An information extraction-based approach to estimate residential water-related energy from single-point smart meter data

Andrea Cominola
Technische Universität Berlin, Politecnico di Milano, andrea.cominola@tu-berlin.de

Matteo Giuliani
Politecnico di Milano, matteo.giuliani@polimi.it

Andrea Castelletti
Politecnico di Milano, andrea.castelletti@polimi.it

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Cominola, Andrea; Giuliani, Matteo; and Castelletti, Andrea, "An information extraction-based approach to estimate residential water-related energy from single-point smart meter data" (2018). *International Congress on Environmental Modelling and Software*. 44.
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-B/44

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
An information extraction-based approach to estimate residential water-related energy from single-point smart meter data

A. Cominolaa,b, M. Giulianib, A. Castellettib,c

aChair of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
bDepartment of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
cInstitute of Environmental Engineering, ETH, Zurich, Switzerland

Email: andrea.cominola@tu-berlin.de, matteo.giuliani@polimi.it, andrea.castelletti@polimi.it

Abstract: Planning and management strategies for water and energy systems are key for meeting future demands under population growth, urbanization, changing economic and climate conditions, and emerging technologies. Given the water-energy nexus, interest has raised towards the design of coordinated water-energy interventions to manage urban water and energy end use demands - including that of the residential sector – and ultimately foster both water and energy conservation and use efficiency. On this respect, while sub-daily resolution data gathered via advanced metering infrastructures and intelligent sensors installed at the household/building scale enables recording water uses with a finer granularity than in the past, new models that adequately facilitate our understanding of water and energy demands and their inter-dependencies are needed. In this work, we propose an information extraction-based approach to estimate residential water-related electricity for heating purposes. Our approach relies only on the knowledge of fine resolution (e.g., 1 min sampling frequency) water and electricity data collected by two single-point, non-intrusive, water and electricity meters. We first process the data to detect water use events, compute time and consumption-based features for each event. We then use Iterative Input Selection, a variable selection algorithm for data-driven models, to determine the optimal subset of features needed to build a regression model that estimates the end-use electricity used for heating water, for each use event. We use extremely randomized trees as nonparametric regression models. Results from an application of the onto data collected from a single household in Canada show that our approach can estimate the water-related electricity used from the instant hot water unit at each consumption event with an accuracy of over 90%. In addition, we demonstrate that a joint analysis of water and electricity data collected via smart meters can help unpacking the electricity use related to specific water end-uses, such as clothes washers.

Keywords: water-energy nexus; smart meter; water-related energy; demand management; input variable selection.