Study of Water Quality of Utah Lake Tributaries and the Jordan River Outlet for the Calibration of the Utah Lake Water Salinity Model (LKSIM)

Gordon Killarney Liljenquist
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Civil and Environmental Engineering Commons

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/etd/3104

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Study of Water Quality of Utah Lake Tributaries and the Jordan River Outlet for the Calibration of the Utah Lake Water Salinity Model (LKSIM)

Gordon Killarney Liljenquist

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science

A. Woodruff Miller, Chair
M. Brett Borup
Gustavious P. Williams

Department of Civil and Environmental Engineering
Brigham Young University
April 2012

Copyright © 2012 Gordon Killarney Liljenquist
All Rights Reserved
ABSTRACT

Study of Water Quality of Utah Lake Tributaries and the Jordan River Outlet for the Calibration of the Utah Lake Water Salinity Model (LKSIM)

Gordon Killarney Liljenquist
Department of Civil and Environmental Engineering, BYU
Master of Science

The water quality of Utah Lake is of great importance to agriculture, recreation, and wildlife. The Utah Lake Simulation Model (LKSIM) was created to accurately predict changes in water quality parameters. However, a potential limitation of LKSIM is the age of the underlying data which was gathered from 1930 to 1980. New sample data were collected from March 2009 through May 2011. Samples were taken from 13 tributaries, the Jordan River Outlet, and various wastewater treatment plants (WWTP). Upon dividing the collected data points into seasons and plotting them in Microsoft Excel, trendline equations were produced. These equations correlated TDS and ion concentrations with flow and their respective times of the year. The new equations were compared with the old LKSIM equations by plotting them both against the collected, sample data points. The new trendline equations and mean values proved their worth by generating more accurate predictions of TDS and ion concentrations according to the sample data. However, further studies on the other tributaries of Utah Lake to determine their effect on the water quality may be of value. Also, future sampling from the tributaries of this study may be beneficial in gauging the accuracy of the equations and mean values that were found.

Keywords: utah lake, LKSIM
I would like to thank Dr. A. Woodruff Miller, my committee chair, for his counsel throughout this project and for providing me with information to complete this assignment. I would like to recognize my committee members, Dr. M. Brett Borup for his assistance in the field and instruction and Dr. Gustavious P. Williams for his time and instruction. I would like to express my gratitude to Dr. LaVere B. Merritt for contributing his valuable ideas and time to this project and report. I would like to thank the Central Utah Water Conservancy District for funding this project. I would also like to express my appreciation to my wife for all of her care and support.
TABLE OF CONTENTS

LIST OF TABLES .. vi

LIST OF FIGURES .. viii

1 INTRODUCTION ... 1

1.1 Site Description .. 1

1.2 Purpose .. 3

2 METHODOLOGY .. 5

2.1 Raw Data Acquisition .. 5

2.2 Data Analysis .. 6

2.3 Limitations .. 9

3 RESULTS ... 11

3.1 Trendline Equations and Seasonal Mean Values .. 11

3.2 Graphs .. 22

3.3 Discussion of Results .. 131

4 CONCLUSION ... 134

REFERENCES ... 135
LIST OF TABLES

Table 1-1: GPS Coordinates and Code Numbers for Tributary Locations.. 3
Table 3-1: Equations and Seasonal Mean Values.. 12
Table 3-2: UT 9 Statistical Values for the Parameters of Interest .. 27
Table 3-3: UT 13 Statistical Values for the Parameters of Interest ... 33
Table 3-4: UT 18 Statistical Values for the Parameters of Interest ... 40
Table 3-5: UT 20 Statistical Values for the Parameters of Interest ... 46
Table 3-6: UT 27 Statistical Values for the Parameters of Interest ... 50
Table 3-7: UT 27A Statistical Values for the Parameters of Interest ... 54
Table 3-8: UT 29 Statistical Values for the Parameters of Interest ... 59
Table 3-9: UT 38B* Statistical Values for the Parameters of Interest ... 66
Table 3-10: UT 38A Statistical Values for the Parameters of Interest ... 72
Table 3-11: UT 42 Statistical Values for the Parameters of Interest ... 77
Table 3-12: UT 43* Statistical Values for the Parameters of Interest ... 81
Table 3-13: UT 43A Statistical Values for the Parameters of Interest ... 87
Table 3-14: UT 44 Statistical Values for the Parameters of Interest ... 94
Table 3-15: UT 47* Statistical Values for the Parameters of Interest ... 99
Table 3-16: UT 47A Statistical Values for the Parameters of Interest ... 104
Table 3-17: UT 48 Statistical Values for the Parameters of Interest ... 108
Table 3-18: UT 51* Statistical Values for the Parameters of Interest ... 114
Table 3-19: UT 51A Statistical Values for the Parameters of Interest .. 119

Table 3-20: UT 51C Statistical Values for the Parameters of Interest .. 122

Table 3-21: UT 53 Statistical Values for the Parameters of Interest .. 126

Table 3-22: UT 71 Statistical Values for the Parameters of Interest .. 130

Table 3-23: Coefficients of Determination among the Various Sites .. 131
LIST OF FIGURES

Figure 1-1: Sampling Locations for Utah Lake Tributaries

Figure 3-1: UT 9 Trendlines and Equations for TDS

Figure 3-2: UT 9 Trendlines and Equations for HCO$_3$-${}\text{aq}$

Figure 3-3: UT 9 Measured and Predicted Concentrations for TDS and HCO$_3$-${\text{aq}}$

Figure 3-4: UT 9 Trendlines and Equations for Ca

Figure 3-5: UT 9 Measured and Predicted Concentrations for SO$_4$ and Ca

Figure 3-6: UT 9 Measured and Predicted Concentrations for Mg and Na

Figure 3-7: UT 9 Trendlines and Equations for Cl

Figure 3-8: UT 9 Trendlines and Equations for K

Figure 3-9: UT 9 Measured and Predicted Concentrations for Cl and K

Figure 3-10: UT 13 Trendlines and Equations for TDS

Figure 3-11: UT 13 Trendlines and Equations for HCO$_3$-${\text{aq}}$

Figure 3-12: UT 13 Measured and Predicted Concentrations for TDS and HCO$_3$-${\text{aq}}$

Figure 3-13: UT 13 Trendlines and Equations for SO$_4$

Figure 3-14: UT 13 Trendlines and Equations for Ca

Figure 3-15: UT 13 Measured and Predicted Concentrations for SO$_4$ and Ca

Figure 3-16: UT 13 Trendlines and Equations for Mg

Figure 3-17: UT 13 Trendlines and Equations for Na

Figure 3-18: UT 13 Measured and Predicted Concentrations for Mg and Na
Figure 3-19: UT 13 Trendlines and Equations for Cl ... 32
Figure 3-20: UT 13 Trendlines and Equations for K .. 32
Figure 3-21: UT 13 Measured and Predicted Concentrations for Cl and K 33
Figure 3-22: UT 18 Trendlines and Equations for TDS .. 34
Figure 3-23: UT 18 Trendlines and Equations for HCO$_3$... 34
Figure 3-24: UT 18 Measured and Predicted Concentrations for TDS and HCO$_3$ 35
Figure 3-25: UT 18 Trendlines and Equations for SO$_4$.. 35
Figure 3-26: UT 18 Trendlines and Equations for Ca .. 36
Figure 3-27: UT 18 Measured and Predicted Concentrations for SO$_4$ and Ca 36
Figure 3-28: UT 18 Trendlines and Equations for Mg ... 37
Figure 3-29: UT 18 Trendlines and Equations for Na .. 37
Figure 3-30: UT 18 Measured and Predicted Concentrations for Mg and Na 38
Figure 3-31: UT 18 Trendlines and Equations for Cl .. 38
Figure 3-32: UT 18 Trendlines and Equations for K .. 39
Figure 3-33: UT 18 Measured and Predicted Concentrations for Cl and K 39
Figure 3-34: UT 20 Trendlines and Equations for TDS .. 40
Figure 3-35: UT 20 Trendlines and Equations for HCO$_3$... 41
Figure 3-36: UT 20 Measured and Predicted Concentrations for TDS and HCO$_3$ 41
Figure 3-37: UT 20 Trendlines and Equations for SO$_4$.. 42
Figure 3-38: UT 20 Trendlines and Equations for Ca ... 42
Figure 3-39: UT 20 Measured and Predicted Concentrations for SO$_4$ and Ca 43
Figure 3-40: UT 20 Trendlines and Equations for Mg ... 43
Figure 3-41: UT 20 Trendlines and Equations for Na .. 44
Figure 3-42: UT 20 Measured and Predicted Concentrations for Mg and Na 44
Figure 3-43: UT 20 Trendlines and Equations for Cl ... 45
Figure 3-44: UT 20 Trendlines and Equations for K ... 45
Figure 3-45: UT 20 Measured and Predicted Concentrations for Cl and K 46
Figure 3-46: UT 27 Trendlines and Equations for TDS .. 47
Figure 3-47: UT 27 Trendlines and Equations for HCO$_3$... 47
Figure 3-48: UT 27 Measured and Predicted Concentrations for TDS and HCO$_3$ 48
Figure 3-49: UT 27 Measured and Predicted Concentrations for SO$_4$ and Ca 48
Figure 3-50: UT 27 Measured and Predicted Concentrations for Mg and Na 49
Figure 3-51: UT 27 Measured and Predicted Concentrations for Cl and K 49
Figure 3-52: UT 27A Trendlines and Equations for HCO$_3$.. 50
Figure 3-53: UT 27A Measured and Predicted Concentrations for TDS and HCO$_3$ 51
Figure 3-54: UT 27A Trendlines and Equations for Ca .. 51
Figure 3-55: UT 27A Measured and Predicted Concentrations for SO$_4$ and Ca 52
Figure 3-56: UT 27A Trendlines and Equations for Mg .. 52
Figure 3-57: UT 27A Measured and Predicted Concentrations for Mg and Na 53
Figure 3-58: UT 27A Trendlines and Equations for K .. 53
Figure 3-59: UT 27A Measured and Predicted Concentrations for Cl and K 54
Figure 3-60: UT 29 Trendlines and Equations for TDS ... 55
Figure 3-61: UT 29 Trendlines and Equations for HCO$_3$... 55
Figure 3-62: UT 29 Measured and Predicted Concentrations for TDS and HCO$_3$ 56
Figure 3-63: UT 29 Trendlines and Equations for Ca ... 56
Figure 3-64: UT 29 Measured and Predicted Concentrations for SO$_4$ and Ca 57
Figure 3-65: UT 29 Trendlines and Equations for Mg ... 57
Figure 3-66: UT 29 Trendlines and Equations for Na ... 58
Figure 3-67: UT 29 Measured and Predicted Concentrations for Mg and Na 58
Figure 3-68: UT 29 Measured and Predicted Concentrations for Cl and K 59
Figure 3-69: UT 38B* Trendlines and Equations for TDS ... 60
Figure 3-70: UT 38B* Trendlines and Equations for HCO$_3$... 60
Figure 3-71: UT 38B* Measured and Predicted Concentrations for TDS and HCO$_3$ 61
Figure 3-72: UT 38B* Trendlines and Equations for SO$_4$... 61
Figure 3-73: UT 38B* Trendlines and Equations for Ca ... 62
Figure 3-74: UT 38B* Measured and Predicted Concentrations for SO$_4$ and Ca 62
Figure 3-75: UT 38B* Trendlines and Equations for Mg ... 63
Figure 3-76: UT 38B* Trendlines and Equations for Na ... 63
Figure 3-77: UT 38B* Measured and Predicted Concentrations for Mg and Na 64
Figure 3-78: UT 38B* Trendlines and Equations for Cl .. 64
Figure 3-79: UT 38B* Trendlines and Equations for K ... 65
Figure 3-80: UT 38B* Measured and Predicted Concentrations for Cl and K 65
Figure 3-81: UT 38A Trendlines and Equations for TDS .. 66
Figure 3-82: UT 38A Trendlines and Equations for HCO$_3$.. 67
Figure 3-83: UT 38A Measured and Predicted Concentrations for TDS and HCO$_3$ 67
Figure 3-84: UT 38A Trendlines and Equations for SO$_4$.. 68
Figure 3-85: UT 38A Trendlines and Equations for Ca .. 68
Figure 3-86: UT 38A Measured and Predicted Concentrations for SO$_4$ and Ca 69
Figure 3-87: UT 38A Trendlines and Equations for Mg .. 69
Figure 3-88: UT 38A Trendlines and Equations for Na .. 70
Figure 3-89: UT 38A Measured and Predicted Values for Mg and Na 70
Figure 3-90: UT 38A Trendlines and Equations for K ... 71
Figure 3-91: UT 38A Measured and Predicted Concentrations for Cl and K 71
Figure 3-92: UT 42 Trendlines and Equations for HCO$_3$... 72
Figure 3-93: UT 42 Measured and Predicted Concentrations for TDS and HCO$_3$ 73
Figure 3-94: UT 42 Measured and Predicted Concentrations for SO$_4$ and Ca 73
Figure 3-95: UT 42 Trendlines and Equations for Mg ... 74
Figure 3-96: UT 42 Trendlines and Equations for Na ... 74
Figure 3-97: UT 42 Measured and Predicted Concentrations for Mg and Na 75
Figure 3-98: UT 42 Trendlines and Equations for Cl .. 75
Figure 3-99: UT 42 Trendlines and Equations for K .. 76
Figure 3-100: UT 42 Measured and Predicted Values for Cl and K 76
Figure 3-101: UT 43* Trendlines and Equations for TDS .. 77
Figure 3-102: UT 43* Measured and Predicted Concentrations for TDS and HCO₃............... 78
Figure 3-103: UT 43* Trendlines and Equations for SO₄ .. 78
Figure 3-104: UT 43* Trendlines and Equations for Ca ... 79
Figure 3-105: UT 43* Measured and Predicted Concentrations for SO₄ and Ca 79
Figure 3-106: UT 43* Trendlines and Equations for Mg ... 80
Figure 3-107: UT 43* Measured and Predicted Concentrations for Mg and Na 80
Figure 3-108: UT 43* Measured and Predicted Values for Cl and K 81
Figure 3-109: UT 43A Trendlines and Equations for HCO₃ .. 82
Figure 3-110: UT 43A Measured and Predicted Concentrations for TDS and HCO₃ 82
Figure 3-111: UT 43A Trendlines and Equations for SO₄ ... 83
Figure 3-112: UT 43A Trendlines and Equations for Ca .. 83
Figure 3-113: UT 43A Measured and Predicted Concentrations for SO₄ and Ca 84
Figure 3-114: UT 43A Trendlines and Equations for Mg ... 84
Figure 3-115: UT 43A Trendlines and Equations for Na .. 85
Figure 3-116: UT 43A Measured and Predicted Concentrations for Mg and Na................. 85
Figure 3-117: UT 43A Trendlines and Equations for Cl .. 86
Figure 3-118: UT 43A Trendlines and Equations for K ... 86
Figure 3-119: UT 43A Measured and Predicted Concentrations for Cl and K 87
Figure 3-120: UT 44 Trendlines and Equations for TDS .. 88
Figure 3-121: UT 44 Trendlines and Equations for HCO$_3^-$.. 88
Figure 3-122: UT 44 Measured and Predicted Concentrations for TDS and HCO$_3^-$......... 89
Figure 3-123: UT 44 Trendlines and Equations for SO$_4^{2-}$.. 89
Figure 3-124: UT 44 Trendlines and Equations for Ca ... 90
Figure 3-125: UT 44 Measured and Predicted Concentrations for SO$_4^{2-}$ and Ca 90
Figure 3-126: UT 44 Trendlines and Equations for Mg ... 91
Figure 3-127: UT 44 Trendlines and Equations for Na ... 91
Figure 3-128: UT 44 Measured and Predicted Values for Mg and Na.............................. 92
Figure 3-129: UT 44 Trendlines and Equations for Cl ... 92
Figure 3-130: UT 44 Trendlines and Equations for K ... 93
Figure 3-131: UT 44 Measured and Predicted Concentrations for Cl and K 93
Figure 3-132: UT 47* Trendlines and Equations for HCO$_3^-$... 94
Figure 3-133: UT 47* Measured and Predicted Concentrations for TDS and HCO$_3$.............. 95
Figure 3-134: UT 47* Trendlines and Equations for SO$_4$.. 95
Figure 3-135: UT 47* Trendlines and Equations for Ca ... 96
Figure 3-136: UT 47* Measured and Predicted Concentrations for SO$_4$ and Ca 96
Figure 3-137: UT 47* Trendlines and Equations for Mg ... 97
Figure 3-138: UT 47* Trendlines and Equations for Na ... 97
Figure 3-139: UT 47* Measured and Predicted Concentrations for Mg and Na 98
Figure 3-140: UT 47* Trendlines and Equations for K ... 98
Figure 3-141: UT 47* Measured and Predicted Concentrations for Cl and K 99
Figure 3-142: UT 47A Measured and Predicted Concentrations for TDS and HCO$_3$........ 100
Figure 3-143: UT 47A Trendlines and Equations for SO$_4$.. 100
Figure 3-144: UT 47A Trendlines and Equations for Ca ... 101
Figure 3-145: UT 47A Measured and Predicted Concentrations for SO$_4$ and Ca 101
Figure 3-146: UT 47A Trendlines and Equations for Mg ... 102
Figure 3-147: UT 47A Measured and Predicted Concentrations for Mg and Na 102
Figure 3-148: UT 47A Trendlines and Equations for Cl ... 103
Figure 3-149: UT 47A Measured and Predicted Concentration for Cl and K 103
Figure 3-150: UT 48 Trendlines and Equations for TDS ... 104
Figure 3-151: UT 48 Trendlines and Equations for HCO$_3$.. 105
Figure 3-152: UT 48 Measured and Predicted Concentrations for TDS and HCO$_3$............. 105
Figure 3-153: UT 48 Trendlines and Equations for SO$_4$... 106
Figure 3-154: UT 48 Measured and Predicted Concentrations for SO$_4$ and Ca...................... 106
Figure 3-155: UT 48 Trendlines and Equations for Na ... 107
Figure 3-156: UT 48 Measured and Predicted Concentrations for Mg and Na............................ 107
Figure 3-157: UT 48 Measured and Predicted Concentrations for Cl and K 108
Figure 3-158: UT 51* Trendlines and Equations for TDS .. 109
Figure 3-159: UT 51* Trendlines and Equations for HCO$_3$.. 109
Figure 3-160: UT 51* Measured and Predicted Concentrations for TDS and HCO$_3$.............. 110
Figure 3-161: UT 51* Trendlines and Equations for SO$_4$.. 110
Figure 3-162: UT 51* Trendlines and Equations for Ca ... 111
Figure 3-163: UT 51* Measured and Predicted Concentrations for SO$_4$ and Ca..................... 111
Figure 3-164: UT 51* Trendlines and Equations for Mg ... 112
Figure 3-165: UT 51* Trendlines and Equations for Na ... 112
Figure 3-166: UT 51* Measured and Predicted Concentrations for Mg and Na......................... 113
Figure 3-167: UT 51* Trendlines and Equations for Cl ... 113
Figure 3-168: UT 51* Measured and Predicted Concentrations for Cl and K 114
Figure 3-169: UT 51A Measured and Predicted Concentrations for TDS and HCO$_3$.............. 115
Figure 3-170: UT 51A Trendlines and Equations for Ca .. 115
Figure 3-171: UT 51A Measured and Predicted Concentrations for SO\textsubscript{4} and Ca 116
Figure 3-172: UT 51A Trendlines and Equations for Mg ... 116
Figure 3-173: UT 51A Trendlines and Equations for Na ... 117
Figure 3-174: UT 51A Measured and Predicted Concentrations for Mg and Na 117
Figure 3-175: UT 51A Trendlines and Equations for Cl ... 118
Figure 3-176: UT 51A Trendlines and Equations for K ... 118
Figure 3-177: UT 51A Measured and Predicted Concentrations for Cl and K 119
Figure 3-178: UT 51C Measured and Predicted Concentrations for TDS and HCO\textsubscript{3} 120
Figure 3-179: UT 51C Measured and Predicted Concentrations for SO\textsubscript{4} and Ca 120
Figure 3-180: UT 51C Measured and Predicted Concentrations for Mg and Na 121
Figure 3-181: UT 51C Measured and Predicted Concentrations for Cl and K 121
Figure 3-182: UT 53 Measured and Predicted Concentrations for TDS and HCO\textsubscript{3} 122
Figure 3-183: UT 53 Trendlines and Equations for SO\textsubscript{4} ... 123
Figure 3-184: UT 53 Measured and Predicted Concentrations for SO\textsubscript{4} and Ca 123
Figure 3-185: UT 53 Trendlines and Equations for Mg ... 124
Figure 3-186: UT 53 Trendlines and Equations for Na ... 124
Figure 3-187: UT 53 Measured and Predicted Concentrations for Mg and Na 125
Figure 3-188: UT 53 Trendlines and Equations for Cl ... 125
Figure 3-189: UT 53 Measured and Predicted Concentrations for Cl and K 126
Figure 3-190: UT 71 Measured and Predicted Concentrations for TDS and HCO$_3$.................. 127

Figure 3-191: UT 71 Trendlines and Equations for SO$_4$.. 127

Figure 3-192: UT 71 Measured and Predicted Concentrations for SO$_4$ and Ca......................... 128

Figure 3-193: UT 71 Trendlines and Equations for Mg .. 128

Figure 3-194: UT 71 Measured and Predicted Concentrations for Mg and Na........................... 129

Figure 3-195: UT 71 Trendlines and Equations for Cl .. 129

Figure 3-196: UT 71 Measured and Predicted Concentrations for Cl and K 130
1 INTRODUCTION

1.1 Site Description

Utah Lake, in the lowest part of the Utah Valley, occupies about a fourth of the valley’s area. The surface area of Utah Lake is about 95,000 acres (Miller, 1980). Utah Lake is the largest freshwater lake in the state of Utah and the second largest west of the Great Lakes. It is fed by approximately 52 tributaries (Rice, 1999). The location of many of these tributaries and their respective sampling areas in relation to Utah Lake can be seen in Figure 1.1-1. Also, Table 1.1-1 displays the GPS coordinates of the major tributaries sampled in this study.

The Jordan River, located at the northwestern corner of the lake, is the only natural, surface outflow. It carries water 40 miles north before discharging into the Great Salt Lake (Miller, 1980).

The water in Utah Lake serves many purposes. A substantial portion of the water going into Utah Lake and coming out through the Jordan River is used for irrigation. Economic losses would result if this water quality deteriorated (Brimhall, 1981).

In addition to agricultural uses, the water from Utah Lake supports a host of recreational uses and wildlife. Among the wildlife that depends on Utah Lake is an endangered, endemic species of fish, the June Sucker, Chasmistes liorus. Such endangered wildlife and recreational uses are also dependent on the proper maintenance of the lake’s water quality (Marelli, 2010).
Figure 1-1: Sampling Locations for Utah Lake Tributaries
Table 1-1: GPS Coordinates and Code Numbers for Tributary Locations

<table>
<thead>
<tr>
<th>Name of Tributary</th>
<th>Code ID</th>
<th>GPS Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Spring Creek Lehi</td>
<td>UT 9</td>
<td>40.37281389 -111.8339767</td>
</tr>
<tr>
<td>American Fork River</td>
<td>UT 13</td>
<td>40.34486972 -111.8017094</td>
</tr>
<tr>
<td>Lindon Cannery Drain</td>
<td>UT 18</td>
<td>40.33176722 -111.7631764</td>
</tr>
<tr>
<td>Geneva Steel</td>
<td>UT 20</td>
<td>40.312 -111.7495944</td>
</tr>
<tr>
<td>Powell's Slough</td>
<td>UT 27</td>
<td>40.27704833 -111.7445806</td>
</tr>
<tr>
<td>Provo River</td>
<td>UT 29</td>
<td>40.23808806 -111.6951694</td>
</tr>
<tr>
<td>Millrace</td>
<td>UT 38</td>
<td>40.216465 -111.6549206</td>
</tr>
<tr>
<td>Steel Mill Drain</td>
<td>UT 42</td>
<td>40.199315 -111.6399047</td>
</tr>
<tr>
<td>Spring Creek Springville</td>
<td>UT 43</td>
<td>40.19167139 -111.6384572</td>
</tr>
<tr>
<td>Hobble Creek</td>
<td>UT 44</td>
<td>40.18418306 -111.6472019</td>
</tr>
<tr>
<td>Dry Creek Spanish Fork</td>
<td>UT 47</td>
<td>40.15861222 -111.6639419</td>
</tr>
<tr>
<td>Spanish Fork River</td>
<td>UT 48</td>
<td>40.15462333 -111.7295561</td>
</tr>
<tr>
<td>Benjamin Slough</td>
<td>UT 51</td>
<td>40.11426944 -111.7932964</td>
</tr>
<tr>
<td>Jordan River at Utah Lake Outlet</td>
<td>UT 53</td>
<td>40.35731167 -111.8987117</td>
</tr>
<tr>
<td>Timpanogos WWTP Ponds</td>
<td>UT 71</td>
<td>40.34763611 -111.7795528</td>
</tr>
<tr>
<td>Orem WWTP</td>
<td>UT 27A</td>
<td>40.27601944 -111.7435333</td>
</tr>
<tr>
<td>Provo WWTP</td>
<td>UT 38A</td>
<td>40.21317222 -111.6525611</td>
</tr>
<tr>
<td>Springville WWTP</td>
<td>UT 43A</td>
<td>40.17811111 -111.6000972</td>
</tr>
<tr>
<td>Spanish Fork WWTP</td>
<td>UT 47A</td>
<td>40.13763611 -111.6519444</td>
</tr>
<tr>
<td>Payson WWTP</td>
<td>UT 51A</td>
<td>40.05495 -111.732175</td>
</tr>
</tbody>
</table>

1.2 Purpose

Since the water quality of Utah Lake is of great importance, a salinity model called the Utah Lake Simulation Model, or LKSIM for short, was constructed to help simulate and predict concentration levels of total dissolved solids (TDS) and a variety of ions for the lake water. The TDS concentration levels in LKSIM are targeted to be within 50 mg/l of the actual concentrations (Marelli, 2010).
One of the potential limitations of the LKSIM model is the age of the underlying data. The data used by LKSIM were taken over a fifty year period from 1930 to 1980. Since the land use in the Utah Valley and related runoff into Utah Lake has changed greatly since 1980, new sample data could show how much the quality might have changed as compared to the old data set. With new information, LKSIM could be updated with new equations and therefore become more accurate in simulating and predicting the water quality of Utah Lake. Further, better decisions can be made as to the quantity and frequency of additional data that might be needed in the future to continually support robust LKSIM simulations.

Further, this study is part of a two-part project. Another function of LKSIM is to predict the flow rates of the tributaries based on historical precipitation values and trends. Thus, the correlations between precipitation and the flow rates of the tributaries are significant since this study will use flow rates to predict total dissolved solids (TDS) and seven ion concentrations (Blankenstein, 1992).

In this study, eight parameters of LKSIM are updated. These parameters include; total dissolved solids (TDS), bicarbonate (HCO₃), sulfate (SO₄), calcium (Ca), chloride (Cl), magnesium (Mg), potassium (K), and sodium (Na). Two variables are considered in finding correlations with these parameters: months of the year grouped into seasons, and the flow rates of the various tributaries.
2 METHODOLOGY

2.1 Raw Data Acquisition

From March 2009 to May 2011, monthly water samples were collected at 18 different sites from Utah Lake tributaries and the Jordan River. During periods of high flow from April to June of each year, water samples were taken twice a month.

Of the 14 sites, four were located downstream from WWTPs. Beginning in October 2009 to May 2011, additional data were collected upstream from these WWTPs. Also, field measurements of factors such as water temperature, pH levels, conductivity, turbidity, and dissolved oxygen were taken and recorded using the Hach HydroLab DS 5 water probe and surveyor. Weather conditions were also noted. The water samples that were taken at each site were sent to the Unified State Laboratory in Taylorsville, Utah where TDS and ion concentrations were measured.

Flow rates of the various tributaries were measured simultaneously with the water samples that were collected. The units for the flow measurements were in cubic feet per second. The flow rates for the Provo River and Hobble Creek for the relevant sample dates and times were taken from the United States Geological Survey which monitors gaging stations for these tributaries. Furthermore, the flow rates of the Jordan River for the relevant sample dates were provided by the Jordan River/Utah Lake Commissioner (Dye, 2012).
Flow measurements were calculated by measuring the depth and velocity of the tributaries at two to four subsections within the total cross section. The velocity was measured using a Flo-Mate Model 2000 Portable Flow Meter, manufactured by Marsh-McBinney, Inc. The velocity sensor was set to 0.4 (from the bottom) of the surface depth to obtain the average of the velocity profile at each subsection. Multiplying the area of the sub-cross section by the average velocity gives the flow rate for each subsection. The total tributary flow rate is the sum of the subsection flows (Dye, 2012).

From November 2009 to May 2011, data for the various wastewater treatment plants (WWTP) and the Geneva Steel Site (UT 20) were acquired directly from the State of Utah. Prior to November 2009, the values for the flow rates and ion concentrations at the Geneva Steel Site were obtained by the study team.

2.2 Data Analysis

The data received from the Unified State Laboratory were entered into the Microsoft Excel program. In Excel, they were divided according to their respective site locations. Next, the flow measurements that were taken for each site were matched to the concentration data sets that were collected on the same date. Using the Excel functions, the averages and standard deviations were calculated for each set of sample concentrations. Also, the maximum and minimum values for each data set were found and recorded. All outliers that were found were removed from the data sets.

The data sets were then separated by seasons along with their respective flow measurements. Past projects characterized the seasons by dividing the year in different ways (O’Neill, 1992). However, the seasons in this study were defined by dividing the year into only
three seasons and grouping them into the following months: March through June were spring months, July through September were summer months, and October through February were winter months. For the collected sample data in this study, this definition of the seasons produced the most logical and consistent results.

Each TDS and ion concentration set was plotted with its respective flow measurements. TDS and ion concentrations were plotted on the y-axis and flow measurements were plotted on the x-axis for each season. In order to fit diverse data distributions, Excel has a variety of trendline types which include; linear, exponential, power, logarithmic, and polynomial. The type of trendline chosen for each data set depended largely on what produced the best coefficient of determination \((r^2) \). However, the number of available data points was limited. Therefore, if a trendline produced a high \(r^2 \) value, but did not realistically project values that went beyond those of the available data points, the trendline was not selected. The objective in choosing a trendline was to have high correlations among sample concentrations and flows and to enhance predictions of ion and TDS concentrations according to flows beyond those which were measured.

The equations that described the trendlines were displayed for each season with “x” representing the variable flow. However, any \(r^2 \) value that was less than 0.4 was deemed unacceptable in order to maintain consistency with similar studies of the past (Marelli, 2010). Therefore, if a value of less than 0.4 was the best coefficient of determination that one of these trendline equations could produce, then the equation was discarded.

If an equation could not be found to accurately predict TDS and ion concentrations, then mean values were used. In similar past reports, both overall mean values and seasonal mean values were used to predict TDS and ion concentrations. Likewise, in this study, seasonal and
overall mean values were calculated and used to predict TDS and ion concentrations, if no reliable trendline equation could be determined.

For trendline equations that did produce r^2 values greater than 0.4, TDS and ion concentration values were calculated as functions of the measured flow rates. These values were plotted along with the LKSIM values generated by the existing LKSIM equations. Additionally, the actual concentration values were plotted so accuracy among the values produced by the new equations and the LKSIM values could be visually compared.

LKSIM calculates concentrations and flows from WWTPs separately from their respective tributaries as if the effluent from these plants went straight into Utah Lake. Realistically, however, the effluent of most WWTPs is carried to Utah Lake by various tributaries. For this reason, the tributaries which carried WWTP effluent are analyzed in a different manner in this study than those without WWTP effluent.

In this study, there are four tributaries that carry WWTP effluent: Millrace (UT 38B), Spring Creek (UT 43), Dry Creek (UT 47), and Benjamin Slough (UT 51). The effluent flow rates from these WWTPs were obtained directly from the plant operators. However, the flow rate for the Salem WWTP (UT 51C) was assumed to be constant at 1.2 cfs. This was justified since the effluent from this WWTP is discharged from ponds with small fluctuations. The Timpanogos WWTP Ponds (UT 71) and Orem WWTP (UT 27A) both discharge directly into Utah Lake. As mentioned earlier, beginning in October of 2009, monthly measurements were acquired upstream from the WWTP points of discharge into these four tributaries.

For Millrace, Spring Creek, and Dry Creek the water quality data upstream from the WWTP are available to LKSIM with the flow rate values downstream from the WWTP minus the WWTP discharge flow rates. It was assumed that the water quality upstream for these
tributaries would be the same downstream if the WWTP effluent was not taken into account. If the WWTP discharge was not available, then the seasonal mean discharge was used instead. This assumption was made since the difference in flow rates between the upstream measurements and the downstream measurements without the WWTP effluent were within a range of 3 cubic feet per second (cfs).

However, Benjamin Slough (UT 51) sustained a much greater difference in its upstream and downstream flow rates than the other three tributaries. Therefore, the influence of the Payson WWTP (UT 51A) and Salem WWTP (UT 51C) on UT 51 was removed using a mass balance equation.

2.3 Limitations

In similar studies in the past, statistical programs such as Minitab were used to analyze the data. The trendline equations that were produced by such statistical programs generated very high r² values, often greater than 0.9. On average, the r² values found by the Excel program were about 0.6. Since the collected data for this study only span a 26 month period, it would be misleading if a large quantity of the trendline equations had r² values greater than 0.9. For this reason, the statistical functions of the Excel program, although simple in comparison to such programs as Minitab, were found to be sufficient for this data analysis.

It should be noted that the equations and averages might be considerably different for some of the sites, if data had also been collected during average and low runoff years, instead of the three high runoff years of 2009 - 2011. For example, the 47 year average flow rate of the Provo River measured at the Woodland station is 211 cfs, whereas the average flow rate at this station for the past three years is 257 cfs. Also, the 83 year average flow rate of the Spanish Fork River
measured at the Castilla station is 237 cfs, whereas the average flow rate for the past three years at that location is 287 cfs.

Likewise, the average precipitation for the past 30 years measured at the Provo/BYU station is 20.13 inches, whereas the average precipitation for the past three years at that same station is 23.14 inches. Further, the average Spanish Fork precipitation for the past 30 years is 21.55 inches, whereas the average at the same location for the past three years is 25.74 inches. This must be kept in mind in the ultimate use of the data in trying simulate a full range of high to low runoff years.

The trendline equations likely work best at predicting TDS and ion concentrations when the flow rates are within the maximum and minimum flow rates that were measured in the 26 month period. Beyond these flow rates, the predicted concentration values may be significantly inaccurate.

In the case that a good trendline equation cannot be found, mean values are used to predict the behavior of a TDS or ion concentration. However, mean values only work well at forecasting concentrations when variations among the sample concentrations are small. If variations among concentration values are large, then a mean value may not produce an accurate prediction.
3 RESULTS

3.1 Trendline Equations and Seasonal Mean Values

The trendline equations that were produced by the Excel program to predict the concentrations for each tributary and the Jordan River Outlet are displayed in Table 3.1-1. The units for “flow” should be in cubic feet per second (cfs). The seasons of winter, spring, and summer are represented either by the integer 0 or 1 depending on the time of year. If an equation has a single value multiplied with a season, then the single value represents the seasonal mean. The annual mean concentrations for TDS and the various ions of the tributaries can be found in the subsequent section called “Graphs.”

As mentioned earlier, there are four tributaries that carry WWTP effluent. The flow rates for these tributaries were calculated by subtracting the flow rate of the WWTP discharge from the flow rate downstream of the WWTP. These flow values were used in the analysis of the four tributaries. For Millrace, Spring Creek, and Dry Creek, the TDS and ion concentrations upstream from their respective WWTPs were measured. These water quality measurements were used in analysis for Millrace, Spring Creek, and Dry Creek. However, the TDS and ion concentrations for Benjamin Slough were obtained by calculating out Payson WWTP (UT 51A) and Salem WWTP (UT 51C) using a mass balance equation. For this reason, these four
tributaries that carry WWTP effluent will have an asterisk (*) next to them indicating that the effect of the WWTP effluents was factored out.

Table 3-1: Equations and Seasonal Mean Values

<table>
<thead>
<tr>
<th>Station</th>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT 9</td>
<td>TDS</td>
<td>((\text{winter} \times 392.26e^{-0.0144} \times \text{flow}) + (\text{summer} \times 541.26e^{-0.058}) + (\text{spring} \times ((0.0326 \times \text{flow}^3) - (1.0824 \times \text{flow}^2) + (3.6272 \times \text{flow}) + 518.43)))</td>
</tr>
<tr>
<td></td>
<td>HCO(_3)</td>
<td>((\text{winter} \times [(-0.3317 \times \text{flow}^3) + (12.505 \times \text{flow}^2) - (152.06 \times \text{flow} + 923.37)] + (\text{summer} \times [(1.5191 \times \text{flow}^2) - (28.731 \times \text{flow}) + 421.79]) + (\text{spring} \times [(0.0881 \times \text{flow}^3) - (4.0798 \times \text{flow}^2) + (54.526 \times \text{flow}) + 83.987]))</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>((\text{winter} \times [(0.136 \times \text{flow}^2) - (3.5299 \times \text{flow}) + 106.11]) + (\text{summer} \times 85.722e^{-0.009} \times \text{flow}) + (\text{spring} \times ((0.0142 \times \text{flow}^3) - (0.6769 \times \text{flow}^2) + (9.5302 \times \text{flow}) + 37.032)))</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>((\text{winter} \times [(-0.2338 \times \text{flow}^3) + (9.4021 \times \text{flow}^2) - (117.88 \times \text{flow}) + 495.61]) + (\text{summer} \times [(-0.1827 \times \text{flow}^3) + (4.7449 \times \text{flow}^2) - (38.824 \times \text{flow}) + 145.39]) + (\text{spring} \times [(-0.0218 \times \text{flow}^3) + (1.0648 \times \text{flow}^2) - (15.725 \times \text{flow}) + 117.47]))</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>((\text{winter} \times 39.2) + (\text{summer} \times 40.7) + (\text{spring} \times 38.8))</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>((\text{winter} \times [((0.0158 \times \text{flow}^2) - (0.3577 \times \text{flow}) + 5.3165]) + (\text{summer} \times [(-0.0174 \times \text{flow}^3) + (0.4426 \times \text{flow}^2) - (3.5509 \times \text{flow}) + 12.648]) + (\text{spring} \times [((0.0026 \times \text{flow}^3) - (0.1202 \times \text{flow}^2) + (1.7001 \times \text{flow}) - 4.1544]))</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>((\text{winter} \times 30.8) + (\text{summer} \times 30.6) + (\text{spring} \times 29.6))</td>
</tr>
<tr>
<td></td>
<td>SO(_4)</td>
<td>((\text{winter} \times 101) + (\text{summer} \times 88.8) + (\text{spring} \times 89.6))</td>
</tr>
<tr>
<td>UT 13</td>
<td>TDS</td>
<td>((\text{winter} \times [(1.5345 \times \text{flow}^2) - (25.664 \times \text{flow}) + 412.12]) + (\text{summer} \times [((0.3556 \times \text{flow}^2) - (10.267 \times \text{flow}) + 379.11]) + (\text{spring} \times [(0.0027 \times \text{flow}^2) - (1.2563 \times \text{flow}) + 305.84]))</td>
</tr>
<tr>
<td></td>
<td>HCO(_3)</td>
<td>((\text{winter} \times [276.12 \times \text{flow}^{0.12}]) + (\text{summer} \times [(-0.2436 \times \text{flow}^2) - (0.3147 \times \text{flow}) + 245.79]) + (\text{spring} \times 194.94e^{-7e-04} \times \text{flow}^2))</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>((\text{winter} \times [(0.2029 \times \text{flow}^2) - (3.7619 \times \text{flow}) + 86.816]) + (\text{summer} \times [(-0.3604 \times \text{flow}^2) + (3.9898 \times \text{flow}) + 66.687]) + (\text{spring} \times 62.712e^{-0.001} \times \text{flow}^2))</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>((\text{winter} \times 19.062 \times \text{flow}^{-0.263}) + (\text{summer} \times [(-0.4993 \times \text{flow}^2) + (5.5447 \times \text{flow}) + 10.128]) + (\text{spring} \times 11.502 \times \text{flow}^{-0.025}))</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>((\text{winter} \times [(0.092 \times \text{flow}^2) - (1.5785 \times \text{flow}) + 27.426]) + (\text{summer} \times [(-0.1863 \times \text{flow}^2) + (1.9211 \times \text{flow}) + 20.327]) + (\text{spring} \times [(0.0001 \times \text{flow}^2) - (0.0705 \times \text{flow}) + 19.812]))</td>
</tr>
</tbody>
</table>
Table 3-1: Continued

<table>
<thead>
<tr>
<th>Substance</th>
<th>Winter</th>
<th>Summer</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>{winter * [(0.0236 * flow^2) - (0.3922 * flow) + 2.5677]} + {summer * [(-0.0194 * flow^3) + (0.3267 * flow^2) - (1.6031 * flow) + 4.1646]} + {spring * [1.4248 * flow^{-0.079}]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>{winter * [(0.0934 * flow^2) - (1.694 * flow) + 15.408]} + {summer * [(-0.2548 * flow^2) + (2.8258 * flow) + 8.2376]} + {spring * [-1.087 * LN(flow) + 10.193]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO_4</td>
<td>{winter * [(-0.3395 * flow^2) + (7.4526 * flow) + 69.061]} + {summer * [(-0.3655 * flow^2) + (3.3381 * flow) + 51.437]} + {spring * 103.67 * flow^{-0.252}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT 18</td>
<td>TDS</td>
<td>{winter * [(2.0795 * flow^2) - (63.375 * flow) + 1082.3]} + {summer * [4558.5 * flow - 0.668]} + {spring * 1489.5 * flow - 0.32}</td>
<td></td>
</tr>
<tr>
<td>HCO_3</td>
<td>{winter * [(-0.6819 * flow^2) - (22.161 * flow) + 521.97]} + {summer * [(-0.6673 * flow^2) - (33.1 * flow) + 692.58]} + {spring * 857.96 * flow - 0.331}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>{winter * [(-0.2274 * flow^2) - (7.9192 * flow) + 165.51]} + {summer * [(0.1219 * flow^2) - (6.7559 * flow) + 176.64]} + {spring * [-19.46 * LN(flow) + 147.2]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>{winter * [(0.761 * flow^2) - (23.262 * flow) + 222.56]} + {summer * [(-0.3655 * flow^2) + (3.3381 * flow) + 51.437]} + {spring * 103.67 * flow^{-0.252}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>{winter * [(-0.1681 * flow^2) - (5.5174 * flow) + 87.333]} + {summer * [(0.0535 * flow^2) - (3.1024 * flow) + 78.64]} + {spring * 126.27 * flow^{-0.391}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>{winter * [(0.033 * flow^2) - (0.8158 * flow) + 9.69]} + {summer * [(0.0142 * flow^2) - (0.8485 * flow) + 16.799]} + {spring * [7.7128 * flow^{-0.108}]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>{winter * [(0.0942 * flow^2) - (0.0183 * flow) + 23.282]} + {summer * [(0.0725 * flow^2) - (4.5392 * flow) + 101.55]} + {spring * 104.52 * flow^{-0.259}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO_4</td>
<td>{winter * [(0.5296 * flow^2) - (15.159 * flow) + 258.99]} + {summer * [(0.22 * flow^2) - (15.137 * flow) + 349.84]} + {spring * 458.34 * flow^{-0.392}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT 20</td>
<td>TDS</td>
<td>{winter * [(-95.683 * flow^2) + (769.45 * flow) - 650.21]} + {summer * 1169.4 * flow^{-0.412}} + {spring * 961.86 * flow^{-0.049}}</td>
<td></td>
</tr>
<tr>
<td>HCO_3</td>
<td>{winter * [(-53.449 * flow^2) + (520.2 * flow) - 956.38]} + {summer * [(-1.7087 * flow^2) + (27.906 * flow) + 109.49]} + {spring * [0.2315 * flow^2] - (8.5538 * flow^2) + (85.442 * flow) + 19.048]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>{winter * [(-20.008 * flow^2) + (193.45 * flow) - 367.08]} + {summer * [(-0.4063 * flow^2) + (6.5194 * flow) + 41.091]} + {spring * [(0.0293 * flow^2) - (1.1533 * flow^2) + (10.515 * flow) + 59.286]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion</td>
<td>Winter Equation</td>
<td>Summer Equation</td>
<td>Spring Equation</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Cl</td>
<td>(-0.8341 \times \text{flow}^3) + (26.903 \times \text{flow}^2) - (281.12 \times \text{flow}) + 1002.1</td>
<td>((0.0483 \times \text{flow}^3) - (1.3482 \times \text{flow}^2) + (5.0638 \times \text{flow}) + 124.05)</td>
<td>((9.7211 \times \text{flow}) + 24.96)</td>
</tr>
<tr>
<td>Mg</td>
<td>((-22.477 \times \text{flow}^2) + (219.16 \times \text{flow}) - 474.15)</td>
<td>((0.0944 \times \text{flow}^2) - (2.0342 \times \text{flow}) + 22.255)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
<tr>
<td>K</td>
<td>((-10.829 \times \text{flow}^2) + (104.36 \times \text{flow}) - 223.01)</td>
<td>((0.0483 \times \text{flow}^3) - (1.3482 \times \text{flow}^2) + (5.0638 \times \text{flow}) + 124.05)</td>
<td>((9.7211 \times \text{flow}) + 24.96)</td>
</tr>
<tr>
<td>Na</td>
<td>((-21.875 \times \text{flow}) + 171.67)</td>
<td>((0.05096 \times \text{flow}^2) - (1.09 \times \text{flow}^2) + (9.7211 \times \text{flow}) + 24.96)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>((-65.376 \times \text{flow}^2) + (633.92 \times \text{flow}) - 1338.7)</td>
<td>((0.6723 \times \text{flow}^2) - (14.633 \times \text{flow}) + 175.25)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
</tbody>
</table>

UT 27

<table>
<thead>
<tr>
<th>Ion</th>
<th>Winter Equation</th>
<th>Summer Equation</th>
<th>Spring Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>1948.1 \times 10^{-0.349} \times \text{flow} + (219.16 \times \text{flow}) - 474.15</td>
<td>((0.0483 \times \text{flow}^3) - (1.3482 \times \text{flow}^2) + (5.0638 \times \text{flow}) + 124.05)</td>
<td>((9.7211 \times \text{flow}) + 24.96)</td>
</tr>
<tr>
<td>Mg</td>
<td>((-22.477 \times \text{flow}^2) + (219.16 \times \text{flow}) - 474.15)</td>
<td>((0.0944 \times \text{flow}^2) - (2.0342 \times \text{flow}) + 22.255)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
<tr>
<td>K</td>
<td>((-10.829 \times \text{flow}^2) + (104.36 \times \text{flow}) - 223.01)</td>
<td>((0.0483 \times \text{flow}^3) - (1.3482 \times \text{flow}^2) + (5.0638 \times \text{flow}) + 124.05)</td>
<td>((9.7211 \times \text{flow}) + 24.96)</td>
</tr>
<tr>
<td>Na</td>
<td>((-21.875 \times \text{flow}) + 171.67)</td>
<td>((0.05096 \times \text{flow}^2) - (1.09 \times \text{flow}^2) + (9.7211 \times \text{flow}) + 24.96)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>((-65.376 \times \text{flow}^2) + (633.92 \times \text{flow}) - 1338.7)</td>
<td>((0.6723 \times \text{flow}^2) - (14.633 \times \text{flow}) + 175.25)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
</tbody>
</table>

UT 27A

<table>
<thead>
<tr>
<th>Ion</th>
<th>Winter Equation</th>
<th>Summer Equation</th>
<th>Spring Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>107.26 \times 10^{-0.0558} \times \text{flow} + (219.16 \times \text{flow}) - 474.15</td>
<td>((0.0483 \times \text{flow}^3) - (1.3482 \times \text{flow}^2) + (5.0638 \times \text{flow}) + 124.05)</td>
<td>((9.7211 \times \text{flow}) + 24.96)</td>
</tr>
<tr>
<td>Mg</td>
<td>((-22.477 \times \text{flow}^2) + (219.16 \times \text{flow}) - 474.15)</td>
<td>((0.0944 \times \text{flow}^2) - (2.0342 \times \text{flow}) + 22.255)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
<tr>
<td>K</td>
<td>((-10.829 \times \text{flow}^2) + (104.36 \times \text{flow}) - 223.01)</td>
<td>((0.0483 \times \text{flow}^3) - (1.3482 \times \text{flow}^2) + (5.0638 \times \text{flow}) + 124.05)</td>
<td>((9.7211 \times \text{flow}) + 24.96)</td>
</tr>
<tr>
<td>Na</td>
<td>((-21.875 \times \text{flow}) + 171.67)</td>
<td>((0.05096 \times \text{flow}^2) - (1.09 \times \text{flow}^2) + (9.7211 \times \text{flow}) + 24.96)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>((-65.376 \times \text{flow}^2) + (633.92 \times \text{flow}) - 1338.7)</td>
<td>((0.6723 \times \text{flow}^2) - (14.633 \times \text{flow}) + 175.25)</td>
<td>((5.0638 \times \text{flow}) + 124.05)</td>
</tr>
</tbody>
</table>
Table 3-1: Continued

<table>
<thead>
<tr>
<th>Ion</th>
<th>Winter</th>
<th>Summer</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>$(0.6025 \times \text{flow}^2) - (14.24 \times \text{flow}) + 97.623$</td>
<td>$(0.1442 \times \text{flow}^2) - (3.9764 \times \text{flow}) + 40.919$</td>
<td>$(-0.4041 \times \text{flow}^2) + (11.814 \times \text{flow}) - 70.546$</td>
</tr>
<tr>
<td>Na</td>
<td>114</td>
<td>111</td>
<td>110</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>82.3</td>
<td>74.1</td>
<td>82.5</td>
</tr>
<tr>
<td>UT 29</td>
<td>TDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>$(1.0329 \times \text{flow}^2) - (11.666 \times \text{flow}) + 580.62$</td>
<td>$(-140 \times \text{flow}) + 1022$</td>
<td>$664.15e^{-0.049 \times \text{flow}}$</td>
</tr>
<tr>
<td>Mg</td>
<td>$(-3.1764 \times \text{flow}^2) + (23.07 \times \text{flow}) + 363.32$</td>
<td>$(-3.4348 \times \text{flow}) + 382.33$</td>
<td>$413.17e^{-0.033 \times \text{flow}}$</td>
</tr>
<tr>
<td>Cl</td>
<td>$(-0.8171 \times \text{flow}^2) + (5.7677 \times \text{flow}) + 94.156$</td>
<td>$(-0.486 \times \text{flow}^2) + 3.8745 \times \text{flow} + 89.451$</td>
<td>$-0.1229 \times \text{flow}^2 + 0.7723 \times \text{flow} + 93.806$</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>$(-5.236 \times \text{LN} \times \text{flow}) + 99.033$</td>
<td>$83.966e^{0.0147 \times \text{flow}}$</td>
<td>$134.08e^{-0.105 \times \text{flow}}$</td>
</tr>
<tr>
<td>UT 38B*</td>
<td>TDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>$(-0.3735 \times \text{flow}^2) + (2.3685 \times \text{flow}) + 38.938$</td>
<td>$39.622e^{-0.01 \times \text{flow}}$</td>
<td>$47.789e^{-0.0063 \times \text{flow}}$</td>
</tr>
<tr>
<td>Mg</td>
<td>$(0.5127 \times \text{flow}^2) - (4.7755 \times \text{flow}) + 53.361$</td>
<td>$6.0535e^{0.013 \times \text{flow}}$</td>
<td>$6.9406e^{-0.069 \times \text{flow}}$</td>
</tr>
<tr>
<td>Na</td>
<td>$51.128 \times \text{flow} - 0.08$</td>
<td>$60.259e^{-0.085 \times \text{flow}}$</td>
<td></td>
</tr>
<tr>
<td>Table 3-1: Continued</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO\textsubscript{4}</td>
<td>{winter * [(-0.6367 * \text{flow}^2) + (3.2493 * \text{flow}) + 69.051]} + {summer * 56.386e^{-0.003 * \text{flow}}} + {spring * 66.847e^{-0.051 * \text{flow}}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT 38A</td>
<td>TDS</td>
<td>{winter * [(3.1099 * \text{flow}^2) - (127.95 * \text{flow}) + 1816.8]} + {summer * [(-10.686 * \text{flow}^2) + (500.13 * \text{flow}) - 5220.5]} + {spring * 919.95e^{-0.022 * \text{flow}}}</td>
<td></td>
</tr>
<tr>
<td>HCO\textsubscript{3}</td>
<td>{winter * [(1.1669 * \text{flow}^2) - (41.896 * \text{flow}) + 535.7]} + {summer * [100.4 * \text{LN}(\text{flow}) - 111.73]} + {spring * 919.95e^{-0.022 * \text{flow}}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>{winter * 35.047e^{0.0296 * \text{flow}}} + {summer * [(-0.5652 * \text{flow}^2) + (26.444 * \text{flow}) - 230.73]} + {spring * [0.2545 * \text{flow}^2] - (9.7779 * \text{flow}) + 163.42] }</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>{winter * 100} + {summer * 122} + {spring * 128}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>{winter * [(0.1197 * \text{flow}^2) - (4.4735 * \text{flow}) + 62.364]} + {summer * [(-0.3374 * \text{flow}^2) + (15.874 * \text{flow}) - 160.46]} + {spring * [(0.0888 * \text{flow}^2) - (3.6577 * \text{flow}) + 60.61]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>{winter * [(-0.0066 * \text{flow}^2) + (0.2681 * \text{flow}) + 7.9124]} + {summer * [(0.0331 * \text{flow}^2) - (1.652 * \text{flow}) + 31.223]} + {spring * [19.614e^{-0.029 * \text{flow}}]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>{winter * [(0.3491 * \text{flow}^2) - (12.119 * \text{flow}) + 174.7]} + {summer * [25.039 * \text{flow}^{0.3949}]} + {spring * [(0.1506 * \text{flow}^2) - (9.7779 * \text{flow}) + 163.42]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO\textsubscript{4}</td>
<td>{winter * [(0.3639 * \text{flow}^2) - (11.675 * \text{flow}) + 139.52]} + {summer * [(-4.7786 * \text{flow}^2) + (224.45 * \text{flow}) - 2544.4]]} + {spring * [(-0.2861 * \text{flow}^2) + (14.915 * \text{flow}) - 128.92]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT 42</td>
<td>TDS</td>
<td>{winter * 960} + {summer * 972} + {spring * 969}</td>
<td></td>
</tr>
<tr>
<td>HCO\textsubscript{3}</td>
<td>{winter * [(-1.1033 * \text{flow}^2) + (27.936 * \text{flow}) + 113.73]} + {summer * [(-0.0805 * \text{flow}^2) + (1.444 * \text{flow}) + 262.65]} + {spring * [(-0.1797 * \text{flow}^3) + (7.3177 * \text{flow}^2) - (99.103 * \text{flow}) + 724.73]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>{winter * 167} + {summer * 173} + {spring * 168}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>{winter * [(-1.3688 * \text{flow}^2) + (33.576 * \text{flow}) - 127.51]} + {summer * [(-0.3794 * \text{flow}^2) + (9.3109 * \text{flow}) + 13.177]} + {spring * [(0.1997 * \text{flow}^2) - (5.938 * \text{flow}) + 114.23]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>{winter * [(-0.0538 * \text{flow}^4) + (1.5338 * \text{flow}^2) - (13.026 * \text{flow}) + 85.223]} + {summer * [(-0.0419 * \text{flow}^2) + (1.0282 * \text{flow}) + 48.58]} + {spring * [(-0.0566 * \text{flow}^3) + (2.278 * \text{flow}^2) - (30.896 * \text{flow}) + 195.12]}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>{winter * [(-0.0456 * \text{flow}^3) + (1.3708 * \text{flow}^2) - (12.878 * \text{flow}) + 43.846]} + {summer * [(0.0046 * \text{flow}^2) - (0.1494 * \text{flow}^2) + (1.5624 * \text{flow}) + 0.3896]]} + {spring * [(0.1174 * \text{flow}^2) - (3.3607 * \text{flow}) + 30.051]}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-1: Continued

Na \(\{ \text{winter} \times (-0.2049 \times \text{flow}^4) + (6.2019 \times \text{flow}^2) - (58.434 \times \text{flow}) + 216.45 \} + \{ \text{summer} \times [(0.0296 \times \text{flow}^3) - (0.8927 \times \text{flow}^2) + (8.2861 \times \text{flow}) + 22.152] \} + \{ \text{spring} \times [-18.64 \times \text{LN}(\text{flow}) + 94.671] \} \}

SO\textsubscript{4} \{ \text{winter} \times 422 \} + \{ \text{summer} \times 401 \} + \{ \text{spring} \times 410 \}

UT 43*

TDS \{ \text{winter} \times [(-4.3162 \times \text{flow}^2) + (84.458 \times \text{flow}) + 425.61]\} + \{ \text{summer} \times [(-8.1633 \times \text{flow}) + 895.43]\} + \{ \text{spring} \times [(0.6517 \times \text{flow}^2) - (28.212 \times \text{flow}) + 1039.2]\}

HCO\textsubscript{3} \{ \text{winter} \times 284 \} + \{ \text{summer} \times 291 \} + \{ \text{spring} \times 273 \}

Ca \{ \text{winter} \times [(-0.4354 \times \text{flow}^2) + (7.6619 \times \text{flow}) + 121.04]\} + \{ \text{summer} \times [(-4.3624 \times \text{flow}) + 178.31]\} + \{ \text{spring} \times [(-0.0762 \times \text{flow}^2) + (1.8173 \times \text{flow}) + 131.94]\}

Cl \{ \text{winter} \times 51.9 \} + \{ \text{summer} \times 51.9 \} + \{ \text{spring} \times 48.9 \}

Mg \{ \text{winter} \times [(-0.1256 \times \text{flow}^2) + (2.3262 \times \text{flow}) + 38.932]\} + \{ \text{summer} \times [(1.3758 \times \text{flow}) + 57.513]\} + \{ \text{spring} \times [(-0.0495 \times \text{flow}^2) + (1.3948 \times \text{flow}) + 37.324]\}

K \{ \text{winter} \times 4.76 \} + \{ \text{summer} \times 4.84 \} + \{ \text{spring} \times 4.65 \}

Na \{ \text{winter} \times 39.1 \} + \{ \text{summer} \times 38.8 \} + \{ \text{spring} \times 37.8 \}

SO\textsubscript{4} \{ \text{winter} \times [(-2.0039 \times \text{flow}^2) + (30.866 \times \text{flow}) + 231.55]\} + \{ \text{summer} \times [(2.7693 \times \text{flow}^2) - (51.649 \times \text{flow}) + 515.8]\} + \{ \text{spring} \times [(0.3941 \times \text{flow}^2) - (14.819 \times \text{flow}) + 393.86]\}

UT 43A

TDS \{ \text{winter} \times 587 \} + \{ \text{summer} \times 608 \} + \{ \text{spring} \times 603 \}

HCO\textsubscript{3} \{ \text{winter} \times 123.8 \times \text{flow}^{0.4052} \} + \{ \text{summer} \times 206.53 \times \text{flow}^{0.0482} \} + \{ \text{spring} \times [(18.394 \times \text{flow}^2) - (211.96 \times \text{flow}) + 858.74]\}

Ca \{ \text{winter} \times 26.27 \times \text{flow}^{0.4795} \} + \{ \text{summer} \times 18.497 \times \text{flow}^{0.683}\} + \{ \text{spring} \times [(5.2266 \times \text{flow}^2) - (60.904 \times \text{flow}) + 237.99]\}

Cl \{ \text{winter} \times [(10.997 \times \text{flow}^2) - (113.63 \times \text{flow}) + 411.04]\} + \{ \text{summer} \times [(5.1207 \times \text{flow}) + 92.126]\} + \{ \text{spring} \times [(22.895 \times \text{flow}^2) - (249.71 \times \text{flow}) + 801.58]\}

Mg \{ \text{winter} \times [(-6.8504 \times \text{flow}^2) + (82.166 \times \text{flow}) - 219.89]\} + \{ \text{summer} \times 12.931 \times \text{flow}^{0.3717}\} + \{ \text{spring} \times [(0.8629 \times \text{flow}^2) - (8.7299 \times \text{flow}) + 45.943]\}

K \{ \text{winter} \times [(1.6842 \times \text{flow}^2) - (17.797 \times \text{flow}) + 60.977]\} + \{ \text{summer} \times [(-23.31 \times \text{LN}(\text{flow}) + 59.417]\} + \{ \text{spring} \times [(-0.1991 \times \text{flow}^2) + (2.0109 \times \text{flow}) + 10.024]\}

Na \{ \text{winter} \times 27.401 \times \text{flow}^{0.743}\} + \{ \text{summer} \times 136.68 \times \text{flow}^{-0.141}\} + \{ \text{spring} \times [(-1.8009 \times \text{flow}^2) + (18.112 \times \text{flow}) + 57.811]\}

17
Table 3-1: Continued

<table>
<thead>
<tr>
<th>Ion</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_4)</td>
<td>{winter * [(-58.978 * flow(^2)) + (696.07 * flow) - 1976.2]] +</td>
</tr>
<tr>
<td></td>
<td>{summer * [-280.6 * LN(flow) + 582.18]} + {spring * 17.84 * 10^{0.1879} * flow}</td>
</tr>
<tr>
<td>UT 44</td>
<td>TDS {winter * [(-0.0865 * flow(^2)) + (5.0825 * flow) + 228.75]] +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(-20.353 * flow(^3)) + (188.21 * flow(^2)) - (525.99 * flow) + 694.01]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * 258 * 10^{-0.001} * flow}</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>{winter * [(-2.4087 * flow(^2)) - (31.151 * flow(^2)) - (109.03 * flow) + 326.46]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(-2.4087 * flow(^2)) + (31.151 * flow(^2)) - (109.03 * flow) + 326.46]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * 216.16 * 10^{-0.001} * flow}</td>
</tr>
<tr>
<td>Ca</td>
<td>{winter * [(-0.00146 * flow(^2)) - (1.0332 * flow) + 91.049]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(0.9532 * flow(^3)) + (6.9071 * flow(^2)) - (11.96 * flow) + 68.404]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * 65.443 * 10^{-0.001} * flow}</td>
</tr>
<tr>
<td>Cl</td>
<td>{winter * [(0.03 * flow(^2)) - (2.8018 * flow) + 303.2]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(0.03 * flow(^2)) - (2.8018 * flow) + 303.2]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * 11.373 * 10^{-0.02}}</td>
</tr>
<tr>
<td>Mg</td>
<td>{winter * [(-0.0011 * flow(^3)) + (0.1042 * flow(^2)) - (3.1721 * flow) + 49.147]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(-0.4024 * flow(^3)) + (2.6227 * flow(^2)) - (4.5759 * flow) + 21.927]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * 15.604 * 10^{-0.002} * flow}</td>
</tr>
<tr>
<td>K</td>
<td>{winter * [(-0.0167 * flow(^2)) - (0.0598 * flow) + 2.5098]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(-0.2427 * flow(^2)) + (1.3643 * flow) + 0.4744]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * [(7 * 10^{-6} * flow(^2)) - (0.0038 * flow) + 1.4712]}</td>
</tr>
<tr>
<td>Na</td>
<td>{winter * [(-0.0057 * flow(^2)) - (0.3873 * flow) + 18.902]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(-0.6252 * flow(^2)) + (3.7568 * flow) + 11.112]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * [(6 * 10^{-6} * flow(^2)) - (0.0418 * flow) + 11.739]}</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>{winter * [(0.0448 * flow(^2)) - (2.5453 * flow) + 83.637]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * [(-3.3449 * flow(^2)) + (21.826 * flow(^2)) - (33.541 * flow) + 49.393]} +</td>
</tr>
<tr>
<td></td>
<td>{spring * 35.699 * 10^{-0.001} * flow}</td>
</tr>
</tbody>
</table>

UT 47

<table>
<thead>
<tr>
<th>Ion</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>{winter * 670} + {summer * 615} + {spring * 618}</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>{winter * [(-0.1161 * flow(^2)) + (10.014 * flow) + 332.15]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * 346.19 * 10^{0.0104} * flow} + {spring * [(0.7341 * flow(^2)) + (20.075 * flow) + 323.41]}</td>
</tr>
<tr>
<td>Ca</td>
<td>{winter * [(-0.1186 * flow(^2)) + (4.4792 * flow) + 47.944]} +</td>
</tr>
<tr>
<td></td>
<td>{summer * 69.514 * 10^{0.0124} * flow} + {spring * [(-0.1406 * flow(^2)) + (3.4185 * flow) + 60.642]}</td>
</tr>
<tr>
<td>Cl</td>
<td>{winter * 81.1} + {summer * 50.5} + {spring * 71.1}</td>
</tr>
<tr>
<td>Mg</td>
<td>{winter * 34.965 * 10^{0.0222} * flow} + {summer * 44.079 * 10^{-0.011} * flow} +</td>
</tr>
<tr>
<td></td>
<td>{spring * [(-0.1273 * flow(^2)) + (3.166 * flow) + 28.683]}</td>
</tr>
<tr>
<td>K</td>
<td>{winter * [(0.0224 * flow(^2)) - (0.224 * flow) + 6.7234]} + {summer * [(-0.0002 * flow(^2)) + (0.6497 * flow) + 25.503]}</td>
</tr>
<tr>
<td>Table 3-1: Continued</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Na ((\text{winter} \times [(0.2548 \times \text{flow}^2) - (2.0304 \times \text{flow}) + 46.649])) + ((\text{summer} \times [-16.26 \times \ln(\text{flow}) + 89.151])) + ((\text{spring} \times [(0.0301 \times \text{flow}^3) - (1.5306 \times \text{flow}^2) + (23.607 \times \text{flow}) - 16.66]))</td>
<td></td>
</tr>
<tr>
<td>SO(_4) ((\text{winter} \times [(7.4354 \times \text{flow}) - 15.447])) + ((\text{summer} \times [-18.92 \times \ln(\text{flow}) + 89.151])) + ((\text{spring} \times [(0.3337 \times \text{flow}^2) + (10.599 \times \text{flow}) + 27.073]))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UT 47A</th>
<th>TDS ((\text{winter} \times 883)) + ((\text{summer} \times 885)) + ((\text{spring} \times 898))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCO(_3) ((\text{winter} \times 403)) + ((\text{summer} \times 368)) + ((\text{spring} \times 401))</td>
<td></td>
</tr>
<tr>
<td>Ca ((\text{winter} \times [-53.62 \times \ln(\text{flow}) + 177.64])) + ((\text{summer} \times [(7.3955 \times \text{flow}) + 34.833])) + ((\text{spring} \times [(-7.7805 \times \text{flow}^2) + (111.65 \times \text{flow}) - 318.45]))</td>
<td></td>
</tr>
<tr>
<td>Cl ((\text{winter} \times 1273.4 \times 10^{-0.284 \times \text{flow}})) + ((\text{summer} \times [(169.71 \times \text{flow}^2) + (2356.8 \times \text{flow}) - 7969.8])) + ((\text{spring} \times [(-51.975 \times \text{flow}^2) + (711.39 \times \text{flow}) - 2200]))</td>
<td></td>
</tr>
<tr>
<td>Mg ((\text{winter} \times [(38.917 \times \text{flow}^2) - (533.21 \times \text{flow}) + 1859.3])) + ((\text{summer} \times [(4.7686 \times \text{flow}^2) - (63.663 \times \text{flow}) + 248.7])) + ((\text{spring} \times [(-1.1679 \times \text{flow}^2) + (19.939 \times \text{flow}) - 45.51]))</td>
<td></td>
</tr>
<tr>
<td>K ((\text{winter} \times 15.6)) + ((\text{summer} \times 15.5)) + ((\text{spring} \times 16.0))</td>
<td></td>
</tr>
<tr>
<td>Na ((\text{winter} \times 177)) + ((\text{summer} \times 169)) + ((\text{spring} \times 185))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UT 48</th>
<th>TDS ((\text{winter} \times [(0.0372 \times \text{flow}^2) - (11.21 \times \text{flow}) + 1230.7])) + ((\text{summer} \times [(0.0219 \times \text{flow}^2) - (5.1242 \times \text{flow}) + 566.98])) + ((\text{spring} \times 396.61 \times 10^{-3 \times \text{flow}}]))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCO(_3) ((\text{winter} \times [(0.0246 \times \text{flow}^2) - (7.4076 \times \text{flow}) + 809.53])) + ((\text{summer} \times [(0.0109 \times \text{flow}^2) - (2.487 \times \text{flow}) + 352.83])) + ((\text{spring} \times [(5 \times \text{flow}^3) - (0.0008 \times \text{flow}^2) + (0.3004 \times \text{flow}) + 253]))</td>
<td></td>
</tr>
<tr>
<td>Ca ((\text{winter} \times 68.6)) + ((\text{summer} \times 60.4)) + ((\text{spring} \times 64.7))</td>
<td></td>
</tr>
<tr>
<td>Cl ((\text{winter} \times 47.2)) + ((\text{summer} \times 35.3)) + ((\text{spring} \times 39.0))</td>
<td></td>
</tr>
<tr>
<td>Mg ((\text{winter} \times [(0.0013 \times \text{flow}^2) - (0.3697 \times \text{flow}) + 51.003])) + ((\text{summer} \times [(0.0008 \times \text{flow}^2) - (0.1991 \times \text{flow}) + 32.351])) + ((\text{spring} \times [(4 \times \text{flow}^3) - (7 \times \text{flow}^2) + (0.0232 \times \text{flow}) + 23.814]))</td>
<td></td>
</tr>
<tr>
<td>K ((\text{winter} \times 3.44)) + ((\text{summer} \times 3.51)) + ((\text{spring} \times 2.91))</td>
<td></td>
</tr>
<tr>
<td>Na ((\text{winter} \times [(0.0041 \times \text{flow}^2) - (1.1916 \times \text{flow}) + 131.92])) + ((\text{summer} \times [-11.58 \times \ln(\text{flow}) + 87.98])) + ((\text{spring} \times 43.54 \times 10^{6 \times \text{flow}^4}))</td>
<td></td>
</tr>
<tr>
<td>SO(_4) ((\text{winter} \times [(0.0032 \times \text{flow}^2) - (0.9015 \times \text{flow}) + 146.67])) + ((\text{summer} \times [(0.0042 \times \text{flow}^2) - (0.9367 \times \text{flow}) + 96.975])) + ((\text{spring} \times 67.851 \times 10^{-7 \times \text{flow}^4}))</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-1: Continued

UT 51* | TDS | {winter * [214.44 * LN(flow) - 180.28]} + {summer * 955.87e^{-0.014 * flow}} + {spring * [-194.6 * LN(flow) + 1530.9]}
| | HCO3 | {winter * 274.64 * flow^{0.1245}} + {summer * 577.33e^{-0.014 * flow}} + {spring * [-128.21 * LN(flow) + 943.13]}
| | Ca | {winter * [(-0.0028 * flow^2) + (0.3287 * flow) + 69.389]} + {summer * 54.839 * flow^{0.0941}} + {spring * [-14.78 * LN(flow) + 131.76]}
| | Cl | {winter * [53.96 * LN(flow) - 119.93]} + {summer * 21.784 * flow^{0.5123}} + {spring * [-26.62 * LN(flow) + 222.09]}
| | Mg | {winter * [14.104 * LN(flow) - 1.8202]} + {summer * 154.95 * flow^{0.357}} + {spring * [-17.65 * LN(flow) + 129.2]}
| | K | {winter * 10.4} + {summer * 9.30} + {spring * 9.65}
| | Na | {winter * [50.881 * LN(flow) - 112.27]} + {summer * 132.11e^{-0.019 * flow}} + {spring * [-38.07 * LN(flow) + 261.35]}
| | SO4 | {winter * [(158.89 * flow^2) - (17.552 * flow) + 92.465]} + {summer * [(-0.0162 * flow^2) + (3.4609 * flow) - 4.4505]} + {spring * [-43.54 * LN(flow) + 330.71]}

UT 51A | TDS | {winter * 854} + {summer * 845} + {spring * 800}
| | HCO3 | {winter * 243} + {summer * 262} + {spring * 247}
| | Ca | {winter * [(-90.481 * flow^2) + (380.99 * flow) - 323.02]} + {summer * [-165.6 * LN(flow) + 224.58]} + {spring * [(4.6872 * flow^2) - (17.552 * flow) + 92.465]}
| | Cl | {winter * [(-167.61 * flow) + 579.27]} + {summer * [(-187.5 * flow) + 681.25]} + {spring * [(158.89 * flow^2) - (903.37 * flow) + 1465.4]}
| | Mg | {winter * 23.304 * flow^{0.2544}} + {summer * 78.893e^{-0.408 * flow}} + {spring * [(3.1125 * flow^2) - (13.02 * flow) + 41.313]}
| | K | {winter * [(-4.8 * flow^2) + (19.203 * flow) - 4.1514]} + {summer * [-16.59 * LN(flow) + 28.925]} + {spring * [(5.4547 * flow^2) - (29.841 * flow) + 53.894]}
| | Na | {winter * [(119.5 * flow^2) + (410.11 * flow) - 154.56]} + {summer * [(-47.368 * flow) + 278.11]} + {spring * [(36.421 * flow^2) - (210.47 * flow) + 444.15]}
| | SO4 | {winter * 65.9} + {summer * 67.0} + {spring * 63.2}

UT 51C | TDS | {winter * 706} + {summer * 758} + {spring * 681}
| | HCO3 | {winter * 480} + {summer * 477} + {spring * 469}
| | Ca | {winter * 72.6} + {summer * 77.6} + {spring * 73.5}
| | Cl | {winter * 117} + {summer * 180} + {spring * 176}
| | Mg | {winter * 45.7} + {summer * 50.5} + {spring * 47.4}
<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th>Summer</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>13.9</td>
<td>15.1</td>
<td>13.5</td>
</tr>
<tr>
<td>Na</td>
<td>114</td>
<td>130</td>
<td>111</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>54.7</td>
<td>54.4</td>
<td>50.9</td>
</tr>
<tr>
<td>UT 53 TDS</td>
<td>919</td>
<td>856</td>
<td>836</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>253</td>
<td>230</td>
<td>236</td>
</tr>
<tr>
<td>Ca</td>
<td>60.8</td>
<td>50.9</td>
<td>55.2</td>
</tr>
<tr>
<td>Cl</td>
<td>$(-18.719 \times \text{lake stage above 4400 ft}^2) + (3291.8 \times \text{lake stage above 4400 ft}) - 144470$</td>
<td>$(-23.619 \times \text{lake stage above 4400 ft}^2) + (4154.3 \times \text{lake stage above 4400 ft}) - 182420$</td>
<td>$(-13.246 \times \text{lake stage above 4400 ft}^2) + (2360.4 \times \text{lake stage above 4400 ft}) - 104930$</td>
</tr>
<tr>
<td>Mg</td>
<td>$(-4.6093 \times \text{lake stage above 4400 ft}^2) + (810.2 \times \text{lake stage above 4400 ft}) + 35546$</td>
<td>$(-10.628 \times \text{lake stage above 4400 ft}^2) + (1878.4 \times \text{lake stage above 4400 ft}) - 82935$</td>
<td>$(-0.6944 \times \text{lake stage above 4400 ft}^2) + 119.23 \times \text{lake stage above 4400 ft} - 5058.1$</td>
</tr>
<tr>
<td>K</td>
<td>16.2</td>
<td>16.4</td>
<td>14.1</td>
</tr>
<tr>
<td>Na</td>
<td>144</td>
<td>137</td>
<td>133</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>547</td>
<td>544</td>
<td>509</td>
</tr>
<tr>
<td>UT 71 TDS</td>
<td>732</td>
<td>742</td>
<td>717</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>279</td>
<td>289</td>
<td>275</td>
</tr>
<tr>
<td>Ca</td>
<td>71.4</td>
<td>74.0</td>
<td>70.8</td>
</tr>
<tr>
<td>Cl</td>
<td>$(-16.87 \times \text{lake stage above 4400 ft}^2) + (2964.7 \times \text{lake stage above 4400 ft}) - 130081$</td>
<td>$(-37.776 \times \text{lake stage above 4400 ft}^2) + (6674.8 \times \text{lake stage above 4400 ft}) - 294663$</td>
<td>$(-9.6481 \times \text{lake stage above 4400 ft}^2) + (1715.1 \times \text{lake stage above 4400 ft}) - 76061$</td>
</tr>
<tr>
<td>Mg</td>
<td>$(-4.6093 \times \text{lake stage above 4400 ft}^2) + (810.2 \times \text{lake stage above 4400 ft}) + 35546$</td>
<td>$(-10.628 \times \text{lake stage above 4400 ft}^2) + (1878.4 \times \text{lake stage above 4400 ft}) - 82935$</td>
<td>$(-0.6944 \times \text{lake stage above 4400 ft}^2) + 119.23 \times \text{lake stage above 4400 ft} - 5058.1$</td>
</tr>
<tr>
<td>K</td>
<td>11.2</td>
<td>10.6</td>
<td>10.5</td>
</tr>
<tr>
<td>Na</td>
<td>144</td>
<td>137</td>
<td>133</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>547</td>
<td>544</td>
<td>509</td>
</tr>
</tbody>
</table>
3.2 Graphs

The graphs displayed in this section show how trendline equations were developed using the new sample data. A trendline equation was produced for each seasonal set of data. Thus, a total of three trendline equations are displayed which model the behavior of the concentrations according to winter, spring, and summer. Also, the values produced by the equations displayed in the previous section are plotted along with the actual sample data points, and the existing LKSIM equations.

The values in the tables of this section depict the maximum, minimum, overall mean, seasonal mean, and the standard deviation values among the sample data. The coefficients of determination are also displayed in the table. These r^2 values correlate the “predicted” values produced by the three trendline equations with the actual, sample data points.

![Graph showing trendlines and equations for TDS](Figure 3-1: UT 9 Trendlines and Equations for TDS)
Figure 3-2: UT 9 Trendlines and Equations for HCO₃⁻

\[y = -0.3317x^3 + 12.505x^2 - 152.06x + 923.37 \quad R^2 = 0.2289 \]
\[y = 1.5191x^2 - 28.731x + 421.79 \quad R^2 = 0.597 \]
\[y = 0.0881x^3 - 4.0798x^2 + 54.526x + 83.987 \quad R^2 = 0.4507 \]

Figure 3-3: UT 9 Measured and Predicted Concentrations for TDS and HCO₃⁻
Figure 3-4: UT 9 Trendlines and Equations for Ca

\[
y = 0.136x^2 - 3.5299x + 106.11 \\
R^2 = 0.1181
\]

\[
y = 85.722e^{-0.009x} \\
R^2 = 0.4958
\]

\[
y = 0.0142x^3 - 0.6769x^2 + 9.5302x + 37.032 \\
R^2 = 0.1574
\]

Figure 3-5: UT 9 Measured and Predicted Concentrations for SO\textsubscript{4} and Ca
Figure 3-6: UT 9 Measured and Predicted Concentrations for Mg and Na

Table:

<table>
<thead>
<tr>
<th>Concentration (mg/l)</th>
<th>LKSIM Mg conc.</th>
<th>Sample Mg conc.</th>
<th>New Equations (Mg)</th>
<th>Annual Mean (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (mg/l)</th>
<th>LKSIM Na conc.</th>
<th>Sample Na conc.</th>
<th>New Equations (Na)</th>
<th>Annual Mean (Na)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equations:

- New Equations (Mg): $y = -0.2338x^3 + 9.4021x^2 - 117.88x + 495.61$, $R^2 = 0.4772$
- New Equations (Na): $y = -0.1827x^3 + 4.7449x^2 - 38.824x + 145.39$, $R^2 = 0.2235$
- New Equations (Mg): $y = -0.0218x^3 + 1.0648x^2 - 15.725x + 117.47$, $R^2 = 0.1851$

Figure 3-7: UT 9 Trendlines and Equations for Cl

Equations:

- Winter: $y = -0.2338x^3 + 9.4021x^2 - 117.88x + 495.61$, $R^2 = 0.4772$
- Summer: $y = -0.1827x^3 + 4.7449x^2 - 38.824x + 145.39$, $R^2 = 0.2235$
- Spring: $y = -0.0218x^3 + 1.0648x^2 - 15.725x + 117.47$, $R^2 = 0.1851$
Figure 3-8: UT 9 Trendlines and Equations for K

- Winter: $y = 0.0158x^2 - 0.3577x + 5.3165$, $R^2 = 0.2711$
- Summer: $y = -0.0174x^3 + 0.4426x^2 - 3.5509x + 12.648$, $R^2 = 0.8878$
- Spring: $y = 0.0026x^3 - 0.1202x^2 + 1.7001x - 4.1544$, $R^2 = 0.267$

Figure 3-9: UT 9 Measured and Predicted Concentrations for Cl and K
Table 3-2: UT 9 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>546</td>
<td>384</td>
<td>470</td>
<td>480</td>
<td>480</td>
<td>462</td>
<td>36.2</td>
<td>0.44</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>354</td>
<td>262</td>
<td>305</td>
<td>331</td>
<td>301</td>
<td>291</td>
<td>24.0</td>
<td>0.73</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>124</td>
<td>58.3</td>
<td>92.6</td>
<td>101</td>
<td>88.8</td>
<td>89.6</td>
<td>14.1</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>92.2</td>
<td>67.4</td>
<td>79.2</td>
<td>84.4</td>
<td>79.6</td>
<td>76.3</td>
<td>5.26</td>
<td>0.55</td>
</tr>
<tr>
<td>Mg</td>
<td>47.1</td>
<td>29.8</td>
<td>39.3</td>
<td>39.2</td>
<td>40.7</td>
<td>38.8</td>
<td>3.05</td>
<td>-</td>
</tr>
<tr>
<td>Na</td>
<td>45.6</td>
<td>20.2</td>
<td>30.1</td>
<td>30.8</td>
<td>30.6</td>
<td>29.6</td>
<td>5.72</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>74.1</td>
<td>31.7</td>
<td>46.9</td>
<td>47.1</td>
<td>44.7</td>
<td>47.6</td>
<td>10.8</td>
<td>0.42</td>
</tr>
<tr>
<td>K</td>
<td>4.22</td>
<td>1.93</td>
<td>3.30</td>
<td>3.51</td>
<td>3.54</td>
<td>3.09</td>
<td>0.487</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Figure 3-10: UT 13 Trendlines and Equations for TDS

\[
y = 1.5345x^2 - 25.664x + 412.12 \\
R^2 = 0.7115
\]

\[
y = 0.3556x^2 - 10.267x + 379.11 \\
R^2 = 0.5619
\]

\[
y = 0.0027x^2 - 1.2563x + 305.84 \\
R^2 = 0.6409
\]
Figure 3-11: UT 13 Trendlines and Equations for HCO$_3^-$

- **Winter**: \(y = 276.12x^{-0.12} \), \(R^2 = 0.526 \)
- **Summer**: \(y = -0.2436x^2 - 0.3147x + 245.79 \), \(R^2 = 0.2075 \)
- **Spring**: \(y = 194.94e^{-7E-04x} \), \(R^2 = 0.2386 \)

Figure 3-12: UT 13 Measured and Predicted Concentrations for TDS and HCO$_3^-$
Figure 3-13: UT 13 Trendlines and Equations for SO$_4$

- **Winter**
 - Poly. (Winter)

 \[y = -0.3395x^2 + 7.4526x + 69.061 \]

 \[R^2 = 0.2774 \]

- **Summer**
 - Poly. (Summer)

 \[y = -0.3655x^2 + 3.3381x + 51.437 \]

 \[R^2 = 0.8107 \]

- **Spring**
 - Power (Spring)

 \[y = 103.67x^{0.252} \]

 \[R^2 = 0.5354 \]

Figure 3-14: UT 13 Trendlines and Equations for Ca

- **Winter**
 - Poly. (Winter)

 \[y = 0.2029x^2 - 3.7619x + 86.816 \]

 \[R^2 = 0.4306 \]

- **Summer**
 - Poly. (Summer)

 \[y = -0.3604x^2 + 3.9898x + 66.687 \]

 \[R^2 = 0.7323 \]

- **Spring**
 - Expon. (Spring)

 \[y = 62.712e^{-0.001x} \]

 \[R^2 = 0.322 \]
Figure 3-15: UT 13 Measured and Predicted Concentrations for SO$_4$ and Ca

Figure 3-16: UT 13 Trendlines and Equations for Mg
Figure 3-17: UT 13 Trendlines and Equations for Na

\[
y = 0.0934x^2 - 1.694x + 15.408 \\
R^2 = 0.4219
\]

\[
y = -0.2548x^2 + 2.8258x + 8.2376 \\
R^2 = 0.5167
\]

\[
y = -1.087\ln(x) + 10.193 \\
R^2 = 0.4279
\]

Figure 3-18: UT 13 Measured and Predicted Concentrations for Mg and Na
Figure 3-19: UT 13 Trendlines and Equations for Cl

- Winter: $y = 0.0236x^2 - 0.3922x + 2.5677$, $R^2 = 0.7144$
- Summer: $y = -0.0194x^3 + 0.3267x^2 - 1.6031x + 4.1646$, $R^2 = 0.6834$
- Spring: $y = 1.4248x - 0.079$, $R^2 = 0.2887$

Figure 3-20: UT 13 Trendlines and Equations for K

- Winter: $y = 0.0236x^2 - 0.3922x + 2.5677$, $R^2 = 0.7144$
- Summer: $y = -0.0194x^3 + 0.3267x^2 - 1.6031x + 4.1646$, $R^2 = 0.6834$
- Spring: $y = 1.4248x^{0.079}$, $R^2 = 0.2887$
Table 3-3: UT 13 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>500</td>
<td>144</td>
<td>298</td>
<td>340</td>
<td>336</td>
<td>249</td>
<td>77.0</td>
<td>0.79</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>301</td>
<td>128</td>
<td>210</td>
<td>234</td>
<td>235</td>
<td>186</td>
<td>34.3</td>
<td>0.68</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>127</td>
<td>20.0</td>
<td>65.5</td>
<td>94.0</td>
<td>56.7</td>
<td>52.8</td>
<td>30.8</td>
<td>0.60</td>
</tr>
<tr>
<td>Ca</td>
<td>89.4</td>
<td>35.3</td>
<td>66.7</td>
<td>75.4</td>
<td>75.7</td>
<td>58.5</td>
<td>11.8</td>
<td>0.72</td>
</tr>
<tr>
<td>Mg</td>
<td>27.7</td>
<td>8.77</td>
<td>19.7</td>
<td>22.9</td>
<td>24.2</td>
<td>16.3</td>
<td>4.86</td>
<td>0.85</td>
</tr>
<tr>
<td>Na</td>
<td>19.0</td>
<td>1.71</td>
<td>9.23</td>
<td>10.3</td>
<td>14.7</td>
<td>6.58</td>
<td>4.16</td>
<td>0.77</td>
</tr>
<tr>
<td>Cl</td>
<td>30.1</td>
<td>10.0</td>
<td>13.9</td>
<td>13.8</td>
<td>22.7</td>
<td>10.6</td>
<td>5.87</td>
<td>0.76</td>
</tr>
<tr>
<td>K</td>
<td>3.49</td>
<td>1.00</td>
<td>1.43</td>
<td>1.42</td>
<td>1.89</td>
<td>1.14</td>
<td>0.597</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Figure 3-22: UT 18 Trendlines and Equations for TDS

- Winter:
 \[y = 2.0795x^2 - 63.375x + 1082.3 \]
 \[R^2 = 0.6246 \]

- Summer:
 \[y = 4558.5x^{0.668} \]
 \[R^2 = 0.4821 \]

- Spring:
 \[y = 1489.5x^{0.32} \]
 \[R^2 = 0.6871 \]

Figure 3-23: UT 18 Trendlines and Equations for HCO$_3$
Figure 3-24: UT 18 Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-25: UT 18 Trendlines and Equations for SO₄
Figure 3-26: UT 18 Trendlines and Equations for Ca

y = 0.2274x^2 - 7.9192x + 165.51 \quad \text{R}^2 = 0.4112

y = 0.1219x^2 - 6.7559x + 176.64 \quad \text{R}^2 = 0.9149

y = -19.46\ln(x) + 147.2 \quad \text{R}^2 = 0.7088

Figure 3-27: UT 18 Measure and Predicted Concentrations for SO_4 and Ca
Figure 3-28: UT 18 Trendlines and Equations for Mg

- Winter
 \[y = 0.1681x^2 - 5.5174x + 87.333 \]
 \[R^2 = 0.6579 \]

- Poly. (Winter)
 \[y = 0.0535x^2 - 3.1024x + 78.64 \]
 \[R^2 = 0.8868 \]

- Power (Spring)
 \[y = 126.27x - 0.391 \]
 \[R^2 = 0.7692 \]

Figure 3-29: UT 18 Trendlines and Equations for Na

- Winter
 \[y = 0.0942x^2 - 0.0183x + 23.282 \]
 \[R^2 = 0.4455 \]

- Poly. (Winter)
 \[y = 0.0725x^2 - 4.5392x + 101.55 \]
 \[R^2 = 0.6834 \]

- Spring
 \[y = 104.52x^{0.259} \]
 \[R^2 = 0.2758 \]
Figure 3-30: UT 18 Measured and Predicted Concentrations for Mg and Na

Figure 3-31: UT 18 Trendlines and Equations for Cl
Figure 3-32: UT 18 Trendlines and Equations for K

\begin{align*}
 y &= 0.033x^2 - 0.8158x + 9.69 \\
 R^2 &= 0.7513 \\
 y &= 0.0142x^2 - 0.8485x + 16.799 \\
 R^2 &= 0.9397 \\
 y &= 7.7128x - 0.108 \\
 R^2 &= 0.0728
\end{align*}

Figure 3-33: UT 18 Measured and Predicted Concentrations for Cl and K
Table 3-4: UT 18 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>788</td>
<td>336</td>
<td>582</td>
<td>669.3</td>
<td>578</td>
<td>535</td>
<td>125</td>
<td>0.68</td>
</tr>
<tr>
<td>HCO₃</td>
<td>410</td>
<td>177</td>
<td>315</td>
<td>359.4</td>
<td>299</td>
<td>296</td>
<td>52.6</td>
<td>0.84</td>
</tr>
<tr>
<td>SO₄</td>
<td>215</td>
<td>72.6</td>
<td>142</td>
<td>173.1</td>
<td>122</td>
<td>132</td>
<td>40.9</td>
<td>0.62</td>
</tr>
<tr>
<td>Ca</td>
<td>115</td>
<td>50.1</td>
<td>89.6</td>
<td>100.9</td>
<td>88.4</td>
<td>83.7</td>
<td>12.8</td>
<td>0.79</td>
</tr>
<tr>
<td>Mg</td>
<td>56.2</td>
<td>19.7</td>
<td>39.2</td>
<td>46.2</td>
<td>36.7</td>
<td>36.2</td>
<td>8.40</td>
<td>0.79</td>
</tr>
<tr>
<td>Na</td>
<td>92.7</td>
<td>29.2</td>
<td>48.8</td>
<td>60.7</td>
<td>37.0</td>
<td>46.5</td>
<td>17.1</td>
<td>0.55</td>
</tr>
<tr>
<td>Cl</td>
<td>148</td>
<td>29.2</td>
<td>58.8</td>
<td>71.9</td>
<td>41.2</td>
<td>58.9</td>
<td>23.0</td>
<td>0.65</td>
</tr>
<tr>
<td>K</td>
<td>10.8</td>
<td>3.40</td>
<td>5.84</td>
<td>6.87</td>
<td>5.08</td>
<td>5.54</td>
<td>1.65</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Figure 3-34: UT 20 Trendlines and Equations for TDS

- **Winter**
 - Equation: \(y = -95.683x^2 + 769.45x - 650.21 \)
 - \(R^2 = 0.7468 \)

- **Summer**
 - Equation: \(y = 1169.4x^{-0.412} \)
 - \(R^2 = 0.3223 \)

- **Spring**
 - Equation: \(y = 961.86e^{0.1048x} \)
 - \(R^2 = 0.7324 \)
Figure 3-35: UT 20 Trendlines and Equations for HCO₃

\[
y = -53.449x^2 + 520.2x - 956.38 \\
R^2 = 0.3247
\]

\[
y = -1.7087x^3 + 27.906x + 109.49 \\
R^2 = 0.4723
\]

\[
y = 0.2315x^3 - 8.5538x^2 + 85.442x + 19.048 \\
R^2 = 0.5426
\]

Figure 3-36: UT 20 Measured and Predicted Concentrations for TDS and HCO₃
Figure 3-37: UT 20 Trendlines and Equations for SO₄

- Winter: $y = -65.376x^2 + 633.92x - 1338.7$, $R^2 = 0.5713$
- Summer: $y = 0.6723x^2 - 14.633x + 175.25$, $R^2 = 0.0432$
- Spring: $y = -74.81\ln(x) + 313.57$, $R^2 = 0.7149$

Figure 3-38: UT 20 Trendlines and Equations for Ca

- Winter: $y = -20.008x^2 + 193.45x - 367.08$, $R^2 = 0.2096$
- Summer: $y = -0.4063x^2 + 6.5194x + 41.091$, $R^2 = 0.3779$
- Spring: $y = 0.0293x^3 - 1.1533x^2 + 10.515x + 59.286$, $R^2 = 0.7416$
Figure 3-39: UT 20 Measured and Predicted Concentrations for SO₄ and Ca

Figure 3-40: UT 20 Trendlines and Equations for Mg

\[
\text{LTMS SO}_4 \text{ conc.} \\
\text{Sample SO}_4 \text{ conc.} \\
\text{New Equations (SO}_4) \\
\text{Annual Mean (SO}_4)
\]
\[
\text{LTMS Ca conc.} \\
\text{Sample Ca conc.} \\
\text{New Equations (Ca)} \\
\text{Annual Mean (Ca)}
\]

\[
y = -22.477x^2 + 219.16x - 474.15 \\
R^2 = 0.5994
\]
\[
y = 42.378x - 0.163 \\
R^2 = 0.076
\]
\[
y = 0.031x^3 - 1.09x^2 + 9.7211x + 24.96 \\
R^2 = 0.5705
\]
Figure 3-41: UT 20 Trendlines and Equations for Na

\[y = -21.875x + 171.67 \quad R^2 = 0.7479 \]

\[y = 50.096x^{0.212} \quad R^2 = 0.0842 \]

\[y = 80.832e^{-0.056x} \quad R^2 = 0.7278 \]

Figure 3-42: UT 20 Measured and Predicted Concentrations for Mg and Na
Figure 3-43: UT 20 Trendlines and Equations for Cl

- Winter: $y = 1948.1e^{-0.548x}$
 $R^2 = 0.5837$
- Expon. (Winter): $y = -0.8341x + 26.903x^2 - 281.12x + 1002.1$
 $R^2 = 0.1895$
- Poly. (Summer): $y = 0.0483x^3 - 1.3482x^2 + 5.0638x + 124.05$
 $R^2 = 0.5833$
- Poly. (Spring): $y = -10.829x^2 + 104.36x - 223.01$
 $R^2 = 0.5992$
- Poly. (Spring): $y = 0.0944x^2 - 2.0342x + 22.255$
 $R^2 = 0.0486$
- Power (Spring): $y = 56.62x^{0.52}$
 $R^2 = 0.5939$
Figure 3-45: UT 20 Measured and Predicted Concentrations for Cl and K

Table 3-5: UT 20 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>984</td>
<td>366</td>
<td>647</td>
<td>772</td>
<td>449</td>
<td>622</td>
<td>180</td>
<td>0.85</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>358</td>
<td>136</td>
<td>249</td>
<td>289</td>
<td>207</td>
<td>230</td>
<td>57.4</td>
<td>0.67</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>230</td>
<td>68.8</td>
<td>149</td>
<td>171</td>
<td>98.2</td>
<td>153</td>
<td>45.8</td>
<td>0.77</td>
</tr>
<tr>
<td>Ca</td>
<td>127</td>
<td>44.6</td>
<td>79.0</td>
<td>92.2</td>
<td>63.0</td>
<td>75.0</td>
<td>19.6</td>
<td>0.65</td>
</tr>
<tr>
<td>Mg</td>
<td>67.6</td>
<td>25.7</td>
<td>42.6</td>
<td>50.3</td>
<td>29.1</td>
<td>43.0</td>
<td>12.7</td>
<td>0.74</td>
</tr>
<tr>
<td>Na</td>
<td>84.8</td>
<td>26.7</td>
<td>48.6</td>
<td>58.6</td>
<td>30.8</td>
<td>49.6</td>
<td>25.0</td>
<td>0.83</td>
</tr>
<tr>
<td>Cl</td>
<td>204</td>
<td>38.2</td>
<td>97.9</td>
<td>127</td>
<td>53.5</td>
<td>95.6</td>
<td>43.3</td>
<td>0.71</td>
</tr>
<tr>
<td>K</td>
<td>32.8</td>
<td>9.37</td>
<td>19.3</td>
<td>23.5</td>
<td>11.7</td>
<td>19.6</td>
<td>7.10</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Figure 3-46: UT 27 Trendlines and Equations for TDS

- **Winter**

 \[y = -2.5394x^3 + 38.621x^2 - 164.57x + 580.31 \]

 \[R^2 = 0.574 \]

- **Summer**

 \[y = -3.4352x^2 + 42.676x + 288.66 \]

 \[R^2 = 0.9832 \]

- **Spring**

 \[y = 2.3788x^3 - 46.324x^2 + 290.86x - 159.61 \]

 \[R^2 = 0.05 \]

Figure 3-47: UT 27 Trendlines and Equations for HCO₃⁻

- **Winter**

 \[y = -0.9258x^2 + 12.336x + 261.44 \]

 \[R^2 = 0.0819 \]

- **Summer**

 \[y = -3.3251x^2 + 38.189x + 185.23 \]

 \[R^2 = 0.7328 \]

- **Spring**

 \[y = -3.5679x^3 + 61.885x^2 - 343.09x + 889.86 \]

 \[R^2 = 0.2104 \]
Figure 3-48: UT 27 Measured and Predicted Concentrations for TDS and HCO₃⁻

Figure 3-49: UT 27 Measured and Predicted Concentrations for SO₄²⁻ and Ca
Figure 3-50: UT 27 Measured and Predicted Concentrations for Mg and Na

Figure 3-51: UT 27 Measured and Predicted Concentrations for Cl and K

49
Table 3-6: UT 27 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>500</td>
<td>372</td>
<td>421</td>
<td>411</td>
<td>393</td>
<td>426</td>
<td>44.2</td>
<td>0.41</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>310</td>
<td>234</td>
<td>287</td>
<td>300</td>
<td>273</td>
<td>285</td>
<td>17.7</td>
<td>0.59</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>137</td>
<td>62.6</td>
<td>87.2</td>
<td>94.1</td>
<td>73.7</td>
<td>88.5</td>
<td>18.9</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>92.7</td>
<td>58.4</td>
<td>77.3</td>
<td>80.2</td>
<td>72.4</td>
<td>77.4</td>
<td>7.12</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>36.4</td>
<td>21.2</td>
<td>29.4</td>
<td>29.2</td>
<td>29.9</td>
<td>29.9</td>
<td>2.57</td>
<td>-</td>
</tr>
<tr>
<td>Na</td>
<td>28.8</td>
<td>16.7</td>
<td>23.4</td>
<td>21.5</td>
<td>21.9</td>
<td>21.6</td>
<td>10.2</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>33.4</td>
<td>16.7</td>
<td>28.5</td>
<td>23.9</td>
<td>24.3</td>
<td>25.9</td>
<td>19.9</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>9.48</td>
<td>6.22</td>
<td>7.34</td>
<td>7.35</td>
<td>7.65</td>
<td>7.23</td>
<td>0.788</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 3-52: UT 27A Trendlines and Equations for HCO$_3^-$

- Winter Expon. (Winter): $y = 107.26e^{0.0554x}$, $R^2 = 0.1847$
- Summer Poly. (Summer): $y = -10.039x^2 + 281.59x - 1739.2$, $R^2 = 0.5123$
- Spring Poly. (Spring): $y = 14.671x^2 - 407.77x + 3051.9$, $R^2 = 0.5907$
Figure 3-53: UT 27A Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-54: UT 27A Trendlines and Equations for Ca
Figure 3-55: UT 27A Measured and Predicted Concentrations for SO$_4$ and Ca

Figure 3-56: UT 27A Trendlines and Equations for Mg
Figure 3-57: UT 27A Measured and Predicted Concentrations for Mg and Na

- LKSIM Mg conc.
- Sample Mg conc.
- New Equations (Mg)
- Annual Mean (Mg)
- LKSIM Na conc.
- Sample Na conc.
- Seasonal Means (Na)
- Annual Mean (Na)

Figure 3-58: UT 27A Trendlines and Equations for K

- Winter
 - Poly. (Winter)
 \[y = 0.6025x^2 - 14.24x + 97.623 \]
 \[R^2 = 0.5587 \]

- Summer
 - Poly. (Summer)
 \[y = 0.1442x^2 - 3.9764x + 40.919 \]
 \[R^2 = 0.0764 \]

- Spring
 - Poly. (Spring)
 \[y = -0.4041x^2 + 11.814x - 70.546 \]
 \[R^2 = 0.4078 \]
Table 3-7: UT 27A Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>644</td>
<td>548</td>
<td>602</td>
<td>608</td>
<td>598</td>
<td>596</td>
<td>29.9</td>
<td>-</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>286</td>
<td>181</td>
<td>224</td>
<td>212</td>
<td>221</td>
<td>243</td>
<td>26.3</td>
<td>0.58</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>104</td>
<td>64.2</td>
<td>80.3</td>
<td>82.3</td>
<td>74.1</td>
<td>82.5</td>
<td>12.1</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>255</td>
<td>54.5</td>
<td>62.1</td>
<td>59.8</td>
<td>63.5</td>
<td>64.1</td>
<td>3.45</td>
<td>0.65</td>
</tr>
<tr>
<td>Mg</td>
<td>24.4</td>
<td>18.8</td>
<td>21.8</td>
<td>21.0</td>
<td>22.2</td>
<td>22.6</td>
<td>1.43</td>
<td>0.53</td>
</tr>
<tr>
<td>Na</td>
<td>126</td>
<td>96.1</td>
<td>112</td>
<td>114</td>
<td>111</td>
<td>110</td>
<td>7.51</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>255</td>
<td>134</td>
<td>160</td>
<td>159</td>
<td>156</td>
<td>153</td>
<td>23.2</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>18.0</td>
<td>12.3</td>
<td>14.1</td>
<td>13.9</td>
<td>13.7</td>
<td>14.5</td>
<td>1.10</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Figure 3-60: UT 29 Trendlines and Equations for TDS

- **Winter**
 - Poly. (Winter)
 - \(y = -0.0005x^2 + 0.3423x + 195.23 \)
 - \(R^2 = 0.5079 \)

- **Summer**
 - Poly. (Summer)
 - \(y = 0.0097x^2 - 2.5149x + 359.85 \)
 - \(R^2 = 0.6311 \)

- **Spring**
 - Power (Spring)
 - \(y = 409.28x^{0.089} \)
 - \(R^2 = 0.6202 \)

Figure 3-61: UT 29 Trendlines and Equations for HCO₃

- **Winter**
 - Poly. (Winter)
 - \(y = -3E-07x^3 + 0.0003x^2 - 0.0719x + 187.38 \)
 - \(R^2 = 0.073 \)

- **Summer**
 - Power (Summer)
 - \(y = 417.04x^{0.207} \)
 - \(R^2 = 0.9893 \)

- **Spring**
 - Power (Spring)
 - \(y = 284.79x^{0.069} \)
 - \(R^2 = 0.7505 \)
Figure 3-62: UT 29 Measured and Predicted Concentrations for TDS and HCO_3^-

Figure 3-63: UT 29 Trendlines and Equations for Ca
Figure 3-64: UT 29 Measured and Predicted Concentrations for SO$_4$ and Ca

- LKSIM SO$_4$ conc.
- Sample SO$_4$ conc.
- Seasonal Means (SO$_4$)
- Annual Mean (SO$_4$)
- LKSIM Ca conc.
- Sample Ca conc.
- New Equations (Ca)
- Annual Mean (Ca)

Figure 3-65: UT 29 Trendlines and Equations for Mg

- Winter
 - Poly. (Winter)
 - $y = -3E-05x^2 + 0.0153x + 12.526$
 - $R^2 = 0.1315$
- Summer
 - Poly. (Summer)
 - $y = 0.0002x^2 - 0.0714x + 16.979$
 - $R^2 = 0.8357$
- Spring
 - Poly. (Spring)
 - $y = -2E-06x^2 - 0.0001x + 13.953$
 - $R^2 = 0.7262$
Figure 3-66: UT 29 Trendlines and Equations for Na

\[y = -4E-07x^3 + 0.0003x^2 - 0.0491x + 13.935 \quad R^2 = 0.426 \]

\[y = 0.0003x^2 - 0.0635x + 16.659 \quad R^2 = 0.6871 \]

\[y = -1.077\ln(x) + 18.721 \quad R^2 = 0.2831 \]

Figure 3-67: UT 29 Measured and Predicted Concentrations for Mg and Na
Figure 3-68: UT 29 Measured and Predicted Concentrations for Cl and K

Table 3-8: UT 29 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>318</td>
<td>202</td>
<td>242</td>
<td>239</td>
<td>242</td>
<td>243</td>
<td>26.4</td>
<td>0.58</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>219</td>
<td>160</td>
<td>175</td>
<td>181</td>
<td>174</td>
<td>172</td>
<td>15.9</td>
<td>0.72</td>
</tr>
<tr>
<td>SO(_4)</td>
<td>58.8</td>
<td>27.0</td>
<td>41.3</td>
<td>45.1</td>
<td>36.9</td>
<td>40.8</td>
<td>8.35</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>61.2</td>
<td>39.9</td>
<td>53.9</td>
<td>54.5</td>
<td>55.1</td>
<td>53.0</td>
<td>4.52</td>
<td>0.54</td>
</tr>
<tr>
<td>Mg</td>
<td>16.2</td>
<td>10.6</td>
<td>13.4</td>
<td>14.1</td>
<td>13.4</td>
<td>13.0</td>
<td>1.21</td>
<td>0.64</td>
</tr>
<tr>
<td>Na</td>
<td>17.4</td>
<td>7.61</td>
<td>12.8</td>
<td>12.9</td>
<td>14.1</td>
<td>12.3</td>
<td>1.99</td>
<td>0.40</td>
</tr>
<tr>
<td>Cl</td>
<td>29.4</td>
<td>10.0</td>
<td>16.4</td>
<td>15.5</td>
<td>15.7</td>
<td>16.4</td>
<td>4.20</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>2.47</td>
<td>1.27</td>
<td>2.07</td>
<td>1.99</td>
<td>2.33</td>
<td>2.00</td>
<td>0.287</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3-69: UT 38B* Trendlines and Equations for TDS

- **Winter (Poly.)**:
 \[y = 1.0329x^2 - 11.666x + 580.62 \]
 \[R^2 = 0.0575 \]

- **Summer (Linear)**:
 \[y = -140x + 1022 \]
 \[R^2 = 1 \]

- **Spring (Exponential)**:
 \[y = 664.15e^{-0.049x} \]
 \[R^2 = 0.6352 \]

Figure 3-70: UT 38B* Trendlines and Equations for HCO$_3$

- **Winter (Poly.)**:
 \[y = -3.1764x^2 + 23.07x + 363.32 \]
 \[R^2 = 0.3219 \]

- **Summer (Linear)**:
 \[y = -3.4348x + 382.33 \]
 \[R^2 = 1 \]

- **Spring (Exponential)**:
 \[y = 413.17e^{-0.033x} \]
 \[R^2 = 0.6753 \]
Figure 3-71: UT 38B* Measured and Predicted Concentrations for TDS and HCO₃⁻

![Graph showing measured and predicted concentrations for TDS and HCO₃⁻ over time.

Figure 3-72: UT 38B* Trendlines and Equations for SO₄

![Graph showing trendlines and equations for SO₄ concentration.

Equations:
- TDS:
 - New Equations (TDS):
 - $y = 56.386e^{-0.003x}$
 - $R^2 = 0.9168$
 - Annual Mean (TDS):
 - LKSIM TDS conc.
 - Sample TDS conc.
- HCO₃⁻:
 - New Equations (HCO₃⁻):
 - $y = 66.847e^{-0.051x}$
 - $R^2 = 0.4817$
 - Annual Mean (HCO₃⁻):
 - LKSIM HCO₃ conc.
 - Sample HCO₃ conc.
- SO₄:
 - Winter:
 - Poly. (Winter):
 - $y = -0.6367x^2 + 3.2493x + 69.051$
 - $R^2 = 0.3329$
 - Summer:
 - Expon. (Summer):
 - $y = 56.386e^{-0.003x}$
 - $R^2 = 0.9168$
 - Spring:
 - Expon. (Spring):
 - $y = 66.847e^{-0.051x}$
 - $R^2 = 0.4817$
Figure 3-73: UT 38B* Trendlines and Equations for Ca

- Winter Poly. (Winter)
 \[y = -0.8171x^2 + 5.7677x + 94.156 \]
 \[R^2 = 0.3563 \]

- Summer Poly. (Summer)
 \[y = -0.486x^2 + 3.8745x + 89.451 \]
 \[R^2 = 1 \]

- Spring Poly. (Spring)
 \[y = -0.1229x^2 + 0.7723x + 93.806 \]
 \[R^2 = 0.6821 \]

Figure 3-74: UT 38B* Measured and Predicted Concentrations for SO₄ and Ca
Figure 3-75: UT 38B* Trendlines and Equations for Mg

\[y = -0.3735x^2 + 2.3685x + 38.938 \]
\[R^2 = 0.4447 \]

\[y = 39.622e^{0.01x} \]
\[R^2 = 0.2735 \]

\[y = 47.789e^{-0.063x} \]
\[R^2 = 0.642 \]

Figure 3-76: UT 38B* Trendlines and Equations for Na

\[y = 0.5127x^2 - 4.7755x + 53.361 \]
\[R^2 = 0.3375 \]

\[y = 51.128x^{0.08} \]
\[R^2 = 0.6945 \]

\[y = 60.259e^{0.063x} \]
\[R^2 = 0.6642 \]
Figure 3-77: UT 38B* Measured and Predicted Concentrations for Mg and Na

Figure 3-78: UT 38B* Trendlines and Equations for Cl

\[y = -5.236\ln(x) + 99.033 \]
\[R^2 = 0.1251 \]

\[y = 83.966e^{0.0147x} \]
\[R^2 = 0.0296 \]

\[y = 134.08e^{-0.105x} \]
\[R^2 = 0.6535 \]
Figure 3-79: UT 38B* Trendlines and Equations for K

- Winter Poly. (Winter)
y = -0.0528x² + 0.4086x + 5.515
 \(R^2 = 0.2952 \)

- Summer Expon. (Summer)
y = 6.0535e^{-0.013x}
 \(R^2 = 0.4955 \)

- Spring Expon. (Spring)
y = 6.9406e^{-0.069x}
 \(R^2 = 0.6195 \)

Figure 3-80: UT 38B* Measured and Predicted Concentrations for Cl and K
Table 3-9: UT 38B® Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th></th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>648</td>
<td>198</td>
<td>514</td>
<td>555</td>
<td>541</td>
<td>472</td>
<td>105</td>
<td>0.58</td>
</tr>
<tr>
<td>HCO₃</td>
<td>414</td>
<td>179</td>
<td>337</td>
<td>371</td>
<td>350</td>
<td>312</td>
<td>62.6</td>
<td>0.56</td>
</tr>
<tr>
<td>SO₄</td>
<td>84.5</td>
<td>20.0</td>
<td>53.8</td>
<td>62.7</td>
<td>56.2</td>
<td>47.9</td>
<td>16.1</td>
<td>0.49</td>
</tr>
<tr>
<td>Ca</td>
<td>107</td>
<td>48.0</td>
<td>89.9</td>
<td>95.1</td>
<td>94.8</td>
<td>85.2</td>
<td>14.5</td>
<td>0.61</td>
</tr>
<tr>
<td>Mg</td>
<td>46</td>
<td>10.0</td>
<td>33.8</td>
<td>37.9</td>
<td>37.2</td>
<td>30.3</td>
<td>9.00</td>
<td>0.48</td>
</tr>
<tr>
<td>Na</td>
<td>69.7</td>
<td>7.50</td>
<td>40.2</td>
<td>45.5</td>
<td>44.1</td>
<td>36.1</td>
<td>13.0</td>
<td>0.58</td>
</tr>
<tr>
<td>Cl</td>
<td>124</td>
<td>10.0</td>
<td>81.5</td>
<td>91.7</td>
<td>88.7</td>
<td>73.6</td>
<td>27.4</td>
<td>0.47</td>
</tr>
<tr>
<td>K</td>
<td>8.86</td>
<td>1.18</td>
<td>5.12</td>
<td>5.78</td>
<td>5.54</td>
<td>4.60</td>
<td>1.61</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Figure 3-81: UT 38A Trendlines and Equations for TDS

- **Winter**

 \[y = 3.1099x^2 + 127.95x + 1816.8 \]

 \[R^2 = 0.2798 \]

- **Summer**

 \[y = -10.686x^2 + 500.13x - 5220.5 \]

 \[R^2 = 0.4355 \]

- **Spring**

 \[y = 919.95e^{-0.022x} \]

 \[R^2 = 0.3264 \]
Figure 3-82: UT 38A Trendlines and Equations for HCO_3

\[y = 1.1669x^2 - 41.896x + 535.7 \quad R^2 = 0.505 \]

\[y = 100.4\ln(x) - 111.73 \quad R^2 = 0.2218 \]

\[y = 26.532x^{0.6443} \quad R^2 = 0.3174 \]

Figure 3-83: UT 38A Measured and Predicted Concentrations for TDS and HCO_3
Figure 3-84: UT 38A Trendlines and Equations for SO$_4$

- **Winter**: $y = 0.3639x^2 - 11.675x + 139.52$
 $R^2 = 0.2645$
- **Summer**: $y = -4.7786x^2 + 224.45x - 2544.4$
 $R^2 = 0.3481$
- **Spring**: $y = -0.2861x^2 + 14.915x - 128.92$
 $R^2 = 0.563$

Figure 3-85: UT 38A Trendlines and Equations for Ca

- **Winter**: $y = 35.047e^{0.0296x}$
 $R^2 = 0.6002$
- **Summer**: $y = -0.5652x^2 + 26.444x - 230.73$
 $R^2 = 0.3857$
- **Spring**: $y = 0.2545x^2 - 9.7779x + 163.42$
 $R^2 = 0.5988$
Figure 3-86: UT 38A Measured and Predicted Concentrations for SO_4 and Ca

- LKSIM SO_4 conc.
- Sample SO_4 conc.
- New Equations (SO_4)
- Annual Mean (SO_4)
- LKSIM Ca conc.
- Sample Ca conc.
- New Equations (Ca)
- Annual Mean (Ca)

![Graph showing measured and predicted concentrations for SO_4 and Ca.]

Figure 3-87: UT 38A Trendlines and Equations for Mg

- Winter
 - Poly. (Winter)
 - $y = 0.1197x^2 - 4.4735x + 62.364$
 - $R^2 = 0.6226$
- Summer
 - Poly. (Summer)
 - $y = -0.3374x^2 + 15.874x - 160.46$
 - $R^2 = 0.878$
- Spring
 - Poly. (Spring)
 - $y = 0.0888x^2 - 3.6577x + 60.61$
 - $R^2 = 0.4645$
Figure 3-88: UT 38A Trendlines and Equations for Na

- Winter

 \[y = 0.3491x^2 - 12.119x + 174.7 \]
 \[R^2 = 0.7011 \]

- Summer

 \[y = 25.039x^{0.3949} \]
 \[R^2 = 0.1426 \]

- Spring

 \[y = 0.1506x^2 - 10.163x + 228.73 \]
 \[R^2 = 0.6237 \]

Figure 3-89: UT 38A Measured and Predicted Values for Mg and Na
Figure 3-90: UT 38A Trendlines and Equations for K

Equations for K:

- Winter Poly. (Winter): \[y = -0.0066x^2 + 0.2681x + 7.9124 \]
 \[R^2 = 0.0037 \]

- Summer Poly. (Summer): \[y = 0.0331x^2 - 1.652x + 31.223 \]
 \[R^2 = 0.1232 \]

- Spring Expon. (Spring): \[y = 19.614e^{-0.029x} \]
 \[R^2 = 0.5219 \]

Figure 3-91: UT 38A Measured and Predicted Concentrations for Cl and K
Table 3-10: UT 38A Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>694</td>
<td>466</td>
<td>548</td>
<td>512</td>
<td>577</td>
<td>561</td>
<td>49.4</td>
<td>0.54</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>246</td>
<td>158</td>
<td>191</td>
<td>175</td>
<td>198</td>
<td>200</td>
<td>24.3</td>
<td>0.49</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>86.4</td>
<td>42.9</td>
<td>60.6</td>
<td>56.3</td>
<td>65.8</td>
<td>60.4</td>
<td>10.4</td>
<td>0.43</td>
</tr>
<tr>
<td>Ca</td>
<td>85.1</td>
<td>58.8</td>
<td>71.4</td>
<td>65.4</td>
<td>75.7</td>
<td>73.4</td>
<td>6.53</td>
<td>0.78</td>
</tr>
<tr>
<td>Mg</td>
<td>26.8</td>
<td>20.2</td>
<td>23.2</td>
<td>21.7</td>
<td>24.4</td>
<td>23.7</td>
<td>1.70</td>
<td>0.75</td>
</tr>
<tr>
<td>Na</td>
<td>97.8</td>
<td>62.7</td>
<td>79.1</td>
<td>75.5</td>
<td>85.0</td>
<td>77.8</td>
<td>8.84</td>
<td>0.62</td>
</tr>
<tr>
<td>Cl</td>
<td>213</td>
<td>35.8</td>
<td>117</td>
<td>100</td>
<td>122</td>
<td>128</td>
<td>30.4</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>11.5</td>
<td>8.74</td>
<td>10.6</td>
<td>10.4</td>
<td>11.0</td>
<td>10.4</td>
<td>0.750</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Figure 3-92: UT 42 Trendlines and Equations for HCO$_3$

- Winter: $y = -1.1033x^2 + 27.936x + 113.73$, $R^2 = 0.3896$
- Summer: $y = -0.0805x^2 + 1.1444x + 262.65$, $R^2 = 0.0672$
- Spring: $y = -0.1797x^3 + 7.3177x^2 - 99.103x + 724.73$, $R^2 = 0.3439$
Figure 3-93: UT 42 Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-94: UT 42 Measured and Predicted Concentrations for SO₄ and Ca
Figure 3-95: UT 42 Trendlines and Equations for Mg

\[y = -0.0538x^3 + 1.5338x^2 - 13.026x + 85.223 \]
\[R^2 = 0.2168 \]

\[y = -0.0419x^2 + 1.0282x + 48.58 \]
\[R^2 = 0.0631 \]

\[y = -0.0566x^3 + 2.278x^2 - 30.896x + 195.12 \]
\[R^2 = 0.4802 \]

Figure 3-96: UT 42 Trendlines and Equations for Na

\[y = -0.2049x^3 + 6.2019x^2 - 58.434x + 216.45 \]
\[R^2 = 0.5115 \]

\[y = 0.0296x^3 - 0.8927x^2 + 8.2861x + 22.152 \]
\[R^2 = 0.1058 \]

\[y = 0.1834x^2 - 6.597x + 101.46 \]
\[R^2 = 0.4558 \]
Figure 3-97: UT 42 Measured and Predicted Concentrations for Mg and Na

Figure 3-98: UT 42 Trendlines and Equations for Cl

\[y = -1.3688x^2 + 33.576x - 127.51 \quad R^2 = 0.5842 \]

\[y = -0.3794x^2 + 9.3109x + 13.177 \quad R^2 = 0.2417 \]

\[y = 0.1997x^2 - 5.938x + 114.23 \quad R^2 = 0.1207 \]
Figure 3-99: UT 42 Trendlines and Equations for K

- **Winter**

 \[y = -0.0456x^3 + 1.3708x^2 - 12.878x + 43.846 \]

 \[R^2 = 0.3795 \]

- **Summer**

 \[y = 0.0046x^3 - 0.1494x^2 + 1.5624x + 0.3896 \]

 \[R^2 = 0.0212 \]

- **Spring**

 \[y = 0.1174x^2 - 3.3607x + 30.051 \]

 \[R^2 = 0.4035 \]

Figure 3-100: UT 42 Measured and Predicted Values for Cl and K
Table 3-11: UT 42 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>1092</td>
<td>828</td>
<td>967</td>
<td>960</td>
<td>972</td>
<td>969</td>
<td>60.6</td>
<td>-</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>312</td>
<td>254</td>
<td>279</td>
<td>283</td>
<td>266</td>
<td>283</td>
<td>15.8</td>
<td>0.47</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>523</td>
<td>284</td>
<td>412</td>
<td>422</td>
<td>401</td>
<td>410</td>
<td>58.1</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>186</td>
<td>144</td>
<td>169</td>
<td>167</td>
<td>173</td>
<td>168</td>
<td>9.31</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>65.5</td>
<td>47.1</td>
<td>55.3</td>
<td>54.8</td>
<td>54.4</td>
<td>55.9</td>
<td>4.23</td>
<td>0.40</td>
</tr>
<tr>
<td>Na</td>
<td>62.7</td>
<td>40.4</td>
<td>49.0</td>
<td>49.0</td>
<td>45.7</td>
<td>50.3</td>
<td>6.50</td>
<td>0.51</td>
</tr>
<tr>
<td>Cl</td>
<td>96.1</td>
<td>47.1</td>
<td>70.8</td>
<td>70.0</td>
<td>66.1</td>
<td>73.0</td>
<td>10.6</td>
<td>0.47</td>
</tr>
<tr>
<td>K</td>
<td>11.0</td>
<td>3.77</td>
<td>6.84</td>
<td>6.78</td>
<td>5.61</td>
<td>7.34</td>
<td>6.84</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Figure 3-101: UT 43* Trendlines and Equations for TDS

- Winter Poly. (Winter): $y = -4.3162x^2 + 84.458x + 425.61$
 $R^2 = 0.5676$
- Summer Linear (Summer): $y = -8.1633x + 895.43$
 $R^2 = 1$
- Spring Poly. (Spring): $y = 0.6517x^2 - 28.212x + 1039.2$
 $R^2 = 0.3279$
Figure 3-102: UT 43* Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-103: UT 43* Trendlines and Equations for SO₄
Figure 3-104: UT 43* Trendlines and Equations for Ca

- Winter Poly. (Winter)
 \[y = -0.4354x^2 + 7.6619x + 121.04 \]
 \[R^2 = 0.3597 \]

- Summer Linear (Summer)
 \[y = -4.3624x + 178.31 \]
 \[R^2 = 1 \]

- Spring Poly. (Spring)
 \[y = -0.0762x^2 + 1.8173x + 131.94 \]
 \[R^2 = 0.1705 \]

Figure 3-105: UT 43* Measured and Predicted Concentrations for SO₄ and Ca
Figure 3-106: UT 43* Trendlines and Equations for Mg

- **Winter** (Poly. (Winter))

 \[y = -0.1256x^2 + 2.3262x + 38.932 \]

 \[R^2 = 0.2257 \]

- **Summer** (Linear (Summer))

 \[y = -1.3758x + 57.513 \]

 \[R^2 = 1 \]

- **Spring** (Poly. (Spring))

 \[y = -0.0495x^2 + 1.3948x + 37.324 \]

 \[R^2 = 0.186 \]

Figure 3-107: UT 43* Measured and Predicted Concentrations for Mg and Na
Figure 3-108: UT 43* Measured and Predicted Values for Cl and K

Table 3-12: UT 43* Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>876</td>
<td>732</td>
<td>798</td>
<td>808</td>
<td>842</td>
<td>780</td>
<td>41.2</td>
<td>0.57</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>298</td>
<td>246</td>
<td>280</td>
<td>284</td>
<td>291</td>
<td>273</td>
<td>14.5</td>
<td>-</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>433</td>
<td>251</td>
<td>296</td>
<td>322</td>
<td>311</td>
<td>268</td>
<td>48.8</td>
<td>0.51</td>
</tr>
<tr>
<td>Ca</td>
<td>161</td>
<td>134</td>
<td>146</td>
<td>151</td>
<td>145</td>
<td>142</td>
<td>7.81</td>
<td>0.55</td>
</tr>
<tr>
<td>Mg</td>
<td>52.6</td>
<td>43.6</td>
<td>47.5</td>
<td>48.7</td>
<td>46.9</td>
<td>46.6</td>
<td>2.44</td>
<td>0.40</td>
</tr>
<tr>
<td>Na</td>
<td>42.1</td>
<td>34.6</td>
<td>38.4</td>
<td>39.1</td>
<td>38.8</td>
<td>37.8</td>
<td>2.10</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>60.6</td>
<td>42.7</td>
<td>50.3</td>
<td>51.9</td>
<td>51.9</td>
<td>48.9</td>
<td>4.38</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>5.30</td>
<td>4.26</td>
<td>4.71</td>
<td>4.76</td>
<td>4.84</td>
<td>4.65</td>
<td>0.272</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3-109: UT 43A Trendlines and Equations for HCO₃⁻

- Winter: Power (Winter)
 \[y = 123.8x^{0.4052} \]
 \[R^2 = 0.1745 \]

- Summer: Expon. (Summer)
 \[y = 206.53e^{0.0482x} \]
 \[R^2 = 0.605 \]

- Spring: Poly. (Spring)
 \[y = 18.394x^2 - 211.96x + 858.74 \]
 \[R^2 = 0.4208 \]

Figure 3-110: UT 43A Measured and Predicted Concentrations for TDS and HCO₃⁻
Figure 3-111: UT 43A Trendlines and Equations for SO₄

- **SO₄ vs. Flow (Winter)**
 - Equation: $y = -58.978x^2 + 696.07x - 1976.2$
 - $R^2 = 0.7101$

- **SO₄ vs. Flow (Summer)**
 - Equation: $y = -280.6\ln(x) + 582.18$
 - $R^2 = 0.9092$

- **SO₄ vs. Flow (Spring)**
 - Equation: $y = 17.84e^{0.1897x}$
 - $R^2 = 0.4207$

Figure 3-112: UT 43A Trendlines and Equations for Ca

- **Ca vs. Flow (Winter)**
 - Equation: $y = 26.27x^{0.4793}$
 - $R^2 = 0.2321$

- **Ca vs. Flow (Summer)**
 - Equation: $y = 18.497x^{0.683}$
 - $R^2 = 0.6669$

- **Ca vs. Flow (Spring)**
 - Equation: $y = 5.2266x^2 - 60.904x + 237.99$
 - $R^2 = 0.4291$
Figure 3-113: UT 43A Measured and Predicted Concentrations for SO\textsubscript{4} and Ca

Figure 3-114: UT 43A Trendlines and Equations for Mg
Figure 3-115: UT 43A Trendlines and Equations for Na

Equations for Na

- Winter:
 \[y = 27.401x^{0.743} \]
 \[R^2 = 0.7141 \]

- Summer:
 \[y = 136.68x - 0.141 \]
 \[R^2 = 0.0201 \]

- Spring:
 \[y = -1.8009x^2 + 18.112x + 57.811 \]
 \[R^2 = 0.4012 \]

Figure 3-116: UT 43A Measured and Predicted Concentrations for Mg and Na

Equations for Mg

- Winter (Power): \[y = 2.10x^{0.743} \]
 \[R^2 = 0.7141 \]

- Summer (Power): \[y = 136.68x - 0.141 \]
 \[R^2 = 0.0201 \]

- Spring (Poly.): \[y = -1.8009x^2 + 18.112x + 57.811 \]
 \[R^2 = 0.4012 \]
Figure 3-117: UT 43A Trendlines and Equations for Cl

- Winter Poly. (Winter)
 \[y = 10.997x^2 - 113.63x + 411.04 \]
 \[R^2 = 0.7029 \]

- Summer Linear (Summer)
 \[y = 5.1207x + 92.126 \]
 \[R^2 = 0.0234 \]

- Spring Poly. (Spring)
 \[y = 22.895x^2 - 249.71x + 801.58 \]
 \[R^2 = 0.8159 \]

Figure 3-118: UT 43A Trendlines and Equations for K

- Winter Poly. (Winter)
 \[y = 1.6842x^2 - 17.797x + 60.977 \]
 \[R^2 = 0.4543 \]

- Summer Log. (Summer)
 \[y = -23.31\ln(x) + 59.417 \]
 \[R^2 = 0.7958 \]

- Spring Poly. (Spring)
 \[y = -0.1991x^2 + 2.0109x + 10.024 \]
 \[R^2 = 0.1065 \]
Figure 3-119: UT 43A Measured and Predicted Concentrations for Cl and K

Table 3-13: UT 43A Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th></th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>662</td>
<td>528</td>
<td>598</td>
<td>587</td>
<td>608</td>
<td>603</td>
<td>32.3</td>
<td>-</td>
</tr>
<tr>
<td>HCO₃</td>
<td>302</td>
<td>204</td>
<td>262</td>
<td>253</td>
<td>278</td>
<td>261</td>
<td>25.9</td>
<td>0.45</td>
</tr>
<tr>
<td>SO₄</td>
<td>90.4</td>
<td>39.6</td>
<td>58.8</td>
<td>60.6</td>
<td>52.9</td>
<td>60.5</td>
<td>16.2</td>
<td>0.64</td>
</tr>
<tr>
<td>Ca</td>
<td>73.4</td>
<td>52.2</td>
<td>63.1</td>
<td>61.1</td>
<td>64.6</td>
<td>64.0</td>
<td>6.38</td>
<td>0.43</td>
</tr>
<tr>
<td>Mg</td>
<td>29.2</td>
<td>21.6</td>
<td>25.0</td>
<td>24.3</td>
<td>25.4</td>
<td>25.3</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>Na</td>
<td>111</td>
<td>92.8</td>
<td>102</td>
<td>101</td>
<td>107</td>
<td>99.0</td>
<td>6.76</td>
<td>0.58</td>
</tr>
<tr>
<td>Cl</td>
<td>227</td>
<td>106</td>
<td>134</td>
<td>125</td>
<td>130</td>
<td>144</td>
<td>27.1</td>
<td>0.82</td>
</tr>
<tr>
<td>K</td>
<td>17.1</td>
<td>12.7</td>
<td>15.0</td>
<td>14.9</td>
<td>15.9</td>
<td>14.5</td>
<td>1.39</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Figure 3-120: UT 44 Trendlines and Equations for TDS

\[y = -0.0865x^2 + 5.0825x + 228.75 \]
\[R^2 = 0.3333 \]

\[y = -20.353x^3 + 188.21x^2 - 525.99x + 694.01 \]
\[R^2 = 0.8874 \]

\[y = 258e^{-0.001x} \]
\[R^2 = 0.7053 \]

Figure 3-121: UT 44 Trendlines and Equations for HCO₃⁻
Figure 3-122: UT 44 Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-123: UT 44 Trendlines and Equations for SO₄
Figure 3-124: UT 44 Trendlines and Equations for Ca

- **Winter**
 - Polynomial (Winter): $y = 0.0146x^2 - 1.0332x + 91.049$
 - $R^2 = 0.1117$

- **Summer**
 - Polynomial (Summer): $y = -0.9532x^3 + 6.9071x^2 - 11.96x + 68.404$
 - $R^2 = 0.2834$

- **Spring**
 - Exponential (Spring): $y = 65.443e^{-0.001x}$
 - $R^2 = 0.8692$

Figure 3-125: UT 44 Measured and Predicted Concentrations for SO$_4$ and Ca
Figure 3-126: UT 44 Trendlines and Equations for Mg

- **Mg**
 - Winter: \(y = -0.0011x^3 + 0.1042x^2 - 3.1721x + 49.147 \)
 - Poly. (Winter): \(R^2 = 0.2397 \)
 - Summer: \(y = -0.4024x^3 + 2.6227x^2 - 4.5759x + 21.927 \)
 - Poly. (Summer): \(R^2 = 0.3476 \)
 - Spring: \(y = 15.604e^{-0.002x} \)
 - Expon. (Spring): \(R^2 = 0.7872 \)

Figure 3-127: UT 44 Trendlines and Equations for Na

- **Na**
 - Winter: \(y = 0.0059x^2 - 0.3873x + 18.902 \)
 - Poly. (Winter): \(R^2 = 0.2397 \)
 - Summer: \(y = -0.6252x^3 + 3.7568x + 11.112 \)
 - Poly. (Summer): \(R^2 = 0.3476 \)
 - Spring: \(y = 6E-05x^2 - 0.0418x + 11.739 \)
 - Poly. (Spring): \(R^2 = 0.7086 \)
Figure 3-128: UT 44 Measured and Predicted Values for Mg and Na

Figure 3-129: UT 44 Trendlines and Equations for Cl
Figure 3-130: UT 44 Trendlines and Equations for K

\[y = 0.0009x^2 - 0.0598x + 2.5098 \]
\[R^2 = 0.1989 \]

\[y = -0.2427x^2 + 1.3643x + 0.4744 \]
\[R^2 = 0.7887 \]

\[y = 7 \times 10^{-6}x^2 - 0.0038x + 1.4712 \]
\[R^2 = 0.4184 \]

Figure 3-131: UT 44 Measured and Predicted Concentrations for Cl and K
Table 3-14: UT 44 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th></th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>378</td>
<td>146</td>
<td>260</td>
<td>299</td>
<td>301</td>
<td>223</td>
<td>56.0</td>
<td>0.84</td>
</tr>
<tr>
<td>HCO₃</td>
<td>266</td>
<td>116</td>
<td>213</td>
<td>246</td>
<td>237</td>
<td>186</td>
<td>42.2</td>
<td>0.83</td>
</tr>
<tr>
<td>SO₄</td>
<td>61.9</td>
<td>20.0</td>
<td>37.9</td>
<td>50.2</td>
<td>39.2</td>
<td>30.5</td>
<td>11.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Ca</td>
<td>80.8</td>
<td>35.8</td>
<td>63.0</td>
<td>73.8</td>
<td>65.7</td>
<td>56.0</td>
<td>11.8</td>
<td>0.85</td>
</tr>
<tr>
<td>Mg</td>
<td>20.2</td>
<td>6.70</td>
<td>15.6</td>
<td>18.7</td>
<td>19.2</td>
<td>12.6</td>
<td>4.40</td>
<td>0.88</td>
</tr>
<tr>
<td>Na</td>
<td>16.6</td>
<td>5.04</td>
<td>11.0</td>
<td>12.9</td>
<td>15.2</td>
<td>8.45</td>
<td>3.48</td>
<td>0.88</td>
</tr>
<tr>
<td>Cl</td>
<td>19.1</td>
<td>10.0</td>
<td>11.8</td>
<td>12.1</td>
<td>14.8</td>
<td>10.6</td>
<td>2.59</td>
<td>0.58</td>
</tr>
<tr>
<td>K</td>
<td>2.03</td>
<td>1.00</td>
<td>1.47</td>
<td>1.61</td>
<td>1.80</td>
<td>1.26</td>
<td>0.299</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Figure 3-132: UT 47* Trendlines and Equations for HCO₃

- Winter
 \[y = -0.1161x^2 + 10.014x + 332.15 \]
 \[R^2 = 0.3213 \]

- Summer
 \[y = 346.19e^{0.0104x} \]
 \[R^2 = 0.4796 \]

- Spring
 \[y = -0.7341x^2 + 20.075x + 323.4 \]
 \[R^2 = 0.2656 \]
Figure 3-133: UT 47* Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-134: UT 47* Trendlines and Equations for SO₄

95
Figure 3-135: UT 47* Trendlines and Equations for Ca

\[y = -0.1186x^2 + 4.4792x + 47.944 \quad R^2 = 0.4369 \]
\[y = 69.514e^{0.0124x} \quad R^2 = 0.5044 \]
\[y = -0.1406x^2 + 3.4185x + 60.642 \quad R^2 = 0.5843 \]

Figure 3-136: UT 47* Measured and Predicted Concentrations for SO$_4$ and Ca
Figure 3-137: UT 47* Trendlines and Equations for Mg

- Winter: Expon. (Winter)
 \[y = 34.965e^{0.0222x} \]
 \[R^2 = 0.7751 \]

- Summer: Expon. (Summer)
 \[y = 44.079e^{-0.011x} \]
 \[R^2 = 0.1502 \]

- Spring: Poly. (Spring)
 \[y = -0.1273x^2 + 3.166x + 28.683 \]
 \[R^2 = 0.2202 \]

Figure 3-138: UT 47* Trendlines and Equations for Na

- Winter: Poly. (Winter)
 \[y = 0.2548x^2 - 2.0304x + 46.649 \]
 \[R^2 = 0.6741 \]

- Summer: Log. (Summer)
 \[y = -16.26\ln(x) + 89.151 \]
 \[R^2 = 0.8596 \]

- Spring: Poly. (Spring)
 \[y = 0.0301x^3 - 1.5306x^2 + 23.607x - 16.66 \]
 \[R^2 = 0.1265 \]
Figure 3-139: UT 47* Measured and Predicted Concentrations for Mg and Na

<table>
<thead>
<tr>
<th>Concentration (mg/l)</th>
<th>LKSIM Mg conc.</th>
<th>Sample Mg conc.</th>
<th>New Equations (Mg)</th>
<th>Annual Mean (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-140: UT 47* Trendlines and Equations for K

- Winter
 - Poly. (Winter)
 - $y = 0.0224x^2 - 0.224x + 6.7234$
 - $R^2 = 0.7154$

- Summer
 - Log. (Summer)
 - $y = -6.17\ln(x) + 22.527$
 - $R^2 = 0.8781$

- Spring
 - Poly. (Spring)
 - $y = -0.0232x^2 + 0.6497x + 5.703$
 - $R^2 = 0.1051$
Figure 3-141: UT 47* Measured and Predicted Concentrations for Cl and K

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>848</td>
<td>380</td>
<td>639</td>
<td>670</td>
<td>615</td>
<td>618</td>
<td>131</td>
<td>-</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>538</td>
<td>311</td>
<td>436</td>
<td>461</td>
<td>387</td>
<td>428</td>
<td>54.6</td>
<td>0.44</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>170</td>
<td>45.8</td>
<td>96.2</td>
<td>104</td>
<td>71.8</td>
<td>96.7</td>
<td>34.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Ca</td>
<td>91.4</td>
<td>41.1</td>
<td>80.5</td>
<td>87.4</td>
<td>79.6</td>
<td>73.9</td>
<td>9.32</td>
<td>0.77</td>
</tr>
<tr>
<td>Mg</td>
<td>60.5</td>
<td>22.1</td>
<td>45.1</td>
<td>50.2</td>
<td>39.6</td>
<td>42.1</td>
<td>10.2</td>
<td>0.43</td>
</tr>
<tr>
<td>Na</td>
<td>149</td>
<td>36.9</td>
<td>79.6</td>
<td>83.5</td>
<td>52.2</td>
<td>84.4</td>
<td>35.2</td>
<td>0.43</td>
</tr>
<tr>
<td>Cl</td>
<td>139</td>
<td>15.5</td>
<td>72.4</td>
<td>81.1</td>
<td>50.5</td>
<td>71.1</td>
<td>32.9</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>14.6</td>
<td>4.42</td>
<td>9.14</td>
<td>9.23</td>
<td>8.51</td>
<td>9.25</td>
<td>2.87</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Figure 3-142: UT 47A Measured and Predicted Concentrations for TDS and HCO₃

LKSIM TDS conc. Sample TDS conc. Seasonal Means (TDS) Annual Mean (TDS)
LKSIM HCO₃ conc. Sample HCO₃ conc. Seasonal Means (HCO₃) Annual Mean (HCO₃)

Figure 3-143: UT 47A Trendlines and Equations for SO₄
Figure 3-144: UT 47A Trendlines and Equations for Ca

- **Winter**
 - Log. (Winter)
 - \(y = -53.62 \ln(x) + 177.64 \)
 - \(R^2 = 0.1428 \)

- **Summer**
 - Linear (Summer)
 - \(y = 7.3955x + 34.833 \)
 - \(R^2 = 1 \)

- **Spring**
 - Poly. (Spring)
 - \(y = -7.7805x^2 + 111.65x - 318.45 \)
 - \(R^2 = 0.3624 \)

Figure 3-145: UT 47A Measured and Predicted Concentrations for SO\(_4\) and Ca
Figure 3-146: UT 47A Trendlines and Equations for Mg

\[y = 38.917x^2 - 533.21x + 1859.3 \]
\[R^2 = 0.1463 \]

\[y = 4.7686x^2 - 63.663x + 248.7 \]
\[R^2 = 1 \]

\[y = -1.1679x^2 + 19.939x - 45.51 \]
\[R^2 = 0.6824 \]

Figure 3-147: UT 47A Measured and Predicted Concentrations for Mg and Na
Figure 3-148: UT 47A Trendlines and Equations for Cl

- Winter: Expon. (Winter) \[y = 1273.4e^{0.264x} \] \[R^2 = 0.12 \]
- Summer: Poly. (Summer) \[y = -169.71x^2 + 2356.8x - 7969.8 \] \[R^2 = 1 \]
- Spring: Poly. (Spring) \[y = -51.975x^2 + 711.39x - 2200 \] \[R^2 = 0.7057 \]

Figure 3-149: UT 47A Measured and Predicted Concentration for Cl and K
Table 3-16: UT 47A Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th></th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>964</td>
<td>814</td>
<td>890</td>
<td>883</td>
<td>885</td>
<td>898</td>
<td>48.1</td>
<td>-</td>
</tr>
<tr>
<td>HCO₃</td>
<td>484</td>
<td>320</td>
<td>396</td>
<td>403</td>
<td>368</td>
<td>401</td>
<td>44.1</td>
<td>-</td>
</tr>
<tr>
<td>SO₄</td>
<td>164</td>
<td>91.2</td>
<td>125</td>
<td>112</td>
<td>137</td>
<td>132</td>
<td>24.5</td>
<td>0.55</td>
</tr>
<tr>
<td>Ca</td>
<td>88.6</td>
<td>64.9</td>
<td>77.8</td>
<td>74.3</td>
<td>86.7</td>
<td>77.5</td>
<td>7.09</td>
<td>0.57</td>
</tr>
<tr>
<td>Mg</td>
<td>42.4</td>
<td>30.0</td>
<td>36.2</td>
<td>35.0</td>
<td>36.9</td>
<td>36.9</td>
<td>3.28</td>
<td>0.45</td>
</tr>
<tr>
<td>Na</td>
<td>209</td>
<td>150</td>
<td>179</td>
<td>177</td>
<td>169</td>
<td>185</td>
<td>16.3</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>254</td>
<td>124</td>
<td>204</td>
<td>211</td>
<td>206</td>
<td>196</td>
<td>36.7</td>
<td>0.51</td>
</tr>
<tr>
<td>K</td>
<td>17.8</td>
<td>13.4</td>
<td>15.8</td>
<td>15.6</td>
<td>15.5</td>
<td>16.0</td>
<td>1.14</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 3-150: UT 48 Trendlines and Equations for TDS

- **Winter**: \(y = 0.0372x^2 - 11.21x + 1230.7 \), \(R^2 = 0.3474 \)
- **Summer**: \(y = 0.0219x^2 - 5.1242x + 566.98 \), \(R^2 = 0.7218 \)
- **Spring**: \(y = 396.61e^{-3.64x} \), \(R^2 = 0.2743 \)
Figure 3-151: UT 48 Trendlines and Equations for HCO$_3$^-

\[y = 0.0246x^2 - 7.4076x + 809.53 \]
\[R^2 = 0.3768 \]

\[y = 0.0109x^2 - 2.487x + 352.83 \]
\[R^2 = 0.7012 \]

\[y = 5 \times 10^{-7}x^3 - 0.0008x^2 + 0.3004x + 253 \]
\[R^2 = 0.1741 \]

Figure 3-152: UT 48 Measured and Predicted Concentrations for TDS and HCO$_3$^-

105
Figure 3-153: UT 48 Trendlines and Equations for SO₄

- Winter: \(y = 0.0032x^2 - 0.9015x + 146.67 \)
 \(R^2 = 0.0242 \)

- Summer: \(y = 0.0042x^2 - 0.9367x + 96.975 \)
 \(R^2 = 0.4981 \)

- Spring: \(y = 67.851e^{-7.04x} \)
 \(R^2 = 0.5402 \)

Figure 3-154: UT 48 Measured and Predicted Concentrations for SO₄ and Ca
Figure 3-155: UT 48 Trendlines and Equations for Na

\[y = 0.0041x^2 - 1.1916x + 131.92 \quad R^2 = 0.1124 \]

\[y = -11.58 \ln(x) + 87.98 \quad R^2 = 0.6054 \]

\[y = 43.541e^{-6.4144x} \quad R^2 = 0.4806 \]

Figure 3-156: UT 48 Measured and Predicted Concentrations for Mg and Na
Figure 3-157: UT 48 Measured and Predicted Concentrations for Cl and K

Table 3-17: UT 48 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>592</td>
<td>250</td>
<td>385</td>
<td>402</td>
<td>406</td>
<td>368</td>
<td>75.6</td>
<td>0.52</td>
</tr>
<tr>
<td>HCO₃</td>
<td>386</td>
<td>200</td>
<td>272</td>
<td>263</td>
<td>276</td>
<td>275</td>
<td>36.4</td>
<td>0.42</td>
</tr>
<tr>
<td>SO₄</td>
<td>115</td>
<td>28.0</td>
<td>66.9</td>
<td>85.0</td>
<td>69.2</td>
<td>55.9</td>
<td>22.4</td>
<td>0.61</td>
</tr>
<tr>
<td>Ca</td>
<td>79.9</td>
<td>48.4</td>
<td>65.0</td>
<td>68.6</td>
<td>60.4</td>
<td>64.7</td>
<td>6.13</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>34.8</td>
<td>17.1</td>
<td>24.7</td>
<td>24.5</td>
<td>25.7</td>
<td>24.5</td>
<td>3.78</td>
<td>-</td>
</tr>
<tr>
<td>Na</td>
<td>77.6</td>
<td>20.2</td>
<td>41.7</td>
<td>46.7</td>
<td>46.8</td>
<td>37.0</td>
<td>12.9</td>
<td>0.57</td>
</tr>
<tr>
<td>Cl</td>
<td>96.4</td>
<td>14.3</td>
<td>40.7</td>
<td>47.2</td>
<td>35.3</td>
<td>39.0</td>
<td>19.2</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>5.44</td>
<td>1.87</td>
<td>3.18</td>
<td>3.44</td>
<td>3.51</td>
<td>2.91</td>
<td>0.761</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3-158: UT 51* Trendlines and Equations for TDS

y = 214.44ln(x) - 180.28
R² = 0.5048

y = 955.87e⁻⁰·⁰¹⁴x
R² = 0.4253

y = -194.6ln(x) + 1530.9
R² = 0.3757

Figure 3-159: UT 51* Trendlines and Equations for HCO₃

y = 274.64x⁰·¹²⁴⁵
R² = 0.2673

y = 577.33e⁻⁰·⁰¹⁴x
R² = 0.4565

y = -128.2ln(x) + 943.13
R² = 0.7199
Figure 3-160: UT 51* Measured and Predicted Concentrations for TDS and HCO\textsubscript{3}

Figure 3-161: UT 51* Trendlines and Equations for SO\textsubscript{4}
Figure 3-162: UT 51* Trendlines and Equations for Ca

- Winter: Poly. (Winter)
 \[y = -0.0028x^2 + 0.3287x + 69.389 \]
 \[R^2 = 0.2864 \]
- Summer: Power (Summer)
 \[y = 54.839x^{0.0941} \]
 \[R^2 = 0.2228 \]
- Spring: Log. (Spring)
 \[y = -14.78\ln(x) + 131.76 \]
 \[R^2 = 0.7034 \]

Figure 3-163: UT 51* Measured and Predicted Concentrations for SO\textsubscript{4} and Ca
Figure 3-164: UT 51* Trendlines and Equations for Mg

- **Winter**
 \[y = 14.104 \ln(x) - 1.8202 \]
 \[R^2 = 0.3583 \]
- **Power (Summer)**
 \[y = 154.95x^{0.337} \]
 \[R^2 = 0.7354 \]
- **Log. (Spring)**
 \[y = -17.65 \ln(x) + 129.2 \]
 \[R^2 = 0.4334 \]

Figure 3-165: UT 51* Trendlines and Equations for Na

- **Winter**
 \[y = 50.88 \ln(x) - 112.27 \]
 \[R^2 = 0.5538 \]
- **Expon. (Summer)**
 \[y = 132.11e^{0.048x} \]
 \[R^2 = 0.3387 \]
- **Log. (Spring)**
 \[y = -38.07 \ln(x) + 261.35 \]
 \[R^2 = 0.3473 \]
Figure 3-166: UT 51* Measured and Predicted Concentrations for Mg and Na

Figure 3-167: UT 51* Trendlines and Equations for Cl
Figure 3-168: UT 51* Measured and Predicted Concentrations for Cl and K

Table 3-18: UT 51* Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>1201</td>
<td>427</td>
<td>717</td>
<td>615</td>
<td>808</td>
<td>740</td>
<td>189</td>
<td>0.48</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>639</td>
<td>255</td>
<td>440</td>
<td>439</td>
<td>487</td>
<td>422</td>
<td>86.3</td>
<td>0.62</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>308</td>
<td>47.0</td>
<td>147</td>
<td>109</td>
<td>187</td>
<td>154</td>
<td>67.1</td>
<td>0.47</td>
</tr>
<tr>
<td>Ca</td>
<td>92.2</td>
<td>53.3</td>
<td>72.7</td>
<td>76.6</td>
<td>69.4</td>
<td>71.7</td>
<td>9.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Mg</td>
<td>98.8</td>
<td>32.3</td>
<td>57.4</td>
<td>50.5</td>
<td>67.7</td>
<td>57.5</td>
<td>16.5</td>
<td>0.55</td>
</tr>
<tr>
<td>Na</td>
<td>213</td>
<td>39.3</td>
<td>97.9</td>
<td>76.4</td>
<td>107</td>
<td>107</td>
<td>39.0</td>
<td>0.46</td>
</tr>
<tr>
<td>Cl</td>
<td>187</td>
<td>29.9</td>
<td>97.6</td>
<td>80.2</td>
<td>82.8</td>
<td>114</td>
<td>39.4</td>
<td>0.41</td>
</tr>
<tr>
<td>K</td>
<td>16.3</td>
<td>4.73</td>
<td>9.81</td>
<td>10.4</td>
<td>9.30</td>
<td>9.65</td>
<td>2.82</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3-169: UT 51A Measured and Predicted Concentrations for TDS and HCO₃

<table>
<thead>
<tr>
<th>Sample TDS conc.</th>
<th>Seasonal Means (TDS)</th>
<th>Annual Mean (TDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LKSIM TDS conc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal Means (HCO₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Mean (HCO₃)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-170: UT 51A Trendlines and Equations for Ca

- **Winter**
 - Poly. (Winter)
 - Equation: $y = -90.481x^2 + 380.99x - 323.02$
 - $R^2 = 0.146$

- **Summer**
 - Log. (Summer)
 - Equation: $y = -165.6\ln(x) + 224.58$
 - $R^2 = 0.7774$

- **Spring**
 - Poly. (Spring)
 - Equation: $y = 4.6872x^2 - 17.552x + 92.465$
 - $R^2 = 0.6479$
Figure 3-171: UT 51A Measured and Predicted Concentrations for SO\textsubscript{4} and Ca

\begin{align*}
\text{LKSIM SO}_{4}\text{ conc.} & \quad \text{Sample SO}_{4}\text{ conc.} & \quad \text{Seasonal Means (SO}_{4}) & \quad \text{Annual Mean (SO}_{4}) \\
\text{LKSIM Ca conc.} & \quad \text{Sample Ca conc.} & \quad \text{New Equations (Ca)} & \quad \text{Annual Mean (Ca)}
\end{align*}

Figure 3-172: UT 51A Trendlines and Equations for Mg

\begin{align*}
\text{Flow (cfs)} & \quad \text{Sample Mg (mg/l)} \\
1.7 & \quad 25 \\
1.9 & \quad 27 \\
2.1 & \quad 29 \\
2.3 & \quad 31 \\
2.5 & \quad 33 \\
2.7 & \quad 34 \\
2.9 & \quad 32 \\
3.1 & \quad 30 \\
3.3 & \quad 28 \\
3.5 & \quad 26 \\
\end{align*}

\begin{align*}
\text{Winter} & \quad \text{Summer} & \quad \text{Spring} \\
\text{Power (Winter)} & \quad \text{Expon. (Summer)} & \quad \text{Poly. (Spring)} \\
y = 23.304x^{0.2544} & \quad y = 78.893e^{-0.408x} & \quad y = 3.1125x^2 - 13.02x + 41.313 \\
R^2 = 0.0684 & \quad R^2 = 0.1887 & \quad R^2 = 0.6607
\end{align*}
Figure 3-173: UT 51A Trendlines and Equations for Na

\[y = -119.5x^2 + 410.11x - 154.56 \quad R^2 = 0.3646 \]

\[y = -47.368x + 278.11 \quad R^2 = 0.3553 \]

\[y = 36.421x^2 - 210.47x + 444.15 \quad R^2 = 0.1064 \]

Figure 3-174: UT 51A Measured and Predicted Concentrations for Mg and Na
Figure 3-175: UT 51A Trendlines and Equations for Cl

- Winter: Linear (Winter)
 \[y = -167.61x + 579.27 \]
 \[R^2 = 0.4142 \]

- Summer: Linear (Summer)
 \[y = -187.5x + 681.25 \]
 \[R^2 = 1 \]

- Spring: Poly. (Spring)
 \[y = 158.89x - 903.37x + 1465.4 \]
 \[R^2 = 0.5589 \]

Figure 3-176: UT 51A Trendlines and Equations for K

- Winter: Poly. (Winter)
 \[y = -4.8x^2 + 19.203x - 4.1514 \]
 \[R^2 = 0.014 \]

- Summer: Log. (Summer)
 \[y = -16.59\ln(x) + 28.925 \]
 \[R^2 = 0.3193 \]

- Spring: Poly. (Spring)
 \[y = 5.4547x^2 - 29.841x + 53.894 \]
 \[R^2 = 0.7345 \]
Figure 3-177: UT 51A Measured and Predicted Concentrations for Cl and K

Table 3-19: UT 51A Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>902</td>
<td>650</td>
<td>829</td>
<td>854</td>
<td>845</td>
<td>800</td>
<td>70.1</td>
<td>-</td>
</tr>
<tr>
<td>HCO₃</td>
<td>308</td>
<td>202</td>
<td>247</td>
<td>243</td>
<td>262</td>
<td>247</td>
<td>31.3</td>
<td>-</td>
</tr>
<tr>
<td>SO₄</td>
<td>77.7</td>
<td>53.9</td>
<td>64.8</td>
<td>65.9</td>
<td>67.0</td>
<td>63.2</td>
<td>6.82</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>87.8</td>
<td>72.4</td>
<td>78.0</td>
<td>76.9</td>
<td>77.6</td>
<td>79.3</td>
<td>4.19</td>
<td>0.54</td>
</tr>
<tr>
<td>Mg</td>
<td>33.4</td>
<td>25.9</td>
<td>28.8</td>
<td>28.3</td>
<td>29.3</td>
<td>29.0</td>
<td>1.99</td>
<td>0.50</td>
</tr>
<tr>
<td>Na</td>
<td>192</td>
<td>127</td>
<td>163</td>
<td>176</td>
<td>163</td>
<td>149</td>
<td>18.4</td>
<td>0.58</td>
</tr>
<tr>
<td>Cl</td>
<td>247</td>
<td>163</td>
<td>222</td>
<td>223</td>
<td>228</td>
<td>220</td>
<td>26.3</td>
<td>0.49</td>
</tr>
<tr>
<td>K</td>
<td>16.0</td>
<td>12.9</td>
<td>14.4</td>
<td>14.9</td>
<td>14.2</td>
<td>14.1</td>
<td>0.931</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Figure 3-178: UT 51C Measured and Predicted Concentrations for TDS and HCO$_3$

Figure 3-179: UT 51C Measured and Predicted Concentrations for SO$_4$ and Ca
Figure 3-180: UT 51C Measured and Predicted Concentrations for Mg and Na

Figure 3-181: UT 51C Measured and Predicted Concentrations for Cl and K
Table 3-20: UT 51C Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>788</td>
<td>650</td>
<td>705</td>
<td>706</td>
<td>758</td>
<td>681</td>
<td>39.3</td>
<td>-</td>
</tr>
<tr>
<td>HCO₃</td>
<td>512</td>
<td>402</td>
<td>474</td>
<td>480</td>
<td>477</td>
<td>469</td>
<td>32.6</td>
<td>-</td>
</tr>
<tr>
<td>SO₄</td>
<td>63.9</td>
<td>44.0</td>
<td>53.0</td>
<td>54.7</td>
<td>54.4</td>
<td>50.9</td>
<td>5.86</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>82.8</td>
<td>66.6</td>
<td>73.9</td>
<td>72.6</td>
<td>77.6</td>
<td>73.5</td>
<td>4.97</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>52.0</td>
<td>40.3</td>
<td>47.3</td>
<td>45.7</td>
<td>50.5</td>
<td>47.4</td>
<td>3.32</td>
<td>-</td>
</tr>
<tr>
<td>Na</td>
<td>136</td>
<td>102</td>
<td>116</td>
<td>114</td>
<td>130</td>
<td>111</td>
<td>10.1</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>238</td>
<td>144</td>
<td>177</td>
<td>177</td>
<td>180</td>
<td>176</td>
<td>26.4</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>16.2</td>
<td>12.3</td>
<td>13.9</td>
<td>13.9</td>
<td>15.1</td>
<td>13.5</td>
<td>0.871</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 3-182: UT 53 Measured and Predicted Concentrations for TDS and HCO₃
Figure 3-183: UT 53 Trendlines and Equations for SO_4

$y = -16.596x^2 + 2899.8x - 126440$
$R^2 = 0.3011$

$y = -37.94x^2 + 6698.2x - 295424$
$R^2 = 0.9483$

$y = -8.5535x^2 + 1522.8x - 67583$
$R^2 = 0.4181$

Figure 3-184: UT 53 Measured and Predicted Concentrations for SO_4 and Ca
Figure 3-185: UT 53 Trendlines and Equations for Mg

- Winter
 \[y = -4.6093x^2 + 810.2x - 35546 \]
 \[R^2 = 0.1511 \]

- Summer
 \[y = -10.628x^2 + 1878.4x - 82935 \]
 \[R^2 = 0.8604 \]

- Spring
 \[y = -0.6944x^2 + 119.23x - 5058.1 \]
 \[R^2 = 0.3533 \]

Figure 3-186: UT 53 Trendlines and Equations for Na

- Winter
 \[y = -16.87x^2 + 2964.7x - 130081 \]
 \[R^2 = 0.244 \]

- Summer
 \[y = -37.776x^2 + 6674.8x - 294663 \]
 \[R^2 = 0.8418 \]

- Spring
 \[y = -9.6481x^2 + 1715.1x - 76061 \]
 \[R^2 = 0.4054 \]
Figure 3-187: UT 53 Measured and Predicted Concentrations for Mg and Na

- LKSIM Mg conc.
- Sample Mg conc.
- New Equations (Mg)
- Annual Mean (Mg)
- LKSIM Na conc.
- Sample Na conc.
- New Equations (Na)
- Annual Mean (Na)

Figure 3-188: UT 53 Trendlines and Equations for Cl

- Winter
 - Poly. (Winter)
 - $y = -18.719x^2 + 3291.8x - 144470$
 - $R^2 = 0.1708$
- Summer
 - Poly. (Summer)
 - $y = -23.619x^2 + 4154.3x - 182420$
 - $R^2 = 0.9458$
- Spring
 - Poly. (Spring)
 - $y = -13.246x^2 + 2360.4x - 104930$
 - $R^2 = 0.6083$
Figure 3-189: UT 53 Measured and Predicted Concentrations for Cl and K

Table 3-21: UT 53 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>1502</td>
<td>638</td>
<td>886</td>
<td>919</td>
<td>856</td>
<td>836</td>
<td>153</td>
<td>-</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>304</td>
<td>196</td>
<td>240</td>
<td>253</td>
<td>230</td>
<td>236</td>
<td>24.9</td>
<td>-</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>240</td>
<td>121</td>
<td>196</td>
<td>208</td>
<td>193</td>
<td>190</td>
<td>25.0</td>
<td>0.51</td>
</tr>
<tr>
<td>Ca</td>
<td>71.4</td>
<td>40.2</td>
<td>56.0</td>
<td>60.8</td>
<td>50.9</td>
<td>55.2</td>
<td>7.21</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>62.9</td>
<td>36.0</td>
<td>52.4</td>
<td>54.4</td>
<td>53.6</td>
<td>50.7</td>
<td>6.66</td>
<td>0.45</td>
</tr>
<tr>
<td>Na</td>
<td>192</td>
<td>106</td>
<td>159</td>
<td>165</td>
<td>167</td>
<td>153</td>
<td>21.8</td>
<td>0.54</td>
</tr>
<tr>
<td>Cl</td>
<td>270</td>
<td>141</td>
<td>224</td>
<td>236</td>
<td>244</td>
<td>215</td>
<td>27.2</td>
<td>0.55</td>
</tr>
<tr>
<td>K</td>
<td>20.8</td>
<td>8.59</td>
<td>15.2</td>
<td>16.2</td>
<td>16.4</td>
<td>14.1</td>
<td>2.84</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 3-190: UT 71 Measured and Predicted Concentrations for TDS and HCO₃

Figure 3-191: UT 71 Trendlines and Equations for SO₄
Figure 3-192: UT 71 Measured and Predicted Concentrations for SO$_4$ and Ca

Figure 3-193: UT 71 Trendlines and Equations for Mg
Figure 3-194: UT 71 Measured and Predicted Concentrations for Mg and Na

Figure 3-195: UT 71 Trendlines and Equations for Cl
Figure 3-196: UT 71 Measured and Predicted Concentrations for Cl and K

Table 3-22: UT 71 Statistical Values for the Parameters of Interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum (mg/l)</th>
<th>Minimum (mg/l)</th>
<th>Overall Mean (mg/l)</th>
<th>Winter Mean (mg/l)</th>
<th>Summer Mean (mg/l)</th>
<th>Spring Mean (mg/l)</th>
<th>Std. Deviation (mg/l)</th>
<th>Correlation, r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>802</td>
<td>664</td>
<td>726</td>
<td>732</td>
<td>742</td>
<td>717</td>
<td>33.5</td>
<td>-</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>320</td>
<td>216</td>
<td>279</td>
<td>279</td>
<td>289</td>
<td>275</td>
<td>24.3</td>
<td>-</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>132</td>
<td>86.1</td>
<td>105</td>
<td>111</td>
<td>100</td>
<td>104</td>
<td>12.8</td>
<td>0.51</td>
</tr>
<tr>
<td>Ca</td>
<td>77.9</td>
<td>63.3</td>
<td>71.5</td>
<td>71.4</td>
<td>74.0</td>
<td>70.8</td>
<td>3.67</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>37.3</td>
<td>27.2</td>
<td>31.4</td>
<td>30.8</td>
<td>31.9</td>
<td>31.6</td>
<td>2.26</td>
<td>0.44</td>
</tr>
<tr>
<td>Na</td>
<td>160</td>
<td>104</td>
<td>137</td>
<td>144</td>
<td>137</td>
<td>133</td>
<td>12.8</td>
<td>-</td>
</tr>
<tr>
<td>Cl</td>
<td>228</td>
<td>180</td>
<td>204</td>
<td>211</td>
<td>197</td>
<td>201</td>
<td>11.1</td>
<td>0.48</td>
</tr>
<tr>
<td>K</td>
<td>12.2</td>
<td>8.09</td>
<td>10.7</td>
<td>11.2</td>
<td>10.6</td>
<td>10.5</td>
<td>0.829</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3 Discussion of Results

Table 3.3-1 displays the r^2 values and averages for each site along with the maximum, minimum, and average values for each concentration. For every station, the new data proved its value to the LKSIM program. Great improvements have been made with this data by either generating better trendline equations or by providing more accurate mean values. Among the equations that were generated, the site with the best r^2 values, with an average of 0.80, was Hobble Creek (UT 44). This is a comparatively high correlation, and these mathematical equations should be post audited in the future to verify their accuracy.

Among the 21 sites that were analyzed in this study, new equations were found for approximately 67 percent of the TDS and ion concentrations on the whole. However, the data from the seven WWTPs generated fewer equations, overall, than the 13 Utah Lake tributaries and the Jordan River. Only 55 percent of the TDS and ion concentration values for the WWTPs could be simulated with an acceptable equation. Conversely, 75 percent of the TDS and ion concentrations for the Utah Lake tributaries and the Jordan River could be simulated with an acceptable equation.

<table>
<thead>
<tr>
<th>Site Code</th>
<th>TDS</th>
<th>HCO$_3$</th>
<th>Ca</th>
<th>Cl</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>SO$_4$</th>
<th>Average r^2 Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT 9</td>
<td>0.44</td>
<td>0.73</td>
<td>0.55</td>
<td>0.42</td>
<td>-</td>
<td>0.46</td>
<td>-</td>
<td>-</td>
<td>0.52</td>
</tr>
<tr>
<td>UT 13</td>
<td>0.79</td>
<td>0.68</td>
<td>0.72</td>
<td>0.76</td>
<td>0.85</td>
<td>0.66</td>
<td>0.77</td>
<td>0.60</td>
<td>0.73</td>
</tr>
<tr>
<td>UT 18</td>
<td>0.68</td>
<td>0.84</td>
<td>0.79</td>
<td>0.65</td>
<td>0.79</td>
<td>0.63</td>
<td>0.55</td>
<td>0.62</td>
<td>0.69</td>
</tr>
<tr>
<td>UT 20</td>
<td>0.85</td>
<td>0.67</td>
<td>0.65</td>
<td>0.71</td>
<td>0.74</td>
<td>0.74</td>
<td>0.83</td>
<td>0.77</td>
<td>0.74</td>
</tr>
<tr>
<td>UT 27</td>
<td>0.41</td>
<td>0.59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.50</td>
</tr>
<tr>
<td>UT 29</td>
<td>0.58</td>
<td>0.72</td>
<td>0.54</td>
<td>-</td>
<td>0.64</td>
<td>-</td>
<td>0.40</td>
<td>-</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Table 3-23: Continued

<table>
<thead>
<tr>
<th></th>
<th>UT 38</th>
<th>UT 42</th>
<th>UT 43</th>
<th>UT 44</th>
<th>UT 47</th>
<th>UT 48</th>
<th>UT 51</th>
<th>UT 53</th>
<th>UT 71</th>
<th>UT 27A</th>
<th>UT 38A</th>
<th>UT 43A</th>
<th>UT 47A</th>
<th>UT 51A</th>
<th>UT 51C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.58</td>
<td>0.47</td>
<td>0.46</td>
<td>0.84</td>
<td>0.44</td>
<td>0.52</td>
<td>0.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.56</td>
<td>0.47</td>
<td>0.41</td>
<td>0.83</td>
<td>0.44</td>
<td>0.42</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.65</td>
<td>0.49</td>
<td>0.45</td>
<td>0.54</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>0.47</td>
<td>-</td>
<td>0.85</td>
<td>0.77</td>
<td>-</td>
<td>0.60</td>
<td>0.55</td>
<td>-</td>
<td>0.55</td>
<td>0.53</td>
<td>0.78</td>
<td>0.57</td>
<td>0.51</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.47</td>
<td>0.40</td>
<td>-</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>0.44</td>
<td>-</td>
<td>0.53</td>
<td>0.43</td>
<td>0.51</td>
<td>0.45</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.47</td>
<td>-</td>
<td>0.88</td>
<td>-</td>
<td>-</td>
<td>0.55</td>
<td>-</td>
<td>0.44</td>
<td>-</td>
<td>0.53</td>
<td>0.54</td>
<td>0.51</td>
<td>0.45</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.51</td>
<td>-</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>0.44</td>
<td>-</td>
<td>0.53</td>
<td>0.58</td>
<td>0.51</td>
<td>0.45</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>0.88</td>
<td>-</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>0.57</td>
<td>-</td>
<td>0.53</td>
<td>0.43</td>
<td>0.45</td>
<td>0.49</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>-</td>
<td>-</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>0.51</td>
<td>-</td>
<td>0.53</td>
<td>0.43</td>
<td>0.45</td>
<td>0.50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>-</td>
<td>-</td>
<td>0.80</td>
<td>-</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>0.51</td>
<td>-</td>
<td>0.53</td>
<td>0.43</td>
<td>0.45</td>
<td>0.51</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td>0.60</td>
<td>0.59</td>
<td>0.65</td>
<td>0.56</td>
<td>0.59</td>
<td>0.58</td>
<td>0.59</td>
<td>0.56</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.85</td>
<td>0.84</td>
<td>0.85</td>
<td>0.82</td>
<td>0.88</td>
<td>0.85</td>
<td>0.80</td>
<td>0.76</td>
<td>0.88</td>
<td>0.77</td>
<td>0.76</td>
<td>0.76</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.41</td>
<td>0.41</td>
<td>0.43</td>
<td>0.41</td>
<td>0.40</td>
<td>0.43</td>
<td>0.40</td>
<td>0.40</td>
<td>0.43</td>
<td>0.40</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
</tbody>
</table>

The poor percentage of acceptable equations for the various WWTPs may have occurred because there was a comparatively low variation among the flow rates. For example, the Salem WWTP (UT 51C) had a relatively constant flow of 0.8 cfs. Thus, no acceptable, trendline equations were produced in correlating the flow with the TDS and ion concentrations. Nevertheless, in this case, the seasonal mean values that were used instead seem to be sufficient in predicting TDS and ion concentrations.

Of the various trendline equations that were used to describe the correlation of TDS and ion concentrations with flow rates, about 64 percent were polynomial equations. Although the data points that had polynomial trends were best described by this type of equation, flow rates beyond the limits of these sampled data sets may show the behavior of the concentrations to be of a different trend.
As mentioned earlier, this study focused on 13 of the main tributaries of Utah Lake, seven WWTPs, and the Jordan River Outlet. Although great improvements have been made with the data that was collected, it would be beneficial to this study if additional water quality samples were collected from the sites of this study in the future in order to gauge the accuracy of the trendline equations that were generated. Further, it may be beneficial to collect samples from the other tributaries to find their effect on the water quality of the lake. Also, if a greater amount of sample points were created, more reliable trendlines could be produced.
4 CONCLUSION

The water quality of Utah Lake is of great importance to agriculture, recreation, and wildlife. The purpose of LKSIM is to accurately simulate the changes in water quality of Utah Lake. After comparing the predicted values of LKSIM with the recently collected data over a 26 month period, it has been established that an update of LKSIM is necessary. With the new equations and mean values that were presented in this study, LKSIM should be able to more accurately simulate the water quality of Utah Lake according to the flow rates of the tributaries and the time of the year. Additionally, future water samples from the sites of this study can gauge the accuracy of the equations and mean values found in this report.
REFERENCES

