Jun 28th, 9:00 AM - 10:20 AM

A well engineered implementation of Kriging tools in the Object Modelling Sisystem v.3.

Marialaura Bancheri
Interuniversity Consortium for Hydrology, CINID, maryban@hotmail.it

Francesco Serafin
University of Trento, francesco.serafin.3@gmail.com

Michele Bottazzi
University of Trento, michele.bottazzi@gmail.com

Giuseppe Formetta
Centre for ecology and hydrology CEH, giuseppe.formetta@gmail.com

Wuletawu Abera
International center for Tropical Agriculture (CIAT), wuletawu979@gmail.com

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Bancheri, Marialaura; Serafin, Francesco; Bottazzi, Michele; Formetta, Giuseppe; Abera, Wuletawu; and Rigon, Riccardo, "A well engineered implementation of Kriging tools in the Object Modelling Sisystem v.3." (2018). *International Congress on Environmental Modelling and Software*. 6. https://scholarsarchive.byu.edu/iemssconference/2018/Stream-F/6

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
A well engineered implementation of Kriging tools in the Object Modelling System v.3.

Bancheri M. ¹, Serafin F. ², Bottazzi M. ², Formetta G. ³, Abera W. ⁴, and Rigon R. ²

¹ Consorzio Interuniversitario per l’Idrologia, Potenza, Italy (maryban88@gmail.com)
² Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy (francesco.serafin.3@gmail.com, michele.bottazzi@gmail.com, rccrd.rgn@gmail.com)
³ Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, UK (giuseppe.formetta@gmail.com)
⁴ International Center for Tropical Agriculture (CIAT), P.O BOX 5689, Addis Ababa, Ethiopia (wuletawu979@gmail.com)

Abstract: Meteorological forcing data such as rainfall, temperature, solar radiation are the dominant controlling factors of the hydrological cycle. These data are the natural input to hydrological models and their quality and precision affect the accuracy of results. This study presents a package that implements Kriging techniques for the interpolation of any climatological variables, such as temperature and precipitation. One of the purposes of the study is to present a geostatistical software product that is easy to use and plug-in into GEOframe-NewAGE, an open-source, Java-based and component-based semi-distributed hydrological model. Moreover, this work aims to show a practical example of an accurately designed software, in the perspective of reproducible research. Ten theoretical semivariogram models and four Kriging algorithms were developed and parsed into OMS components. The package provides real time optimization for semivariogram and Kriging parameters. The software was tested against temperature and rainfall data from 97 meteorological stations located in the Isarco River basin, Italy. For both variables, results showed good fit between model interpolations and observed data. R package, gstat, was then used for a comparison. Several characteristics make the package a good competitor among the other tools available in literature, since: it can be used as a stand-alone; it can plugged-in the hydrological modelling system GEOframe-NewAge; it can be used with all the OMS compliant components, such as the calibration tools for the optimization of the parameters; it is included a tool for the automatic estimation of errors; results are presented in data formats directly visualized by GIS; it is faster than gstat in every-day use routine. From the programmer perspective the implementation of Java design patterns, i.e. well described solution to a common software problem, makes the package easily maintainable and suitable for future improvements, such as the possibility of integrating other types of Kriging.

Keywords: GEOframe-NewAge; Kriging; Java; open-source; Reproducibility of research.