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Case-Based Reasoning: 
Application Techniques 
for Decision Support 
James V. Hansen, Rayman D. Meservy and Larry E. 
Wood 
Marriott School of Management and Department of Psychology, Brigham Young 
University, USA 

ABSTRACT Decision-support systems can be improved by enabling them to use past 
decisions to assist in making present ones. Reasoning from relevant past cases 
is appealing because it corresponds to some of the processes an expert uses to 
solve problems quickly and accurately. All this depends on an effective method 
of organizing cases for retrieval. This paper investigates the use of inductive 
networks as a means for case organization and outlines an approach to 
determining the desired number of cases-or assessing the reliability of a given 
number. Our method is demonstrated by application to decision making on 
corporate tax audits. 

INTRODUCTION 

Case-Based Reasoning (CBR) is a form of 
approximate reasoning that relies on past cases 
to aid in deriving solutions or decisions for 
current problems. CBR is particularly relevant 
to human decision making, since decision 
makers nearly always rely on prior experience 
in solving problems (Rich and Knight, 1991). 

Generally, CBR systems consist of a case 
memory, an indexing scheme, matching and 
retrieval mechanisms, and an interpretation 
component. The matching and retrieval mech­
anisms, driven by the current decision context, 
return the most similar cases (to a case on 
which a decision must be made) from the case 
memory. Similarity among cases is based on 
an evaluation of salient and relevant features. 

As this suggests, CBR systems are concerned 
mainly with finding solutions to present prob­
lems through the examination of similar prob­
lems that have been solved in the past. A 
problem, its solution and the results of the 
solution are stored together in a case library 
where they can be accessed when a similar 
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problem is encountered. In the context of 
decision support, CBR can be used to find 
previous decisions stored as solutions to prob­
lem descriptions that are similar to a current 
situation (Duncan et al., 1991). 

Our paper is focused on the indexing prob­
lem. Effective methods of indexing are neces­
sary for CBR to support decision making. Our 
particular interest is the method of inductive 
networks, its potential and limitations, as well 
as a methodology for estimating the reliability 
of the corresponding case base. 

INDEXING: THE KEY TO EFFECTIVE CBR 

Perhaps the most important issue in CBR and 
the design of CBR decision-making aids is the 
retrieval of appropriate cases. This issue has 
been termed the indexing problem (Slade, 
1991). 

The indexing problem is composed of two 
parts. The first concerns assigning appropriate 
labels to cases so that they can be retrieved 
at appropriate times (Kolodner, 1993). For 
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example, if we wished to retrieve cases per­
taining to tax law, one useful method of labeling 
might be to distinguish a case as partnership 
or corporate. In this way, the set of retrieved 
cases could easily be limited to the type of 
case-partnership or corporate-relevant to the 
case at hand. 

The second is the focus of this paper: 
organizing cases so that a search through 
the case library can be done effectively and 
efficiently (Kolodner, 1993). The principal con­
tributions of our work are : (1) to elaborate on 
inductive networks as a method for organizing 
cases and (2) to demonstrate a technique for 
estimating the reliability of the related case 
base. 

Case Features and Indexing 

Research on the indexing problem has included 
studies of the type of features most useful for 
indexing. The results point to at least two 
levels of features found useful in indexing: 
surface features and structural features (Rich 
and Knight, 1991). Surface features are those 
that are represented by individual values. 
Structural features are more abstract and express 
relationships among surface features. Examples 
of surface features for a decision on a loan to 
a bank customer might be 'income $75000', 
credit-history good', with no assessment of 
saliency or relationship among these or other 
features . All cases characterized by these 
respective values (or values close to these) might 
be judged as similar. Examples of structural 
features for the same situation might be ' income 
~ = $75000' and 'owns-home yes' or 'credit­
history good' and 'income > $50000' . In the 
latter case, not all customers with incomes 
of $75000 and good credit history might be 
classified as similar. Surface features are less 
complex because they are fact-based . Structural 
features offer a richer and more powerful 
representation scheme and are the main concern 
of this paper. 

To use memory effectively, a powerful 
organizing mechanism for the selected features 
is required so that when decision makers are 
confronted with problems, the retrieved cases 
will be relevant to the decision makers' needs. 
This necessitates a strategy for distinguishing 
important indices from less important ones. 
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A number of indexing methods have been 
developed or proposed to address this need 
(the algorithm(s) associated with each method 
of case organization is shown in parentheses): 
flat memory (serial or parallel search), shared­
feature networks (breadth-first graph search), 
prioritized discrimination networks (depth­
first graph search), redundant discrimination 
networks (breadth-first graph search), and 
inductive networks (parallel search) (Kolodner, 
1993). 

Inductive Networks 

The work focuses on inductive networks, which 
are hierarchically organized, shared-feature net­
works. The principal reasons for interest in 
inductive networks are twofold : 

(1) According to Kolodner (1993), the biggest 
technological issue of CBR is scale-up. How 
can one extend retrieval algorithms that 
work for hundreds of cases to work 
efficiently enough for tens of thousands? 
The machine-learning community has 
developed several inductive clustering 
algorithms that enable cases to be organized 
hierarchically so that only a small subset 
needs to be considered during retrieval. 
These may be useful in addressing scale­
up needs. 

(2) The use of hierarchically organized, shared­
feature networks lends itself to formal 
methods of estimating the reliability of the 
case base. Knowing the reliability of a set 
of cases has important implications for both 
novice and expert decision makers. 

Inductive networks allow retrieval of stored 
cases by propagating the attribute values of 
the current case to a decision tree that has 
been induced from the stored case base. Each 
branch of the decision tree leads to a cluster 
of example cases at the leaf nodes. Since not 
all cases in a cluster necessarily have identical 
solutions, and the fact that the objective is to 
provide analogs to the decision maker, it is 
not appropriate to simply store the majority 
solution at each leaf. The set of attribute values 
from the current case will determine a path 
through the decision tree to a leaf node where 
cases having similar attribute values are stored. 
Each of these cases is then compared to the 
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current case using nearest-neighbor matching 
to establish a similarity score within the 
retrieved set of cases. 

The inductive indexing mechanism parallels 
inductive learning algorithms that generate 
decision trees, except that the latter store a 
single classification decision at each leaf node. 
In this manner, rules are represented by paths 
through the decision tree. This is a different 
objective from storing a set of cases that are 
similar in order to facilitate efficient retrieval 
for inspection by a decision maker. 

Rissland and Skalak (1990) have elaborated 
on the value of inductive machine-learning 
techniques to generate and refine indices and 
other ingredients of a CBR system. They tested 
a machine-learning algorithm on a set of legal 
cases involving tax law litigation, with the 
following results : 

• The inductive machine-learning algorithm 
unearthed the surprising result that the 
taxpayer's occupation was the attribute that 
provided the most 'information gain' . That 
is, the taxpayer' s occupation is a very salient 
feature in tax cases, yet the legal statutes 
omit this factor entirely. 

• The inductive machine-learning algorithm 
derived features as to the number of hours 
per week the home office was used and 
whether the home office was in a separate 
structure as other salient features in 
determining the success of a plaintiff's claim. 
These features were indirectly contained in 
the statutes, but their relative importance 
was not established. 

• In general, the features identified by the 
inductive machine-learning algorithm were 
among the most important in determining 
the success of plaintiff's claims. 

Similar evidence is provided in the work 
of Selfridge (1990) and Laffey et al. (1991) . 
Generally, it was found that in most problem 
domains not every case attribute will be relevant 
to indexing. For example, in retrieving cases 
to help in determining whether or not to grant 
a loan, the customer's name or social security 
number will not likely affect the applicant's 
ability to repay a loan. Attributes such as 
income, assets and occupation have a more 
direct bearing on ability to repay a loan. 
Consequently, these attributes might form a 
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basis for indexing cases, and their relative 
importance could be determined from induc­
tively indexing a set of past cases. 

Inductive networks can also be important in 
CBR applications where the surface character­
istics of two situations may be very similar, 
yet the underlying problem is quite different; 
or the problems can be similar, while the 
situations share few surface similarities. Find­
ing appropriate military strategies from chess 
problem solutions is an example of the latter 
(Duncan et al., 1991). 

Finally, inductive networks are based on 
theoretical concepts that facilitate analysis of 
the number of cases required to attain specified 
levels of indexing accuracy. This is discussed 
in the following section. 

INDUCTIVE NETWORKS AND DECISION 
SUPPORT 

In a decision-support system, CBR can aid in the 
following important decision areas identified by 
Libby (1981) : 

• By retrieving a set of similar cases to the 
one being considered by the decision maker, 
a decision can be made simply by observing 
the solutions of the retrieved cases. That is, 
if all (or the majority of) the similar cases 
had the same outcome, the decision maker 
may simply decide based upon expectation 
of that outcome. For example, if all the 
retrieved cases showed an outcome of 'loan 
repaid', the decision maker might, in the 
absence of other information, make a 
decision to grant a loan. This is particularly 
important for novice decision makers. It 
helps them to be consistent with past 
decisions, as well as to learn those combi­
nations of attribute values that tend to be 
associated with loan repayment. 

• For the expert decision maker, similar bene­
fits of consistency apply. The expert decision 
maker is, however, more likely to combine 
information from past cases with other 
knowledge, and perhaps new information, 
in making a decision. Consider the same 
example as above. The expert decision maker 
may recognize that the loan applicant has a 
high income, but is employed by an auto-
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maker that is noted for cyclical plant shut­
downs. Consequently, the decision maker 
may want to limit the cases he or she 
compares to those loans made to applicants 
working for the same automaker. Such flex­
ible indexing is available in current CBR 
software. 

In both the above situations, knowing what 
the likely error is in the predicted outcome­
as suggested by the set of retrieved cases 
can be important to determining the level of 
reliability to be placed upon that information. 
The following section presents a method of 
formal analysis of reliability from both ex post 
and ex ante points of view. 

DETERMINING THE NUMBER OF CASES 
TO ACHIEVE DESIRED RELIABILITY 
LEVELS 

Fundamentals 

Inductive indexing of cases allows one to 
adapt recent theoretical work in assessing the 
likelihood of error in the resulting classifi­
cations. This information can be valuable to the 
decision maker in determining the reliability of 
retrieved cases in representing the desired 
information of interest, that is, the indexed 
classification of a case. Following Haussler 
(1988) and Tsai and Koehler (1993), this indexed 
classification is called a concept. 

Let D represent a problem domain of interest 
to a decision maker. A target concept, f, is any 
subset of D. In the loan example, one concept 
would be the set of loan cases that were repaid. 
To identify the target concept, a set of cases is 
drawn randomly with replacement from D 
according to a fixed but arbitrary probability 
distribution, P. If a loan case resulted in 
repayment, it is called a positive example of 
the target concept. If it was not repaid, it is 
called a negative example. Thus, a case example 
for f is a pair (x, y), where x ED, y E {0,1}, 
and y = f(x). 

A learned concept, g, is a subset of D 
consisting of cases that will be classified as 
positive according to the inductive rule: 

g = {x E DI f(x) = 1} 

The error, e, of a learned concept is the 
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probability of the symmetric difference between 
the learned concept and the target concept, 
that is, 

P(/Jg) = P{ (f- g) u (g-1)} (Blumer eta/., 1989) 

A confidence parameter, b, is an upper bound 
on the likelihood of an error (Angluin and 
Laird, 1988). That is, 

Pr{P(f..1g) $ e} ~ 1-b (1) 

where Pr denotes probability. 
Informally, the requirement for desired case 

indexing is that the probability of the difference 
between the inductive classification of a case 
and the true classification be small (e) with 
high probability (1-b) (Hausler, 1988). We shall 
term an index to be (e,b)-probably approxi­
mately correct (PAC) if equation (1) is satisfied 
(Tsai and Koehler, 1993). 

It is easy to see that the class of all possible 
concepts that could be specified based only on 
the attributes of the cases in D is C = 21°1, 
where C contains the target concept f. A 
hypothesis space, H ~ C, is composed of those 
concepts that are consistent with the language 
used by a learning algorithm that uses a finite 
set of cases from D. That is, a concept is 
consistent if all the positive and negative 
examples in an actual sample are the same as 
those predicted by the concept. 

Now a labeling function for H can be defined 
in the following way: 

Definition 1. A labeling function for H is 
the maximum number of ways that the 
concepts in H can label a set of m cases. 
This function is denoted as LH(m) . 

Definition 2. The Vapnik-Chervonenkis 
dimension of H, DvdH) is the largest integer 
m such that LH(m) = 2m. 

We now have the tools to establish the 
reliability of case classification. 

Theorem 1 (Hausler, 1988). Denote the size 
of the hypothesis space as IHI. For a given 
e and b (0 ::; e, b ::; 1), the required number 
of cases is 

min {(1/e)[ln(l/b) + lnlHIJ 
(1/e)[4logi2/b) + 8DvdH)log2(13/e)]} 

JV. HANSEN ET AL. 



Determlng the Required Number of Cases 

Suppose that for the loan situation, one wished 
to classify applications according to the follow­
ing attributes and possible values: 

Attribute Values 
DEBT Yes/No 
INCOME Low/Medium/High 
HOMEOWNER Yes/No 
CREDIT-RATING Poor/Fair/Good 
EMPLOYMENT-HISTORY Poor/Fair/Good 

We are typically interested in conjunctive 
concepts, where each attribute is either a term 
of a concept or not, the number of conjunctive 
concepts is IHI = 3243 = 586. That is, there are 
two attributes whose values can be 'Yes' , 'No' 
or 'Makes no difference ', and three attributes 
that can take on four values (e.g. 'Poor', 'Fair', 
'Good' or 'Makes no difference'). Haussler 
(1988) has shown that 

n :s Ovc(H) :s 2n 

where n is the number of attributes. We then 
have 

5 :s Ovc(H) :s 10 

Thus, for e = 0.1, b = 0.05 and Dvc(H) = 10 
(to be conservative), the number of cases 
required by Theorem 1 is 

m = Min {94,755} = 94 

With 94 cases, we are guaranteed to derive a 
concept that is within 0.1 of the true concept, 
with 0.95 probability. Formally, (0.1, 0.05)-PAC 
indexing is guaranteed. 

From the above, there is a sound theoretical 
basis to determine the number of cases 
required, given ex ante reliability requirements. 
This is very useful when the required number 
of cases are available. 

Assessing Reliability When the Desired 
Number of Cases are Not Available 

It is often the situation that the desired number 
of cases are not available. This situation has 
recently been reported concerning applications 
at Apple Computer (Laffey et al., 1991). In such 
instances, the decision maker can benefit by 
knowing how closely the concepts developed 
from the available cases approximate the true 
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concept. For the expert decision maker, this 
information can suggest the degree to which 
other information or judgement should be 
applied. For the novice decision maker, it can 
suggest when additional help should be sought. 

Suppose that a decision maker finds that q 
cases are misclassified in a test sample of size 
m. Tsai and Koehler (1993) have shown that 

Pr{b 2! e} :s exp[ - 2(e - q/m)2m] for q/m :s e 
(2) 

and 

Pr{ b :s e} :s exp[ - 2(e - q/m)2m] for q/m 2! e 
(3) 

Suppose that a set of cases is inductively 
indexed, and that this set is used to suggest 
decisions on 14 new cases, resulting in two 
incorrect decisions . Choose e to be 0.1. Since 
q/ m = 1116 = 0.0625, use equation (2) above, 
yielding 

Pr{ b 2! 0.112, 16} :s 0.95599 

This means that there is as much as a 96% 
chance that the error of the concept is greater 
than 0.1. This might suggest to the decision 
maker that there may be factors about the cases 
that require careful application of the decision 
maker's judgement. On the other hand, suppose 
that the set of tested cases was 150, with five 
errors in the decisions suggested by the indexed 
cases. Then one would compute 

Pr { b 2! 0.1 I 5,150} ,s = 0.265399 

The increased size of the test sample greatly 
improves the results. This might lead the 
decision maker to be more reliant on the 
decisions suggested by the retrieved cases. 

FLEXIBLE SUPPORT FOR DECISION 
MAKING-AN EXAMPLE APPLICATION 

A set of audit cases recorded by the state of 
Pennsylvania was utilized for the application. 
This was an ideal set of cases in that it 
represented a real-world unsolved problem 
with noisy data. Noisy data-data that is not 
always consistent with itself-is characteristic 
of many real-world problems. Due to noise 
and ill-defined relationships among the inde­
pendent variables, the data in the audit cases 
had not satisfactorily yielded to other methods 
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of analysis (Nagin, 1988). The reader may 
recall that Rissland and Skalak (1990) used an 
inductive network for tax cases. Their work, 
however, involved tax litigation, and we know 
of no evidence to suggest that tax settings are 
any more suited to inductive networks than 
other problem domains. 

Briefly stated, the state of Pennsylvania 
wishes to make efficient decisions on which 
corporate tax returns to audit in order to 
maximize the return per auditor hour. For the 
application, a set of 200 cases was drawn from 
a population of 5913 audits that were performed 
over a 30-month period, January 1984 to June 
1986. Seven attributes were recorded that were 
hypothesized to affect the expected return per 
auditor hour. These are listed in Table 1. 

Elsewhere (Denna et al., 1992), the advantages 
of CBR for both novice and expert decision 
makers were outlined. These ideas were briefly 
exemplified above and can be summarized in 
the following way: 

• Novice decision makers are presumed to be 
more reliant on the outcomes of the retrieved 
cases to guide their decisions. That is, the 
novice decision maker brings less outside 
information to the decision process and may 
benefit more from regularities that are found 

Table 1 Salient attributes for audit decision 

Outcome 

Attributes 
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Variables 

Deficiency per hour 

Tax amount 

Tax type 

Deficiency type 

Reassessment amount 

Wages to gross ratio 

Gross 

Prior audit tax deficiency 

in the case clusters of an inductive network. 
This is particularly true if the predictive 
accuracy based on the outcomes of the 
retrieved cases is very high (or very low, for 
that matter). 

• Expert decision makers are expected to utilize 
the information in the retrieved cases in 
concert with other information drawn from 
their experience. In fact, they may utilize an 
informal cause-and-effect model that has 
been validated from experience. 

In the analysis, equation (1) was addressed 
by simply utilizing the predictions suggested 
by the retrieved cases on a set of holdout 
cases. Support for expert decision makers was 
addressed by utilizing a study conducted by a 
group at Carnegie-Mellon University (Nagin, 
1988), which generated the type of informal 
model that might be used by an expert. 

The method of testing was resampling using 
a tenfold cross-validation method, which prod­
uces reliable estimates of the true error rate 
(Weiss and Kulikowski, 1991). In this appli­
cation, 20 different sets of indexed cases were 
created, one at a time. Each set omitted 10 
randomly selected cases, with each set of 10 
being disjoint from the others. Each of the 
holdout cases was supplied to the CBR system 

Description 

The amount of additional tax assessed (after 
appeals, but exclusive of penalties and interest) 
divided by the total number of hours spent by the 
auditors 
Tax, in addition to the original tax liability reported 
by the business, assessed as a result of the audit 
not including penalty and interest 

Sales tax deficiency assessed , use tax deficiency 
assessed , or both 

Code identifying the type of reassessment 
payment made on the original tax deficiency 
assessed 
Reassessed amount of tax as determined in the 
appeal process 

Total wages divided by the total gross sales 

Reported gross sales 

Additional tax assessed in prior audit , not 
including penalty and interest 
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created from the remaining 190 cases for appro­
priate retrieval. 

The actual return per auditor hour on the 
200 cases was divided into two categories: high 
and low. Based on the prior work at Carnegie­
Mellon (Nagin, 1988), the following assignment 
was made: 

Expected return per auditor hour= 

{
low, if value,,,;; = $36 
high, otherwise 

CBR Support for Novice Decision Makers 

A profile of an indexing tree that was induced 
for stored cases is illustrated in Figure 1. The 
intent is to convey, without detail, a sense 
of the complexity of the induced network. 
An enlarged fragment of the indexing tree is 

Figure 1 Indexing tree induced from case data 
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reproduced in Figure 2. The results of using 
the outcome of the retrieved stored cases for 
predicting the outcome of the 10 holdout 
cases over 20 trials is shown in Table 2(a). The 
numeric values represent relative weighting 
units. One hundred and fifty-five predictions 
were correct, for 76.5% prediction accuracy. 

Interestingly, for all cases where the 
expected return per auditor hour was greater 
than $65, the predictions were 100% accurate 
(Table 2(a)). 

Of the 45 errors in prediction, 23 resulted 
from a low prediction when the result was 
high, 20 of the errors resulted from a high 
prediction when the result was low. These 
results suggest neutrality in the type of error 
that results. An erroneous decision of the 
first type above could result in the loss of 
additional tax revenue due to a 'no-audit' 
decision. An erroneous prediction of high 
might lead to expending auditor time on a 
low return audit. Since the inductive network 
was very accurate in retrieving cases when 
the expected return per auditor hour was 
over $65, the second type of error seems 
the least worrisome for the novice decision 
maker. 

CBR Support for Expert Decision Makers 

As previously noted, an expert decision 
maker often brings experience to the decision 
analysis that may suggest a more flexible use 
of the indexed cases. In a number of problem 
areas such as financial analysis, there is well­
established theory and empirical evidence of 
causal relationships among case attributes. 
For example, when a customer applies for a 
home-equity loan, the decision made by 
the bank may depend on various financial 
calculations and ratios to determine the appli­
cant's ability to repay. But there may be 
qualitative information that is of equal or 
greater relevance: job stability, work skills, 
general creditworthiness, and so on. 

In the case of the audit choice decision, 
prior work by the Carnegie Group (Nagin, 
1988) suggested a qualitative model of the 
form shown in Figure 3. This model was 
used as a surrogate for an expert decision 
maker. The case retrieval results again are 
good (Table 2(b )), yielding 73.5% accuracy 
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Figure 2 Fragment of indexing tree illustrated in Figure 1 

Table 2 Comparative performance results 
(a) Induced indexing tree 

Actual audit class 

Predicted audit class 
High 
Low 

High 
70 
20 

Low 
25 
85 

(b) Qualitative indexing tree 

Predicted audit class 
High 
Low 

Actual audit class 

High 
73 
30 

Low 
23 
74 

over the tenfold tests; however, they are not 
quite as good as those generated from the 
model induced from all the data in each case 
(76.5%). Weiss and Kulikowski (1991) suggest 
the following test for comparing models such 
as these: 

(1) Compute the standard error for the best­
performing model, as follows : 

SE = [E(1-E)/n] 1
'
2 
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Thus, for our results, we have 

SE = [0.235(0.765)) 112 = 0.42 

(2) Select the simplest model (if any) that is 
within one standard error of the best­
performing model. 

Since the qualitative model is the simplest and 
falls within one standard error (0.03) of the 
inductive model (0.765 - 0.735 = 0.03), by the 
above rule it would be selected for implemen­
tation. 

How Reliable are the Results? 

In this application we were not able to select 
an optimum number of cases, so the evaluation 
of reliability must follow the post-hoc method 
described earlier. 

Assume that the qualitative model is being 
evaluated. The evaluation parameters are as 
follows: 

Number of errors = q = 53 

Number of cases tested = m = 200 

e = 0.3 

We then have 
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3-hx-Amt 

Figure 3 Qualitative indexing model 

Pr{b 2: e} ::s exp[ - 2(e - q/m)2m] 
= exp[-2(0.3 - 0.265)2200) = 0.613 

That is, there is as much as a 61.3% probability 
that the error in the indexing concept is greater 
than 30%. This suggests that a larger set of 
cases may be necessary or, at the very least, that 
the model's performance be carefully monitored 
over time. 

SUMMARY 

The underlying processes of CBR have ema­
nated from research in artificial intelligence 
(AI)-particularly machine learning. While 
expert systems are probably better known as 
Al's contribution to decision making, CBR is 
perhaps better suited to providing support to 
the decision maker through retrieval of relevant 
analogs, as well as adapting new information 
as it becomes available. These capabilities 
are particularly valuable for complex and ill­
structured problem domains. 

The indexing problem is the most pressing 
challenge in the implementation of CBR sys­
tems. Our exposition focused on the case 
organization aspect of this problem as rep­
resented by inductive networks. Inductive net­
works are of particular interest because of their 
capability to represent case similarities at a 
number of levels, thereby reducing the search 
time for large case bases. Moreover, inductive 
networks can support both expert and novice 
decision makers. Inducing indexing trees, based 
upon only the case library, provide support for 
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novice decision makers via the similarities 
discovered during indexing. For the expert 
decision maker indexing trees can be created 
that are based upon the prior knowledge of 
the expert about relationships among case 
attributes. 

Inductive networks further provide a sound 
theoretical basis for assessing the likelihood 
an error resulting from the classification of a 
case based on similarities to previous ones. 
Ideally, when large numbers of prior cases are 
available, one can decide a priori the number 
of cases needed to provide a desired level of 
reliability. Alternatively, when a limited set of 
cases is available, it is informative to assess 
the level of reliability achieved with that 
set. We have outlined applicable methods for 
dealing with both possibilities. 
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