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ABSTRACT 
 

Propensity Score Methods as Alternatives to Value-Added Modeling 
for the Estimation of Teacher Contributions to 

Student Achievement 
 
 

Kimberlee Kaye Callister Davison 
Department of Educational Inquiry, Measurement, and Evaluation, BYU 

Doctor of Philosophy 
 

 The purpose of this study was to examine the potential for using propensity score-based 
matching methods to estimate teacher contributions to student learning.  Value-added models are 
increasingly used in teacher accountability systems in the United States in spite of ongoing 
qualms about the validity of teacher quality estimates resulting from those models.  Using a large 
national dataset, teacher effects were estimated for 435 teachers using both value-added and 
propensity score-based approaches.  The two approaches resulted in teacher effect estimates that 
were moderately correlated, with propensity score-based estimates more highly correlating with 
the value-added estimates as the matching ratio was increased.  For many teachers’ students, 
finding a set of matched control students was impossible unless the set of matching variables was 
reduced.  Results suggest that many teachers have classroom compositions that are unusual, 
making evaluation of the teachers’ impacts on student outcomes problematic.  It was also found 
that, while value-added estimates were relatively insensitive to covariate inclusion choices or 
method of effect estimation, propensity score-based estimates were somewhat sensitive.  
Propensity score-based teacher effect estimates offer promise both for better accounting for 
classroom composition and student background variables and for indicating when a teacher’s 
context is unique with respect to those variables, making the teacher’s impact challenging to 
evaluate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords:  value-added modeling, teacher accountability, teacher evaluation, propensity score 
analysis 



ACKNOWLEDGMENTS 
 

  

I would like to thank my BYU professors for instructing and motivating me and inspiring 

the ideas that led to this study.  Thank you particularly to Dr. Sudweeks, an example of research 

integrity and lifelong curiosity.  Thanks also to my parents, Douglas and Jan Callister, who 

taught me the importance of seeking excellence, and to Russell Everson, who always had enough 

time to listen. 

 I am especially grateful to my children for the real life lessons they taught me while I 

was pursuing my academic studies.  To Michael, for demonstrating the importance of standing 

for my beliefs and having faith in my ideas.  To Rachel, for showing me that I am always loved.  

To Joseph, who was continuously a support to me and an example to his siblings.  To Daniel, for 

demonstrating how to set and work hard towards achieving ambitious goals.  To James, who 

showed that we can create our own music as soon as we believe we can.  To Anastasia, who 

proved that we can keep going and embrace life with zeal, no matter how hard our trials may be.  

And to Kristina and Max, who made it plain that learning is its own joy.   

Lastly, I am grateful to the inspiring public school teachers I had as a child who taught 

me things that can never be measured by a test.   



iv 
 

Table of Contents 

Chapter 1:  Introduction .................................................................................................................. 1 

Value-Added Modeling Assumptions ......................................................................................... 2 

Propensity Score Analysis as an Alternative............................................................................... 3 

Propensity Score Matching and Teacher Effects ........................................................................ 4 

Teacher Effects with Multiple Teachers ..................................................................................... 6 

Research Questions ..................................................................................................................... 8 

Chapter 2:  Background and Literature Review ........................................................................... 10 

The Counterfactual and Random Assignment .......................................................................... 10 

Propensity Score Analysis ......................................................................................................... 12 

Teacher Accountability and Propensity Score Analysis ........................................................... 13 

Cluster Sampling and Propensity Score Analysis ..................................................................... 14 

Multiple Treatment Effects and Propensity Score Analysis ..................................................... 18 

Chapter 3:  Method ....................................................................................................................... 21 

Design........................................................................................................................................ 21 

Sample ....................................................................................................................................... 22 

Measures.................................................................................................................................... 24 

Procedures ................................................................................................................................. 25 

Value-added models .............................................................................................................. 27 

Propensity score analyses ...................................................................................................... 28 

Generalized propensity score analyses .................................................................................. 31 

Comparisons .......................................................................................................................... 32 

  



v 
 

Chapter 4:  Results ........................................................................................................................ 33 

Sample Description ................................................................................................................... 33 

Covariate Selection ................................................................................................................... 33 

Value-Added Models ................................................................................................................ 35 

Sixty-six covariates................................................................................................................ 36 

Seventeen covariates .............................................................................................................. 37 

Seven covariates .................................................................................................................... 38 

One covariate ......................................................................................................................... 38 

Independent Propensity Score Models ...................................................................................... 42 

Match quality ......................................................................................................................... 44 

Teacher effect estimation ....................................................................................................... 46 

     Sixty-six variables, all teachers ........................................................................................ 47 

     Seventeen variables, all teachers ...................................................................................... 57 

     Sixty-six variables, matchable teachers only .................................................................... 60 

Generalized Propensity Score Analyses .................................................................................... 61 

Class-Level Matching ............................................................................................................... 64 

Chapter 5:  Conclusions ................................................................................................................ 65 

Reflections on Findings ............................................................................................................. 65 

Treatment effects ................................................................................................................... 65 

Value-added models. ............................................................................................................. 69 

Propensity score analyses ...................................................................................................... 71 

Generalized propensity score analyses .................................................................................. 73 

Summary ................................................................................................................................ 75 



vi 
 

Further Research ....................................................................................................................... 77 

References ..................................................................................................................................... 79 

Appendix A:  Comparability of Teacher Control Groups ............................................................ 87 

Appendix B:  Original List of 187 Potential Covariates ............................................................... 89 

Appendix C:  Reduced List of 111 Potential Covariates .............................................................. 95 

Appendix D:  Final List of 66 Covariates ..................................................................................... 98 

Appendix E:  Reduced Lists of 17 and 7 Covariates .................................................................. 101 

Appendix F:  Value-Added Covariate Parameter Estimates, Fixed Approach ........................... 102 

Appendix G:  Variables with Statistically Significant Imbalance after Matching...................... 104 

 

  



vii 
 

List of Tables 

Table 1:  Quintile Comparisons, Random and Fixed Effects with 66 Covariates ........................ 37 

Table 2:  Value-Added Effect Correlation Matrix using 1,7,17, and 66 Covariates .................... 39 

Table 3:  Quintile Comparison Matrices, 66 and 1 Covariates ..................................................... 40 

Table 4:  Median Matched Distance, 66 Covariates, 199 Matchable Teachers ............................ 45 

Table 5:  Median Matched Distance, 17 Covariates, All Teachers .............................................. 46 

Table 6:  Correlation Matrix for Matching and Effect Estimation Schemes when 66        
Matching Variables and All Teachers were Used............................................................. 48 

Table 7:  Concordance Correlation Coefficient Matrix for 66 Matching Variables and 435 
Teachers ............................................................................................................................ 51 

Table 8:  Correlations of VA Fixed Effects (7 Covariates) with Propensity Score Effects            
(7 Covariates at Effect Estimation Stage) ......................................................................... 52 

Table 9:  Matrix of Percent of 435 Teachers Falling within the Same Quintile across Effect 
Estimation Approaches and Matching Ratios Using 66 Matching Variables ................... 52 

Table 10:  Percent of 435 Teachers Falling within the Same or Adjacent Quintile across        
Effect Estimation Approaches and Table 10:  Matrix of Percent of Teachers Falling 
within the Same or Adjacent Quintile across Effect Estimation Approaches and   
Matching Ratios Using 66 Matching Variables ................................................................ 54 

Table 11:  Matrix of Percent of 435 Teachers Falling Moving from the Bottom 2 Quintiles         
to the Top 2 Quintiles or Vice Versa across Effect Estimation Approaches and    
Matching Ratios Using 66 Matching Variables ................................................................ 55 

Table 12:  Correlations of Propensity Score-Based Effects with 66 and 17 Matching      
Variables, All Teachers ..................................................................................................... 58 

Table 13:  Correlation Matrix for Matching and Effect Estimation Schemes when 17      
Matching Variables and All Teachers were Used............................................................. 59 

Table 14:  Pearson Correlation Matrix for Matching and Effect Estimation Schemes when         
66 Matching Variables and 199 Teachers were Used ....................................................... 60 

Table 15:  Correlation of PSA Effects with 66 or 17 Matching Variables, 199 Teachers ............ 61 

Table 16:  Class Level Matched Ranking and Other Model Rankings......................................... 64 

 



viii 
 

List of Figures 

Figure 1:  Concordance of fixed and random effects with 66 covariates ..................................... 36 

Figure 2:  Concordance of fixed effects with 66 and 1 covariates ................................................ 41 

Figure 3:  Concordance of random effects with 66 and 1 covariates. ........................................... 41 

Figure 4:  Diversion from line of perfect concordance of fixed VA estimates and propensity 
score estimates .................................................................................................................. 56 

 



1 
 

Chapter 1:  Introduction 

United States policy-makers and legislators have become increasingly enamored with 

teacher accountability based on student outcomes (Eckert & Dabrowski, 2010; Goldhaber & 

Hansen, 2010; Newton et al., 2010; Sass, 2008).  In 2010 alone, at least seven states passed 

legislation that encouraged the use of student outcomes for high stakes teacher evaluation 

purposes (National Conference of State Legislatures, 2010).  State courts have a history of 

upholding the termination or non-renewal of contracts of teachers with low student test scores 

(Massachusetts Federation of Teachers, AFT, AFL-CIO v. Board of Education, 2002; 

Scheelhaase v. Woodbury, 1973; St.  Louis Teachers Union, Local 420, American Federation of 

Teachers, AFL-CIO v. Board of Education of the City of St. Louis, 652 F. Supp. 425, 1987).  In 

fact, in several recent Florida cases, school district decisions to terminate teachers were over-

turned because the districts did not consider student test scores when making their decisions, 

even though the teachers were clearly incompetent by other standards (Leon County School 

Board v. Waters, 1986; Sherrod v. Palm Beach County School Board, 2006; Young v. Palm 

Beach County School Board, 968 So. 2d 38, 2006).  In some cases, teachers have successfully 

fought back.  For example, a Texas teacher who was fired for low student test scores was 

reinstated when those scores were shown to be the result of a poor school environment and not 

his fault (Lambert, 2008).   

Many researchers have concerns about the use of student test scores to evaluate teachers, 

especially for high stakes purposes.  McCaffrey, Sass, Lockwood, and Mihaly (2009) state, “For 

any performance-based personnel system to provide the correct incentives and enhance teacher 

quality, there must be a strong link between true performance and reward or retention” (p. 573).  

Value-added modeling is one attempt to improve this link between the estimation of a teacher’s 



2 
 

impact on a student’s test scores and true teacher performance by focusing on student gains in 

students’ test scores, rather than status measures such as end-of-year achievement. 

Value-Added Modeling Assumptions 

  One characteristic of value-added estimates of teacher quality, or teacher effects, is that 

they are relative—a teacher’s effectiveness in improving student test scores is compared with 

other teachers in the same school, district, or state.  No matter at which level(s) these 

comparisons are made, the lack of random assignment of students to classrooms can create 

imbalances in student potential to make gains across classrooms.  These imbalances may lead to 

bias when value-added teacher effects are estimated, resulting in unfair teacher evaluations. 

  Value-added models generally attempt to account for these imbalances in the 

composition of classrooms by including some combination of student, family, classroom, and 

school covariates and student or school effects in the model, which is generally linear in form.  

To what degree any value-added model can really account for a teacher’s classroom composition 

and estimate a teacher’s contribution to student test scores without bias is one of the most 

commonly acknowledged issues in the value-added literature (Harris; 2009; Ishii & Rivkin, 

2009; Koedel & Betts, 2009; Levine & Painter, 2007; Newton, Darling-Hammond, Haertel, & 

Thomas, 2010; Reardon & Raudenbush, 2009).  One important concern is that other unmeasured 

covariates that are not included in the model may affect students’ learning gains and may bias 

estimates of teacher effects (Baker et al., 2010; Harris; 2009; Rothstein, 2009).  This requirement 

that all relevant covariates are included in the model in order to get unbiased effect estimates is 

referred to the ignorable treatment assignment assumption, and its violation is impossible to test 

directly.  Only theory can suggest what covariates may be missing from a model (Rosenbaum & 

Rubin, 1983; Stuart, 2007; Thoemmes & Kim, 2011).   
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  Regardless of whether all important covariates are included in the model, another 

assumption is necessary in order for estimates to be unbiased—the assumption of linearity in the 

relationship between the covariates and the dependent variable across all relevant values of the 

covariates.  If the relationship is non-linear, bias may result, and this bias may be greater than if 

the covariates had not been included in the model at all (Cochran & Rubin, 1973).  Even if a 

linear model appears to have good fit, a linear model is fitted to the values of the covariates 

under the control condition, and so extrapolation is involved when assuming the relationship of 

the covariates follows the same linear trend in the treatment group (Stuart, 2007).  Nonlinearity 

in value-added teacher effect linear regression models used to estimate teachers’ value-added 

effects has been shown to be a concern (Reardon & Raudenbush, 2009).   

  Rubin (2001) demonstrated that regression analysis for the comparison of a treatment 

and control group in an observational study should only be trusted if specific conditions 

regarding covariate balance in the treatment and control groups are met.  Essentially, covariate-

adjustment in a regression model is only reliable if the treatment and control groups have similar 

distributions on those covariates, and even minor differences in the distributions can cause 

problems (Rubin, 2001; Stuart, 2007).  However, when teacher assignment is modeled as a 

treatment in a value-added regression model, covariates are often added to the model precisely 

because the distribution of covariates is expected to be non-equivalent from classroom to 

classroom.  To the degree that the covariates are really distributed differently across classrooms, 

bias in the value-added effects is likely. 

Propensity Score Analysis as an Alternative 

  As an alternative, propensity score analysis (PSA) is a family of statistical techniques 

which approximates random assignment by matching each treated subject to the closest possible 
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control in the larger untreated sample (in terms of propensity to be chosen for the treatment), 

thereby allowing estimation of unbiased treatment effects in the absence of random assignment 

(Austin, 2011; Dattalo, 2010; Guo & Fraser, 2010; Rosenbaum & Rubin, 1983).   Instead of (or 

in addition to) controlling for covariates at the treatment effect estimation stage, propensity 

score-based methodologies use these variables for identifying the best possible control group for 

comparison with the treatment group.  Rosenbaum and Rubin refer to this process as balancing 

on the covariates, and they show that this balancing makes possible an unbiased estimate of the 

average treatment effect (ATE) for the population, provided treatment assignment is strongly 

ignorable.  In other words, the estimate of the ATE will be unbiased if and only if the correct 

covariates are included in the model.  After matching, the treatment effect may be estimated 

using a linear model, controlling for the covariates, but the treatment and control groups now 

have similar covariate distributions and so the assumptions of linear modeling are better met.   

  Ignorable treatment assignment is an assumption-in-common for bias-free effects 

resulting from both regression and PSA models.  However, the other significant regression 

assumption related to bias, linearity, is not a requirement of PSA models (Guo & Fraser, 2010; 

Rosenbaum & Rubin, 1983; Rubin, 2005; Thoemmes & Kim, 2011).   This suggests that, 

assuming identical covariates are included, PSA estimates are at less risk of bias than are 

regression estimates. 

Propensity Score Matching and Teacher Effects 

  Applying PSA methods to the estimation of one teacher’s effectiveness as compared with 

some control group is straightforward on the surface.  If assignment to a specific teacher is 

equated with the treatment state, and non-assignment to that teacher is equated with the control 

state, then PSA methodology might be an alternative to value-added modeling for estimating the 
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teacher’s effect on student achievement, balancing the distributions of covariates in the treatment 

and control states and avoiding the need for an assumption of linearity in the relationships 

between the covariates and student achievement.  Essentially, one teacher’s students would be 

compared with the best possible control group of students from the entire school, district, state, 

or nation.  A teacher effect would be estimated by comparing the teacher’s students with the 

selected control group as done in a random experiment.  Any given teacher’s PSA-based effect 

estimate should have less bias than the same teacher’s effect estimated from a value-added 

model, using the same covariates, if non-linearities are present in the relationship between 

covariates and student achievement or if the distribution of covariates differs across teachers. 

  The term propensity score typically refers to the probability of treatment assignment, 

conditional on a set of covariates.  Rosenbaum and Rubin (1983) describe the propensity score, 

e(x), as a type of balancing score, which reduces a multidimensional set of covariates to a single 

dimension.  If teacher assignment represents treatment, then it is awkward to think of e(x) as the 

probability of teacher assignment, given a set of covariates.  Obviously, a student in Ohio has no 

probability of assignment to a teacher in Tennessee.  We might instead think of e(x) as a function 

of the covariates that predicts whether a student is a member of teacher j’s class.  Another point 

of view is that the propensity score is a function that identifies covariates that are not balanced 

across classrooms.  If e(x) is exactly equal for two students, one in the teacher’s class and 

another outside the teacher’s class, then we cannot predict, based on the covariates, which 

student is most likely to be a member of teacher j’s class.  While the two students may have 

different values on the covariates, each vector of covariates is just as likely to be in teacher j’s 

class as is the other (Joffe & Rosenbaum, 1999).  Assuming every variable which causes teacher 

j’s students to achieve high test scores, other than the class membership itself, is included in the 
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model, then the only remaining possibility is that the test scores were a result of being in teacher 

j’s class.  In other words, if no confounding variables are missed, and if pairs or sets of students 

are found with perfectly matching propensity scores, then any differences in the student 

achievement within versus without the teacher’s classroom must be related to belonging to that 

classroom.   

  While Rosenbaum and Rubin (1983) show that certain effect estimates will be unbiased 

using propensity score matching, they do not, of course, suggest that factors that are confounded 

with treatment status can be separated.  For example, if teacher j’s students have unusually high 

access to materials, specialist support, or parent volunteer hours, or if peer-interactions affect 

students in the class, then the teacher effect will no more represent quality of the teacher than in 

value-added models.  If school-level variables are not accounted for, then the teacher effect also 

contains inputs to student achievement due to schools.  A more appropriate term that 

encompasses these other impacts on student achievement would be classroom effect (Rothstein, 

2009), but teacher effect will be used here as is most often done in the literature, with the 

understanding that other factors than the teacher may impact that effect.   

Teacher Effects with Multiple Teachers  

  Complications, however, arise in the PSA procedure because we are generally interested 

not only in a particular teacher’s effectiveness, but in that teacher’s effectiveness relative to other 

teachers.  Even if all we care about is the absolute effectiveness of individual teachers, a 

comparison of PSA results to VA results is impossible if the entire set of PSA teacher effects 

cannot be ranked. 

  The problem is rooted in the structure of the sample.  Essentially, a large sample of N 

students is clustered into k groups, or assigned to k teachers/classrooms/treatments.  
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Teacher/classroom j receives nj students, and the remaining N- nj students represent the control 

group for teacher j.  Teacher/classroom m receives nm students, none of whom can belong to 

teacher j’s class, and the remaining N - nm students (which include teacher j’s students) belong to 

teacher m’s control group.  The complications resulting from applying propensity score matching 

to this sample structure include the following: 

1. No two teachers’ effect estimates will be exactly comparable because no two 

teachers’ control conditions will be defined exactly the same way (Control condition 

for teacher j = not taught by teacher j; Control condition for teacher m = not taught by 

teacher m).  Appendix A demonstrates that this lack of overlap becomes trivial in the 

estimation of the average treatment effect (ATE) if k, the number of teachers, is large.   

2. Students in any given teacher’s control group are clustered to schools before 

assignment to classes, and to teachers after, and so both assignment probabilities and  

responses may be correlated.   

3. Classroom (teacher) membership is mutually exclusive across all classrooms.  

Estimating the probability of belonging to a particular class, given the covariates, 

should ideally take into account this exclusivity.   

  One alternative is to use Imben’s (2000) generalized propensity score which is used to 

estimate unbiased treatments effects when there are more than two treatment groups.  This 

approach uses a multinomial logit function in place of the logit function and results in a vector of 

propensity scores instead of a single, scalar, estimate.  The limitation of this method is that, as 

the number of treatment groups increases, estimation of the multinomial logit function becomes 

problematic at a rate that is much more than linear, but instead related to �𝑘2� if k represents the 

number of treatment groups.  Convergence problems are common, even when k is relatively 
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small.  A possibility is to use the method iteratively for sets of teachers, with teachers deemed to 

be most similar grouped to the same set.  An advantage of this approach, in addition to 

accounting for exclusivity and comparability (at least within sets), is that the grouping of 

students to teachers is accounted for—there is no unaddressed clustering.   

  However, the counterfactual is the same whether a series of independent logistic 

regressions are used to estimate propensity scores or one multinomial logistic regression model 

is run, provided the same classes of students and variables are used in both analyses.  In fact, the 

multinomial approach estimates the same equations as in the independent approach.  The only 

practical difference between the approaches is that the equations are estimated simultaneously 

rather than independently.  This difference affects the generalized propensity score estimation 

process two ways.  First, the generalized propensity scores across groups for an individual are 

constrained to sum to 1.0 across groups when multinomial models are estimated.  Second, the 

multinomial regression models are harder to estimate (Kleinbaum & Klein, 2002).   

Research Questions 

 Using annual kindergarten mathematics item response theory (IRT) ability gains from a 

large national dataset with a rich set of covariates, teacher effects for one teacher per school (due 

to data limitations) were estimated and the following questions were addressed: 

1. How do estimated teacher effects with identical sets of covariates compare using the 

following methodological approaches: 

a. Covariate-adjusted value-added models with random effects 

b. Covariate-adjusted value-added models with fixed effects 

c. Propensity score-based matching, with teacher propensity scores estimated 

independently using logit regression. 
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d. Generalized propensity score-based estimation, with propensity scores estimated 

jointly within specified strata using multinomial logit regression. 

2. What methodological problems and limitations are discovered using propensity scores 

and generalized propensity score approaches? 

3. For pairs of classrooms with similar covariate distributions, to what extent do each of the 

four methodologies rank the teachers the same way? 

The study was limited to comparisons of teachers across (rather than within) schools.  

The purpose was to test methodology rather than to make actual conclusions about the specific 

teachers represented in the dataset.  In addition, conclusions may have been sensitive to the 

particular nature of the dataset, sample, and variables measured, and so may not be directly 

generalizable to datasets with a different structure.  Effect estimates may have been, in each 

approach, biased due to any violations of the ignorable treatment assignment assumption 

(unmeasured covariates).  In addition, school and teacher effects were confounded because the 

sampling design used in the national dataset makes analysis of more than one teacher effect per 

school problematic (too many classrooms with extremely small sample sizes).   

This study is particularly significant in the light of an increased national emphasis on 

evaluating teachers through student outcomes and a growing tendency for states to create 

legislation and policy that encourages the use of student test scores to evaluate teachers.  If high 

stakes decisions about teachers are made based on student test scores, it is critical that estimates 

of teacher quality are as well-founded as possible, and that we know when they are not. 
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Chapter 2:  Background and Literature Review 

  Prior literature was evaluated to include statistical theoretical foundations related to 

causality.  In addition, propensity score literature was evaluated for connections to teacher 

evaluation and the sampling structure used in the study. 

The Counterfactual and Random Assignment 

  The Neyman-Rubin counterfactual framework is based on the theory that two possible 

outcomes exist for every unit in the population of interest—the outcome with treatment and the 

outcome without treatment (Guo & Fraser, 2010; Morgan, 2001; Morgan & Winship, 2007; 

Rosenbaum & Rubin, 1983; Rubin, 1974).  In applying the framework to achievement-based 

teacher evaluation, student i would have a potential end of year test score r1ij with assigned 

teacher j, and a second potential test score r0ij if not assigned to teacher j (assigned to a 

theoretical average teacher).  All other factors being held constant, comparison of the outcomes, 

r1ij - r0ij, would be the effect of assigning teacher j on student i’s test score, and E(r1j ) – E( r0j ) 

would represent the true average treatment effect (ATE) for teacher j for all students in the 

population of study, or the teacher effect (notation adapted from Rosenbaum & Rubin, 1983).    

  The problem is that r0ij is counterfactual, a potential outcome that is never observed, for 

the students in the teacher’s class, and r1ij is counterfactual for the students not in the teacher’s 

class.  The Neyman-Rubin framework estimates the average treatment effect of teacher j by 

subtracting the mean outcome of the untreated (students not assigned to teacher j) from the mean 

outcome of the treated, the students assigned to teacher j (Guo & Fraser, 2010; Rosenbaum & 

Rubin, 1983).   

  This treatment effect is based on several assumptions.  First, the ignorable treatment 

assignment assumption requires that, for an effect estimate to be unbiased, assignment to 
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treatment must be independent of either potential outcome, after conditioning on covariates.  

Additionally, for the ATE, the probability of assignment to treatment for all values of a covariate 

must be greater than zero and less than one (Guo & Fraser, 2010; Rosenbaum & Rubin, 1983).   

When estimating teacher effects on achievement, student i’s assignment to teacher j must be 

unrelated to r0ij and r1ij , the student’s potential achievement, after controlling for all covariates in 

the model.  However, this assumption is generally violated in educational settings.  Student 

assignments to teachers are often correlated with student achievement potential in ways that 

cannot be easily measured.   

  The ignorable treatment assignment assumption, also referred to as exogeneity or 

independence of the error term and the independent variable (e.g., teacher assignment), is a 

particularly important assumption in regression models such as value-added models.  Violations 

of the assumption lead to biased and inconsistent estimates of treatment effects (Guo & Fraser; 

Rosenbaum & Rubin).  Essentially, estimates of teacher effects on student test score gains may 

be over or understated if assignment to teachers is not independent of student potential to make 

gains.  A large body of research suggests that non-ignorable treatment bias results in biased 

value-added estimates of teacher quality.  The potential bias resulting from the non-random 

assignment of students to teachers is the most consistently reported concern of both value-added 

researchers and skeptics. 

  Many approaches have been offered in the attempt to correct for overt treatment bias 

(bias based on measurable variables) in observational studies.  However, in no case can hidden 

bias (bias due to unobserved variables) be corrected for, suggesting that the random experiment 

remains the “gold standard” (Guo & Fraser, 2010, p. 38).  Guo and Fraser discuss four 

approaches to correction for treatment bias.  These include (a) Heckman’s sample selection 



12 
 

model, (b) propensity score models, (c) matching estimators, and (d) nonparametric propensity 

scores.  Other methods include (a) regression estimators, (b) combined approaches, (c) Bayesian 

approaches (Imbens, 2004), as well as (d) regression discontinuity, (e) instrumental variables, (f) 

interrupted time series, (g) differential growth models, and (h) analysis of covariance (Winship 

& Morgan, 1999).   

Propensity Score Analysis 

  A propensity score is the probability of assignment to treatment, given a set of 

covariates.  Essentially, the propensity score reduces a multi-dimensional vector of covariates to 

one dimension, and a treated unit is matched to a control unit (or several) with a similar 

estimated propensity score.   Treatment and control units are not explicitly matched based on the 

values of each of the covariates.  However, Rosenbaum and Rubin (1983) show that the two 

groups do end up balanced overall on the covariates.  Two units with the same propensity score 

may differ with regard to any one covariate, but that difference will be due to chance rather than 

systematic, and the two units will have the same chance of being assigned to treatment, given the 

propensity score, as in a random experiment (Guo & Fraser).  This means that, given the true 

propensity score and no missing covariates, the treatment effect will be unbiased. 

  Given exact matching on the true propensity score, Rosenbaum and Rubin (1983) prove 

that the mean of matched paired differences is an unbiased estimate of the true average treatment 

effect (ATE).  The probability distributions of covariates in the treatment and control groups are 

balanced, matching the probability distributions of either matching exactly on all covariates or 

random assignment.  In addition, they show that matching exactly on the estimated propensity 

score results in sample balance if all relevant covariates are included in the model and the model 

is of correct form.  When post-matching analysis is done, the authors indicate that effect 
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estimates based on matched samples are more robust to departures from true model form than are 

even models based on random samples, because extrapolation on values of the covariates is less 

likely to happen.  This lack of extrapolation is dependent on a large region of common support 

for the treated units and potential controls—the assumption that there is sufficient overlap 

between the covariate distributions of the treated and controls.  PSA-based estimates also have 

lower standard errors than random assignment estimates because the distributions of the 

covariates are closer than happens by chance.  Rosenbaum and Rubin also suggest that matching 

methods are particularly valuable in studies that have small treatment groups, large potential 

control groups, and a large number of covariates—as can be true in studies which compare 

teachers.  The small treatment group sample size (degrees of freedom limitations) prevents the 

inclusion of so many covariates using other methods.  When matches are not exact (propensity 

scores in the treatment and control groups are only very close), simulations show that treatment 

effect bias is still greatly reduced, compared with unmatched comparisons.   

  However, propensity scores may be inaccurate if the model predicting the scores is not 

correct.  As a result, researchers check to see whether the propensity score-based matching of 

treatment and control groups has sufficiently balanced the data on each of the covariates, as it 

would if the model were correctly specified.  If the two groups are not balanced, then likely the 

form of the variables is not correct—higher order or interaction terms may be needed (Guo & 

Fraser, 2010).  In addition, estimated propensity scores may be biased if any necessary covariates 

are not included.   

Teacher Accountability and Propensity Score Analysis 

  A search of literature regarding the use of propensity score analysis for the purpose of 

teacher evaluation for accountability purposes uncovered no articles.  ERIC, EconLit, and 
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Econpapers (economics working papers) were searched using terms such as propensity score and 

(“teacher effect” or “school effect” or accountability) or “value-added” and “propensity 

score”.  While research was discovered that used propensity score analysis for evaluation of 

educational programs, interventions, or other malleable factors, none appeared to address 

accountability at either the school or teacher levels.  Hahs-Vaughn and Onwuegbuzie (2006) 

state that propensity score methods have been slow to take hold in the field of education and the 

social sciences. 

Cluster Sampling and Propensity Score Analysis 

  When teacher effects are estimated, clustering of students generally needs to be 

accounted for at two levels—the class level and the school level.  In addition, clustering needs to 

be accounted for at two time points—before and after assignment to classes.  Before matching, 

when propensity scores are estimated, we are only interested in covariates which affect students 

before assignment to treatments (Rosenbaum & Rubin, 1983).   Only school-level covariates, or 

possibly previous year class-level covariates, should cause within-group correlation in student 

ability before assignment.  In this study, however, only one class from each school was 

represented in the study.  As a result, school and class levels were confounded.   Ideally, this 

sample design would be accounted for when propensity scores were estimated as part of the logit 

regression.   

  In addition, after assignment to classes student responses were expected to be correlated 

at both the class and school levels.  This means that both school- and class-level nesting would 

ideally be accounted for at the effect estimation stage for each teacher’s potential control group.  

The problem in this study, however, was one of separability.  Teacher assignment was 

confounded with both clustering and classroom or school covariates.  At the logit-model 
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estimation stage, the higher-level covariate or effect would perfectly predict the dependent 

variable (teacher assignment), and at the effect-estimation stage, the higher-level covariate or 

effect would be collinear with the treatment assignment covariate.  A review of the literature 

reveals no method of accounting for clustering in a propensity analysis other than to adjust the 

logit and effect models as described.   

  Literature on cluster sampling in propensity score analyses was searched, and the goal 

was to find methodological literature addressing the use of propensity score analysis when the 

sample included clustering of any kind.  In addition, studies were examined that attempted to 

apply propensity score analysis to clustered samples.  Articles that addressed cluster methods 

without relating them to PSA or which involved clustered samples but did not directly address 

the clustering were excluded.  Searches were conducted in ERIC, EconLit, and Econpapers, 

using a variety of combinations of terms such as: multilevel, hierarchical, cluster, propensity 

score, matching estimators, and complex samples.  References in the articles that were 

discovered were gleaned for missed literature.   

  Thirteen peer-reviewed articles or working papers were found which at least minimally 

addressed the issue.  A review of the literature suggested that none addressed sampling structures 

identical to the one used in the current study.   

  Thoemmes and West (2011) appeared to summarize the existing methodological 

literature and proposed several models based on two of the most common clustering structures---

treatments assigned within clusters and clustering which is incidental to treatment status.  For the 

first case, which Thommes and West called the narrow inference space, treatments are assigned 

in such a way that every cluster contains both treated and control units.  The authors suggested 

that the logit function used to estimate propensity scores be modeled as a multivariate linear 
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model with both random and fixed effects.  A hierarchical or multilevel linear model would be 

fit, and the clustering would be accounted for by random intercepts and random slopes, if 

desired.  The drawback of this model, the authors explained, is that propensity scores estimated 

within each cluster would not be comparable to propensity scores from other clusters.  As a 

result, matching could only be done within-clusters.  This narrow inference space model did not 

match the current study.   In the current study, treatments were equivalent to teacher 

assignments—it was impossible to assign multiple teachers/treatments within clusters.   

  Thoemmes and West’s (2011) second scenario, the broad inference space, is a sampling 

design in which units are assigned to treatment or control status without regard to clustering, but 

clustering is present.  For example, participants may be assigned to one of two groups without 

regard to their school membership, but some will happen to belong to one school and some to 

another—and both treatment conditions are not necessarily present within each cluster.  In this 

case, the authors suggested using the same hierarchical logit model, but dropping all random 

effects.  Level-2 parameters would not be estimated, but level-2 covariates would be included in 

order to balance the samples with the clustering taken into account.  Propensity scores would be 

comparable across clusters and matching could be done at the across-cluster level.  Griswold and 

Localio (2010) described the possible approaches as ignoring clustering, no pooling (Thoemmes 

and West’s narrow inference model), or partial pooling (the broad inference model).   

  The broad inference case more closely matched the present study because controls for 

each teacher’s class were sampled in such a way that clustering was incidental.  However, in this 

study, the treatment group represented one intact cluster and so adding level-2 covariates to the 

logit model would result in perfect prediction of the dependent variable, as described previously.   
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  With either model, Thoemmes and West (2011) suggested that post-matching analysis 

should involve using a hierarchical linear model with either fixed or random effects or other 

methods that correct standard errors to account for clustering.  This approach would have created 

collinearity problems in the current study due to the school-teacher level confounding. 

  Stuart (2007) discussed using propensity score matching to compare schools when the 

data consist of school-level data such as school-wide means.  She suggested that when a 

treatment is assigned to an entire group, such as a school, the group be considered the unit of 

study.  This method, as applied to the current study, would mean that matching would take place 

at the teacher/classroom level instead of the student level, and valuable information about the 

distribution of students within the classroom would be lost. 

  Hong (2010) suggested an alternative but similar method to propensity score estimation, 

marginal mean weighting through stratification to adjust for selection bias in multilevel settings.   

The remaining researchers in this pool of literature estimated multilevel models at either the logit 

regression (propensity score estimation) stage by using either of Thoemmes and West’s (2011) 

approaches, or at the effect estimation stage, or both (Arpino & Mealli, 2008; Guo & Zhao, 

2000; Hong & Raudenbush, 2005; Hong & Yu, 2007, 2008; Kim & Seltzer, 2010; Mulrow, 

2010; Schreyogg, Stargardt, & Tiemann, 2011; Smyth, 2008).  None of these papers involved 

any sampling design other than assignment to treatment within clusters or incidental clustering to 

the treated and untreated units, and none solved the problem created by the sampling design in 

this study.   

  The primary reason to account for clustering, however, is to avoid inflated standard 

errors.  When clustering is ignored, estimates are unbiased unless theory suggests random slopes 

(interactions between the treatment assignment mechanism and the cluster), should be modeled.  
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In the context of the present study, at both stages of modeling (propensity score estimation and 

effect estimation), bias was important and standard errors were not.  Propensity-score estimates 

were used for matching without considering standard errors of the estimated regression 

coefficients.  Moreover, value-added effect estimates are typically used by researchers for 

ranking teachers without considering standard errors, and the same practice was followed with 

the propensity score-based estimates in this study.  Rankings of teachers across models was 

compared without considering statistical significance of the estimates. 

Multiple Treatment Effects and Propensity Score Analysis 

 Attempts have been made in prior research to apply propensity score estimation 

procedures when there are more than two treatment groups.   Joffe and Rosenbaum (1999) 

proposed extending propensity score estimation methodology for cases in which levels of the 

treatment variable are ordinal by using a McCullagh's ordinal logit model, and there is a pool of 

literature built on that approach (Lu, Zanutto, & Hornik, 2001; Zanutto, Lu, & Hornik, 2005).   

 Current approaches for nominal-level treatment groups appear to stem from the work of 

Lechner (1999) and Imbens (2000), who cross-cite each other.   Imbens (2000) proposed a 

model in which the multiple (3+) levels of the treatment variable could be nominal by defining a 

generalized propensity score, r(t,x), for a unit as the unit’s probability of assignment, given the 

covariates.  As in Lechner’s method, the score is a vector: 

                                                        r(t,x) = P(T = t |X = x)                                                        (1) 

In the case of nominal levels of treatment, the multinomial or nested logit is used to estimate the 

generalized propensity score.  One limitation of this methodology is that, unlike with 

Rosenbaum and Rubin’s propensity score, causal effects cannot be found for specific values of 

r(t,x), or for strata based on those values.  The function of covariates used in calculating 
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generalized propensity scores differs across treatment groups.  As a result, subjects in different 

treatment groups cannot be matched based on their propensity scores (see also Lu, Zanutto, & 

Hornik , 2001).  However, Imbens demonstrated that the average treatment effect across strata 

has a causal interpretation.  This is found by two steps.  First, β(t,r), the conditional expectation 

of the response variable given both the treatment level and the propensity score, is estimated.  

Essentially this is the vector of predicted values found when the response is regressed on t and 

r(t,x).  Next, for each level of treatment, this vector of predicted values is averaged over the 

distribution of the covariates.  This gives us the estimated expected value of the response, given 

the covariates, at each level of treatment.  These expected values for each level of treatment 

should be comparable.  In Imbens’ context (medical treatments), differences in the expected 

values are assumed to be causal results of the treatment choice.  Imbens’ method appears to be 

used often in the literature (Ertefaie & Stephens, 2010; Foster, 2003; Gingerich, 2010), and 

extensions to the case of continuous treatment variables have been made (Doyle, 2011;  Fryges, 

2009 ).  As described in Chapter 1, the feasible application of Imben’s approach to the current 

study is limited by the large number of treatment levels when teacher effects are being 

estimated.   

 While Lechner’s theoretical approach was different than Imben’s, it was similar in that a 

multinomial logit was used to estimate a propensity vector.  He suggested that the propensity-

score advantage of reducing a set of covariates to a single dimension only remains an advantage 

with the generalized propensity score if the number of treatment levels is less than the number of 

covariates (the propensity score vector is low-dimensional).  If treatment effects of a large set of 

treatment effects are being estimated, then he suggested that his method poses no advantage over 

directly matching on the covariates, in terms of simplicity and dimension-reduction.  However, 
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in the current study, matching directly on the covariates did not account for nesting as does 

using a generalized propensity score approach, and so there may still have been advantages to 

using a multinomial logit function to estimate a propensity score vector, especially within groups 

of similar teachers. 

 Imai and van Dyk (2004) expanded on Imbens (2000) by a further generalization of the 

propensity score—the propensity function, which allows the treatment variable to be nominal, 

ordinal, continuous, or even multivariate.  For a nominal treatment variable, however, the 

propensity function is essentially the same model proposed by Imbens, with the same limitation 

that it will have as many dimensions as there are treatment levels.   

 The approaches suggested by these authors did have the advantage over the scalar 

propensity-control method in the context of this study, however, in that clustering was not an 

issue.  Using their approaches, a cluster would always be perfectly confounded with a teacher-

treatment group.   
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Chapter 3:  Method 

  The study was a comparison of statistical methodologies using archival data.  These 

methodologies included both common and innovative strategies for teacher effect estimation. 

Design 

  Four different approaches to estimating the same set of teacher effects were used: (a) 

value-added modeling with random effects, (b) value-added modeling with fixed effects, (c) 

scalar propensity score matching, and (d) the generalized propensity score approach. 

  Existing data from a national dataset were used for this study, as it met the requirement 

of containing a large number of variables to be used in the propensity score analysis.  This 

minimized the risk of violating the ignorable treatment assignment assumption.  The Early Child 

Longitudinal Study (ECLS-K) was a national longitudinal study that followed one cohort of 

students from kindergarten through grade 8, beginning in the fall of 1998.  A purpose was to 

investigate the impact of background variables on educational abilities, outcomes, and gains for 

young elementary students, which made the dataset ideal for this study.  Data were collected at 

the beginning and end of kindergarten and grade 1 and at the ends of grades 3, 5, and 8.  

Students, teachers, administrators, and parents were interviewed or surveyed, and students were 

given a variety of assessments (Tourangeau et al., 2009).  This dataset was unusual among 

national datasets in that assessments were initially repeated at a one-year interval, which was 

necessary for the calculation of teacher effects in this study.  The ECLS-K study was a repeated 

measures design using the same students from year to year, with some attrition.  

  In the first year of the ECLS-K, children were chosen using a multistage probability 

sampling design.  At the first stage, 100 counties, or in some cases groups of counties, were 

chosen with probability proportional to the number of five-year-olds, with oversampling of 
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certain ethnic groups and some stratification based on a variety of factors such as metropolitan 

size, percent minority, and per capita income.  At the second stage, a total of 1413 public and 

private schools with kindergartens were chosen.   Of these, 136 were found not to have 

kindergartens after sampling, and some declined to participate initially, leaving a final fall 

kindergarten sample of 1018 schools.  Within each school, kindergarteners were randomly 

selected for inclusion in the study, with certain ethnic groups oversampled.  The target number of 

students from each school was 24, but some schools, presumably smaller schools or those with 

insufficient numbers of students in the oversampled ethnic groups, had fewer students included.  

In the end, 19,985 students were included in the final fall kindergarten sample (Tourangeau et 

al., 2009).  County-level information appeared to have been suppressed in the public-use dataset, 

but region, location type (urbanicity), and (coded) school assignments were available.   

Sample 

  Because the non-public schools included in the sample tended to more often have small 

numbers of students per school sampled, only public schools were included in the present study.  

This reduced the potential sample to 628 schools and 14,017 students.  From this sample, 2176 

students who switched teachers or schools during the kindergarten year or who joined the study 

after the fall data collection were eliminated, leaving a potential sample of 11,451 students.   

  In this remaining group, schools had a mean of 19.9 students included in the study with a 

standard deviation of 3.7.  Only thirteen schools had nine or fewer students in the study, but the 

students in the schools may have been assigned to any feasible number of teachers and so many 

class sizes were very small.  From each school, the teacher was chosen with the largest number 

of participating students.   If a school had no classroom containing at least five participating 

students, no teacher effect was estimated for that school.  This selection criterion was used 
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because it gave an almost-representative sample of schools in the dataset, without over-inclusion 

of small sample sizes at the classroom level.  The resulting sample for which teacher effects were 

estimated included 435 teachers (and, thus, 435 schools) and 4617 students.  However, all 11,451 

public school students who remained with the same teacher for both the fall and the spring data 

collections were used as potential controls for each of the 435 classes. 

  For the value-added and scalar (logit regression) propensity score approaches, this entire 

sample was included directly.  For the generalized (multinomial logit regression) propensity 

score approach, these 435 teachers were classified into strata.  A logical stratifying variable was 

suggested by the first stage of the ECLS-K multistage sampling design—the county.  Classroom 

assignments across counties were nearly independent, as they would be across states.  However, 

the county membership was not included in the public-use dataset and inquiry suggested the 

variable was not available through the restricted-use dataset.  As a result, an alternative 

stratification scheme was necessary. 

  The public use dataset offered only two other possible stratification variables—region 

(Northeast, Midwest, South, and West), and location type (central city, urban fringe and large 

town, rural and small town).  It seemed reasonable to assume teacher assignments were similar 

within each of these geographically-related stratum, making 12 strata possible.  However, the 

large sample of teachers meant the stratum each included a large number of treatment groups, or 

classes, ranging from 20 to 50, depending on the stratum.  A multinomial logit regression was 

unable to handle this many treatment groups.  A reasonable solution was to randomly create sub-

strata within each stratum.  The size of the sub-strata were chosen such that they were as large as 

possible, while still allowing the multinomial logit regressions to converge using the desired 

covariates.  The maximum number of teachers which could be chosen from each sub-stratum 
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depended on the actual covariates used in the model and any estimation problems encountered 

when fitting the multinomial regressions.  This maximum was determined in this study by trial 

and error. 

Measures 

  The response variable was ability estimates from the mathematics test given to 

kindergarten students at the end of the school year (C2R4MSCL).  These 3-PL IRT-based 

estimates had been rescaled to indicate the total number of items a student with that ability was 

expected to have answered correctly.  Scores from the same test given at the beginning of the 

school year (C1R4MSCL) were used as a covariate.  When the tests were administered, a routing 

form was used to determine whether the child fell into the high, medium, or low group on the 

mathematics test.  Next, the assessment was administered individually by a trained proctor who 

presented questions to the child and entered responses into a computer (Tourangeau et al., 2009).  

The reliability of the kindergarten mathematics test scores was .92 in the fall and .94 in the 

spring.  The mathematics test was based on the 1996 NAEP framework, and was vertically 

scaled (Rock & Pollock, 2002).  The test was proprietary and item level data were not available 

in the public use dataset. 

  Other student, family, and school background variables from the dataset were used as 

covariates in the value-added models and as matching variables in the propensity score analyses.  

The ECLS-K dataset encompasses hundreds of variables, ranging from measurements or 

background information taken on individual students to information gleaned from parent, 

teacher, or school surveys.  While propensity score analyses do not limit the number of variables 

which can be used for matching, data used for real life teacher evaluation does not generally 

include a large number of variables, and regression-based value-added estimates have limitations 
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on both the number of and correlations between the covariates chosen.  The important question 

of which variables are the best combination of practically measureable and meaningful for use as 

covariates in ongoing teacher assessment was not investigated in this study.  Variables were 

chosen for this study as described below. 

Procedures 

  Guo and Fraser (2010) suggested a procedure for selecting matching variables 

(covariates) when doing standard propensity score analyses:  First, check the treatment group and 

the potential control group as a whole for balance on each potential matching variable, using 

appropriate statistical tests.  Include in the model as a matching variable any with significant 

imbalances between the two groups; second, after matching, conduct the same statistical tests for 

balance on the treatment and smaller selected control group; third, if any significant differences 

in balance remain on any variable, reconfigure the matching variables to include higher order 

terms or interactions for that variable and retest.   

  One complication with this study was that 435 propensity score analyses (12 or more 

generalized PSA’s) were performed, one for each teacher or group of teachers.  Following Guo 

and Fraser’s (2010) covariate selection procedure may have created different model formulations 

for each of the 435 teachers (or 12 or more generalized PSA strata), meaning different matching 

variables would have been selected.  In order to create uniformity in the matching variable 

choice, it was necessary either to increase the number of variables used in all analyses (including 

interactions or higher order terms) so that each of the PSAs or generalized PSAs resulted in 

balance, or to tolerate greater imbalances in some of the treatment-control group pairs for the 

sake of parsimony.  While parsimony is not generally a goal of PSA or generalized PSA, having 

fewer matching variables was desirable for both the VA analyses and for the sake of practical 
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applicability of the methodology to teacher evaluation.  It also became evident that too many 

matching variables created poor matching in some of the PSA analyses.  In addition, 

multicollinearity among any chosen covariates was a concern in the VA analyses. 

  Approximately 200 potential student and parent-level covariates were chosen from the 

ECLS-K dataset which were subjectively determined to best meet the criteria of potentially 

unbalanced across classrooms and potentially related to kindergarten mathematics score gains.  

From these potential covariates, any with significant missing data or minimal variability in the 

responses were removed from consideration, including categorical variables with the majority of 

the responses at one level.  Those remaining were assessed for multicollinearity and removed, if 

necessary. 

  For the remaining variables, Guo and Fraser’s (2010) first step, the check for balance on 

each treatment group (teacher’s class) versus all potential controls, was adapted.  Because the 

goal was to identify covariates which tend to be distributed non-uniformly across teachers, a one-

way ANOVA or chi-square was estimated for each potential covariate.  Variables with the 

lowest p-values (least similar covariate distribution across teacher classrooms) were chosen for 

consideration in the study.  The beginning of year (fall) kindergarten general mathematics test 

IRT ability estimate, which was used as a covariate or matching variable, was used in addition to 

the other selected covariates.   After the measures to be used in the study were chosen, values for 

missing data on the covariates were imputed using maximum likelihood estimation. 

  Because the multinomial models were not estimable with a large set of covariates, and 

because some teachers were not matchable with the full set of covariates using the independent 

PSAs, a smaller subset of covariates was identified that most impacted student final mathematics 

test scores, using stepwise regression.  This smaller set of covariates was used as matching 
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variables in a second set of value-added analyses and independent propensity score analyses and 

within the multinomial models. 

Analyses 

  The analysis encompassed four steps:  (a) value-added analyses, (b) logit-model 

propensity score analyses done separately for each teacher, (c) generalized PSA analyses done 

separately by stratum, and (d) effect estimate comparisons.  Each of these steps required a large 

number of smaller decisions and details.   

  Value-added models.  Two value-added models were estimated in R in order to 

calculate value-added effects for the teachers.  Both models were of the form: 

Yij = µ+ τj + Xijβ+ εij                                                                                                         (2) 
 
where i indexed students and j indexed teachers.  Xij was a matrix representing the same 

covariates used in the propensity score analyses, Yij represented the end of year kindergarten IRT 

mathematics ability estimate, and τj represented the effect of teacher j.  In the first model, τj was 

treated as a fixed effect, and in the second model, τj was random.  In addition, each model was 

re-estimated using a selection of smaller subsets of covariates.  For each model estimation, the 

teacher effects were ranked, organized into quintiles (as in Koedel & Betts, 2007; McCaffrey et 

al., 2009), and compared using Pearson and Spearman rank correlations and quintile 

comparisons.   

  The practice of ranking estimated effects into quintiles and assessing to what degree the 

effects move across quintiles using different model forms, which is often used to compare value-

added estimates, had the advantage of providing practical information about how conclusions 

about teachers may change simply by altering the PSA methodology.  If a large number of 

teachers in the lowest quintile using one method moved to a higher quintile when another 
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method was used, then making high stakes decisions about low-rated teacher would be more 

questionable. 

  In addition, the concordance correlation coefficient (rc) was used for effect comparisons.  

The concordance correlation evaluated how closely the relationship between two measures fit a 

45 degree line (intercept=0 and slope=1), suggesting they were identical (Lin, 1989).   

  Propensity score analyses.  Four hundred thirty-five separate propensity score analyses 

were conducted in the statistical software package R (R Development Core Team, 2011), one for 

each teacher.  Each analysis was done twice—once with the larger set of covariates and once 

with the smaller subset.  All students in the teacher’s class were considered the treatment group.  

This treatment group of students was matched to the best possible control group of students from 

others in the total sample of 11,451 students.  This resulted in 435 treatment-group/control-group 

pairs.  While each treatment group was unique (one teacher’s class), the control groups may have 

overlapped in terms of students assigned.  The goal was to find for each teacher’s class of 

students the best possible control group in terms of the propensity score (probability of 

assignment to treatment).   

  Propensity scores were estimated using logistic regression (glm function in R), with the 

selected matching variables.  Using these propensity scores, a control group of students was 

matched with each treatment group using optimal matching  (optmatch package in R).   

  In optimal matching, network flow theory is used to select a control group with the 

minimum total difference between propensity scores of treated units and their matched 

control(s).  However, there were a large number of options in optimal matching related to the 

number of controls to be assigned to each treated case.  Rosenbaum (2002) and Guo and Fraser 
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(2010) both indicated that most propensity studies involve using several of these options and 

comparing results, and that practice was followed in this study.    

  Assignment of controls to treated subjects resulted in matched sets,with si treated units 

and ti untreated units in each set i (notation used by Hodges & Lehmann, 1962).  With the 

optimal matching methods used in this study, si = 1 for all i.  In other words, a set consisted of 

one treated unit and one or more matched controls.  If also ti = 1, then we had matched pairs, sets 

with one treatment and one control.  While a matched pairs design resulted in the minimum total 

difference in propensity scores, the goal of optimal matching procedures, there would have been 

a loss of information from other potential controls, if available.  The several solutions to this 

conflict have resulted in the various matching options used in optimal matching.   The goal was 

to waste as little information in the controls as possible while still making matches to the treated 

subjects that were as close as possible.  One solution was to force a specified treated/control 

ratio, such as 1:2, 1:3, or higher.  An advantage of this design was that it created balanced sets, 

which were simple to work with computationally.  A disadvantage was that some treated units 

may have ended up with one or more poor matches, because the matches were forced.  However, 

this risk is reduced when the ratio of potential controls to treated units is large, as in this study.  

Because the best approach has not yet been determined, and may depend on quirks in individual 

datasets, researchers typically have used several approaches and compared results.   

  The use of the large national dataset in this study meant that the number of potential 

controls for each treated unit (student in a particular teacher’s class) was large.  This increased 

the odds that multiple good matches could be made for any student.  In this study, I created 

matched sets for the students in each teacher’s classroom using the following rules: 
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1. 1:1 fixed ratio of treated unit (student in teacher’s class) to control 

2. 1:2 fixed ratio 

3. 1:5 fixed ratio 

A 1:20 fixed ratio was also used briefly for the examination of the relationship between matching 

quality and matching ratio.  However, teacher effects were only estimated and compared for the 

1:1, 1:2, and 1:5 ratios. 

  After the control sample was chosen for each teacher by each method, each teacher-

control pair of samples was checked for balance on the matching variables using independent 

sample t-tests.  If any of the variables had t-test statistics that were statistically significant (α = 

.05) for a large number of teachers, a higher order term would have been added to the model.  As 

Guo & Fraser (2010) suggested, there is no definitive procedure for creating the form of the 

model or selecting covariates.  Sometimes balance cannot be improved simply because there is 

insufficient overlap between the distributions of covariates for the treated subject and the 

potential controls.  The extremely large ratio of potential controls to the treated made this 

possibility seem unlikely in this study, but it became a problem.  If adding square terms could 

not improve the balance of the treatment-control group pairs, then it was determined that the 

model was the best fitting possible, keeping in mind that 5% of covariates should have had 

statistically significant poor balance across any teacher-control group pair just due to chance.   In 

addition, in this study match quality was evaluated by examining the difference between the 

propensity scores for all matched student-control pairs within a class. 

  For many teachers in the sample, when a large set of matching variables was used quality 

matches could not be made with the potential controls available.  As a result, some comparisons 

were made with only the subset of teachers for whom matching was possible.  In addition, a 
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second set of propensity score analyses was done for all teachers using a smaller set of 

covariates. 

  After matching, the teacher effect, was estimated using the identified control group (a) 

by comparison of means across each treatment and control groups, (b) by regressing the response 

on the dummy treatment variable (teacher assignment) for each class separately, using the 

mathematics pretest as a covariate, and (c) by adding a small selection of additional covariates to 

the regression models estimated in (b). 

  This process was repeated with each matching methodology for each of the 435 teachers, 

and resulting treatment effects were considered the teacher effects.  Next, the 435 teacher effect 

estimates were ranked.  The 435 effects were divided into five quintiles, or equal-sized groups, 

by rank.   The teacher effects resulting from the various propensity score analysis methods were 

compared several ways: (a) a Pearson correlation was calculated, (b) a Spearman rank correlation 

was calculated for the two sets of ranked effects in order to get a single-value measure of how 

well the two sets of estimates were related as monotonic functions of each other, (c) the percent 

of teachers who move from one quintile to another using the two PSA methods was found, and 

(d) the concordance correlation coefficient was estimated.   

  Generalized propensity score analyses.  Next, multinomial logit regressions were 

estimated for each stratum separately.   For each stratum, a vector of propensity scores was 

estimated. Following Imbens (2000), the expected value of the response (end of kindergarten 

mathematics achievement) was estimated for each teacher, given the covariates (a dose-response 

function). After these expected values were estimated for all strata, teacher effects were 

calculated by subtracting each teacher’s response from the overall mean of the expected 

responses for all teachers, across all strata.  As previously described, only a random selection of 
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teachers within each stratum were included in each of the analyses, with the number of teachers 

per stratum selected dependent on how well the estimations converged.   

  Comparisons.  Teacher effect estimate rankings found using each of methodologies 

were compared.  As described above, the Pearson, concordance correlation, rank correlation, and 

quintile comparisons were used to make pairwise comparisons for the various VA and PSA sets 

of estimates. 

  In addition, the sets of PSA and VA effects were compared within pairs of classrooms 

with similar covariates.  For each possible pair of classrooms, covariates were compared using 

the Mahalanobis distance.  For each classroom, the most similar class was identified, and teacher 

effects estimated from each of the approaches were examined for the two classes in order to 

determine whether the ranking of the two teachers was consistent across the methods.   

  The hope was that this study would shed greater light on how data about teachers, 

students, and classroom compositions might best be used in order to estimate teacher inputs to 

student achievement for accountability purposes.   
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Chapter 4:  Results 

 Analysis of the data proceeded as described in the methods section, beginning with 

selection of the sample and potential covariates, and proceeding through the various analyses and 

comparisons. 

Sample Description 

 The final sample consisted of 435 teachers teaching a total of 4617 students.   An 

additional 6834 students were included whose class sizes did not meet the selection criteria for 

the estimation of teacher effects but who were used as potential controls for the 435 classes of 

interest, resulting in a final pool of 11,451 students.   For the 435 teachers, class sizes ranged 

from 5 to 25 students, with a mean of 10.61 students per class and a standard deviation of 4.79.  

For the 11,451 students, the mean mathematics test score gain over the kindergarten year was 

10.26 units on the IRT-based scale, and the standard deviation was 6.96.   

Covariate Selection 

 Originally, 187 potential child and family covariates were selected from the ECLS-K 

dataset.  Since school and class variables were confounded with teacher assignment (only one 

teacher was selected from each school), they could not be used in the logistic regressions used 

for the propensity score analyses and so were not selected.  The 187 variables were chosen based 

on their potential to relate to kindergarten mathematics test score gains.  The variables included 

socio-economic measures and demographics, child assessments and development history, and 

family composition characteristics.  A complete list of these initially selected variables is 

provided in Appendix B.   

 Next, variables that had very little variability or excess amounts of missing data within 

the 435 classrooms of interest were eliminated.  Among the 105 categorical variables, 47 had at 
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least 80% missing data or at least 95% of the responses within one category and were eliminated.  

Similarly, among the 82 scale variables, 29 were found to contain very little data or near-zero 

variability, often because the variable tested a skill that was beyond the capacity of most 

kindergarteners, such as understanding place value, or applied to very few of the students, such 

as the number of weeks of prematurity at birth.  The 111 remaining variables are listed in 

Appendix C.   

 These 111 remaining variables were examined for imbalance across the 435 classrooms, 

using one-way ANOVA for the scale variables and chi-square tests for the categorical variables.  

Variables with p-values greater than .30 (very little evidence of imbalance) were removed.  This 

criterion was chosen conservatively as the goal was to keep variables which may have had 

imbalance.  Additionally, variables that had high bivariate collinearity with others (r  ≥  .80) 

were removed at this stage.  Two variables (birth weight pounds and birth weight ounces) were 

combined to create one variable.  The resulting set contained 70 potential covariates.  At this 

stage, missing data were imputed using maximum-likelihood from the Amelia package in R, 

accounting for nominal and ordinal variables.   

 While bivariate collinearity had been addressed earlier, multicollinearity had not.  The 

variance inflation factor (Allison, 1999), or VIF, was found for each potential covariate after 

regressing it on the others.  The largest VIF was found for C1R4MSCL, the beginning of year 

mathematics score.  Theoretically, this variable could not be moved from the analyses as it 

formed the basis of the value-added analyses, and so those variables it was multi-collinear with, 

C1R4MPB1, C1R4MPB2, and C1R4MPB3, three other mathematics assessments, were removed 

instead.  Two other variables, P1CARNOW and P1PRIMNW (two measures of current daycare 

arrangements) were found to be essentially the same and so the latter was removed.   Sixty-six 
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covariates remained and were used as a starting point in the analyses.  These covariates are listed 

and described in Appendix D. 

Among these remaining variables, the highest VIF was now 1.99.  Allison (1999) 

suggests that a VIF over 2.50 indicates potentially problematic multicollinearity.  The set 

included 27 scale variables, 16 ordinal variables, and 23 nominal variables.  As summarized in 

Appendix D, the variables represented student background experiences, parent variables, and 

measurements taken on students.  The variables had not been, at this point, examined in terms of 

their actual impact on the outcome variable, the end of year mathematics test score.   

Value-Added Models 

 For comparability with the propensity score models, both value-added models used all 

11,451 students.  In the fixed effects model, the students who did not belong to one of the 435 

classes of interest were designated as belonging to class 436, and this group was used as the 

reference class.  In the random effects model, the actual class assignment was modeled for all 

11,451 students.  In both cases, teacher effects were only extracted and compared for the 435 

teachers of interest.  Fixed and random effects models were estimated with successively smaller 

subsets of covariates (66, 17, 7, and 1).  In all cases the beginning of year kindergarten 

mathematics exam was included.  These variations served two purposes:  

1.  Comparability with the propensity score and generalized propensity score analyses, 

which in some cases were only estimable with fewer variables. 

2. Examination of the consequences of eliminating covariates on the value-added 

teacher effect estimates.   

R’s lm function was used to estimate fixed teacher effects.  Random effects were estimated using 

the lmer function within R’s lme4 package.   
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 Sixty-six covariates.  Using all 66 covariates, fixed teacher effects ranged from -11.63 to 

9.07 with a mean of -0.47 and a standard deviation of 2.92.  Random effects estimates ranged 

from  -7.73 to 4.01 with a mean of -0.22 and a standard deviation of 1.59.  For these two sets of 

estimates, both the Pearson product-moment correlation coefficient (r = .98) and the Spearman 

rank correlation coefficient (rs  = .99) were high.  As shown in Figure 1, the two sets of teacher 

effect estimates were most similar to each other when they were closest to zero.  This similarity 

at the center was expected due to the weighting or shrinkage of random effects estimates toward 

the mean, especially for classes which were small or had high within-class variability.  The lower 

variability for the random than for the fixed effects resulted in a drop in the concordance 

correlation coefficient, however, in spite of the strong linear relationship between the two sets of 

estimates.  The concordance correlation coefficient (rc = .81) reflected the difference in both 

scale and rotation from the line of perfect concordance, as illustrated by Figure 1.   

Figure 1:  Concordance of fixed and random effects with 66 covariates. 

 

Figure 1.  Concordance of fixed and random effects with 66 covariates.  This figure illustrates 

the relationship between the fixed and random effect estimates.   
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 When teachers were ranked and categorized into five quintiles twice, first using random 

effect estimates and then using fixed effect estimates, the teachers fell into the same quintile of 

rank 89% of the time.  For example, of the 87 teachers who were ranked in the lowest 20% using 

fixed effects, 79 were also ranked in the lowest 20% using random effects, but eight teachers had 

moved up by one quintile.  Those who differed in their quintile assignment across estimation 

methods never differed by more than one quintile (Table 1).   

Table 1:  Quintile Comparisons, Random and Fixed Effects with 66 Covariates 

Table 1 
     Quintile Comparisons, Random and Fixed Effects with 66 Covariates 

 
 Random Effect Counts 
Fixed Effect 
Counts Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
Quintile 1 79 8 0 0 0 
Quintile 2 8 72 7 0 0 
Quintile 3 0 7 77 3 0 
Quintile 4 0 0 3 78 6 
Quintile 5 0 0 0 6 81  

 

The random and fixed effects approaches appeared to rank the teachers in the sample similarly, 

although the two sets of estimates were not identical.   

In these value-added models, only 11 of the included covariates had statistically 

significant (α  = .05) slope estimates in the presence of the other covariates (Appendix F).  

However, these covariate slope parameter estimates were nearly perfectly correlated (r = .99). 

 Seventeen covariates.  Stepwise regression was employed for the fixed effects approach 

in order to identify a reduced model with good fit.  This procedure became necessary later in 

order to identify the variables which best predicted the outcome for use in the propensity score 

and generalized (multinomial) propensity score models, which had estimation problems when all 
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66 covariates were included.  Variables were removed one at a time using backward elimination, 

with the variables with the highest p-values removed first, provided there was no significant 

effect on the model R2.   Forty-nine covariates were removed, resulting in a minimal drop in 

model fit (R2 = .690, 66-covariate model; R2 = .689, 17-covariate model).  This cutoff of 17 

covariates also coincided with the largest set of covariates that made the multinomial models 

estimable.  No covariate was removed with a p-value less than .10 in the step before exclusion.  

The final set of covariates is listed in Appendix E, Table E1.   Estimates from this model 

correlated highly with estimates from the other value-added models, as shown in Table 2. 

 Seven covariates.   Random and fixed effects models were estimated using the seven 

covariates which had the lowest p-values on the slope parameters in both the full (66 covariate) 

and reduced (17 covariate) value-added models.  These seven covariates are listed in Appendix 

E, Table E2.   The purpose of these models was to compare results with propensity score 

approaches that used a linear model with covariates at the effect-estimation stage.  Because the 

smallest class included in the study had 5 members, and the smallest matching scheme in the 

propensity score analyses was one-to-one, only ten degrees of freedom were available in the 

smallest samples.   Again, teacher effects from the seven-covariate value-added models were 

highly correlated with the other value-added models (Table 2). 

 One covariate.  For both random and fixed effects approaches, baseline models with no 

covariates other than the beginning of kindergarten mathematics test (C1RSMSCL) were also 

estimated.   Table 2 reflects the high correlation of effects from this model with the other value-

added models.  For both random and fixed teacher effect estimation approaches, the correlation 

between the two extremes—the full (all 66 covariate) and minimal (only one covariate) 

models—was very high (r  = .95 random, r =.95 fixed).  Concordance correlation coefficients  
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Table 2:  Value-Added Effect Correlation Matrix using 1,7,17, and 66 Covariates 

Table 2 
          Value-Added Effect Correlation Matrix using 1,7,17, and 66 Covariates 

  

 
Random Teacher Effect 

 
Fixed Teacher Effect 

           
  

Number of Covariates 
 

Number of Covariates 

  
1 7 17 66 

 
1 7 17 66 

Random Teacher Effect 
          

1 Covariate 
 

- 
 

.955 
 

.951 
 

.947 
 

 
.982 

 
.938 

 
.934 

 
.930 

7 Covariates 
 

 
.950 - 

 
.998 

 
.996 

 

 
.935 

 
.981 

 
.979 

 
.977 

17 Covariates 
 

 
.944 

 
.997 - 

 
.999 

 

 
.931 

 
.979 

 
.981 

 
.980 

66 Covariates 
 

 
.940 

 
.995 

 
.998 - 

 

 
.927 

 
.977 

 
.979 

 
.981 

           Fixed Teacher Effect 
          

1 Covariate 
 

 
.992 

 
.941 

 
.935 

 
.931 

 
- 

 
.953 

 
.949 

 
.945 

7 Covariates 
 

 
.945 

 
.992 

 
.989 

 
.987 

 

 
.949 - 

 
.998 

 
.996 

17 Covariates 
 

 
.940 

 
.990 

 
.992 

 
.990 

 

 
.944 

 
.997 - 

 
.998 

66 Covariates   
 

.936 
 

.988 
 

.991 
 

.993   
 

.940 
 

.995 
 

.998 - 
Note.  Pearson correlations above diagonal.  Spearman correlations below diagonal. 
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suggested that teacher effects were essentially the same whether or not the remaining 65 

covariates were included in the model (rc = .93 random, rc =  .93 fixed).  At the two extremes of 

covariate inclusion, the teachers’ quintile rankings differed 32% of the time when random effects 

were estimated and 34% of the time when fixed effects were estimated.  These rankings, 

however, rarely varied by more than one quintile (Table 3).    

Table 3:  Quintile Comparison Matrices, 66 and 1 Covariates 

Table 3 
     Quintile Comparison Matrices, 66 and 1 Covariates 

 

 
Random Effect, 66 Covariates 

Random Effect, 
1 Covariate 

Quintile 
1 

Quintile 
2 

Quintile 
3 

Quintile 
4 

Quintile 
5 

Quintile 1 68 18 1 0 0 
Quintile 2 18 47 20 2 0 
Quintile 3 1 21 46 18 1 
Quintile 4 0 1 19 57 10 
Quintile 5 0 0 1 10 76 

 

 
Fixed Effect, 66 Covariates 

Fixed Effect,      
1 Covariate 

Quintile 
1 

Quintile 
2 

Quintile 
3 

Quintile 
4 

Quintile 
5 

Quintile 1 68 19 0 0 0 
Quintile 2 17 46 23 1 0 
Quintile 3 2 18 46 20 1 
Quintile 4 0 4 17 53 13 
Quintile 5 0 0 1 13 73 

 

Figures 2 and 3 illustrate the high concordance between value-added teacher effects estimated 

with all 66 covariates and teacher effects estimated with only the mathematics pretest score used 

as a covariate for both fixed and random effects estimate approaches.   In both cases, the teacher 

effect estimates with 66 and one covariates closely fit the line of perfect concordance. 
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Figure 2:  Concordance of fixed effects with 66 and 1 covariates 

 

Figure 2.  Concordance of fixed effects with 66 and 1 covariates.   

Figure 3:  Concordance of random effects with 66 and 1 covariates. 

 

Figure 3.  Concordance of random effects with 66 and 1 covariates. 
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Independent Propensity Score Models  

 Estimation of the propensity scores using the 435 independent logistic models resulted in 

one major complication.  Even though the matching variables were chosen to exclude those with 

minimum variability overall, often the variables had minimal or no variability within specific 

classes.  For 236 of the classes, there was perfect separability between the treated and potential 

controls when all 66 matching variables were used.  Essentially, there was no region of common 

support.  The set of matching variables was able to perfectly predict which students were in the 

teacher’s class.  The teacher’s students received propensity scores of near-one and the others 

received propensity scores of near-zero.   For each of these classes, the teacher’s students were 

essentially unique given this set of matching variables.  They could not be matched.   

However, the sample sizes from these unmatchable classes (mean of 7.92 students) 

tended to be smaller than the sample sizes from the matchable classes (mean of 14.35 students).  

The sampling design unique to this study (random sampling of students at the within-school 

level) limited class sizes in a way that should not occur in a true teacher accountability data 

collection.  As a result, a smaller proportion of teachers would likely be affected by separability, 

given covariate distributions similar to this study. 

For this dataset, there were several possible solutions to the separability problem, all of 

which were attempted:   

1.  Proceed anyway, allowing matches to be created which were near-random and which 

did not improve teacher-control group balance on the covariates for those 236 

unmatchable teachers.  For these 236 teachers, effect estimates were analogous to 

unmatched comparisons as made in the value-added models. 
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2. Reduce the number of matching variables, especially those which may have had little 

effect on outcomes, so that the separation wasn’t as strong.  Many of the covariates, 

while they were related to classroom assignment and contributed to separability, were 

found in the value-added analyses not to contribute significantly to student outcomes.  

In other words, ignoring the sorting based on those characteristics did not bias teacher 

effect estimates significantly—it simply lost the ability to balance classrooms on 

unimportant characteristics.  As a result, the set of 17 variables (see Appendix E, 

Table E1) found in the value-added models to best predict outcomes while still 

making the multinomial models estimable was used in one set of propensity score 

analyses.  With these 17 variables, the extreme separation was not a problem for any 

remaining teachers.  

3. Consider these 236 teachers’ classes unique and, therefore, these teachers’ true effects 

on student test scores relative to other teachers to be un-estimable.  In order to 

examine the impact of the full set of 66 matching variables on teacher estimates in 

this study, the 236 unmatchable teacher effects were excluded for some of this study’s 

comparisons.   

Using the two sets of matching variables (66 and 17), 435 logistic regressions were 

estimated in R, using the glm function.  Using each variable set, predicted values (propensity 

scores) were found for all 11,451 students for each teacher assignment.  After these sets of 

propensity scores were estimated, R’s optmatch package was used to match students in each of 

the 435 classes with one, two, or five other students in the remaining pool of students.   

The approach in this project was to find the effect on each teacher’s actual students of 

assignment to that teacher.  For this reason, the balancing of the treatment-control group was 
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one-directional.  Control groups were assigned that best balanced the characteristics of each 

teacher’s students.  No attempt was made to select for consideration the most appropriate 

students from within the teacher’s class so that the class better reflected the balance of 

characteristics in larger student population.  All of the teacher’s students with available data were 

used.  In other words, the interest was in the average treatment effect on the treated, the effect on 

each teacher’s actual students of assignment to that teacher.   

Match quality.  After matching, each class-control group was checked for match quality 

and improved covariate balance.  A t-test comparing either means or proportions was conducted 

for every variable, for every class-control pair, for every matching scenario.  Class-control pairs 

for which the difference in means or proportions was statistically significant at α = .05 for a 

given variable were tallied for each scenario.  For comparison, identical t-tests were conducting 

comparing the mean or proportion for each variable for each teacher before matching, using all 

potential controls as the comparison group.  Table G1 in Appendix G lists the number of teachers 

for whom the imbalance on a variable was statistically significant both before and after 

matching.  On all variables, the number of class-control pairs with statistically significant 

imbalance dropped dramatically after matching, with the number remaining less than the 5% 

expected due to chance at α = .05.  Statistically significant imbalance was decreased in most 

classrooms in spite of the separability (unmatchability) problem for over half the teachers, 

though to some degree this was expected due to a decrease in statistical power.   

For comparison, balance after matching was also examined for a 1:20 match ratio with 

the expected result that more teacher-control pairs remained statistically out of balance under 

that scenario.  Table G2 (Appendix G) repeats the procedure with the 17 matching variable 

model.  Again, little imbalance remained after matching. 
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With the 17 matching variable model, the number of class-control pairs with statistically 

significant differences appeared to decrease on most variables as the matching ratio increased 

from 1:1 to 1:2 to 1:5, in spite of increased power to find differences with the larger ratios.  With 

the 66 matching variable model, results were less consistent, and the 1:2 matching ratio appeared 

to indicate the fewest classrooms with remaining imbalance across most variables.  

In addition, the matched distances for all student-control pairs were examined.  Using the 

results from the 66-variable model, median matched distances for each of the 199 matchable 

classes were found.  Because the matched distances for the classes suffering from the separation 

problem were always almost 1.0, they were removed for this analysis.  The goal was to find out 

how close the matches were for those teachers who could be matched.  For each class, the 

median class matched distance was found.  Table 4 shows the mean and median across all 

classes of these median matched distances as the matching ratio was allowed to increase.  Again 

for comparison, matching distances were also found for a 1:20 matching scheme.  Matches 

decreased in quality as more matches were found for each student.   

Table 4:  Median Matched Distance, 66 Covariates, 199 Matchable Teachers 

Table 4 
   Median Matched Distance, 66 Covariates, 199 Matchable 

Teachers 
 Matching Ratio Mediana  Meanb SDc 

 
1:1 Match 0.001 0.007 0.018 

1:2 Match 0.003 0.013 0.028 

1:5 Match 0.010 0.031 0.047 

1:20 Match 0.087 0.126 0.118 

aMedian of class medians. 
bMean of class medians. 
cSD of class medians. 
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The same procedure was followed for the 17 matching variable approach, this time using 

all 435 teachers (Table 5).  Comparison of Tables 4 and 5 demonstrates that the matching quality 

was noticeably improved when only 17 variables were included in the model.  This reinforces the 

idea that the excluded variables posed a matching problem for the teachers.  Even when only the 

199 matchable teachers were included in the analysis, the matching quality for those teachers 

was poor using 66 matching variables compared with the 17 matching variable model.  

Essentially, the extra matching variables appeared to be requiring balance on class-control pairs 

that could not be achieved well with the sample of 11,451 potential controls available.   

Table 5:  Median Matched Distance, 17 Covariates, All Teachers 

Table 5 
   Median Matched Distance, 17 Covariates, All Teachers  

Matching Ratio  Mediana Meanb SDc 

1:1 Match 0.001 0.001 0.003 

1:2 Match 0.001 0.002 0.007 

1:5 Match 0.001 0.004 0.016 

1:20 Match 0.003 0.018 0.066 

aMedian of class medians. 
bMean of class medians. 
cSD of class medians. 

  

Teacher effect estimation.  Teacher effects were estimated three different ways:   

1. Difference in means:  The difference in estimated mean end of year mathematics test 

score between the teacher’s students and the students matched to the group was 

estimated.  This effect estimation approach did not take into account any of the covariates 

at the effect estimation stage, but instead assumed that accounting for covariates at the 

propensity score estimation and matching stage was sufficient.   
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2. Slope with pretest:  The estimated slope on the teacher dummy variable was found by 

estimating a linear model with end of year mathematics test as the dependent variable and 

the mathematics pretest as a covariate.  As a result, the fall mathematics test (pretest) was 

used twice—once at the propensity score estimation stage and again when teacher effects 

were estimated.  This approach was analogous to estimating successive simple value-

added models for each teacher separately with a reduced sample including only each 

teacher’s students and assigned controls.   

3. Slope with multiple covariates:  The estimated slope on the teacher dummy variable was 

found by estimating a linear model with end of year mathematics test as the dependent 

variable and a small set of covariates.  Seven variables that had p-values less than .01 in 

the VA fixed regressions were included (see Appendix E, Table E2).  This set of 

covariates was intentionally kept small as the smallest classrooms included only five 

students and the smallest matching ratio was 1:1, meaning treatment-control group 

combined samples had a lower limit of  n = 10. 

For each of these three effect estimation methods, each of the three approaches to the separability 

(unmatchable teacher) problem addressed earlier was used:   (a) All teacher effects were 

estimated using all 66 variables, allowing unmatchable teachers to be matched to controls almost 

randomly, (b) all teacher effects were estimated using a reduced set of 17 covariates, and (c) only 

the matchable teachers using 66 variables were included.  In addition, each of the three matching 

schemes (1:1, 1:2, and 1:5) was used. 

Sixty-six variables, all teachers.  Within the 66-variable all-teacher design, the three 

effect estimation methods and the three matching schemes produced 435 teacher effect estimates 

with Pearson product-moment correlations ranging from r = .61 to r = .98, as shown in Table 6.  
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Table 6:  Correlation Matrix for Matching and Effect Estimation Schemes when 66 Matching Variables and All Teachers were Used 

 
Table 6 

              Correlation Matrix for Matching and Effect Estimation Schemes when 66 Matching Variables 
and All Teachers were Used 

 
Means   1 Covariate   7 Covariates   Value-Added 

  1:1 1:2 1:5   1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 
Means   

            1:1 Match -  .81  .70 

 

 .82  .74  .72 

 

 .68  .71  .71 

 

 .67  .65 

1:2 Match  .81 -  .85 

 

 .76  .88  .83 

 

 .64  .83  .81 

 

 .78  .76 

1:5 Match  .71  .84 -    .72  .81  .89    .61  .76  .86    .84  .83 

 
1 Covariate   

            1:1 Match  .81  .75  .72 

 

-  .88  .83 

 

 .83  .84  .84 

 

 .78  .76 

1:2 Match  .73  .87  .80 

 

 .86 -  .92 

 

 .76  .95  .92 

 

 .86  .84 

1:5 Match  .71  .81  .88    .81  .90 -    .70  .87  .98    .94  .92 

 
7 Covariates   

            1:1 Match  .72  .66  .64 

 

 .88  .76  .71 

 

-  .80  .72 

 

 .67  .64 

1:2 Match  .71  .82  .76 

 

 .83  .95  .85 

 

 .81 -  .89 

 

 .81  .79 

1:5 Match  .70  .79  .85    .82  .90  .98    .74  .87 -    .93  .91 

 
Value-Added    

            Fixed  .67  .75  .82 
 

 .76  .84  .94 
 

 .68  .80  .92 
 

-  .98 
Random  .66  .75  .81    .76  .84  .93    .68  .79  .91    .99 - 

Note.  Pearson correlations above diagonal.  Spearman correlations below diagonal. 
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Both the matching ratio and the effect estimation approach impacted the correlations between the 

estimates of teacher effectiveness.   

In all cases, as the matching ratio increased, the correlation of the propensity score-based 

effects with the value-added effects increased.  Effects estimated using identical matching ratios 

were always more highly correlated than those using different ratios, regardless of the effect 

estimation method used (Table 6).  One-covariate estimation models were more correlated with 

the value-added effects, however, than were the seven-covariate estimates, though both sets of 

correlations were higher than those resulting from the mean-difference estimates. 

All else being held constant, varying the level of covariate inclusion (mean differences, 1 

covariate, 7 covariates) at the effect estimation stage produced Pearson correlations that were 

large (r > .68).  These correlations were higher when a larger number of imprecise matches were 

assigned to each student rather than a fewer number of more precise ones (Table 6).  Although 

these correlations were large, the value-added estimate correlations had been much stronger   

(r  > .945) regardless of the level of covariate inclusion (Table 2).  The propensity score-based 

estimates were more sensitive to the level of covariate inclusion at the effect estimation stage 

than were the value-added estimates. 

For these 435 teachers, effect correlation across propensity score approaches was weaker 

than across value-added approaches.  While a correlation of r = .61 may be considered high 

within other contexts, when high stakes decisions are being made about teachers, that level of 

correlation is likely insufficient.  A correlation of r = .61 suggests that only about 37% (r2) of the 

variability in one set of teacher effects can be predicted, or explained, by the other set of teacher 

effects.   
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Table 7 shows the concordance correlation coefficient (rc) showing the relationships 

between sets of estimates.  These values were generally very close to the Pearson correlations.  

Concordance correlations with the random value-added estimates, however, were lower because 

rc takes into account departures from the slope of the line y = x in addition to the tightness of fit 

to the line.  The reduced variability at the extremes when estimating random effects alters the 

slope of this line.  

Propensity score-based effect estimates could not be estimated with more than a few 

covariates due to degrees of freedom limitations, as described earlier.  All comparisons with 

propensity score estimates, thus far, had used estimates from the full 66-variable value-added 

model.  These value-added 66-covariate estimates were very highly correlated with value-added 

estimates using fewer covariates (r > .945).  However, in order to more carefully examine the 

relationship between propensity score matching ratios and value-added estimates, estimates from 

the fixed effects value-added model with only seven covariates were correlated with propensity 

score estimates using the same seven covariates for effect estimation and 1:1, 1:2, 1:5, and 1:20 

matching schemes.  As illustrated in Table 8, the correlation between the value-added and 

propensity score-based estimates appeared to converge to 1.0 as the matching ratio increased, all 

else being held constant.  Theoretically, a one-to-all propensity score-based matching scheme 

should duplicate a fixed effects value-added model, if identical covariates are included in the 

effect estimation (linear model) stage as in the value-added model.  In each case all students not 

assigned to the teacher’s class would be used as controls.   

While correlations indicate the strength of relationship between two sets of estimates, 

they do not indicate what practical effect any differences in estimates would have on high stakes  
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Table 7:  Concordance Correlation Coefficient Matrix for 66 Matching Variables and 435 Teachers 

Table 7 
              Concordance Correlation Coefficient Matrix for 66 Matching Variables and 435 Teachers 

 
  

Means   1 Covariate   7 Covariates   Value-Added 

    
 

1:2 1:5   1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 

 

Means 

             1:1 Match  .80  .68 

 

 .79  .71  .66 

 

 .68  .69  .66 

 

 .60  .39 

1:2 Match 

 

 .84 

 

 .75  .87  .80 

 

 .63  .83  .79 

 

 .75  .53 

1:5 Match        .72  .81  .88    .58  .76  .85    .82  .62 

 

1 Covariate 

             1:1 Match 

    

 .87  .81 

 

 .80  .84  .82 

 

 .75  .54 

1:2 Match 

     

 .91 

 

 .72  .95  .91 

 

 .84  .63 

1:5 Match                .63  .86  .98    .94  .75 

 

7 Covariates 

             1:1 Match 

        

 .72  .63 

 

 .59  .39 

1:2 Match 

         

 .86 

 

 .79  .75 

1:5 Match                        .93  .73 

 

Value-Added 

             Fixed                            .82 
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Table 8:  Correlations of VA Fixed Effects (7 Covariates) with Propensity Score Effects (7 Covariates at Effect Estimation Stage) 

Table 8 
 Correlations of VA Fixed Effects (7 Covariates) with Propensity Score 

Effects (7 Covariates at Effect Estimation Stage) 
  
Matching Ratio r 

1:1 Match  .67 

1:2 Match  .81 

1:5 Match  .93 

1:20 Match  .98 

 

decisions about teachers.  The percent of teachers who move to a different quintile of rank due to 

matching and estimation differences is reflected in Tables 9, 10 and 11.  Within the propensity 

score-based approaches, between 41% and 68% of teachers remained within the same quintile 

when one or more factors (matching ratio, effect estimation approach) was changed (Table 9).  

Between 81% and 98% of teachers did not shift by more than one quintile (Table 10).  Up to 

11% of the teachers moved from the bottom two quintiles to the top two quintiles, or vice versa, 

depending on the propensity score matching ratio and estimation scheme chosen (Table 11). 

Figure 4 provides a visual example of the relationship between propensity score-based 

and fixed value-added estimates when all 66 covariates and all classes are included in both 

models.  The two sets of estimates have a moderately strong linear relationship with some 

rotation from the line of perfect concordance, reflecting greater variance in the propensity score-

based estimates.  Of greatest concern to teacher accountability systems are those teachers ranked 

above the mean by one statistical procedure and below the mean by another, those falling in the 

second and fourth quadrants on the graph.  Figure 4 indicates a small set of teachers falling 

within those quadrants. 
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able 9:  Matrix of Percent of 435 Teachers Falling within the Same Quintile across Effect Estimation Approaches and Matching Ratios Using 66 Matching Variables 

Table 9 
              Matrix of Percent of 435 Teachers Falling within the Same Quintile across Effect Estimation 

Approaches and Matching Ratios Using 66 Matching Variables 
 
 

 
Means   1 Covariate   7 Covariates   Value-Added 

    1:2 1:5 
 

1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 
 
Means 

  
  

 
      

      1:1 Match  .52  .42 
 

 .53  .44  .43 
 

 .49  .44  .44 
 

 .40  .39 
1:2 Match 

 
 .55 

 
 .50  .59  .53 

 
 .46  .56  .51 

 
 .44  .44 

1:5 Match     
 

 .46  .52  .61    .41  .50  .59    .53  .51 
 
1 Covariate   

 
  

 
      

      1:1 Match 
    

 .59  .52 
 

 .68  .59  .53 
 

 .47  .48 
1:2 Match 

     
 .62 

 
 .52  .76  .63 

 
 .55  .54 

1:5 Match     
 

         .46  .57  .84    .68  .68 
 
7 Covariates   

 
  

 
      

      1:1 Match 
        

 .52  .46 
 

 .42  .42 
1:2 Match 

         
 .60 

 
 .53  .54 

1:5 Match     
 

                 .66  .66 
 
Value-Added 

  
  

 
      

      Fixed                            .89 
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able 10:  Percent of 435 Teachers Falling within the Same or Adjacent Quintile across Effect Estimation Approaches and Table 10:  Matrix of Percent of Teachers Falling within the Same or 
Adjacent Quintile across Effect Estimation Approaches and Matching Ratios Using 66 Matching Variables 

Table 10 
              Matrix of Percent of 435 Teachers Falling within the Same or Adjacent Quintile across Effect 

Estimation Approaches and Matching Ratios Using 66 Matching Variables 

 

 
 Means   1 Covariate   7 Covariates   Value-Added 

    1:2 1:5 
 

1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 
 
Means 

  
  

 
      

      1:1 Match .92 .84 
 

.90 .86 .81 
 

.84 .84 .81 
 

.80 .81 
1:2 Match 

 
 .93 

 
 .85  .93  .89 

 
 .81  .90  .87 

 
 .86  .86 

1:5 Match     
 

 .83  .89  .95    .81  .88  .93    .91  .91 
 
1 Covariate   

 
  

 
      

      1:1 Match 
    

 .92  .88 
 

 .94  .90  .88 
 

 .84  .85 
1:2 Match 

     
 .96 

 
 .85  .98  .97 

 
 .92  .92 

1:5 Match     
 

         .82  .93 1.00    .99  .99 
 
7 Covariates   

 
  

 
      

      1:1 Match 
        

 .88  .84 
 

 .81  .80 
1:2 Match 

         
 .95 

 
 .90  .89 

1:5 Match     
 

                 .98  .98 
 
Value-Added 

  
  

 
      

      Fixed                           1.00 
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Table 11:  Matrix of Percent of 435 Teachers Falling Moving from the Bottom 2 Quintiles to the Top 2 Quintiles or Vice Versa 
across Effect Estimation Approaches and Matching Ratios Using 66 Matching Variables 

Table 11 
              Matrix of Percent of 435 Teachers Falling Moving from the Bottom 2 Quintiles to the Top 2 

Quintiles or Vice Versa across Effect Estimation Approaches and Matching Ratios Using 66 
Matching Variables 

  

 
Means   1 Covariate   7 Covariates   Value-Added 

    1:2 1:5 
 

1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 
 
Means 

  
  

 
      

      1:1 Match 
 

 .08 
 

 .06  .08  .09 
 

 .09  .09  .09 
 

 .09  .09 
1:2 Match    .04 

 
 .08  .03  .07 

 
 .11  .06  .08 

 
 .07  .07 

1:5 Match        .10  .06  .02    .10  .08  .03    .05  .04 
 
1 Covariate 

    
      

      1:1 Match 
    

 .04  .06 
 

 .03  .05  .06 
 

 .07  .07 
1:2 Match   

    
 .02 

 
 .08  .01  .03 

 
 .04  .04 

1:5 Match                .09  .03  .00    .01  .01 
 
7 Covariates 

    
      

      1:1 Match 
        

 .06  .08 
 

 .09  .09 
1:2 Match   

        
 .03 

 
 .05  .05 

1:5 Match 
 

                     .01  .01 
 
Value-Added   

   
      

      Fixed   
 

                       .00 
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Figure 4:  Diversion from line of perfect concordance of fixed VA estimates and propensity score estimates.    

 

Figure 4.  Diversion from line of perfect concordance of fixed VA estimates and propensity 

score estimates.   All teachers, 66 covariates, a 1:2 matching scheme, and difference in means 

effect estimation, were used. 
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Seventeen variables, all teachers.  Comparisons so far have involved propensity score 

estimates from a logistic model using all 66 covariates and all 435 teachers, in spite of the 

separability, or unmatchability, of many of the teachers’ student sets.  For these students, the 

matches that were made were essentially random.  As a second approach, a reduced logistic 

model (17 matching variables) was estimated, eliminating the separability problem while 

retaining the variables that most impact student mathematics test scores.  The resulting 435 

teacher effects were correlated with similar estimates from the full model (66 matching 

variables) as shown in Table 12.  The matching ratio had a large impact on the correlation of the 

effect estimates resulting from the full and reduced logistic models, regardless of the effect 

estimation approach chosen.  The higher matching ratio may have replicated the poor matching 

that occurred for many teachers when the full logistic model was employed.  The population 

from which the potential controls were selected was not large enough to provide precise matches 

when either a high matching ratio was chosen or too many matching variables were used.   

 Correlations within the 17-matching variable models and with the value-added models 

were slightly lower than those resulting from the problematic 66-covariate models (Table 13).  

The decreased linear relationship between the 17-matching variable model and the value-added 

model provides further evidence that value-added models are analogous to poorly matched 

propensity score models.  Better matching of teachers’ students to controls with the 17-variable 

model resulted in estimates that were less well matched to the value-added estimates (Table 6).   

However, it was not just the correlations with the value-added models that were lower for the 17 

covariate case, but the correlations of effect estimates within the 17-covariate schemes as well 

(Table 13).   The 17 variable models had more precise matches than the 66 variable models, 

which could not match some teachers’ students.   
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Table 12:  Correlations of Propensity Score-Based Effects with 66 and 17 Matching Variables, All Teachers 

Table 12  
 Correlations of Propensity Score-Based Effects 

with 66 and 17 Matching Variables, All Teachers 
                      

Matching Ratio r 
 

             Means 

1:1 Match  .34 

1:2 Match  .60 

1:5 Match  .70 

 

              One Covariate 

 1:1 Match  .57 

1:2 Match  .75 

1:5 Match  .87 

 

              Seven Covariates 

 1:1 Match  .24 

1:2 Match  .64 

1:5 Match  .84 
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Table 13:  Correlation Matrix for Matching and Effect Estimation Schemes when 17 Matching Variables and All Teachers were 
Used 

Table 13 
              Correlation Matrix for Matching and Effect Estimation Schemes when 17 Matching Variables 

and All Teachers were Used 
 
 Means   1 Covariate   7 Covariates   Value-Added 
  1:1 1:2 1:5   1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 
 

Means   

            1:1 Match -  .78  .64 

 

 .76  .66  .60 

 

 .49  .60  .60 

 

 .58  .57 

1:2 Match  .77 -  .85 

 

 .72  .84  .78 

 

 .47  .80  .76 

 

 .72  .71 

1:5 Match  .64  .85 -    .69  .83  .92    .40  .75  .90    .85  .83 

 

1 Covariate   

            1:1 Match  .75  .74  .69 

 

-  .85  .76 

 

 .62  .74  .74 

 

 .73  .72 

1:2 Match  .63  .84  .83 

 

 .85 -  .91 

 

 .50  .90  .89 

 

 .85  .84 

1:5 Match  .58  .77  .91    .74  .90 -    .42  .83  .99    .92  .91 

 

7 Covariates   

            1:1 Match  .63  .62  .58 

 

 .85  .72  .62 

 

-  .52  .41 

 

 .41  .40 

1:2 Match  .61  .80  .79 

 

 .81  .96  .86 

 

 .75 -  .83 

 

 .77  .76 

1:5 Match  .58  .76  .89    .73  .89  .99    .61  .87 -    .92  .90 

 

Value-Added    

            Fixed  .55  .70  .83 

 

 .70  .84  .92 

 

 .59  .80  .91 

 

-  .98 

Random  .55  .71  .84    .70  .83  .91    .59  .80  .91    .99 - 

Note.  Pearson correlations above diagonal.  Spearman correlations below diagonal. 
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Sixty-six variables, matchable teachers only.  The third approach to dealing with the 

separability problem was to use only the 199 teachers for whom good matches could be obtained.  

When the effects from only the 199 matchable teachers from the 66-variable model were 

correlated, results were slightly higher than when the effects from all teachers were included 

either from the 66-covariate or 17-covariate model (Table 14).  Removing the problem teachers 

made the results slightly more stable and consistent across matching ratios and effect estimation 

approaches.   

Table 14:  Pearson Correlation Matrix for Matching and Effect Estimation Schemes when 66 Matching Variables and 199 
Teachers were Used 

Table 14 
              Pearson Correlation Matrix for Matching and Effect Estimation Schemes when 66 Matching 

Variables and 199 Teachers were Used 
 
   Means   1 Covariate   7 Covariates   Value-Added 
    1:2 1:5   1:1 1:2 1:5   1:1 1:2 1:5   Fixed Random 
 
Means   

            1:1 Match  .81  .70 
 

 .79  .72  .67 
 

 .76  .71  .67 
 

 .65  .65 
1:2 Match 

 
 .88 

 
 .77  .87  .82 

 
 .72  .85  .81 

 
 .78  .79 

1:5 Match      .74  .84  .91    .70  .82  .90    .87  .87 
 
1 Covariate   

            1:1 Match 
    

 .89  .83 
 

 .94  .88  .83 
 

 .79  .79 
1:2 Match 

     
 .92 

 
 .84  .98  .92 

 
 .87  .87 

1:5 Match                .78  .91  .99    .95  .95 
 
7 Covariates   

            1:1 Match 
        

 .86  .78 
 

 .75  .75 
1:2 Match 

         
 .92 

 
 .86  .86 

1:5 Match                        .95  .95 
 
Value-Added    

            Fixed 
     

                 .99 
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The relationship between the 66 and 17 covariate models was stronger when only the 199 

matchable teachers were included (Table 15) than when all teachers were included (Table 12).    

Table 15:  Correlation of PSA Effects with 66 or 17 Matching Variables, 199 Teachers 

Table 15 
 Correlation of PSA Effects with 66 or 17 Matching 

Variables, 199 Teachers 
Matching Ratio r 

                    
            Means 

1:1 Match  .323 
1:2 Match  .558 
1:5 Match  .726 

                One Covariate   
1:1 Match  .644 
1:2 Match  .783 
1:5 Match  .893 

                  Seven Covariates   
1:1 Match  .622 
1:2 Match  .769 
1:5 Match  .896 

 

Generalized Propensity Score Analyses   

With this dataset, the multinomial models were only estimable if the combination of 

number of classes used in the model and the number of matching variables included was below 

some threshold, which varied by the classes and variables used.  Dividing the 435 classes into 12 

strata created strata sizes varying from 20 to 48 classes, not including the reference class used in 

the value-added and independent logistic models—the remaining students from the pool of 

11,451 who were not members of any of the 435 classes of interest.  In order to make the 

counterfactuals comparable across approaches, it was necessary to include all students in each 
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multinomial estimation.  Including all students, moreover, increased the sample size and reduced 

some of the estimation problems.   

 Preliminary model estimations using a random selection of ten classes, plus all other 

students merged into a reference class, allowed the models to be estimated with about ten 

matching variables.  Reducing the number of classes per analysis increased the number of 

matching variables that could be included without making the model unestimable.  However, no 

matter which sets of classes and matching variables were selected, the estimated propensity 

scores using the multinomial approach correlated at  r >.999 with the propensity scores found 

using the independent logistic models for the same classes and sets of matching variables.  

 Using the set of 17 variables which were found to have significant predictive impact on 

the outcome variable at α = .10 in the value-added analyses allowed all multinomial models to be 

estimated when the 12 strata were divided into sub-strata of five or six classes, a total of 83 sub-

strata.  As found in the experimental analyses, correlations between independently estimated and 

generalized propensity score estimates exceeded r =.999.  Whether estimated jointly or 

independently, the propensity scores were essentially identical, suggesting the easier to estimate 

independent models were more useful.  While impossible to test at the extreme of large strata, it 

appears that propensity scores are nearly identical regardless of stratum size. 

Imbens’ (2000) dose-response function approach to effect estimation was employed by 

regressing outcomes on both generalized propensity score vectors and treatment assignment 

variables and then averaging across the covariate (propensity score) distributions to find the 

expected values of the response at each treatment level (class).  Teacher effects were estimated 

by finding differences from the overall mean of expected values.  These effects ranged from        

-12.06 to 6.73.  The mean was 0.00 by design and the standard deviation was 2.29.  These 
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teacher effects were essentially uncorrelated with all other sets of teacher effects estimated in this 

study (r  <  .10 for all effect pair). 

It is important to note that the first step in Imbens’ (2000) effect estimation procedure, the 

regression estimation, is analogous to fitting a fixed effects value-added model with 17 

covariates.  However, using Imbens’ approach 435 non-linear combinations of the 17 covariates 

(the propensity scores) replaced the 17 covariates used in the value-added model.  In other 

words, as described by Lechner (1999), the use of a multinomial approach increased, rather than 

decreased, the dimensionality of the problem.  This complication suggests that this multinomial 

set of effect estimates is inferior to, rather than simply different than, the other sets of teacher 

effect estimates. 

One compromise that did not increase the dimensionality of the problem was to find 

predicted values using the value-added regression model, then use Imbens’ (2000) next step of 

weighting the predicted values using the propensity scores for each class.  The theoretical 

implications of using this procedure were beyond the scope of this project, but the method 

clearly would not solve the problem of accounting for any non-linearities in the relationships 

between the covariates and the outcome.  However, this compromise effect estimation approach 

was conducted.  Resulting teacher effects were highly correlated with those found by Imbens’ 

approach (r = .90), and therefore uncorrelated with all other sets (r < .11 for all effect pair). 

Another option was to estimate and rank teacher effects within, rather than across, strata 

or sub-strata.  While this approach would have aligned most closely with Imbens’ (2000) 

theoretical framework and would have avoided the increased-dimensionality problem, it would 

have made teacher effects across strata or sub-strata less comparable.   
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Class-Level Matching 

 For each class, a mean for each of the 66 covariates was estimated.  Each class was then 

matched to the most similar class relative to those covariates, using the Mahalanobis distance.  

After matching, the two classes were ranked according to the mean end of year mathematics test 

score.  Within-pair rankings for these class sets were also found for teacher effect estimates from 

the value-added and propensity score-based approaches.  The teacher’s ranking using class-level 

matching was essentially uncorrelated with the rankings from the other approaches (Table 16).   

Table 16:  Class Level Matched Ranking and Other Model Rankings 

Table 16 
 Class Level Matched Rankings and Other Model 

Rankings 
 Effect Estimation Method Correlation 
Difference in Means 

 1:1 Match  .042 
1:2 Match  .042 
1:5 Match  .001 

  One Covariate   
1:1 Match  .009 
1:2 Match  .010 
1:5 Match  .013 

  7 Covariates   
1:1 Match  .050 
1:2 Match  .017 
1:5 Match  .001 

  Value-Added   
Fixed  .017 
Random  .010 
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Chapter 5:  Conclusions 

 The goal of this study was to compare various approaches to estimating teacher 

contributions to student test score gains.  Value-added modeling, the approach increasingly used 

in accountability systems in the United States, has been criticized for a variety of reasons (Baker 

et al., 2010; Newton et al., 2010; Rothstein, 2009).  Of particular concern in this study was 

potential bias due to the teacher effect estimates resulting from violations of the regression 

linearity assumption (Cochran & Rubin, 1973; Stuart, 2007), and inconsistent covariate 

distributions across groups that might increase the impact of bias due to some types of 

nonlinearities (Rubin, 2001; Stuart, 2007).  Propensity score-based matching techniques were 

examined as alternatives potentially resolving these regression-related problems.   

Reflections on Findings 

 The results of this study have implications regarding the types of treatment effects that 

can most easily be estimated for teachers.  These effect types vary across methodologies—value-

added modeling, propensity score analysis, and generalized propensity score analysis.  

Treatment effects.  In order to determine whether a specific effect estimate is biased, the 

first step is to determine what kind of effect is desired, or was obtainable given data limitations.  

Most often, the average treatment effect (ATE) is the goal.  The ATE is the expected change to 

the outcome variable, if treatment rather than non-treatment had occurred, for the entire 

population of interest.  In the setting of teacher accountability, the ATE refers to the effect a 

particular teacher would have had on the outcomes of any student if that student had been 

assigned to that teacher instead of to an average teacher.  A second type of effect, the average 

treatment effect for the treated (ATT), is more limited.  It refers to the effect the treatment had on 

those who actually received treatment.  In the context of this study, it refers to the effect a 
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particular teacher assignment had on the actual students assigned to that teacher.  In some 

contexts, and some may argue teacher accountability is one of those settings, the ATT is 

preferred to the ATE.  However, more often the ATE is the goal. 

 All three methods used in this study—value-added regression methods, propensity score 

matching methods, and multinomial-based dose-response approaches—have potential to measure 

the ATE if the correct assumptions are met.  With regression methods, the linearity assumption is 

critical.  Unless expressly modeled otherwise, it is assumed that the true effect is constant across 

all levels of the covariates in the regression model.  If this is not the case, then the ATE estimate 

is biased to some degree or other at various levels of the covariates.  Unless the true ATE is 

constant, the estimated ATE is misleading.  It is simply the best-fitting single value given the 

data.  When the impact of a teacher on outcomes differs across levels of some covariate, 

however, a teacher assignment-covariate interaction term may be added to the model.  This term 

adds complexity to interpretation.  The teacher would have a different effect on outcomes for 

different covariate levels.  Basing an accountability system on such a model would be 

problematic.   

If it is possible to create treatment and control groups that are balanced on the covariates 

using propensity score analysis (PSA), the ATE can be estimated.  When the covariate 

distributions of the two groups overlap, individuals from each group can be matched in such a 

way that the two distributions balance better than they did originally.  Because the full covariate 

distributions from both groups were represented, the estimated effect is the ATE.  Essentially, 

the teacher’s effect is averaged across the covariate distribution as it exists in the entire 

population.   
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PSA estimates, however, are not unbiased estimates of the ATE if the covariate 

distributions of the treated and controls do not overlap—if a region of common support does not 

exist.  To be precise, covariate combinations (subjects) encountered among either treatments or 

controls must have positive probability both of existing in the treatment group and of existing in 

the control group (Caliendo & Kopeinig, 2005).  If not, an unbiased ATE cannot be estimated.  

Practically speaking, it means that all propensity scores for both treated and control individuals 

must be greater than zero and less than one.  Covariate overlap must exist and balancing must be 

possible in both directions.  There must not be individuals in either group who were so unique 

that they could not have existed in the other group.   

In the current study, this condition was violated for many teachers’ classes, no matter 

which sets of matching covariates were used. An unbiased ATE could not be estimated for most 

teachers using propensity score approaches, with the given covariates and sample sizes.  The 

ATE might have been estimated for these teachers using value-added methods only if the 

covariates that were not balanced across classes had no effect on the (presumably fixed) teacher 

effect estimates.   

Using PSA methods, however, an unbiased ATT can often be estimated even when the 

ATE cannot.  If all propensity scores in the treated group are less than 1.0, then the ATT can be 

estimated, regardless of whether any propensity scores in the control group were equal to 0.0 

(Caliendo & Kopeinig, 2005).  Essentially this means that all members of the treatment group 

must be matchable to members of the control group, but the reverse does not need to hold true.  

When this one-way matching is possible, then the effect estimated is the effect of treatment on 

those actually assigned to the treatment group, the ATT.   
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In the current study, this more limited one-way balancing was possible for all teachers 

when 17 matching variables were used, but it was impossible for over half the teachers when 66 

matching variables were used.  The 17-variable model, therefore, estimated the ATT, if and only 

if the true treatment effect was independent of any variables not included in the model.  

Likewise, the 66-variable model estimated an unbiased ATT for the subset of 199 teachers, 

provided no other important covariates were missing.   Essentially, in both cases the ATT was 

unbiased if the ignorable treatment assignment assumption was not violated.   It was not possible 

to test the effect of covariates that were not measured or included in the dataset that may have 

affected outcomes.  It was possible, however, to compare the 17 and 66 covariate model 

estimates for the 199 teachers for whom the ATT was estimable.  As shown in Table 15, the 

correlations between those two sets of effects ranged from r = .323 to r =.896.  Apparently, the 

exclusion of the extra 49 variables when the 17-variable model was estimated did affect results, 

suggesting a potential violation of the ignorable treatment assignment assumption. 

While it is impossible to know which set of effect estimates more closely represented 

truth, it is clear that using all 66 covariates and all teachers resulted in a major assumption 

violation, the requirement for a one-directional region of common support, for more than half the 

teachers, as needed to estimate the ATT.  This requirement did not appear to be violated for 

either the 17-covariate, 435 teacher estimations or the 66-covariate, 199 teacher approach.  In 

choosing between these two sets of estimates, the major remaining considerations would be to 

evaluate which approach (a) was less likely to violate the ignorable treatment assignment 

assumption and (b) resulted in better matching quality.  Since there is no penalty or assumption 

violation for including extra variables in the model, the tendency would be to trust those from the 

66-covariate model, leaving the effects of the remaining 236 teachers un-estimated, provided 
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match quality was sufficient.  However, the match quality was better using the 17-covariate 

model.  The solution to this dilemma is straightforward—use a larger sample and as many 

covariates as possible. 

In summary, a teacher accountability system wishing to use propensity score approaches 

in order to achieve unbiased treatment affects needs to keep in mind the following: 

1. Violations of the ignorable treatment assignment assumption will be likely, and 

teacher effects will be biased if important covariates are omitted. 

2. The student population included needs to be large for unbiased ATTs to be estimated 

for all teachers.  The more covariates that are necessary, the larger this student 

population needs to be. 

3. It is unlikely that the ATE will be estimable for most teachers, no matter what 

covariates or student population pool are available.  Small classroom sample sizes 

prevent classroom covariate distributions from sufficiently covering the overall 

population covariate distribution.    

Value-added models.  The results of this study indicated that propensity score-based 

effect estimates were correlated with value-added estimates, but not as highly as value-added 

estimates from various models were correlated with each other.  These reduced correlations 

suggested, but did not prove, that nonlinearities did exist in the relationships between the 

covariates and the response variable, potentially biasing the regression-based estimates.  While a 

PSA approach averages across either the population covariate distribution (the ATE) or the 

treatment group covariate distribution (the ATT), the regression approach simply assumes that 

the teacher effect is fixed across levels of that variable (unless specifically modeled otherwise), 

and so does not average across either distribution. 
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 In this sample, value-added estimates were fairly stable across both effect estimation 

approach (random or fixed) and covariate inclusion choice (1, 7, 17, or 66).  This stability 

provides evidence of the reliability of value-added estimates for these teachers.  All sets of value-

added estimates apparently measured the same thing, and that measurement was nearly 

independent of the student characteristics used as covariates.  However, this high correlation 

provided no evidence of the validity of value-added estimates.  The fact that the value-added 

approaches all appeared to measure the same thing does not imply that they measure the right 

thing.   

Previous research has frequently found that linear models including covariates other than 

pretest scores provide limited additional information beyond what was contained in the pretests 

themselves (Harris & McCaffrey, 2010; Levine & Painter, 2010; Lockwood et al., 2007; 

Schochet & Chiang, 2010).  The implication has been that adding additional covariates to the 

model is unnecessary when enough years of prior test scores are included.   However, one piece 

of evidence suggesting that pretest scores do not simply duplicate the information found in the 

other covariates in the dataset was that the mathematics pretest score was not highly collinear or 

multi-collinear with the other covariates (VIF = 1.99), unless other mathematics tests were 

included in the model (VIF = 3.49).   

It is possible that additional covariates do provide value to teacher effect estimation, but 

not when those effects are modeled linearly.  In other words, it may that covariates do not 

significantly alter linear model-based estimates because something is wrong with the linear 

model, rather than with the covariates.  While linear models are generally easy to estimate, it is 

common to misinterpret the resulting estimates when key assumptions are not met.   
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Propensity score analyses.  While the teacher effect estimates from the various 

propensity score approaches had high correlations both with each other and with the value-added 

estimates (Tables 6, 13, and 14), these correlations were noticeably lower than within the sets of 

value-added estimates.  Moreover, compared with the value-added estimates, the propensity 

score-based estimates were much more sensitive to variable-inclusion decisions.  This sensitivity 

reflects the different use of the covariates.  In the matching methods, a teacher’s students were 

compared with the most similar students in the larger population.  If the distribution of covariates 

was similar in the teacher’s comparison group and the larger population, then the propensity 

score-based effect estimates were comparable with the value-added estimates, as shown when 

the matching ratio was increased.  The increased correlation between the propensity score-based 

estimates and the value-added estimates as the matching ratio increased provided evidence of the 

non-comparability of the teachers’ students to the population as a whole.  When a teacher’s 

students were matched to the best matches, the teacher’s effect was found to differ from the 

value-added estimates.  When the teacher’s students were matched to an increasing pool of less-

well matched students, then the teacher’s effect estimate more closely matched the value-added 

estimate.   

 The propensity score estimation procedure also suggested that some teachers have 

classroom characteristic distributions so different from other classrooms that a balanced control 

group of similar students could not be found if too many matching variables were used.  The 

number of teachers affected by this problem varied with the number of matching variables used.  

Essentially, if more matching variables were used, so that the criteria for matching become 

stricter, more teachers’ classes became unmatchable.  This result suggests both the need for more 

research to determine which variables are most essential for matching, and the need to 
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acknowledge that some teachers are working within contexts so unique that comparing their 

students’ outcomes with those of other teachers is unjustifiable.   

 PSA offers the advantage of being able to address context-specific teacher effectiveness 

with a single number while still acknowledging differential teacher effectiveness across student 

types.  The comparability is limited by the degree to which it is appropriate to compare how far a 

teacher’s test scores diverged from the mean for their student distribution to how another 

teacher’s test scores diverged from the mean for another student distribution.  More work may 

need to be done to refine these comparisons, possibly at a secondary level.  However, at 

minimum, it should be possible to identify which teachers are doing better or worse than 

expected for their student distributions. 

 The biggest problems with the propensity score approach come with the difficulty of 

covariate selection.  Both regression models and propensity score approaches require the 

inclusion of all variables that relate to treatment selection and outcomes to be included in the 

model (the ignore treatment assignment assumption).  However, unlike with linear models, 

loglinear models may become unestimable, or result in fitted values of zero or one, if selected 

covariates are not distributed across treatment and control groups.  In both VA and PSA 

estimations, unequal covariate distributions can create bias in effect estimation.  When 

estimating logistic models, however, any imbalance in covariates becomes obvious.  This fact is 

both an advantage and a disadvantage.  With PSA, it is impossible to proceed and estimate an 

ATE anyway, without making adjustments to the model.  In complex situations with a large 

number of covariates, making the decisions necessary to achieve good model fit while still 

including any necessary covariates can be time-consuming and frustrating.  It may become clear, 

for example, that an ATT, or no effect at all, can justifiably be estimated, when the desire is to 
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estimate the ATE.  When fitting regression models, however, there is no such warning system.  

A researcher has much greater freedom to use covariates without limitations, resulting in greater 

room for misinterpretation of results.    

Generalized propensity score analyses.  The most important practical advantage of 

using multinomial models was that the propensity scores were estimated jointly, rather than 

independently, thus forcing them to sum to one across individuals and accounting for the 

clustering inherent in the pool from which potential controls were drawn.  However, the 

estimated propensity scores using this approach were virtually identical (r > .999) to those 

estimated from the independent logit models, which had fewer convergence problems.  Given 

that the multinomial models could not be estimated at all if too many groups or too many 

matching variables were modeled, the independent approach appears to be more practically 

useful. 

 A limitation of the present study was that each multinomial model included six or seven 

groups.  The 435 teacher effect estimates were not, therefore, really estimated simultaneously.  

They were estimated in groups.  However, experiments with fewer and greater numbers of 

groups, using the subsets of matching variables that made those various-sized models estimable, 

suggested that the generalized propensity scores would always be highly correlated with those 

from the independent models.  This result is not unexpected, as no matter the number of 

equations estimated simultaneously, the counterfactual was identical.  The propensity score 

always represented the probability of assignment to teacher A versus assignment to any teacher 

except teacher A.   

 At the effect estimation stage, Imbens’ (2000) approach diverged dramatically from the 

matching method used in the independent propensity score analyses.  His expected value 
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approach theoretically produces unbiased estimates of the average treatment effect (ATE), 

provided the ignorable treatment assignment assumption is met and the multinomial logit model 

is of correct form.   

The lack of correlation of this set of teacher effects with any other set estimated in this 

study was a concern.  However, it is important to note that the estimation of the ATE, as found 

using Imbens approach, can be dramatically different than the estimation of the average 

treatment effect for the treated (ATT), as found from matching-based effect estimates, especially 

in a large population.  The first indicates how well a teacher would perform with any student in 

the population, while the second indicates how well a teacher performed with his actual assigned 

students.  The more the teacher’s assigned students differed from those within the population as a 

whole, the more the ATE and the ATT had potential to differ from each other.  In essence, the 

lack of correlation of the expected value-based multinomial effects with the independent 

propensity score-based matched effects is further evidence in itself that teaching context matters, 

that unique classroom compositions can have dramatic impact on classroom-level outcomes, and 

that teacher evaluation and accountability systems need to exercise extreme care in making 

teacher comparisons.  

It is also important to note that the value-added estimates were highly correlated with the 

matching-based ATT teacher effect estimates but not with the expected value-based ATE effect 

estimates derived from the multinomial models.  While value-added estimates, like the expected 

value-based estimates, used all the data in one model, there is a significant difference.  

Essentially, value-added estimates are slopes on teacher dummy variables.  The expected value 

estimates are predicted values from similar models, weighted according to the student’s 

propensity to be in a given classroom.  The value-added approach estimates a flat, constant 
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teacher effect across all students, given the covariates.  The expected-value approach estimates a 

teacher effect that is allowed to vary by student, and weighted across the covariate distribution.   

The most significant limitation of estimating the reliability of these expected value-based 

estimates of the ATE resulting from the multinomial logit models was that no other estimation 

method used in this study satisfied all assumptions necessary for ATE estimation.  There was no 

gold standard to which the estimates could be compared.  Because the multinomial models could 

not be estimated with more than 17 variables with the chosen strata size, the estimates likely 

suffered from violations of the ignorable treatment assignment assumption.  In addition, the 

assumption could not be tested that the independent propensity score estimates would have 

equaled the multinomial generalized propensity scores if a simultaneous model with all 435 

groups could have been estimated.  If not, then using all sets of generalized propensity scores 

together in one joint estimation of expected values, as was done in this study, resulted in bias.  It 

is possible that larger models were not estimatible simply because of the lack of coverage of 

covariates across groups, suggesting un-comparability of these groups.   Further study with 

larger datasets may shed greater light on this issue. 

Summary.  The question of which set of estimates is least biased depends on both what 

assumptions we are willing to trust and what it is we wish to estimate.  If we believe that teacher 

effects are fixed across all covariate levels, for example, then value-added estimates are 

relatively easy to find and will be unbiased, regardless of covariate distributions, provided all 

important covariates are modeled.  Moreover, if teacher effects are fixed, distinctions between 

the ATE and the ATT become irrelevant because the teacher has the same effect on everyone—

whether assigned to the classroom or belonging to the larger population—again, so long as all 
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relevant covariates are modeled.  If teacher effects are truly fixed, and all relationships are linear, 

then there is no need to advance beyond using the standard linear regression model.   

 However, if teacher effects are not fixed—if specific teachers excel more with one 

student type than with another—then effect estimation becomes more problematic.  Either 

differential effects must be modeled (Jakubowki, 2008; Lockwood & McCaffrey, 2009; Reardon 

& Raudenbush, 2009), or the teacher effect must be averaged across some distribution.  

Averaging the teacher effect across the entire population of interest (to estimate the ATE) 

requires that the teacher’s class contain an adequate distribution of relevant characteristics found 

in that population.  Even relatively large K-12 class sizes of 30-40 are too small for this 

requirement ever to be met across more than a fraction of classes.  This problem leaves two 

remaining possibilities—average the effect across the teacher’s own distribution of students (the 

ATT) or do not estimate the effect at all.   

 While the ATT, the average effect of the teacher on the teacher’s own students, may 

seem limiting, it might be argued that this is exactly what we want.  Teachers often specialize in 

teaching specific student types, and principals often become adept at matching students to 

teachers.  It seems that a teacher should be rewarded for teaching well the assigned students, 

rather than some theoretical mix of students the teacher never encountered.  While context-

dependent ATTs may lose something in terms of comparability, they may more accurately reflect 

what we want teachers to do:  that is, to teach well the students they are assigned. 

 Previous research addressing the stability of teacher effects across years suggests that 

teacher effect stability and bias (in the ATE) have an inverse relationship.  When consistent 

student sorting occurs, such as when teachers become specialists, effect estimates are both more 

stable and more biased (McCaffrey et al., 2009).  Teacher effects that reflect similar context 
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across years differ from the ATE, but do so consistently.  Essentially, to the degree that a teacher 

specializes or has an unusual classroom composition, the effect being estimated is the ATT.   

  While PSA methods cannot account for unmeasured factors any better than VA models, 

they do acknowledge more fully the measurable covariates and the uniqueness of context.  The 

limitations of disparate covariate distributions are more thoroughly recognized and dealt with 

using PSA than with VA modeling.  Using PSA methods, it is more clear which effect, the ATE 

or ATT, is actually being estimated, and how strong the region of common support and matching 

quality is.  In addition, sensitivity methods have been developed for propensity score-type 

matched effects which allow analysts to understand how sensitive the estimates are to 

unmeasured covariates (Guo & Fraser, 2010; Rosenbaum, 2002).   Thus, in many respects, 

effects resulting from matching methods are more transparent than those from regression models.   

 Teachers should be empowered to teach their actual students and rewarded for doing that 

well.  No statistical methodology yet offers a way to fairly compare all teachers with each other, 

taking into account the relative advantages and disadvantages of teaching context and student 

characteristics.  The best that can be done statistically, at present, is to estimate how well a 

teacher does with the assigned students, relative to how other teachers do with similar students, 

given the characteristics that can actually be measured.  Propensity score-based methods offer 

alternatives to regression-based methods that can complete that task more validly.   

Further Research 

Estimating the ATT rather than the ATE for teacher accountability appears to be a more 

obtainable goal from a statistical perspective.  In fact, if student covariate distributions are 

inconsistent across classrooms, and if those inconsistencies matter—meaning individual teacher 

effect estimates depend on those covariate distributions, then estimating the ATE is beyond reach 
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using either linear models or matching-based methods.  In spite of this problem, existing 

attempts at outcomes-based teacher evaluation, including value-added modeling, have estimating 

the ATE as the goal.  These approaches endeavor to compare each teacher with all others within 

a system.  It appears that the most valid estimates of teacher quality using student outcomes, 

however, will be made when comparisons are more limited. 

To whom an individual teacher should be compared is, to some degree, a philosophical 

question that needs to be answered by policy makers, educators, and other stake holders.  One 

area of further research that needs to be addressed is the potential for obtaining policy maker 

support for shifting the emphasis from teacher-compared-with-all to teacher-compared-with-like.  

In other words, is it possible to gain support for estimating the ATT as the correct effect of 

interest in teacher accountability efforts? 

If so, then the focus of student achievement-based teacher effect estimation needs to shift.  

Rather than value-added linear models, matching methods or other approaches appropriate for 

estimating the ATT need to be more fully studied and developed.  Variables that are both 

unbalanced across classrooms and predictive of student outcomes need to be identified and 

methods of measuring them reliably need to be developed.  The practicality of measuring these 

variables within an ongoing accountability system needs to be evaluated and, where limitations 

are found, solutions need to be found.  These solutions may include the development of 

sensitivity methods that can suggest the magnitude of the impact on teacher effect estimates of 

the inability to measure important variables.  Finally, the impact on teachers, teaching, and 

learning of high stakes outcomes, based on the ATT teacher effect, needs to be examined.   

Primum non nocere. 
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Appendix A:  Comparability of Teacher Control Groups 

  One point of complexity in the propensity score analyses using the logit model is that 

teacher effects will need to be comparable to each other.  Because each teacher’s control state  is 

slightly different than another’s (not in teacher j’s class versus not in teacher m’s class), this 

raises the issue of comparability.   

  Assume r1ij represents the theoretical outcome for student i in class j, and r0ij represents 

the theoretical outcome for student i in not class j (notation adapted from Rosenbaum & Rubin, 

1983).  We might define the ATE for teacher j as αj = E(r1j) - E(r0j), and for treatment or teacher 

m as αm = E(r1m) - E(r0m), where j ≠ m.  In each case, 1 represents the teacher’s treatment state 

(taught by that teacher) and 0 represents the teacher’s control state (not taught by that teacher).  

The difference between the true treatment effects for teachers j and m is: 

                                       αj,m = αj - αm =  (E(r1j) - E(r0j) ) – (E(r1m) - E(r0m)).                                (3) 

If E(r0j) = E(r0m), then the difference in treatment effects for teachers j and m simplifies to: 

αj,m  = E(r1j)  – E(r1m).                                                        (4) 

Essentially, the mean treatment effects for the two teachers can be directly compared if the two 

control states are identical—or more precisely, the expected values of the outcome in each of the 

two control states are equivalent.    

 In this sampling design, the control state for teacher j is “taught by any teacher but j”.  

The control state for teacher m is “taught by any teacher but m”.  If there are k = 2 teachers in the 

study, then the control state for each teacher is the other teacher’s treatment state, and there is no 

overlap between the two control states.   

 However, it is clear that as k increases, the overlap in the control states increases across 

teachers, and the differences in the control states becomes trivial, reducing the bias due to the 
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shifting control groups.  It is the large number of teacher/treatment effects that are typically 

estimated in state-wide accountability systems that make this approach feasible.  In other words, 

k is typically very large in practical settings, when teachers are compared across schools.  

Therefore, across-school comparisons of teachers should be comparable. 
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Appendix B:  Original List of 187 Potential Covariates 

Variable Name Variable Label 
C1ASMTDD C1 ASSESSMENT DAY 
C1ASMTMM C1 ASSESSMENT MONTH 
C1ASMTST C1 CHILD ASSESSMENT STATUS 
C1ASMTYY C1 ASSESSMENT YEAR 
C1BMI C1 ROUND 1 CHILD COMPOSITE BMI 
C1CMOTOR C1 COMPOSITE MOTOR SKILLS 
C1FMOTOR C1 FINE MOTOR SKILLS 
C1GMOTOR C1 GROSS MOTOR SKILLS 
C1HEIGHT C1 ROUND 1 CHILD COMPOSITE HGT (INCHES) 
C1R4MPB1 C1 RC4 PROB1 - COUNT, NUMBER, SHAPE 
C1R4MPB2 C1 RC4 PROB2 - RELATIVE SIZE 
C1R4MPB3 C1 RC4 PROB3 - ORDINALITY, SEQUENCE 
C1R4MPB4 C1 RC4 PROB4 - ADD/SUBTRACT 
C1R4MPB5 C1 RC4 PROB5 - MULTIPLY/DIVIDE 
C1R4MPB6 C1 RC4 PROB6 - PLACE VALUE 
C1R4MPB7 C1 RC4 PROB7 - RATE & MEASUREMENT 
C1R4MPB8 C1 RC4 PROB8 - FRACTIONS 
C1R4MPB9 C1 RC4 PROB9 - AREA AND VOLUME 
C1R4MSCL C1 RC4 MATH IRT SCALE SCORE 
C1R4RP10 C1 RC4 PROB10 - EVALUATE COMPLEX SYNTAX 
C1R4RPB1 C1 RC4 PROB1 - LETTER RECOGNITION 
C1R4RPB2 C1 RC4 PROB2 - BEGINNING SOUNDS 
C1R4RPB3 C1 RC4 PROB3 - ENDING SOUNDS 
C1R4RPB4 C1 RC4 PROB4 - SIGHT WORDS 
C1R4RPB5 C1 RC4 PROB5 - WORD IN CONTEXT 
C1R4RPB6 C1 RC4 PROB6 - LITERAL INFERENCE 
C1R4RPB7 C1 RC4 PROB7 - EXTRAPOLATION 
C1R4RPB8 C1 RC4 PROB8 - EVALUATION 
C1R4RPB9 C1 RC4 PROB9 - EVALUATING NON-FICTION 
C1R4RSCL C1 RC4 READING IRT SCALE SCORE 
C1RGSCAL C1 REC GENERAL KNOWLEDGE IRT SCALE SCORE 
C1RRPRIN C1 PRINT FAMILIARITY 
C1SCREEN C1 SPEAK NON-ENGLISH LANGUAGE AT HOME 
C1SCSTO C1 AIQ400 TELL STORIES CHILD SCORE 
C1SCTOT C1 AIQ400 CHILD'S TOTAL OLDS SCORE 
C1SPASMT C1 CHILD ASSESSMENT IN SPANISH 

(Appendix B continues)  
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(Appendix B continued) 
Variable Name Variable Label 
C1SPHOME C1 SPEAK SPANISH AT HOME 
C1SSCART C1 SAI400 SPANISH ART SHOW CHILD SCORE 
C1SSCORD C1 SAI400 SPANISH SIMON SAYS CHILD SCORE 
C1SSCSTO C1 SAI400 SPANISH TELL STORIES SCORE 
C1SSCTOT C1 SAI400 SPANISH TOTAL OLDS SCORE 
C1WEIGHT C1 ROUND 1 CHILD COMPOSITE WGT (POUNDS) 
F2SPECS F2 CHILD RECEIVED SPEC EDU SERV FROM FMS 
GENDER CHILD COMPOSITE GENDER 
P1ACTIV2 P1 CHQ145 CONCERNS - CHD ACTIVITY LEVEL 
P1ADLTLV P1 HRQ130 ADULTS LIVING WITH CHILD 
P1AGEENT P1 AGE (MONTHS) AT KINDERGARTEN ENTRY 
P1AGEFRS P1 AGE (MNTHS) AT FIRST NONPARENTAL CARE 
P1ANYLNG P1 PLQ020 IF OTHER LANGUAGE USED AT HOME 
P1BDAGE P1 AGE OF NONRES BIO FATHER (YRS) 
P1BDMT1R P1 NONRES BIO FATHER MORE THAN 1 RACE 
P1BDRACE P1 RACE OF NONRES BIOLOGICAL FATHER 
P1BEHAVE P1 CHQ325 BEHAVES AS WELL AS OTHER CHDN 
P1BMAFB P1 AGE AT 1ST BIRTH NONRES BIO MOM (YRS) 
P1BMAGE P1 AGE OF NONRES BIO MOTHER (YRS) 
P1BMMT1R P1 NONRES BIO MOTHER MORE THAN 1 RACE 
P1BMRACE P1 RACE OF NONRES BIOLOGICAL MOTHER 
P1BUILD P1 HEQ010 HOW OFTEN YOU ALL BUILD THINGS 
P1CARNOW P1 CURRENT NONPARENTAL CARE ARRANGEMENTS 
P1CENTER P1 CHILD EVER IN CENTER-BASED CARE 
P1CHLAUD P1 HEQ050 HOW MANY RECORDS, TAPES, CDS 
P1CHLBOO P1 HEQ040 HOW MANY BOOKS CHILD HAS 
P1CHLPIC P1 HEQ060 HOW OFTEN READS PICTURE BOOKS 
P1CHOOSE P1 PIQ050 CURR SCHOOL AFFECT HOME CHOICE 
P1CHORES P1 HEQ010 HOW OFTEN CHILD DOES CHORES 
P1CHREAD P1 HEQ070 FREQ READS BOOKS OUTSIDE SCH 
P1CHSESA P1 HEQ080 PRE K CHILD WATCHED SESAME ST 
P1COMPLI P1 CHQ085 OTHER BIRTH COMPLICATIONS 
P1CONTRO P1 SELF-CONTROL 
P1DADOCC P1 RESIDENT FATHER'S OCCUPATION 
P1DIAGNO P1 CHQ120 LEARNING PROBLEM DIAGNOSED 
P1DIFFHR P1 CHQ230 IF DIFFICULTY HEARING SPEECH 
P1DISABL P1 CHILD W/ DISABILITY 

(Appendix B continues)  
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   (Appendix B continued) 
Variable Name Variable Label 
P1EARIN2 P1 CHQ327 IF CHD OFTEN HAD EAR INFECTION 
P1EARINF P1 CHQ326 IF CHD OFTEN HAS EAR INFECTION 
P1EARLY P1 CHQ030 HOW PREMATURE - NUMBER 
P1ENGLIS P1 PLQ030 IF ENGLISH ALSO USED AT HOME 
P1EVALUA P1 CHQ115 CHD LEARNING ABILITY EVALUATED 
P1FIRKDG P1 FIRST-TIME KINDERGARTENER 
P1FTHGRD P1 PEQ140 RESP FATHER HIGHEST ED LEVEL 
P1GAMES P1 HEQ010 HOW OFTEN YOU ALL PLAY GAMES 
P1HDAD P1 RESIDENT FATHER TYPE 
P1HDAGE P1 AGE - CURRENT FATHER (YRS) 
P1HDEMP P1 CURRENT FATHER EMPLOYMENT STATUS 
P1HDLANG P1 FATHER'S LANGUAGE TO CHILD 
P1HDLTOD P1 CHILD'S LANGUAGE TO FATHER 
P1HDMT1R P1 FATHER MORE THAN ONE RACE 
P1HDRACE P1 RACE OF CURRENT FATHER 
P1HELPAR P1 HEQ010 HOW OFTEN YOU HELP CHD DO ART 
P1HFAMIL P1 FAMILY TYPE 
P1HIG_1 P1 PEQ020 PERS 1 HIGHEST EDUCATION LEVEL 
P1HIG_2 P1 PEQ020 PERS 2 HIGHEST EDUCATION LEVEL 
P1HIGHSC P1 PEQ100 RESP'S GRADES IN HIGH SCHOOL 
P1HIS_1 P1 PEQ030 IF PERS 1 HIGH SCHOOL DIPLOMA 
P1HIS_2 P1 PEQ030 IF PERS 2 HIGH SCHOOL DIPLOMA 
P1HMAFB P1 AGE AT 1ST BIRTH - CURRENT MOM (YRS) 
P1HMAGE P1 AGE - CURRENT MOTHER (YRS) 
P1HMEMP P1 CURRENT MOTHER EMPLOYMENT STATUS 
P1HMLANG P1 MOTHER'S LANGUAGE TO CHILD 
P1HMLTOM P1 CHILD'S LANGUAGE TO MOTHER 
P1HMMT1R P1 MOTHER MORE THAN ONE RACE 
P1HMOM P1 RESIDENT MOTHER TYPE 
P1HMRACE P1 RACE OF CURRENT MOTHER 
P1HOWOLD P1 CHQ130 AGE AT 1ST DIAGNS-LRN ABLTY 
P1HRSNOW P1 # HOURS SPENT IN NONPARENTAL CARE NOW 
P1HRSPRK P1 # HRS SPENT IN NONPARENTAL CARE PRE-K 
P1HSCALE P1 CHQ330 1-5 SCALE OF CHILD'S HEALTH 
P1HSDAYS P1 CCQ250 # OF DAYS/WK IN HEAD START 
P1HSEVER P1 CCQ210 WAS CHILD EVER IN HEAD START 

(Appendix B continues)  
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 (Appendix B continued) 
Variable Name Variable Label 
P1HSHRS P1 CCQ251 # OF HRS/WK IN HEAD START 
P1HSPREK P1 CCQ215 IN HS YEAR BEFORE K 
P1HSTYPE P1 CCQ245 IN HEAD START FULL OR PART-DAY 
P1HTOTAL P1 TOTAL NUMBER IN HOUSEHOLD 
P1IMPULS P1 IMPULSIVE/OVERACTIVE 
P1LANGUG P1 BOTH PARENT LANGUAGE TO CHILD 
P1LEARN P1 APPROACHES TO LEARNING 
P1LEGMAR P1 MHQ020 RESBIODAD MARRIED TO RESBIOMOM 
P1LESS18 P1 NUMBER IN HOUSEHOLD AGED <18 
P1MMDIAG P1 CHQ135 MNTH AT 1ST DIAGNS-LRN ABLTY 
P1MOMOCC P1 RESIDENT MOTHER'S OCCUPATION 
P1MTEACH P1 PIQ030 HAVE YOU MET CHILD'S TEACHER 
P1MTHGRD P1 PEQ150 RESP MOTHER HIGHEST ED LEVEL 
P1MULTIP P1 CHQ035 CHILD PART OF MULTIPLE BIRTH 
P1NATURE P1 HEQ010 HOW OFTEN YOU TEACH CHD NATURE 
P1NUMARR P1 CCQ030 # REL CARE ARRANGE YR BEFORE K 
P1NUMNOW P1 # NONPARENTAL CARE ARRANGEMENTS NOW 
P1NUMSIB P1 NUMBER OF SIBLINGS IN HOUSEHOLD 
P1OVER18 P1 NUMBER IN HOUSEHOLD AGED 18+ 
P1PREMAT P1 CHQ025 MORE THAN 2 WEEKS EARLY 
P1PRIMNW P1 PRIMARY TYPE OF NONPARENTAL CARE 
P1PRIMPK P1 PRIMARY TYPE NONPARENTAL CARE PRE-K 
P1PRMLNG P1 PLQ060 WHAT PRIMARY LANGUAGE AT HOME 
P1PRONO2 P1 CHQ205 IF CHILD HAD SPEECH PROBLEMS 
P1RCHLD P1 CCQ095 # CHILDREN CARED FOR TOGETHER 
P1RDAYPK P1 CCQ040 # DAYS/WK REL CARE YR BEFORE K 
P1RDAYS P1 CCQ085 # OF DAYS/WK OF REL CARE 
P1READBO P1 HEQ010 HOW OFTEN YOU READ TO CHILD 
P1READEN P1 PLQ070 HOW WELL RESP READ ENGLISH 
P1RHRS P1 CCQ090 # OF HRS/WK OF REL CARE 
P1RHRSPK P1 CCQ045 # HRS/WK REL CARE YR BEFORE K 
P1RMOPK P1 CCQ050 # MONTHS REL CARE YR BEFORE K 
P1SADLON P1 SAD/LONELY 
P1SIGHT P1 CHQ285 DIFFICULT SEEING FAR OBJECT 
P1SINGSO P1 HEQ010 HOW OFTEN YOU ALL SING SONGS 
P1SOCIAL P1 SOCIAL INTERACTION 
P1SPEAKE P1 PLQ070 HOW WELL RESP SPEAK ENGLISH 

(Appendix B continues)  
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 (Appendix B continued) 
Variable Name Variable Label 
P1SPORT P1 HEQ010 HOW OFTEN YOU ALL DO SPORTS 
P1STPREP P1 PIQ020 CHILD KINDERGARTEN PREPARATION 
P1TELLST P1 HEQ010 HOW OFTEN YOU TELL CHD STORIES 
P1THER10 P1 CHQ345 SPECIAL NEEDS CLASSES 
P1THER11 P1 CHQ345 PRIVATE TUTORING 
P1THERA2 P1 CHQ345 SPEECH THERAPY 
P1THERA3 P1 CHQ345 OCCUPATIONAL THERAPY 
P1THERA4 P1 CHQ345 PHYSICAL THERAPY 
P1THERA5 P1 CHQ345 VISION SERVICES 
P1THERA6 P1 CHQ345 SOCIAL WORK SERVICES 
P1THERA7 P1 CHQ345 PSYCHOLOGICAL SERVICES 
P1THERAP P1 CHQ340 IF THERAPY BEFORE SCHOOL YEAR 
P1TWINST P1 CHILD BIRTH STATUS 
P1UNDERS P1 PLQ070 HOW WELL RESP UNDERSTAND ENG 
P1WEIGH5 P1 CHQ010 MORE THAN 5.5 POUNDS AT BIRTH 
P1WEIGH6 P1 CHQ015 MORE THAN 3 POUNDS AT BIRTH 
P1WEIGHO P1 CHQ005 CHILD WEIGHT AT BIRTH - OUNCES 
P1WEIGHP P1 CHQ005 CHILD WEIGHT AT BIRTH - POUNDS 
P1WHATDI P1 CHQ125 1ST DIAGNOSIS-LEARNING ABILITY 
P1WHICHY P1 PIQ080 CHILD'S YEAR OF KINDERGARTEN 
P1WICCHD P1 WPQ040 WIC BENEFITS FOR CHILD 
P1WICMOM P1 WPQ030 WIC BENEFITS WHEN PREGNANT 
P1WRITEN P1 PLQ070 HOW WELL RESP WRITE ENGLISH 
P2FREERD P2 WPQ180 FREE OR REDUCED LUNCH 
P2HILOW P2 PAQ110 INCOME- MORE/LESS THAN 25K 
P2INCOME P2 PAQ100 TOTAL HOUSEHOLD INCOME ($) 
P2LUNCHS P2 WPQ170 CHD RECVS FREE/RED PRICE LUNCH 
R1_KAGE R1 COMPOSITE CHILD ASSESSMENT AGE(MNTHS) 
R2_KAGE R2 COMPOSITE CHILD ASSESSMENT AGE(MNTHS) 
RACE CHILD COMPOSITE RACE 
T1CONTRO T1 SELF-CONTROL 
T1EXTERN T1 EXTERNALIZING PROBLEM BEHAVIORS 
T1INTERN T1 INTERNALIZING PROBLEM BEHAVIORS 
T1INTERP T1 INTERPERSONAL 
T1LEARN T1 APPROACHES TO LEARNING 
T1RARSGE T1 REC GENERAL KNOWLEDGE ARS SCORE 
T1RARSLI T1 REC LITERACY ARS SCORE 

(Appendix B continues)  
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 (Appendix B continued) 
Variable Name Variable Label 
T1RARSMA T1 REC MATH ARS SCORE 
W1INCOME W1 INCOME (IMPUTED) 
W1SESL W1 CONTINUOUS SES MEASURE 
WKSESL WK CONTINUOUS SES MEASURE 
 

  



95 
 

Appendix C:  Reduced List of 111 Potential Covariates 

Variable Name Variable Label 
C1ASMTMM C1 ASSESSMENT MONTH 
C1BMI C1 ROUND 1 CHILD COMPOSITE BMI 
C1CMOTOR C1 COMPOSITE MOTOR SKILLS 
C1FMOTOR C1 FINE MOTOR SKILLS 
C1GMOTOR C1 GROSS MOTOR SKILLS 
C1HEIGHT C1 ROUND 1 CHILD COMPOSITE HGT (INCHES) 
C1R4MPB1 C1 RC4 PROB1 - COUNT, NUMBER, SHAPE 
C1R4MPB2 C1 RC4 PROB2 - RELATIVE SIZE 
C1R4MPB3 C1 RC4 PROB3 - ORDINALITY, SEQUENCE 
C1R4MSCL C1 RC4 MATH IRT SCALE SCORE 
C1R4RPB1 C1 RC4 PROB1 - LETTER RECOGNITION 
C1R4RPB2 C1 RC4 PROB2 - BEGINNING SOUNDS 
C1R4RPB3 C1 RC4 PROB3 - ENDING SOUNDS 
C1R4RSCL C1 RC4 READING IRT SCALE SCORE 
C1RGSCAL C1 REC GENERAL KNOWLEDGE IRT SCALE SCORE 
C1RRPRIN C1 PRINT FAMILIARITY 
C1SCREEN C1 SPEAK NON-ENGLISH LANGUAGE AT HOME 
C1SPHOME C1 SPEAK SPANISH AT HOME 
C1WEIGHT C1 ROUND 1 CHILD COMPOSITE WGT (POUNDS) 
GENDER CHILD COMPOSITE GENDER 
P1ADLTLV P1 HRQ130 ADULTS LIVING WITH CHILD 
P1AGEENT P1 AGE (MONTHS) AT KINDERGARTEN ENTRY 
P1AGEFRS P1 AGE (MNTHS) AT FIRST NONPARENTAL CARE 
P1ANYLNG P1 PLQ020 IF OTHER LANGUAGE USED AT HOME 
P1BEHAVE P1 CHQ325 BEHAVES AS WELL AS OTHER CHDN 
P1BUILD P1 HEQ010 HOW OFTEN YOU ALL BUILD THINGS 
P1CARNOW P1 CURRENT NONPARENTAL CARE ARRANGEMENTS 
P1CENTER P1 CHILD EVER IN CENTER-BASED CARE 
P1CHLAUD P1 HEQ050 HOW MANY RECORDS, TAPES, CDS 
P1CHLBOO P1 HEQ040 HOW MANY BOOKS CHILD HAS 
P1CHLPIC P1 HEQ060 HOW OFTEN READS PICTURE BOOKS 
P1CHOOSE P1 PIQ050 CURR SCHOOL AFFECT HOME CHOICE 
P1CHORES P1 HEQ010 HOW OFTEN CHILD DOES CHORES 
P1CHREAD P1 HEQ070 FREQ READS BOOKS OUTSIDE SCH 
P1CHSESA P1 HEQ080 PRE K CHILD WATCHED SESAME ST 
P1COMPLI P1 CHQ085 OTHER BIRTH COMPLICATIONS 

(Appendix C continues)  
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(Appendix C continued) 
 Variable Name Variable Label 

P1CONTRO P1 SELF-CONTROL 
P1DADOCC P1 RESIDENT FATHER'S OCCUPATION 
P1DISABL P1 CHILD W/ DISABILITY 
P1EARIN2 P1 CHQ327 IF CHD OFTEN HAD EAR INFECTION 
P1EARINF P1 CHQ326 IF CHD OFTEN HAS EAR INFECTION 
P1FTHGRD P1 PEQ140 RESP FATHER HIGHEST ED LEVEL 
P1GAMES P1 HEQ010 HOW OFTEN YOU ALL PLAY GAMES 
P1HDAD P1 RESIDENT FATHER TYPE 
P1HDAGE P1 AGE - CURRENT FATHER (YRS) 
P1HDEMP P1 CURRENT FATHER EMPLOYMENT STATUS 
P1HDLANG P1 FATHER'S LANGUAGE TO CHILD 
P1HDLTOD P1 CHILD'S LANGUAGE TO FATHER 
P1HDRACE P1 RACE OF CURRENT FATHER 
P1HELPAR P1 HEQ010 HOW OFTEN YOU HELP CHD DO ART 
P1HFAMIL P1 FAMILY TYPE 
P1HIGHSC P1 PEQ100 RESP'S GRADES IN HIGH SCHOOL 
P1HIS_1 P1 PEQ030 IF PERS 1 HIGH SCHOOL DIPLOMA 
P1HMAFB P1 AGE AT 1ST BIRTH - CURRENT MOM (YRS) 
P1HMAGE P1 AGE - CURRENT MOTHER (YRS) 
P1HMEMP P1 CURRENT MOTHER EMPLOYMENT STATUS 
P1HMLANG P1 MOTHER'S LANGUAGE TO CHILD 
P1HMLTOM P1 CHILD'S LANGUAGE TO MOTHER 
P1HMOM P1 RESIDENT MOTHER TYPE 
P1HMRACE P1 RACE OF CURRENT MOTHER 
P1HRSNOW P1 # HOURS SPENT IN NONPARENTAL CARE NOW 
P1HRSPRK P1 # HRS SPENT IN NONPARENTAL CARE PRE-K 
P1HSCALE P1 CHQ330 1-5 SCALE OF CHILD'S HEALTH 
P1HSEVER P1 CCQ210 WAS CHILD EVER IN HEAD START 
P1HTOTAL P1 TOTAL NUMBER IN HOUSEHOLD 
P1IMPULS P1 IMPULSIVE/OVERACTIVE 
P1LANGUG P1 BOTH PARENT LANGUAGE TO CHILD 
P1LEARN P1 APPROACHES TO LEARNING 
P1LESS18 P1 NUMBER IN HOUSEHOLD AGED <18 
P1MOMOCC P1 RESIDENT MOTHER'S OCCUPATION 
P1MTHGRD P1 PEQ150 RESP MOTHER HIGHEST ED LEVEL 
P1NATURE P1 HEQ010 HOW OFTEN YOU TEACH CHD NATURE 
P1NUMARR P1 CCQ030 # REL CARE ARRANGE YR BEFORE K 

(Appendix C continues)  
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(Appendix C continued) 
 Variable Name Variable Label 

P1NUMNOW P1 # NONPARENTAL CARE ARRANGEMENTS NOW 
P1NUMSIB P1 NUMBER OF SIBLINGS IN HOUSEHOLD 
P1OVER18 P1 NUMBER IN HOUSEHOLD AGED 18+ 
P1PREMAT P1 CHQ025 MORE THAN 2 WEEKS EARLY 
P1PRIMNW P1 PRIMARY TYPE OF NONPARENTAL CARE 
P1PRIMPK P1 PRIMARY TYPE NONPARENTAL CARE PRE-K 
P1PRONO2 P1 CHQ205 IF CHILD HAD SPEECH PROBLEMS 
P1RDAYPK P1 CCQ040 # DAYS/WK REL CARE YR BEFORE K 
P1READBO P1 HEQ010 HOW OFTEN YOU READ TO CHILD 
P1RHRSPK P1 CCQ045 # HRS/WK REL CARE YR BEFORE K 
P1RMOPK P1 CCQ050 # MONTHS REL CARE YR BEFORE K 
P1SADLON P1 SAD/LONELY 
P1SINGSO P1 HEQ010 HOW OFTEN YOU ALL SING SONGS 
P1SOCIAL P1 SOCIAL INTERACTION 
P1SPORT P1 HEQ010 HOW OFTEN YOU ALL DO SPORTS 
P1STPREP P1 PIQ020 CHILD KINDERGARTEN PREPARATION 
P1TELLST P1 HEQ010 HOW OFTEN YOU TELL CHD STORIES 
P1WEIGH5 P1 CHQ010 MORE THAN 5.5 POUNDS AT BIRTH 
P1WEIGHO P1 CHQ005 CHILD WEIGHT AT BIRTH - OUNCES 
P1WEIGHP P1 CHQ005 CHILD WEIGHT AT BIRTH - POUNDS 
P1WICCHD P1 WPQ040 WIC BENEFITS FOR CHILD 
P1WICMOM P1 WPQ030 WIC BENEFITS WHEN PREGNANT 
P2INCOME P2 PAQ100 TOTAL HOUSEHOLD INCOME ($) 
P2LUNCHS P2 WPQ170 CHD RECVS FREE/RED PRICE LUNCH 
R1_KAGE R1 COMPOSITE CHILD ASSESSMENT AGE(MNTHS) 
R2_KAGE R2 COMPOSITE CHILD ASSESSMENT AGE(MNTHS) 
RACE CHILD COMPOSITE RACE 
T1CONTRO T1 SELF-CONTROL 
T1EXTERN T1 EXTERNALIZING PROBLEM BEHAVIORS 
T1INTERN T1 INTERNALIZING PROBLEM BEHAVIORS 
T1INTERP T1 INTERPERSONAL 
T1LEARN T1 APPROACHES TO LEARNING 
T1RARSGE T1 REC GENERAL KNOWLEDGE ARS SCORE 
T1RARSLI T1 REC LITERACY ARS SCORE 
T1RARSMA T1 REC MATH ARS SCORE 
W1INCOME W1 INCOME (IMPUTED) 
W1SESL W1 CONTINUOUS SES MEASURE 
WKSESL WK CONTINUOUS SES MEASURE 
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Appendix D:  Final List of 66 Covariates 

Table D1 
  Final 66 Covariates:  Scale Variables 

Variable Name  Mean SD 
BIRTH WT 117.17 21.55 
C1BMI 16.27 2.21 
C1FMOTOR 5.77 2.06 
C1HEIGHT 44.65 2.16 
C1R4MSCL 25.36 8.66 
C1RGSCAL 21.37 7.5 
P1CHLAUD 14.38 17.63 
P1CHLBOO 70.8 58.97 
P1FTHGRD 12.44 4.54 
P1HIG_1 14.4 3.38 
P1HMAFB 23.27 5.34 
P1HMAGE 32.95 6.81 
P1HMLTOM 1.36 0.85 
P1HTOTAL 4.52 1.37 
P1IMPULS 1.99 0.69 
P1LEARN 3.1 0.48 
P1MTHGRD 12.32 4.08 
P1NUMARR 1.23 0.56 
P1OVER18 2.02 0.68 
P1RDAYPK 3.89 1.49 
P1SADLON 1.55 0.41 
P2INCOME 44928.63 34679.74 
T1EXTERN 1.62 0.64 
T1INTERN 1.53 0.53 
T1INTERP 2.97 0.63 
T1RARSMA 2.53 0.8 
W1INCOME 16381.24 6815.96 

 

   

 

 

 

(Appendix D Continues)  
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Table D2 
  Final 66 Covariates:  Ordinal Variables 

Variable Name Maximum Median 
P1BEHAVE 4 2 
P1BUILD 4 2 
P1CHLPIC 4 4 
P1CHORES 4 4 
P1CHREAD 4 3 
P1GAMES 4 3 
P1HELPAR 4 3 
P1HIGHSC 8 3 
P1HSCALE 5 1 
P1NATURE 4 2 
P1PRIMPK 8 5 
P1READBO 4 3 
P1RMOPK 4 4 
P1SINGSO 4 3 
P1SPORT 4 3 
P1TELLST 4 3 

 

 

 

 

 

 

 

 

 

 

 

 

(Appendix D continues)  
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Table D3 
  Final 66 Covariates:  Nominal Variables 

Variable Name Percenta Coded "1" Represents 
C1SCREEN  .87 Speaks English in home 
C1SPHOME  .91 Does not speak Spanish in home 
P1ADLTLV  .80 Responding adults live in home 
P1CARNOW  .50 Child not currently in any daycare 
P1CENTER  .25 Child never was in center-based daycare 
P1CHOOSE  .68 School did not affect selection of home 
P1CHSESA  .62 Watched Sesame Street 
P1DADOCC  .62 Dad in service profession 
P1DISABL  .85 Child does not have disability 
P1EARINF  .68 Child does not often have ear infections 
P1HDAD  .34 Biological Dad does not live in home 
P1HDEMP  .87 Dad works full-time 
P1HFAMIL  .26 Does not have two parents in home 
P1HMEMP  .46 Mother works full-time 
P1HMOM  .07 Biological mother does not live in home 
P1HMRACE  .39 Non-white mother 
P1HSEVER  .80 Child did not attend Head Start 
P1MOMOCC  .42 Mother in service profession 
P1PREMAT  .82 Child was not two weeks or more premature 
P1STPREP  .31 Child did not attend kindergarten preparation 
P1WICCHD  .50 Child not qualified for WIC 
P1WICMOM  .55 Mother not qualified for WIC 
RACE  .43 Non-white child 
Note.  All nominal variables were re-coded to two levels. 
aPercent coded as "1" 
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Appendix E:  Reduced Lists of 17 and 7 Covariates 

Table E1 
Reduced List of 17 Covariates 
C1FMOTOR 
C1R4MSCL 
C1RGSCAL 
C1SPHOME 
P1CARNOW 
P1CHLBOO 
P1DISABL 
P1HIGHSC 
P1HMAGE 
P1HMEMP 
P1HMLTOM 
P1LEARN 
P1MOMOCC 
P1SINGSO 
T1EXTERN 
T1INTERN 
T1RARSMA 

 

 

Table E2 
Reduced List of 7 Covariates 
C1FMOTOR  
C1RGSCAL 
C1RSMSCL 
C1SPHOME 
P1HMAGE  
T1EXTERN 
T1RARSMA 
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Appendix F:  Value-Added Covariate Parameter Estimates, Fixed Approach 

Variable   b SE   t  p 
C1RGSCAL 0.17 0.01 13.32  .000 
C1R4MSCL 0.86 0.01 82.09  .000 
C1FMOTOR 0.44 0.04 12.22  .000 
P1LEARN 0.33 0.15 2.22  .027 
P1SADLON -0.11 0.17 -0.67  .505 
P1IMPULS -0.03 0.10 -0.26  .799 
T1RARSMA 0.63 0.11 5.91  .000 
T1EXTERN -0.42 0.13 -3.24  .001 
T1INTERN -0.24 0.14 -1.77  .076 
C1HEIGHT 0.06 0.03 1.87  .062 
C1BMI -0.03 0.03 -1.00  .320 
P1HMAGE 0.04 0.02 2.80  .005 
P1HMAFB -0.03 0.02 -1.69  .091 
P1HMLTOM 0.17 0.12 1.46  .143 
P1OVER18 0.08 0.12 0.66  .508 
P1HTOTAL -0.05 0.06 -0.74  .457 
W1INCOME 0.00 0.00 1.58  .114 
P1CHLBOO 0.00 0.00 1.94  .053 
P1CHLAUD -0.01 0.00 -1.28  .202 
P1NUMARR -0.16 0.12 -1.33  .183 
P1RDAYPK 0.02 0.05 0.29  .772 
P1HIG_1 0.02 0.03 0.56  .574 
P1FTHGRD -0.01 0.02 -0.74  .459 
P1MTHGRD 0.01 0.02 0.20  .842 
P2INCOME 0.00 0.00 -1.52  .130 
BIRTH WT 0.00 0.00 1.00  .317 
T1INTERP 0.23 0.14 1.57  .117 
P1PRIMPK 0.01 0.03 0.23  .818 
P1READBO 0.10 0.09 1.02  .309 
P1TELLST -0.13 0.08 -1.76  .079 
P1SINGSO -0.12 0.07 -1.69  .091 
P1HELPAR -0.03 0.08 -0.35  .724 
P1CHORES 0.11 0.08 1.49  .137 
P1GAMES 0.13 0.08 1.54  .124 
P1NATURE -0.06 0.08 -0.76  .435 
P1BUILD 0.03 0.07 0.37  .710 

  
(Table continues) 
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(continued) 
    Variable   b SE   t  p 

P1SPORT 0.04 0.07 0.48  .634 
P1CHLPIC 0.07 0.09 0.80  .423 
P1CHREAD -0.10 0.08 -1.25  .211 
P1RMOPK -0.04 0.08 -0.57  .567 
P1BEHAVE -0.09 0.11 -0.82  .413 
P1HSCALE -0.03 0.08 -0.43  .667 
P1HIGHSC -0.10 0.04 -2.22  .027 
RACE -0.33 0.26 -1.24  .214 
P1HMEMP 0.33 0.15 2.21  .027 
P1HDEMP 0.00 0.19 0.00  .997 
P1HMRACE 0.15 0.27 0.54  .593 
P1MOMOCC -0.32 0.14 -2.25  .025 
P1DADOCC -0.08 0.15 -0.51  .609 
P1CARNOW 0.28 0.15 1.88  .061 
P1CENTER -0.19 0.20 -0.95  .343 
P1DISABL 0.34 0.18 1.82  .068 
P1HMOM -0.45 0.30 -1.49  .136 
P1HDAD 0.00 0.20 -0.01  .988 
P1HFAMIL -0.02 0.23 -0.07  .949 
C1SCREEN -0.59 0.36 -1.61  .107 
C1SPHOME 1.18 0.40 2.98  .003 
P1STPREP -0.12 0.14 -0.85  .397 
P1CHOOSE -0.11 0.14 -0.78  .437 
P1CHSESA -0.18 0.14 -1.30  .194 
P1HSEVER 0.10 0.19 0.55  .585 
P1PREMAT -0.24 0.18 -1.33  .183 
P1EARINF 0.03 0.14 0.23  .822 
P1ADLTLV 0.00 0.16 -0.02  .987 
P1WICMOM -0.16 0.22 -0.72  .474 
P1WICCHD 0.16 0.23 0.71  .480 
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Appendix G:  Variables with Statistically Significant Imbalance after Matching 

Table G1  
     66 Matching Variables, 435 Teachers, Number of Class-Control Pairs with Mean 

or Proportion Differences  Statistically Significant at .05 

Variable Before Matching 
1:1 

Match 
1:2 

Match 
1:5 

Match 
1:20 

Match 
C1RGSCAL 147 3 1 4 6 
C1R4MSCL 100 3 1 1 6 
C1FMOTOR 81 0 0 1 4 
P1LEARN 38 3 1 1 1 
P1SADLON 54 0 0 1 2 
P1IMPULS 60 1 1 0 1 
T1RARSMA 177 2 3 7 21 
T1EXTERN 97 3 2 5 7 
T1INTERN 136 3 3 2 15 
C1HEIGHT 46 2 1 0 3 
C1BMI 49 3 2 0 1 
P1HMAGE 75 1 1 3 5 
P1HMAFB 118 1 1 2 4 
P1HMLTOM 256 1 3 8 58 
P1OVER18 61 1 1 0 8 
P1HTOTAL 45 3 2 1 3 
W1INCOME 78 3 1 0 1 
P1CHLBOO 107 4 1 4 12 
P1CHLAUD 85 0 2 2 8 
P1NUMARR 24 0 0 0 0 
P1RDAYPK 78 3 0 0 1 
P1HIG_1 131 0 0 2 3 
P1FTHGRD 99 1 1 1 3 
P1MTHGRD 84 0 0 1 3 
P2INCOME 162 1 1 2 12 
BIRTH WT 32 2 0 0 0 
T1INTERP 148 4 2 4 9 
P1PRIMPK 70 2 0 0 4 
P1READBO 68 2 0 1 3 
P1TELLST 32 2 1 1 2 
P1SINGSO 43 0 0 2 5 
P1HELPAR 40 2 0 0 1 
P1CHORES 47 1 0 1 6 

    
(Table continues) 
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 Table G1(continued) 
66 Matching Variables, 435 Teachers, Number of Class-Control Pairs with Mean 
or Proportion Differences  Statistically Significant at .05 

Variable Before Matching 
1:1 

Match 
1:2 

Match 
1:5 

Match 
1:20 

Match 
P1GAMES 25 1 1 1 2 
P1BUILD 35 1 0 0 0 
P1SPORT 44 2 0 0 3 
P1CHLPIC 54 1 0 2 7 
P1CHREAD 46 1 0 2 4 
P1RMOPK 49 1 0 3 7 
P1BEHAVE 43 0 0 0 2 
P1HSCALE 72 2 0 2 3 
P1HIGHSC 45 1 0 0 2 
RACE 177 0 0 0 1 
P1HMEMP 20 0 0 0 0 
P1HDEMP 16 0 0 0 0 
P1HMRACE 156 0 0 0 0 
P1MOMOCC 30 1 0 0 0 
P1DADOCC 63 0 0 0 0 
P1CARNOW 23 0 0 0 0 
P1CENTER 29 0 0 0 0 
P1DISABL 13 0 0 0 0 
P1HMOM 15 0 0 0 1 
P1HDAD 47 1 0 0 0 
P1HFAMIL 40 0 0 0 1 
C1SCREEN 48 0 0 0 3 
C1SPHOME 25 0 0 0 1 
P1STPREP 34 0 0 1 1 
P1CHOOSE 35 0 0 0 0 
P1CHSESA 33 0 0 0 0 
P1HSEVER 49 0 0 0 2 
P1PREMAT 8 0 0 0 0 
P1EARINF 7 0 0 0 0 
P1ADLTLV 16 0 0 0 0 
P1WICMOM 106 0 0 0 1 
P1WICCHD 114 0 0 1 1 
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Table G2 
     17 Matching Variables, 435 Teachers, Number of Class-Control Pairs with 

Mean or Proportion Differences  Statistically Significant at .05 

Variable 
Before 
Matching 

1:1 
Match 

1:2 
Match 

1:5 
Match 

1:20 
Match 

C1RGSCAL 147 4 0 0 0 
C1R4MSCL 100 1 1 0 0 
C1FMOTOR 81 5 0 0 0 
T1RARSMA 177 10 6 0 3 
T1EXTERN 97 4 0 0 0 
C1SPHOME 25 0 0 0 0 
P1HMAGE 75 4 0 0 0 
P1MOMOCC 30 0 0 0 0 
P1LEARN 38 1 0 0 0 
P1HIGHSC 45 4 0 0 0 
P1HMEMP 20 0 0 0 0 
P1CHLBOO 107 5 0 1 0 
P1CARNOW 23 0 0 0 0 
P1DISABL 13 0 0 0 0 
T1INTERN 136 4 0 0 2 
P1SINGSO 43 3 2 0 0 
P1HMLTOM 256 1 0 1 11 

 


	Propensity Score Methods as Alternatives to Value-Added Modeling for the Estimation of Teacher Contributions to Student Achievement
	BYU ScholarsArchive Citation

	Title
	ABSTRACT
	ACKNOWLEDGMENTS
	Table of Contents
	Chapter 1:  Introduction
	Value-Added Modeling Assumptions
	Propensity Score Analysis as an Alternative
	Propensity Score Matching and Teacher Effects
	Teacher Effects with Multiple Teachers
	Research Questions

	Chapter 2:  Background and Literature Review
	The Counterfactual and Random Assignment
	Propensity Score Analysis
	Teacher Accountability and Propensity Score Analysis
	Cluster Sampling and Propensity Score Analysis
	Multiple Treatment Effects and Propensity Score Analysis

	Chapter 3:  Method
	Design
	Sample
	Measures
	Procedures
	Value-added models
	Propensity score analyses
	Generalized propensity score analyses
	Comparisons


	Chapter 4:  Results
	Sample Description
	Covariate Selection
	Value-Added Models
	Sixty-six covariates
	Seventeen covariates
	Seven covariates
	One covariate

	Independent Propensity Score Models
	Match quality
	Teacher effect estimation
	  Sixty-six variables, all teachers 
		Seventeen variables, all teachers 
		Sixty-six variables, matchable teachers only 


	Generalized Propensity Score Analyses
	Class-Level Matching

	Chapter 5:  Conclusions
	Reflections on Findings
	Treatment effects
	Value-added models
	Propensity score analyses
	Generalized propensity score analyses
	Summary

	Further Research

	References
	Appendix A:  Comparability of Teacher Control Groups
	Appendix B:  Original List of 187 Potential Covariates
	Appendix C:  Reduced List of 111 Potential Covariates
	Appendix D:  Final List of 66 Covariates
	Appendix E:  Reduced Lists of 17 and 7 Covariates
	Appendix F:  Value-Added Covariate Parameter Estimates, Fixed Approach
	Appendix G:  Variables with Statistically Significant Imbalance after Matching

