical variables, the imputation of the contin-

uous variables has not been disrupted in some way.

23

Case B: Increased Missingness

For case B, an approach similar to case A was taken. As in case A, the rows of the missing

matrix were randomly drawn in order to determine where to delete values, but in case B,

rows that had missing values were sampled at a higher rate of frequency in order to increase

the missingness. As a result, case B ended up with 1,260/4,979 = 25.3% complete rows as

opposed to 55.7% as in case A. Just as in case A, the correlation matrices of the full and case

B missing value data sets were compared and found to be similar. This indicates that the

multivariate dependencies of the missingness have been preserved. The rates of missingness

in the case B data are provided in Table 4.5 below along with the rates of missingness of

the full data demonstrating that for each variable the rates of missingness for case B are

significantly higher than the rates of missingness in the original data.

Table 4.5: Missingness in Case B

Rate Missing Rate Missing
Full Data Case B Data

absent 0.0331 0.0588
tchrgood 0.0021 0.0036
gender 0.0000 0.0000
ethnicity 0.0027 0.0052
race 0.0089 0.0133
PTA 0.1472 0.2511
PVolClass 0.1472 0.2511
age 0.0000 0.0000
Region 0.0000 0.0000
momeduc 0.0773 0.1187
RaceEthnicity 0.0000 0.0000
asvab 0.2105 0.3591
hs20 0.1583 0.2617
FamStructure97 0.0035 0.0070
avginc10k 0.0322 0.0510

24

The SVMI and EM algorithms were applied to the case B data to impute the missing

values. The performance of the imputations is reported in Table 4.6 below.

Table 4.6: Comparison of Imputation Techniques Under Case B

Variable Missing % Correct % Correct ASE ASE
Rate SVMI EM SVMI EM

tchrgood 0.0036 0.5556 0.5556 – –
ethnicity 0.0052 0.9231 0.8846 – –
race 0.0133 0.8788 0.8333 – –
PTA 0.2511 0.4448 0.4464 – –
PVolClass 0.2511 0.5088 0.4416 – –
hs20 0.2617 0.8918 0.8895 – –
FamStructure97 0.0070 0.6857 0.3714 – –

absent 0.0588 – – 0.7933 0.7907
momeduc 0.1187 – – 0.7012 0.6953
asvab 0.3591 – – 0.6734 0.6750
avginc10k 0.0510 – – 0.6412 0.6404

SVMI performs as well or better for each of the categorical variables but here, with

the higher rates of missingness, the improvement in using SVMI over EM becomes more

pronounced. Again, SVMI performs almost identically to the EM algorithm for all four

continuous variables.

Case C: Mimicking Column-by-Column Missingness

In case C, only the column-by-column missingness of the full data was preserved. The

column-by-column rates of missingness of the full data were calculated by counting the

missing values and dividing that number by the number of rows, 8,983. By deleting values

in this way, it is expected that the overall number of observations that have missing values

will actually be greater than before, as the variable-by-variable dependencies in missingness

have not been captured. Indeed, this is the case: there are now only 2,019/4,979 = 40.55%

of the rows that are complete as opposed to 55.7% in case A. The column-by-column rates of

missingness are reported in Table 4.7, demonstrating that these rates have been successfully

imitated.

25

Table 4.7: Missingness in Case C

Rate Missing Rate Missing
Full Data Case C Data

absent 0.0331 0.0329
tchrgood 0.0021 0.0026
gender 0.0000 0.0000
ethnicity 0.0027 0.0030
race 0.0089 0.0108
PTA 0.1472 0.1476
PVolClass 0.1472 0.1488
age 0.0000 0.0000
Region 0.0000 0.0000
momeduc 0.0773 0.0717
RaceEthnicity 0.0000 0.0000
asvab 0.2105 0.2085
hs20 0.1583 0.1639
FamStructure97 0.0035 0.0032
avginc10k 0.0322 0.0299

The case C data, with the values missing as described above, were passed through

the SVMI and EM algorithms, and the performance of the imputations was calculated as

before. These values are reported in Table 4.8.

Table 4.8: Comparison of Imputation Techniques Under Case C

Variable Missing % Correct % Correct ASE ASE
Rate SVMI EM SVMI EM

tchrgood 0.0026 1.0000 1.0000 – –
ethnicity 0.0030 0.9333 0.8000 – –
race 0.0108 0.8889 0.7778 – –
PTA 0.1476 0.5048 0.4939 – –
PVolClass 0.1488 0.5425 0.5277 – –
hs20 0.1639 0.8897 0.8897 – –
FamStructure97 0.0032 0.7500 0.1875 – –
absent 0.0329 – – 0.7718 0.7799
momeduc 0.0717 – – 0.6784 0.6819
asvab 0.2085 – – 0.6821 0.6799
avginc10k 0.0299 – – 0.6602 0.6734

26

Once again, SVMI does as well or much better than the EM algorithm at imputing

the missing values for the categorical variables but performs essentially the same as the EM

algorithm on the continuous variables. These results are not surprising, as they affirm what

was shown in cases A and B. It is interesting to note that, when the data are missing more

at random, the rates of correct prediction seem to be marginally higher across the board.

Observing the three cases together a few trends surface.

1. It was expected that the EM algorithm would perform almost as well as SVMI for

the ordinal categorical variables. In this data set all of the categorical variables can

be viewed as ordinal or loosely ordinal except race, ethnicity and FamStructure97.

These exceptions are where SVMI outperforms the EM algorithm by the widest margin

on average.

2. SVMI outperforms the EM algorithm in the imputation of categorical values but does

not improve the imputation of the continuous variables in any demonstrable way.

Reassuringly, SVMI does not worsen the imputation of the continuous variables.

3. Variables that have little correlation with other variables in the data set, such as PTA,

PVolClass, and FamStructure97, are imputed correctly much less often than variables

that do correlate highly with others. This was to be expected.

4. The more normally distributed the continuous variable, the lower the ASE for imputing

that variable. The variables momeduc, asvab, and avginc10k were all much closer to

normality than absent, even after the Box-Cox transformations, and ASE is lower for

these continuous variables in each of the three cases.

5. Correctly imputing the data does not seem to be very sensitive to whether the data

are missing at random for this particular data set.

27

4.5 Imputation on the Full NLSY97 Data Set

Now that the performance of SVMI has been demonstrated in a controlled setting, and has

been shown to work tolerably well, it can be used to impute the missing values for the entire

NLSY97 data matrix. In this application, since the true values are unknown, there is no

sure way to know how well it does at imputing the missing values. One thing that can be

done, though, is to look at the summary statistics of the different variables to ensure that

they are not changing wildly and that none of the imputations are falling outside the realm

of possible values.

When the full NLSY97 data matrix with all 8,983 observations was first passed to

SVMI, the algorithm failed to converge. This was in stark contrast to cases A, B and C

above, where it converged quickly in about 15 iterations. Looking at a printout of the

tolerance values from iteration to iteration revealed what was happening.

Iteration Tolerance

1 1000.0000000

2 286.1494980

3 77.6847922

4 23.9519856

5 8.1626274

6 3.1243638

7 1.4055197

8 0.9071106

9 0.7153577

10 0.6816969
...

...

25 0.6718298

26 0.6718275

27 0.6718297

28 0.6718275

29 0.6718297

30 0.6718275

After 25 iterations the algorithm was falling into an oscillating pattern where at each

iteration it would switch back and forth between values, thus prohibiting it from converging.

It seems the algorithm had encountered some kind of bi-modality in the data. Investigating

this phenomenon further, two outliers were detected. These were observations 6,887 and

28

8,633. After removing these two observations and re-running SVMI on the full data, the

algorithm was able to converge in 22 iterations. The summary statistics of the full data

matrix, including the imputed values, are reported below in Table 4.9.

Table 4.9: Summary Statistics of NLSY97 Post-Imputation

Min Max Mean Mode Missing
absent 0 200 4.84 0 0
tchrgood 1 4 1.98 2 0
gender 0 1 0.51 1 0
ethnicity 0 1 0.21 0 0
race 1 5 1.82 1 0
PTA 1 3 2.10 2 0
PVolClass 1 3 2.43 3 0
age 12 18 14.35 15 0
Region 1 4 2.64 3 0
momeduc 1 20 12.39 12 0
RaceEthnicity 1 4 2.79 4.00 0
asvab 0 100.8 43.35 – 0
hs20 0 1 0.88 1 0
FamStructure97 1 4 3.06 4 0
avginc10k 0 42.56 5.06 – 0

The values reported in Table 4.9 can be compared to those found in Table 4.2 in

Section 4.3. There are a couple of things to note looking at these two tables of summary

statistics. The first is that the means change very slightly from pre- to post-imputation, and

the second is that asvab now has a maximum value that is marginally outside the range of

possible values. These two issues will be addressed in turn.

Dealing with the slight change in means, in this situation (survey data) the missing

values are assuredly not missing at random. Thus, one would expect the means to change

a little after imputation. One thing to note is that the changes in the means seem to

make sense. Logically, one would expect a greater number of missing values to come from

respondents who have negative answers to the questions. For example, if a respondent’s

mother did not graduate high school the respondent is more likely to not answer a question

about their mother’s education out of embarrassment. Another example would be that

29

someone who has an unusually high number of absences might also be difficult to track

down for the survey. After imputation of the NLSY97 data, the means of all of the imputed

variables shift slightly in the direction that makes sense based on a logical assessment of

respondent psyche. The slight shift in means exhibited here seems to indicate heuristically

that the imputation is working well.

With regards to the out of bounds imputation on asvab, it turns out that there is

only one imputed value that falls above 100. The first thing to remember is that the method

of imputation for continuous variables in SVMI is multivariate regression. Multivariate

regression assumes that the responses are normally distributed and, thus, defined on the

entire real line. Looking at the observation in question the values of the other covariates

seem to explain why it was given such an unusually high imputed value. For that observation,

the respondent is a white female from a two biological parent household, whose mother has

a PhD level of education and whose parents’ income is about $200,000 a year. All of these

values are correlated with higher scores on the armed services aptitude battery, hence, it

makes sense that her imputed value was very high. In practice this value can be rounded

back to 100 in order to keep it within the range of acceptable values. This high value is

another instance indicating that SVMI is yielding imputed values that make sense in the

context of the data.

30

chapter 5

CONCLUSION

In this paper the history and technical details surrounding support vector machines have

been presented. Using the U.S. zip code data, a classic data set from the machine learning

literature, it has been demonstrated that SVMs perform very well relative to competing

methods in terms of out-of-sample prediction error rates. Finally, an new algorithm for

imputing categorical as well as continuous values has been proposed and constructed. This

algorithm has been shown to perform as well or better than the EM algorithm under three

different scenarios of missingness.

31

BIBLIOGRAPHY

Abe, S. (2005), Support Vector Machines, Advances in Pattern Recognition, New York, NY:

Springer.

Aizerman, M., Braverman, E., and Rozonoer, L. (1964), “Theoretical Foundations of the

Potential Function Method in Pattern Recognition Learning,” Automation and Remote

Control, 25, 821–837.

Aronszajn, N. (1950), “Theory of Reproducing Kernels,” Transactions of the American

Mathematical Society, 68, 337–404.

Bennett, K., and Mangasarian, O. (1992), “Robust Linear Programming Discrimination of

Two Linearly Inseparable Sets,” Optimization Methods and Software, 1, 23–34.

Boser, B., Guyon, I., and Vapnik, V. (1992), “A Training Algorithm for Optimal Margin

Classifiers,” ACM, Pittsburgh: ACM Press, no. 5 in Proceedings of the 5th Annual ACM

Workshop on Computational Learning Theory, pp. 144–152.

Box, G., and Cox, D. (1964), “An Analysis of Transformations,” Journal of the Royal Sta-

tistical Society, 26(2), 211–252.

Chang, C.-C., and Lin, C.-J. (2011), “LIBSVM: a Library for Support Vector Machines,”

Found at <www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>.

Christianini, N., and Shawe-Taylor, J. (2000), An Introduction to Support Vector Machines,

Cambridge, UK: Cambridge University Press, pp. 156–157.

—— (2004), Kernel Methods for Pattern Analysis, Cambridge, UK: Cambridge University

Press.

32

Cortes, C., and Vapnik, V. (1995), “Support Vector Networks,” Machine Learning, 20, 273–

297.

Cover, T. (1965), “Geometrical and Statistical Properties of Systems of Linear Inequalities

with Applications in Pattern Recognition,” IEEE Transactions on Electronic Computers,

14, 326–334.

Dempster, A., Laird, M., and Rubin, D. (1977), “Maximum Likelihood From Incomplete

Data Via the EM Algorithm,” Journal of the Royal Statistical Society, B-39, 1–38.

Duan, K.-B., and Keerthi, S. (2005), “Which is the Best Multiclass SVM Method? An

Empirical Study,” .

Fisher, R. (1936), “The Use of Multiple Measurements in Taxonomic Problems,” Annals of

Eugenics, 7, 111–132.

Hamel, L. (2009), Knowledge Discovery With Support Vector Machines, Wiley Series on

Methods and Applications in Data Mining, Hoboken, NJ: John Wiley and Sons Inc.

Hassoun, M. (1986), “Logical Signal Processing with Optically Connected Threshold Gates,”

Phd dissertation, Wayne State University, Department of Electrical and Computer Engi-

neering, Detroit, MI.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003), “A Practical Guide to Support Vector

Classification,” Technical report, National Taiwan University, Department of Computer

Science, Taipei, Taiwan.

Hsu, C.-W., and Lin, C.-J. (2002), “A Comparison of Methods for Multiclass Support Vector

Machines,” IEEE Transactions on Neural Networks, 13, 425–425.

Jiang, B., Zhang, X., and Cai, T. (2008), “Estimating the Confidence Interval for Prediction

Errors of Support Vector Machine Classifiers,” Journal of Machine Learning Research, 9,

521–540.

33

Mangasarian, O. (1965), “Linear and Nonlinear Separation of Patterns by Linear Program-

ming,” Operations Research, 13, 444–452.

—— (2000), “Generalized Support Vector Machines,” in Advances in Large Margin Clas-

sifiers, eds. Smola, A., Bartlett, P., Schölkpf, B., and Schuurmans, D., Cambridge, MA:

MIT Press, pp. 135–146.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (2007), Numerical Recipes: The

Art of Scientific Computing, New York, NY: Cambridge University Press, section16.5, 3rd

ed., pp. 883–898.

Rosenblatt, F. (1962), Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanics, Washington D.C.: Spartan Books.

Schölkpf, B., and Smola, A. (2002), Learning with Kernels, Adaptive Compuation and Ma-

chine Learning, Cambridge, MA: MIT Press.

Smith, F. (1968), “Pattern Classifier Design by Linear Programming,” IEEE Transactions

on Computers, C-17, 367–372.

Steinwart, I., and Christmann, A. (2008), Support Vector Machines, Information Science

and Statistics, New York, NY: Springer.

Vapnik, V., and Chervonenkis, A. (1974), Theory of Pattern Recognition: Statistical Prob-

lems of Learning, Moscow, Russia: Nauka.

Vapnik, V., and Lerner, A. (1963), “Pattern Recognition Using Generalized Portraits,” Au-

tomation and Remote Control, 24, 709–715.

Wu, T.-F., Lin, C.-J., and Weng, R. C. (2004), “Probability Estimates for Multi-class Clas-

sification by Pairwise Coupling,” Journal of Machine Learning Research, 5, 975–1005.

Xie, Y. (2007), “An Introduction to Support Vector Machines and Implementation in R,”

<http://yihui.name/cv/images/SVM Report Yihui.pdf>.

34

APPENDICES

35

appendix a

R CODE

A.1 R Code for Zip Code Example

rm(list=ls())

library(’e1071’)

traindat<- read.table("E:/Masters Project/zip.train.txt",sep="",header=F);

dig0<- traindat[which(traindat[,1]==0),-1]

dig1<- traindat[which(traindat[,1]==1),-1]

dig2<- traindat[which(traindat[,1]==2),-1]

dig3<- traindat[which(traindat[,1]==3),-1]

dig4<- traindat[which(traindat[,1]==4),-1]

dig5<- traindat[which(traindat[,1]==5),-1]

dig6<- traindat[which(traindat[,1]==6),-1]

dig7<- traindat[which(traindat[,1]==7),-1]

dig8<- traindat[which(traindat[,1]==8),-1]

dig9<- traindat[which(traindat[,1]==9),-1]

Digit Plotter Function

digit.plot<- function(vec256,num,numson=F){

tranvec<- (vec256+1)/(max(vec256)+1)

tranvec<- -1*(tranvec-1)

xpts<- matrix(nrow=16,ncol=16)

ypts<- matrix(nrow=16,ncol=16)

for(i in 1:16){

xpts[,i]<- rep(i,16)

ypts[i,]<- rep(17-i,16)

}

plot(as.vector(t(xpts)),as.vector(t(ypts)),type="p",cex=4.4,pch=15,

col=gray(tranvec),xlab="",ylab="",main=paste("Digit",num))

abline(v=seq(from=-.5,to=16.5,by=1))

abline(h=seq(from=-.5,to=16.5,by=1))

if(numson){

nums <- matrix(1:256,nrow=16,ncol=16,byrow=T)

for(j in 16:1) {

for(i in 1:16){

text(i,j,labels=paste(nums[17-j,i]))

}

}

}

}

36

digit.plot(traindat[1,-1],6,numson=T)

par(mfrow=c(2,5))

for(i in 0:9){

digit.plot(apply(traindat[which(traindat[,1]==i),-1],2,mean),num=i)

}

mtext("Plot of Average Values for Each Digit",line=-1.4, outer=T)

par(mfrow=c(1,1))

############ Classification of 9s and 4s ###################

y49<-as.factor(c(rep(4,nrow(dig4)),rep(9,nrow(dig9))))

digdat49<-rbind(dig4,dig9)

out.tuner2<- tune.svm(x=digdat49,y=y49,gamma=1/(256*(seq(.1,4,by=.1))^2),cost=10^2,scale=F)

out.tuner2b<- tune.svm(y=y49,x=digdat49,kernel="polynomial",gamma=1/256,

coef0=c(0,5,10,50,100,1000),degree=seq(1,6,by=1),cost=10,scale=F)

out2<- svm(y=y49,x=digdat49,gamma=0.003,cost=100,scale=F)

out2b<- svm(y=y49,x=digdat49,kernel="polynomial",gamma=1/256,coef0=0,degree=4,cost=10,scale=F)

In sample prediction

mean(predict(out2b)==y49)

Out of sample prediction

vals4<- predict(out2b,newdata=test4)

vals9<- predict(out2,newdata=test9)

mean(predict(out2,newdata=rbind(test4,test9))==c(rep(4,nrow(test4)),rep(9,nrow(test9))))

table(vals4)

table(vals9)

####### Classification of All of the Digits using SVM ##############

traindat<- read.table("E:/666/Final Project/zip.train.txt",sep="",header=F);

digmat<- traindat[,-1]

resp<- as.factor(traindat[,1])

ziptuner<- tune.svm(x=digmat,y=resp,gamma=seq(.005,.01,by=.001),cost=100,scale=F)

ziptuner2<- tune.svm(x=digmat,y=resp,kernel="polynomial",degree=seq(1,6,by=1),

gamma=1/256,cost=c(1,10,100),scale=F)

zipmod<- svm(y=resp,x=digmat,gamma=.009,cost=100,scale=F)

zipmod2<- svm(y=resp,x=digmat,kernel="polynomial",degree=4,gamma=1/256,cost=100,scale=F)

In sample prediction

1-mean(predict(zipmod)==resp)

1-mean(predict(zipmod2)==resp)

Out of sample prediction

1-mean(predict(zipmod,newdata=testdat[,-1])==as.factor(testdat[,1]))

1-mean(predict(zipmod2,newdata=testdat[,-1])==as.factor(testdat[,1]))

37

A.2 R Code for Imputation Algorithm

SVMI<- function(data,categ.vars,modlist,max.iter=100,min.tol=1e-4) {

#categ.vars is a vector indicating the column numbers of the categorical variables

#modlist should be a list containing the prefitted SVM models for each of the categ.vars

nomiss<- which(apply(1*(is.na(data)),2,sum)==0)

cts.vars<- c(1:ncol(data))[-c(categ.vars,nomiss)]

cts.mat<- NULL

for(i in 1:length(cts.vars)){

cts.mat<- rbind(cts.mat,cbind(t(combn(cts.vars,i)),matrix(0,

ncol=length(cts.vars)-i,nrow=choose(length(cts.vars),i))))

}

this is a subroutine that will be called later when performing the cts imputation

hat.fun<- function(datmat,cts.list=cts.mat){

datmat[,categ.vars]<- apply(as.matrix(datmat[,categ.vars]),2,factor)

hat.list<- list()

for(i in 1:nrow(cts.list)){

X<- suppressWarnings(model.matrix(~.,data=datmat[,-cts.list[i,]]))

y<- as.matrix(datmat[rownames(X),cts.list[i,]])

hat.list[[i]]<- X%*%(solve(t(X)%*%X)%*%t(X)%*%y)

}

return(hat.list)

}

#The following function performs the continuous imputation step on one row

replacefun<- function(vec,hat.mat){

Performs multivariate imputation on a single row of the data matrix

rownum<- vec[1]

vec<- vec[-1]

nposs<- ncol(cts.mat)

nnmiss<- length(which(is.na(vec)))

misspot<- c(which(is.na(vec)),rep(0,nposs-nnmiss))

hatelem<- vecfind(cts.mat,misspot)

vec[misspot]<- hat.mat[[hatelem]][rownum,]

return(vec)

}

First We impute missing values where only one value on

an observation is missing and it is categorical

oneinds<- which(apply(1*(is.na(data)),1,sum)==1)

onemiss<- data[oneinds,]

newinds<- as.numeric(rownames(na.omit(onemiss[,-categ.vars])))

onemiss<- data[newinds,]

nmiss<- apply(is.na(onemiss)[,categ.vars],2,sum)

for(i in 1:length(categ.vars)){

if(nmiss[i]>0){

missvar<- onemiss[which(is.na(onemiss[,categ.vars[i]])),]

data[as.numeric(rownames(missvar)),categ.vars[i]]<-

as.numeric(as.character(predict(modlist[[i]],

38

newdata=as.matrix(missvar[,-categ.vars[i]]))))

}

}

########### Filling in the missing values with an initial guess

mu0<- apply(na.omit(data),2,mean)

mu0[categ.vars]<- apply(na.omit(data[,categ.vars]),2,moder)

misscols<- apply(is.na(data),2,sum)

misscols<- which(misscols>0)

pfilled<- data

for(i in misscols){

pfilled[which(is.na(pfilled[,i])),i]<- mu0[i]

}

for(i in 1:length(categ.vars)){

pfilled[which(is.na(data[,categ.vars[i]])),categ.vars[i]]<-

as.numeric(as.character(predict(modlist[[i]],newdata=

as.matrix(pfilled[which(is.na(data[,categ.vars[i]])),-categ.vars[i]]))))

}

prefilled<- pfilled

pfilled[,-categ.vars]<- data[,-categ.vars]

########## Perform the initial imputation #############

cleanind<- which(apply(1*!is.na(pfilled),1,prod)==1)

clean<- pfilled[cleanind,] # returns the rows that have no missing values

dirtind<- which(apply(1*!is.na(pfilled),1,prod)==0)

dirty<- pfilled[dirtind,] # returns the rows with missing values

hat.mat0<- hat.fun(datmat=prefilled)

filled<- t(apply(cbind(as.numeric(rownames(dirty)),dirty),MARGIN=1,

FUN=replacefun,hat.mat=hat.mat0))

recombines the imputed rows with the clean rows

juntos<- rbind(clean,filled)[order(as.numeric(rownames(rbind(clean,filled)))),]

iter<- 1

tol<- 1

tols<- c(1000)

Enter the loop where imputation will be performed iteratively

while((iter<max.iter) & (tol>min.tol)) {

indys<- sample(length(categ.vars),size=length(categ.vars))

for(i in indys){

juntos[which(is.na(data[,categ.vars[i]])),categ.vars[i]]<-

as.numeric(as.character(predict(modlist[[i]],newdata=

as.matrix(juntos[which(is.na(data[,categ.vars[i]])),-categ.vars[i]]))))

}

clean<- juntos[cleanind,]

dirty[,categ.vars]<- juntos[dirtind,categ.vars]

hat.mat0<- hat.fun(datmat=juntos)

fillednew<- t(apply(cbind(as.numeric(rownames(dirty)),dirty),MARGIN=1,

FUN=replacefun,hat.mat=hat.mat0))

39

juntosnew<- rbind(clean,fillednew)[order(as.numeric(rownames(rbind(clean,fillednew)))),]

sds<- apply(juntos[,-categ.vars],2,sd)

comp.cts<- t(t(juntos[,-categ.vars]-juntosnew[,-categ.vars])/sds)

comp.categ<- 1*(juntos[,categ.vars]!=juntosnew[,categ.vars])

tol<- sum(abs(cbind(comp.cts,comp.categ)))

filled<- fillednew

juntosold<- juntos

juntos<- juntosnew

iter=iter+1

tols<- c(tols,tol)

}

if(iter==max.iter){

cat("The algorithm failed to converge in",iter,"iterations\n")

} else {cat("The algorithm converged in",iter,"iterations\n")}

out<- list(newdata=juntos,iterations=iter,tolerance=tols)

return(out)

}

40

	Support Vector Machines for Classification and Imputation
	BYU ScholarsArchive Citation

	Title
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Technical Background and Literature Review
	2.1 Overview
	2.2 Foundations of Support Vector Machines
	2.3 Generalized Portraits for Linearly Separable Data
	2.4 Optimal Marginal Classifiers for Nonlinear Classification
	2.5 Support Vector Machines for Soft-Margin Classification

	3 Example Using Classic Machine Learning Dataset
	3.1 Two-Digit Classification
	3.2 Ten-Digit Classification

	4 Imputation
	4.1 Categorical Data Imputation Using SVMs
	4.2 The SVM Imputation (SVMI) Algorithm
	4.3 The NLSY97 Data
	4.4 Demonstration of SVMI and the EM Algorithm
	4.5 Imputation on the Full NLSY97 Data Set

	5 Conclusion
	Bibliography
	Appendices
	Appendix A: R Code
	A.1 R Code for Zip Code Example
	A.2 R Code for Imputation Algorithm

