Spatial scale dependency issues in the application of the Modified Universal Soil Loss Equation (MUSLE)

David Gwapedza
Institute for Water Research, Rhodes University, Grahamstown, South Africa, davidgwapedza@gmail.com

Denis A. Hughes
Institute for Water Research, Rhodes University, Grahamstown, South Africa

Andrew R. Slaughter
Institute for Water Research, Rhodes University, Grahamstown, South Africa

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

https://scholarsarchive.byu.edu/iemssconference/2018/Stream-E/20

This Oral Presentation (in session) is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Spatial Scale Dependency Issues in the Application of the Modified Universal Soil Loss Equation (MUSLE)

David Gwapedza, Denis Hughes and Andrew Slaughter
Institute for Water Research, Rhodes University, Grahamstown, Eastern Cape, South Africa.
(davidgwapedza@gmail.com)

Abstract: The Modified Universal Soil Loss Equation (MUSLE) is used within a range of hydrological models to estimate daily and long-term sediments yields from catchments of various sizes. As part of a project designed to link a sediment model to other existing water resources models (rainfall-runoff, water resources yield and water quality models), the question of spatial scale dependencies within the MUSLE was raised. This study attempted to identify the spatial scale dependency issues from previous studies that used the MUSLE but found little information. Some hypothetical examples are therefore presented to try and isolate the key issues and the results suggest that both the erosivity and topographic factors in the MUSLE are potentially spatially scale dependent, particularly if a lumped or semi distributed modelling approach is used. The lack of output consistency noted when MUSLE is applied across spatial scales in the current analysis, points to broader complications as scale variations increase. The conclusion is that such scale dependencies will add to the uncertainties inherent in all hydrological models, if they are not carefully understood and appropriately addressed.

Keywords: MUSLE; Scale dependency; Erosion; Sediment yield; Uncertainty