Comparative assessment of carbon footprint of four dairy farms in Australia using DairyGHG Model

Veerasamy Sejian Dr
ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India, drsejian@gmail.com

V P. Rashamol Ms
ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India, rasharazak94@gmail.com

Angela M. Lees Dr
School of Agriculture and Food Sciences, The University of Queensland, Gatton 4343 QLD, Australia, a.mcilwain@uq.edu.au

Jarrod C. Lees Dr
School of Agriculture and Food Sciences, The University of Queensland, Gatton 4343 QLD, Australia, jlees@mla.com.au

John B. Gaghan Dr
School of Agriculture and Food Sciences, The University of Queensland, Gatton 4343 QLD, Australia, j.gaughan@uq.edu.au

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Sejian, Veerasamy Dr; Rashamol, V P. Ms; Lees, Angela M. Dr; Lees, Jarrod C. Dr; and Gaghan, John B. Dr, "Comparative assessment of carbon footprint of four dairy farms in Australia using DairyGHG Model" (2018). International Congress on Environmental Modelling and Software. 42. https://scholarsarchive.byu.edu/iemssconference/2018/Stream-A/42

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Comparative Assessment of Carbon Footprint of Four Dairy Farms in Australia using DairyGHG Model

V. Sejiana, V.P. Rashamola, A.M. Leesb, J.C. Leesb, J.B. Gaughanb

aICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore-560030, India, E-mail: drsejian@gmail.com; rasharazak94@gmail.com.

bSchool of Agriculture and Food Sciences, The University of Queensland, Gatton 4343 QLD, Australia, E-mail: a.mcilwain@uq.edu.au; jlees@mla.com.au; j.gaughan@uq.edu.au.

Abstract: DairyGHG model is a cost effective and efficient method of estimating greenhouse gas (GHG) emissions from dairy farms and analyzing how management strategies affect these emissions. Therefore, the DairyGHG model was used in this study to predict the GHG emission and assess the carbon footprints of four different dairy farms at Australia. The study was conducted in four different dairy farms distributed in different locality of Queensland, Australia. The details of the farms are: Farm 1 (220 cows; Jersey), Farm 2 (460 cows; Holstein Friesian), Farm 3 (850 cows; Holstein Friesian) and Farm 4 (434 cows; Holstein Friesian). In all the four farms the cows were fed corn silage, grain and the animals had access to grazing. The animal emission contribution to carbon footprints in Farm 1, Farm 2, Farm 3 and Farm 4 were 54.2\%, 60.0\%, 59.6\% and 38.6\% respectively. Likewise, the manure emission contribution to carbon footprints in Farm 1, Farm 2, Farm 3 and Farm 4 were 29.0\%, 29.0\% and 58.3\% respectively. On the basis of per kg of energy corrected milk the amount of GHG produced in Farm 1, Farm 2, Farm 3 and Farm 4 are 0.39 kg CO\textsubscript{2}e, 0.64 kg CO\textsubscript{2}e, 0.54 kg CO\textsubscript{2}e and 1.35 kg CO\textsubscript{2}e respectively. On comparative basis, Farm 4 contributed substantially higher quantity of GHG emission while the least contribution came from Farm 1. Thus, it can be concluded from the study that Jersey breed contributes comparatively less dairy associated GHG emission as compared to Holstein Friesian breed.

Keywords: Carbon footprint; Methane; Nitrous Oxide; GHGs; Dairy farm; DairyGHG model.