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Best Practices for Wake Model and Optimization Algorithm
Selection in Wind Farm Layout Optimization

Nicholas F. Baker∗, Andrew P. J. Stanley†, Jared J. Thomas‡, and Andrew Ning§
Brigham Young University, Provo, Utah 84602.

Katherine Dykes¶

National Renewable Energy Laboratory, Golden, Colorado 80401

This paper presents the results of two case studies regarding the wind farm layout optimiza-
tion problem. We asked members of the computational optimization and wind communities to
take part in the studies that we designed. Nine individuals participated. Case study 1 consid-
ered variations in optimization strategies for a given simple Gaussian wakemodel. Participants
were provided with a wake model that outputs annual energy production (AEP) for an input
set of wind turbine locations. Participants used an optimization method of their choosing to
find an optimal wind farm layout. Case study 2 looked at trade-offs in performance resulting
from variation in both physics model and optimization strategy. For case study 2, participants
calculated AEP using a wake model of their choice while also using their chosen optimization
method. Participants then used their wake model to calculate the AEP of all other participants’
optimized layouts. Results for case study 1 show that the best optimal wind farm layouts in
this study were achieved by participants who used gradient-based optimization methods. A
front-runner emerged with the Sparse Nonlinear OPTimizer plus Wake Expansion Continua-
tion (SNOPT+WEC) optimizationmethod, which consistently discovered the highest submitted
AEP. For case study 2, two participants found a similar layout that was judged to be superior by
all five participants. It is unclear if the better solution resulted from an improved optimization
process, or a wake model that was more amenable to optimization.

I. Introduction

Optimizing turbine placement within a wind farm is a complex problem characterized by many local optima. The
large number of inter-dependent variables involved in wind farm layout optimization (WFLO) create a design space

that is difficult to solve reliably. In this study, we designed and conducted a set of case studies to discover superior
practices in solving the WFLO problem.

In WFLO, one of the most important factors is wake interaction between turbines [1]. Downstream rotors in the
wake-affected area from upstream turbines experience reduced power production (due to the decreased wind velocity)
and a shortened lifespan (due to increased turbulence intensity) [2]. Computational modeling can be used to optimize
wind turbine layout and turbine attributes (such as hub height and rotor diameter) in order to reduce the effects of both
the velocity deficit and the increased turbulence in the wake.

Two approaches have been taken to improve computational analysis in the WFLO problem. The first approach aims
at improving the quality of individual models. The second approach is to improve the formulation of the optimization
problem, as well as the algorithms used to perform the optimization [3].

To model the relevant fluid dynamics and wake interactions between turbines, researchers have taken two general
approaches: (1) create computationally inexpensive simplified theoretical wake models, based on fundamental fluids
principles or empirical data from the wind turbine wakes [2, 4, 5], or (2) use computationally expensive approaches,
like the Reynolds-Averaged Navier-Stokes (RANS) equations, Large-Eddy Simulations (LES), or Direct Numerical
Simulation (DNS), which increase the accuracy and granularity of their results [6].
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Complex computational methods such as DNS or LES use the Navier-Stokes equations, which require extensive
computational time that is prohibitive in multi-iterative testing. Simplified engineering wake models (EWMs) respond
to this obstacle by making certain limiting physics assumptions that result in greatly reduced computational costs [1].
Optimization requires many evaluations, so reducing computational cost through simplifying methods like EWMs is
necessary.

The second approach described by Padrón et al. regards optimization algorithms, which alter input variables in
order to optimize output values. One can use such algorithms to optimize for many objectives in WFLO (i.e. turbine
longevity, noise reduction, etc.), with a common objective being annual energy production (AEP). For a given EWM,
the choice of optimization methods may be limited by characteristics of both the EWM and optimization method.

Optimization algorithms can be categorized as (1) gradient-based, or (2) gradient-free. Gradient-based algorithms
require the governing functions to be continuous and differentiable in order to calculate derivatives. Flat models, those
with large regions of zero-valued gradients, such as the Jensen “top-hat” [7] or FLORIS [8], may need a gradient-free
algorithm for best performance. In contrast, Jensen’s cosine model or Thomas’ FLORIS improvement [9], both of which
use differentiable functions, could use gradient-based optimizers [10]. Generally, gradient-based optimizers are fast
and efficient at finding local optima for differentiable functions, but have difficulties when functions are noisy or if
discontinuities are present [10]. Despite generally being slower, gradient-free methods can be used when gradients
can’t be obtained, or when obtaining the gradients is too costly [11]. Furthermore, within these gradient-based or
gradient-free limitations, different optimization strategies have varying capacity to avoid local optima.

Sub-optimal turbine placement results in lost energy and potentially millions of forfeit dollars over the course of a
wind farm’s typical 20-year life-span [1]. Such errors could result from either an inaccurate wake model, or inefficient
optimization algorithms. Mistakes in either of these two areas could be avoided with a clearer understanding of model
and optimization best practices.

To better understand the effects of EWMs and optimization algorithms, we created two case studies. We solicited
participant involvement from different research labs and private companies in industry currently working on both
general optimization methods, as well as methods specific to solving the WFLO problem. The first case study isolated
optimization techniques for a single simplified EWM; the second case study aimed to observe the differences when
combining variations in the EWM and optimization method.

Though papers have been published that survey the state of the wind farm optimization (perhaps one of the most
notable written by Herbert-Acero reviewing the current methodologies in the field [1]), our case studies are the first time
an international collaboration has been conducted to comparatively and empirically analyze optimization methods and
EWM selection on a representative WFLO problem.

Our case studies are created in support of the International Energy Agency’s (IEA’s) Wind Task 37 (IEA37). IEA37
coordinates international research activities centered around the analysis of wind power plants as holistic systems [12].
Our case studies concentrate on optimization at the farm-level, and so contribute to IEA37’s integrated approach [12] to
wind energy.

II. Methodology
To enable production of useful data, our case studies required a model wind farm with characteristics that were

simultaneously restrictive enough to maintain simplicity, yet general enough to maintain relevance to more complex and
realistic problems. The wind farm scenarios we selected to meet this criteria, and other details relevant to this project as
a whole, are described below in Section II.A.

Many factors affect recommendations for superior turbine placement of a proposed wind farm. The two major
factors we chose to study are 1) EWM characteristics and 2) optimization algorithm [1]. We designed two case studies
in an attempt to quantify the effects of each of these choices.

For the first case study, in which the goal was to isolate variability in the optimization method, we pre-coded a
representative wake model as a control variable and permitted participants to use any optimization strategy to alter
turbine locations that would deliver the best annual energy production (AEP) for the farm. This is called case study 1
and is described below in Section II.B.

Isolating EWM variability proved more complicated. An EWM’s compatibility with gradient-based or gradient-free
optimization methods dictates which algorithms can be applied. As such, designing a case study that restricted
participants to a single optimization algorithm would unnecessarily limit the scope of EWMs studied. For this reason,
our second case study permitted not only participant selection of EWM but also the optimization algorithm. It is called
case study 2 and is described below in Section II.C.
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A. Common to Both Case Studies
Though testing for different variables, certain wind farm attributes were common to both case studies. A brief list of

these common variables is described below.

1. Wind Turbine Specifications
We used the IEA 3.35-MW reference turbine in all wind farms. The IEA 3.35-MW specifications are open source,

and the turbine is designed as a baseline for onshore wind turbine specifications [13]. The power curve for the IEA
3.35-MW turbine is defined as shown in Eq. (1) and Fig. 1. The specifications of the turbine necessary for our simplified
version of Bastankhah’s Gaussian wake model (used in case study 1) are shown in Table 1.

P(V) =



0 V < Vcut-in

Prated

(
V−Vcut-in
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)3
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Figure 1 Graphical depiction of IEA’s 3.35-MW onshore reference turbine’s power curve.

Table 1 Attributes for IEA’s 3.35-MW onshore reference turbine

Rotor Diameter 130 m
Turbine Rating 3.35 MW
Cut-In Wind Speed 4 m/s
Rated Wind Speed 9.8 m/s
Cut-Out Wind Speed 25 m/s

2. Farm Geography
To focus on optimization method and EWM variability, as well as to avoid introducing too many unnecessary

variables, the wind farms for all scenarios were on flat and level terrain. To reduce boundary impacts on farm design, we
chose a radially symmetric farm boundary. Turbine (x, y) hub locations were restricted to be on or within the boundary
radius. Turbines were further constrained to be no less than two rotor diameters apart from any other turbine.
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Farm diameter sizing for each scenario needed to be restrictive enough to avoid simply placing all turbines on the
boundary but also permit meaningful turbine movement by the optimizers. Although the participants were not required
to use the example starting layouts that we provided, we tried to provide reasonable example layouts by dispersing the
turbines as much as possible in an orderly way. This was done by placing turbines in evenly spaced concentric rings.
The boundary radii of the various wind farms we defined were selected to permit turbine placement in concentric rings
with a minimum turbine spacing of five rotor diameters.

3. Wind Attributes
The wind distribution frequency and wind speed were the same for all wind farm scenarios in both case studies.

Freestream wind velocity was constant in all wind directions, at 9.8 m/s, regardless of turbine location or time of day.
This wind speed was used because it is the rated wind speed of the IEA 3.35-MW wind turbine. Using this incoming
wind velocity maximized power production variability between wind turbines in the farm. In setting the scenario’s
freestream velocity for the turbine’s rated wind speed, any wake effects moved air speeds down below rated power. With
greater variability in the power production, more local optima would be experienced by participant optimizers. A lack
of such local optima in a design space permits even ineffective optimizers to find a superior result. Since the presence of
many local optima is a feature observed on many wind farm optimization problems, we strove to create such design
spaces with our case study scenarios, as it allows us to test the exploration capabilities of the various optimization
algorithms.

The selection of the wind rose was a major factor in the frequency and magnitude of local optima resulting from
turbine placement. We selected a wind rose with an off-axis wind frequency distribution, binned for 16 directions.
When we tested this wind rose against 1,000 randomized starting turbine locations, it gave few optimized results with
relatively high AEP values. We interpreted this to be indicative of the presence of many local optima. The wind rose we
used is depicted in Fig. 2, in polar coordinates. In this figure, a greater magnitude in the radial direction from the origin
indicates a higher wind frequency from that specific direction.
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20%

Figure 2 The wind frequency distribution for our case studies.

B. Case Study 1: Optimization Only
The purpose of this case study was to determine the best optimization practices for WFLO, using a single

representative EWM. We selected a generalized wake model that both gradient-based and gradient-free optimization
algorithms could use and that was computationally inexpensive in comparison to LES and DNS methods.
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1. Wake Model
The wake model selected for case study 1 was a simplified version of Bastankhah’s Gaussian wake model [14, 15].

This wake model is described Eq. (2).

∆U
U∞

=

(
1 −

√
1 −

CT

8σ2
y/D2

)
exp

(
− 0.5

( y − δ
σy

)2
)

(2)

In Eq. (2), ∆U/U∞ is the wake velocity deficit, CT = 8/9 is the thrust coefficient, y − δ is the distance of the point of
interest from the wake center in the cross-stream horizontal direction, D is the turbine diameter, and σy is the standard
deviation of the wake spread in the cross-stream horizontal direction as defined in Eq. (3):

σy = (ky x) +
D
√

8
(3)

In Eq. (3), x is the downstream distance from the turbine generating the wake to the turbine of interest, and D is the
turbine diameter. The variable ky is determined as a function of turbulence intensity (I). In this case study turbulence
intensity was treated as a constant of 0.075, and we therefore used a corresponding ky of 0.0324555 [15, 16].

Increasing turbulence intensity has numerous effects and draws attention away from the main purpose of this case
study, which was to observe the differences of optimization strategies. For the wake model we used (shown in Eq. (2)),
increasing the turbulence intensity widened the wake cone, but second and third order effects are unknown. As such,
this first IEA37 set of case studies used a very low intensity in an attempt to minimize the considered variables.

2. Farm Sizes
Variability in wind farm size (and thus number of design variables) affects optimization algorithm performance. To

study how increased farm size (i.e. design space complexity) impacts the performance of optimization algorithms, three
wind farm sizes were specified in case study 1. The three wind farms had 16, 36, and 64 turbines, respectively. The
three farm boundary radii were 1300 m, 2000 m, and 3000 m, respectively. The boundary radii were determined in
the manner described previously in Section II.A.2. The turbine numbers were selected as perfect squares that roughly
double in size. Perfect squares were used to permit participants to use even grid turbine arrangements, if desired.

3. Supplied Code
We provided participants with a link to a GitHub repository∗ which included files with the following contents:
• Turbine characteristics, wind frequency, and wind speed in IEA 37’s .yaml schema
• Example turbine layouts for each farm size (in .yaml format)
• Python parsers of the .yaml schema
• Python target function to calculate AEP (given .yaml turbine locations and farm attributes)

We selected the programming language Python, since it is widely used by researchers in the industry, and is open source.
Participants were allowed to alter our specific code implementation or replicate the provided model in another language
to speed up the code or for compatibility with their optimization methods. This was with the understanding, however,
that final wind farm layouts would be evaluated with the original Python code that we provided.

C. Case Study 2: Combined Physics Model/Optimization Algorithm
The intent of this case study was to assess both the effects that different optimization methods and physics model

approximations have on turbine location recommendations. Case study 2 differs from case study 1 in that 1) no wake
model was provided and 2) only a single wind farm size was to be optimized. Participants were free to choose their
preferred EWM and optimization method combination.

1. Wake Model
Unlike case study 1, participant-reported AEP values were not comparable, since each participant used a different

EWMs to calculate AEP. To help us make fair comparisons and conclusions, we conducted a cross-comparison of
results between participants. For the cross-comparison, each participant provided their optimal turbine layout in the

∗https://github.com/byuflowlab/iea37-wflo-casestudies
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standardized .yaml format. Each participant was then provided with every other participants’ optimized layout file.
Participants then used their own wake model to calculate the AEP of the other participant’s proposed farm layouts with
their EWMs. From this portion of the case study, we hoped to learn if any participants’ results were consistently seen as
superior by other EWMs.

2. Farm Attributes
The wind farm size for the combined case study was limited to nine turbines. We did this to limit the computation

time requirements when assessing results in a standardized LES, discussed later in Section IV. We used the previously
described method under Section II.A.2 to determine the boundary radius, which for the 9 turbine case is 900 m. The
wind rose and wind speed were the same as in case study 1.

III. Results
There were 10 submissions for case study 1. One participant submitted twice, using a different optimization method

for each submission. For anonymity, each submission was assigned a number. We refer to each submission below by
this submission number (i.e., sub1, ..., sub10, etc.). For case study 2, there were 5 participant submissions. All five
participants for case study 2 also submitted for case study 1, though were not required to do so. For ease of comparison,
we assigned their submissions the same numbers from that case study as well (i.e., sub1 - sub5 are from the same
individual participants for both case study 1 and case study 2).

It should be noted that four of the authors submitted results for case study 1 as participants, and three submitted for
case study 2. The primary author developed and collected data on the case study, but did so without sharing results with
other participants including the other authors.

With submissions, was asked participants to also report their hardware specifications, and performance data including
function calls, wall time, and number of optimizations run. Some of the questions in the exit questionnaire were not
worded clearly enough, leading to different interpretations of time and function call reporting. On case showing wall
time is shown below.

A. Case Study 1: Optimization Only
Participants ran the optimization algorithm of their choosing using our supplied AEP function or a functional

equivalent in another language. The AEP results and rankings are given below in Tables 2 to 4.

1. Data
Tables 2 to 4 display the final AEP data of all participant-proposed optimal turbine layouts. The Python module we

supplied, which uses the simplified Bastankhah wake model, was used for all AEP calculations. Submissions were
ranked from highest to lowest resultant AEP values. Also listed in the tables are the submission number (sub#), whether
a gradient-based (G) or gradient-free (GF) optimization method was used, and the relative percentage increase of AEP
(Increase) from the provided example layout’s AEP.

2. General Trends
As a general trend, gradient-based methods performed better in discovering a relative optima, especially for smaller

farm sizes. Some gradient-based algorithms improved in comparative AEP ranking as the number of design variables
increased (sub10, sub3), while others degraded (sub5, sub8). Simultaneously, one gradient-free algorithm increaseed
in effectiveness as design variables increased (sub3), while others competed for lowest comparative performance,
regardless of farm size (sub6, sub7, sub9).

Despite these multivariate results, one clear front-runner did emerge. Regardless of wind farm size, sub4’s algorithm
consistently discovered turbine placements that delivered an AEP superior to all other participants. A summary of
sub4’s method is included in a following section.

Also of note, as the number of design variables increased, the relative disparity between proposed optimal AEPs
likewise diverged. For the 16-turbine case, the highest result was 7.88% better than the lowest. For the 36 and 64 cases,
the highest result was 11.45% and 13.54% better than the lowest, respectively.
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Table 2 16 turbine scenario participant results

Rank Algorithm sub# Grad. AEP Increase
1 SNOPT+WEC 4 G 418924.4064 14.17 %
2 fmincon 5 G 414141.2938 12.86 %
3 SNOPT 8 G 412251.1945 12.35 %
4 SNOPT 1 G 411182.2200 12.06 %
5 Preconditioned Sequential Quadratic Programming 2 G 409689.4417 11.65 %
6 Multistart Interior-Point 10 G 408360.7813 11.29 %
7 Full Pseudo-Gradient Approach 3 GF 402318.7567 9.64 %
8 Basic Genetic Algorithm 7 GF 392587.8580 6.99 %
9 Simple Particle Swarm Optimization 6 GF 388758.3573 5.95 %
10 Simple Pseudo-Gradient Approach 9 GF 388342.7004 5.83 %
11 (Example Layout) - - 366941.5712 -

Table 3 36 turbine scenario participant results

Rank Algorithm sub# Grad. AEP Increase
1 SNOPT+WEC 4 G 863676.2993 17.05 %
2 Multistart Interior-Point 10 G 851631.9310 15.42 %
3 Preconditioned Sequential Quadratic Programming 2 G 849369.7863 15.11 %
4 SNOPT 8 G 846357.8142 14.70 %
5 SNOPT 1 G 844281.1609 14.42 %
6 Full Pseudo-Gradient Approach 3 GF 828745.5992 12.31 %
7 fmincon 5 G 820394.2402 11.18 %
8 Simple Pseudo-Gradient Approach 9 GF 813544.2105 10.25 %
9 Basic Genetic Algorithm 7 GF 777475.7827 5.37 %
10 Simple Particle Swarm Optimization 6 GF 776000.1425 5.17 %
11 (Example Layout) - - 737883.0985 -

Table 4 64 turbine scenario participant results

Rank Algorithm sub# Grad. AEP Increase
1 SNOPT+WEC 4 G 1513311.1936 16.86 %
2 Preconditioned Sequential Quadratic Programming 2 G 1506388.4151 16.36 %
3 Multistart Interior-Point 10 G 1480850.9759 14.35 %
4 SNOPT 1 G 1476689.6627 14.03 %
5 Full Pseudo-Gradient Approach 3 GF 1455075.6084 12.36 %
6 SNOPT 8 G 1445967.3772 11.66 %
7 Simple Pseudo-Gradient Approach 9 GF 1422268.7144 9.82 %
8 Simple Particle Swarm Optimization 6 GF 1364943.0077 5.40 %
9 fmincon 5 G 1336164.5498 3.18 %

10 Basic Genetic Algorithm 7 GF 1332883.4328 2.93 %
11 (Example Layout) - - 1294974.2977 -
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3. Analysis of Best Results
For all three farm sizes, the superior method was implemented by sub4, using a gradient-based method. Coded in

Python and FORTRAN, it combined SNOPT [17] with a method called Wake Expansion Continuation (WEC) [15].
Running 200 optimizations, sub4 had one optimization run start from the provided example layout, and the other 199
use randomized turbine starting locations within the farm boundary.

The WEC method is specifically designed to reduce the multimodality found in wind farm layout optimization. In
the cited paper [15], it is shown to be a method which converts design spaces with many local minima into curves
approaching convexity, allowing gradient-based optimizations to more easily find the better solutions. An example of
such “relaxation” to convexity is included in Figs. 3 and 4, reproduced with permission.

The effect of the WEC method on a simple design space is shown in Figs. 3 and 4. WEC smooths out the local
optima, making better solutions available to gradient-based optimization methods. As the authors Thomas and Ning
state, “Larger values of ξ allow the smaller local optima to disappear completely. Smaller values of ξ allow for more
accurate wake widths but with an increase in the number and magnitude of local optima.” [15]. We suspect that the
WEC method for reducing the multimodality of the design space is why sub4’s optimizations found superior layouts as
compared with the other methods used.

4. Discussion
Though sub4 consistently found the superior AEP relative to the other participants, sub2’s results demonstrated a

trend closing the gap as the number of design variables increased. For the 16 turbine case, sub4 was 2.5% better than
sub2’s results. For the 36 and 64 cases, sub4 was 1.68% and 0.46% better, respectively. It should be noted, however,
that at the current average U.S. rate [18] of roughly $0.13 for a kWh (or $133 per MWh), the income difference between
the AEPs of sub4 and sub2 in the 64 turbine case, though only 0.46%, equates to a difference of a little under $1 million
per year. Since sub2’s Preconditioned Sequential Programming (PSQP) method steadily closed the gap, a future study
should test even larger wind farm sizes. This could determine if the PSQP algorithm could eventually outperform
the SNOPT+WEC method when a certain number of design variables are reached, or if there is an upper limit or
convergence to this trend.

Though the majority of participants used random starts for each optimizaiton, sub2’s method of “warm starting”
performed progressively well, especially as the number of design variables increased. Taking a starting set of turbine
coordinates, sub2 rotated the layout in π/6 steps. These rotations created the starting geometry for subsequent iterations.
Though not precisely “intuitive” starts, they are more intelligently designed than pure randomized locations. As
discussed above, sub2 did perform increasingly well compared to other methods (ranking 2nd for the 64-turbine case).

Translating the provided AEP target function proved helpful in speeding up the computations and allowing for
greater exploration. At least two participants translated the target Python file into FORTRAN, one into Julia, and one

8



altered it within Python by converting loops into vectorized statements. In testing, these reimplementations sped up the
analysis time by at least an order of magnitude.

In our survey we asked participants to self-report time and iteration count for their optimizations. However, the
question was not clearly worded resulting in different interpretations. Some reported the time for their best optimization
run, while others included total time include exploratory runs, multistarts, or other iterative approaches (the latter was
intended). Also, because we did not warn users that this information would be requested in the survey, some of the
numbers were not recorded during optimization and were simply estimated. As an example, self-reported optimization
time for the 64 turbine case is shown in Fig. 5 labeled by submission number. Given the limitations in reporting
described above, no real conclusions can be drawn at this time, but the data is provided to give a general sense of the
algorithmic times.

B. Case Study 2: Combined Physics Model/Optimization Algorithm
For case study 2, participants ran both the optimization algorithm and wake model of their choosing. There was

no restrictions on programming language for either the wake model or optimization algorithm, but results of optimal
turbine layouts were to be submitted in the .yaml format supplied in the case study 1 examples.

Because participants used different wakemodels, AEP values reported cannot be fairly compared between participants.
Results were therefore judged on cross-comparison calculations.

1. Data
The cross-comparison displays some interesting trends. Tables 5 to 9 show how each submission’s wake models

ranked the proposed optimal turbine layouts for the other 4 submissions. Each submission’s ranking of its own layout is
in bold. The penultimate column in each table is the submission number of the layout being cross-compared (cc-sub#).
So submission 4’s analysis of submission 2’s layout would be found in sub4’s table, with 2 in the cc-sub# column. The
last column is the percentage difference (Difference) from the reporting submission’s submitted layout. A positive value
here indicates a better AEP, a negative value indicates a worse one.
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Figure 5 AEP vs wall time, 64 turbine scenario. Submission numbers placed next to reported values.
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Table 5 Cross-comparison results of sub1

Rank Wake Model Algorithm AEP cc-sub# Difference
1 Bastankhah SNOPT+WEC 262350.319 4 0.624 %
2 Simplified Bastankhah fmincon 262282.416 5 0.598 %
3 FLORISSE 3D SNOPT 260722.295 1 -
4 Bastankhah Full Pseudo-Gradient Approach 260640.906 3 -0.031 %
5 Park2 PSQP 248215.024 2 -4.797 %

Table 6 Cross-comparison results of sub2

Rank Wake Model Algorithm AEP cc-sub# Difference
1 Bastankhah SNOPT+WEC 250464.9732 4 5.975 %
2 Simplified Bastankhah fmincon 250249.0259 5 5.884 %
3 Bastankhah Full Pseudo-Gradient Approach 247812.0522 3 4.853 %
4 FLORISSE 3D SNOPT 240309.5850 1 1.678 %
5 Park2 PSQP 236342.799 2 -

Table 7 Cross-comparison results of sub3

Rank Wake Model Algorithm AEP cc-sub# Difference
1 Simplified Bastankhah fmincon 247109.5234 5 0.590 %
2 Bastankhah SNOPT+WEC 246942.3767 4 0.522 %
3 Bastankhah Full Pseudo-Gradient Approach 245659.4124 3 -
4 Park2 PSQP 242431.5431 2 -1.314 %
5 FLORISSE 3D SNOPT 237548.6622 1 -3.302 %

Table 8 Cross-comparison results of sub4

Rank Wake Model Algorithm AEP cc-sub# Difference
1 Bastankhah SNOPT+WEC 257790.1924 4 -
2 Simplified Bastankhah fmincon 257663.4068 5 -0.049 %
3 Bastankhah Full Pseudo-Gradient Approach 255063.8201 3 -1.058 %
4 FLORISSE 3D SNOPT 251776.7157 1 -2.333 %
5 Park2 PSQP 239612.8223 2 -7.051 %

Table 9 Cross-comparison results of sub5

Rank Wake Model Algorithm AEP cc-sub# Difference
1 Simplified Bastankhah fmincon 251771.9067 5 -
2 Bastankhah SNOPT+WEC 251697.7126 4 -0.029 %
3 Bastankhah Full Pseudo-Gradient Approach 249829.2199 3 -0.772 %
4 FLORISSE 3D SNOPT 246503.8323 1 -2.092 %
5 Park2 PSQP 239482.6767 2 -4.881 %
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2. General Trends
We expected participants to rank their own layout as superior to the others. Each wake model accounts for different

fluids phenomena, and what one wake model considers an optimal layout, another may not. An example of this is if one
EWM predicts a wake deficit due to some factor such as vorticity or turbulence. A turbine placed downstream under
such a model would, under a more simplistic wake model not accounting for this phenomena (such as the Jensen’s
model [7]), would feel the full brunt of the wake and deliver a suboptimal AEP.

Unexpectedly, only sub4 and sub5 found their own layouts to be superior to the other participants. Furthermore,
all other participants also found sub4 and sub5’s layouts superior to their own, though to varying degrees. Three
participants (including sub4) found sub4 to have the highest AEP-producing layout. The other two participants found
sub5 to have the highest AEP-producing layout.

3. Analysis of Best Results
Within expectations, sub4 and sub5 ranked their own layouts superior to all other participant results. Two correlations

are important to note regarding sub4 and sub5. First, both used variations of the same wake model. From case study 1,
sub5 used the simplified Gaussian wake model previously described [14, 15]. Though sub4 also used the Gaussian
wake model [14], sub4 combined it with the model created by Niayifar and Porté-Agel [16], supplemented by the WEC
method described earlier. Furthermore, sub4 also accounted for wind shear and local turbulence intensity. Neither of
these factors were accounted for by sub5. The second factor to note is that despite using very similar wake models, sub4
and sub5 used different gradient-based optimization algorithms that reached very similar conclusions.

As can be seen in the figures included in the Appendix, sub4 and sub5 found nearly identical optimal turbine
placements. Though appearing identical, the actual coordinates do indeed differ, enough so to result in different AEP
calculations shown in the tables above.

Without LES data, the conclusions able to be drawn from the cross-comparison analysis are limited. Reasons that
both sub4 and sub5 were found by the other participant wake models to have superior placement could be a result of
more efficient optimization methods, better coupling between optimization method and wake model, or wake model
superiority. The reason that these minima existed within the other wake models (resulting in a higher computed AEP by
those models), yet were nevertheless undiscovered in their optimizations, is inconclusive in telling us which it is.

Both sub4 and sub5 used similar wake models but very different optimization methods. Coding in MATLAB, sub5
did 1,000 random starts and used MATLAB’s fmincon (which uses a finite difference method to find gradients) to
optimize for a minimum. Using a combination of Python and FORTRAN, sub4 ran 1 optimization with a user-selected
initial turbine configuration, and randomized the turbine starting locations for another 199 to make 200 optimizations
altogether. SNOPT’s SQP algorithm (using algorithmic differentiation to obtain gradients) was sub4’s implemented
optimizer.

Of note, from trends seen above in case study 1, sub5’s optimization methods demonstrated superior performance
for small design variable sizes but comparatively degraded as the wind farm size increases. The superior performance
of this wake model and optimization method combination for this small farm may not be representative of performance
on larger wind farms.

4. Discussion
Participants of earlier case studies were critical of wind farm scenarios where non-novel, simplistic layouts (such as

all turbines on the boundary border) are optimal. The small farm radius with few turbines given for this case study seems
to have fallen into this category. Even with our very simple case studies, the participants found very different results.
Many factors could have led to these shortfalls (i.e., inferior optimization methods, lack of sufficient iterations, lack of
sufficient wall time, etc.), and further testing would need to be done to discover which factors majorly contributed to the
outcome.

IV. Conclusion
We created two case studies to better understand the effects of EWMs and optimization algorithms as applied to the

WFLO problem. Case study 1 focused on optimization methods, and received 10 submissions. Case study 2 studied the
combination of EWM and optimization method, and received 5 participant submissions.

Results from case study 1 show that sub4s use of SNOPT+WEC delivered superior results for the tested wind farms
with 16, 36, and 64 turbines. Although information on this method continues to be produced, the initial paper written by
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Thomas and Ning [15] describes this method. Regarding sub2’s PSQP method, though it showed a trend of increased
performance that may surpass SNOPT+WEC for wind farms of sizes larger than 64, further testing is required to validate
this pattern.

Case study 2 demonstrated that, for wind farms of small area with few turbines, placement on the wind farm
boundary delivers superior AEP. Three of the five participants reported in their cross-comparison that others found
superior optima to theirs, indicating that their optimization methods became trapped in a local optima. It is unclear if the
difference was caused by a difference in the optimization approach, or in the wake models’ suitability for optimization.
Further investigation is needed in comparing the approaches in more detail. One approach we would like to pursue
is to run all participant-reported optimized turbine locations through a higher-fidelity simulation, like a Large Eddy
Simulation.

Though we are happy with the level of participation in the case studies, a larger participant sample size with different
methods may provide more informative data or display other novel and superior methods. To refine our data collection
process, we plan on running another round of results for these case studies in the near future. In future case studies,
more precise wording is needed for questions regarding participant data, especially pertaining to wall time and function
calls. Also, before beginning the case studies, participants should know exactly what information to track and save.
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Appendix
This appendix contains plots of the optimized wind farm layouts submitted by all participants for both case studies.

The optimized layouts for case study 1 are shown in Figs. 6 to 8 for the 16, 36, and 64 turbine wind farms, respectively.
The optimized layouts for case study 2 are shown in Fig. 9.

(a) sub1 (b) sub2 (c) sub3

(d) sub4 (e) sub5 (f) sub6

(g) sub7 (h) sub8 (i) sub9

(j) sub10

Figure 6 Case study 1: optimized wind farm layouts with 16 wind turbines.
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(a) sub1 (b) sub2 (c) sub3

(d) sub4 (e) sub5 (f) sub6

(g) sub7 (h) sub8 (i) sub9

(j) sub10

Figure 7 Case study 1: optimized wind farm layouts with 36 wind turbines.
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(a) sub1 (b) sub2 (c) sub3

(d) sub4 (e) sub5 (f) sub6

(g) sub7 (h) sub8 (i) sub9

(j) sub10

Figure 8 Case study 1: optimized wind farm layouts with 64 wind turbines.
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(a) sub1 (b) sub2

(c) sub3 (d) sub4

(e) sub5

Figure 9 Case study 2: optimized wind farm layouts with 9 wind turbines.
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