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ABSTRACT

Hierarchical Bayesian Methods for Evaluation of
Traffic Project Efficacy

Andrew N. Olsen
Department of Statistics, BYU

Master of Science

A main objective of Departments of Transportation is to improve the safety of the
roadways over which they have jurisdiction. Safety projects, such as cable barriers and raised
medians, are utilized to reduce both crash frequency and crash severity. The efficacy of these
projects must be evaluated in order to use resources in the best way possible. Five models
are proposed for the evaluation of traffic projects: (1) a Bayesian Poisson regression model;
(2) a hierarchical Poisson regression model building on model (1) by adding hyperpriors;
(3) a similar model correcting for overdispersion; (4) a dynamic linear model; and (5) a
traditional before-after study model. Evaluation of these models is discussed using various
metrics including DIC.

Using the models selected for analysis, it was determined that cable barriers are quite
effective at reducing severe crashes and cross-median crashes on Utah highways. Raised
medians are also largely effective at reducing severe crashes. The results of before and af-
ter analyses are highly valuable to Departments of Transportation in identifying effective
projects and in determining which roadway segments will benefit most from their implemen-
tation.

Keywords: hierarchical model, Poisson regression, dynamic linear model
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chapter 1

INTRODUCTION

Departments of Transportation (DOTs) are consistently striving to improve the safety of

the roadways over which they have jurisdiction. Safety projects, such as installing cable

barriers and raised medians, are continually implemented in order to reduce crashes and

fatalities on particularly dangerous roadways. In order to allocate resources effectively, these

projects must be carefully evaluated in order to determine the extent to which crashes, severe

injuries, or fatalities are reduced. Projects that are less effective may be either modified or

abandoned, whereas projects that produce desired results may be further implemented and

improved.

One traditional method of before-after analysis is the empirical Bayes (EB) method

discussed in detail by Hauer (1997). This method estimates expected crashes for a roadway

segment using a weighted average between the predicted number of crashes and the actual

number of crashes that occurred on the segment. This method has become the industry

standard for traffic safety analyses and is widely used.

Hierarchical Bayesian modeling expands the EB framework, resulting in several sta-

tistical advantages. Bayesian methods allow incorporation of previously known information

into the model through prior distributions. This allows inclusion of results obtained from

previous analyses in the model. The use of prior information also allows for better results

when few data are available.

The purpose of this project is to develop the use of hierarchical Bayesian methods

in traffic safety analyses. Chapter 2 reviews the literature relevant to this project including

traditional before-after analysis methods, Bayesian methodology, hierarchical Poisson re-

gression, Markov chain Monte Carlo (MCMC) methods, model comparison techniques, and
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methods to measure goodness of fit. Chapter 3 outlines the methods used in this project

including a discussion of cable barriers and raised medians and a description of each of the

five models used to analyze the crash data. Chapter 4 presents the results of the analyses

including the results of the simulation study, model comparison, goodness of fit, and a sum-

marization of results from the models chosen for analysis. Chapter 5 summarizes the project

and presents several conclusions from this research.

The methods discussed in this project are extremely effective in allowing DOTs to

determine which safety projects are best for reducing fatalities and incapacitating injuries

due to crashes on roadways worldwide. They also provide the foundation for the development

of further methods that will similarly improve safety.
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chapter 2

LITERATURE REVIEW

To set a foundation for the methodologies used in this project, several key aspects of the

literature are reviewed. First, traditional methods of analyzing before-after studies are dis-

cussed. Then, Bayesian methods are introduced and described. Further, hierarchical Poisson

regression is outlined and discussed. MCMC methods, which are necessary for computation

of posterior distributions, are then presented. Finally, a discussion about model comparison

and goodness of fit is provided.

2.1 Traditional Before-After Study Methods

The mainstream method for evaluating traffic safety is the EB method. Hauer (1997) pro-

vides an extensive discussion about this method in Observational Before-After Studies in

Road Safety. A tutorial to these methods by Hauer, Harwood, Council, and Griffith (2002)

was published in the Transportation Research Record: Journal of the Transportation Re-

search Board. In that paper, the authors made the following assertion:

“The time has come for the EB method to be the standard of professional practice;

it should be used whenever the need to estimate road safety arises, whether in the

search for sites with promise, the evaluation of the safety effects of interventions,

or the assessment of potential safety savings due to site improvements” (Hauer

et al. 2002, p. 126).

This quote illustrates the depth of the use of EB methods within the traffic safety anal-

ysis industry. The American Association of State Highway and Transportation Officials

(AASHTO) (2010) recently released the Highway Safety Manual (HSM), which advocates
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and further explains the use of EB methods. This can be considered the national standard

for safety studies to be used by DOTs and other research entities.

The HSM provides a method for estimating expected crashes on a roadway which is

based on EB methodology. The formula for calculating the expected number of crashes is

Nexpected = w ×Npredicted + (1− w)×Nobserved, (2.1)

where

w =
1

1 + k ×
(∑

all study yearsNpredicted

) , (2.2)

and

Nexpected = estimate of expected average crash frequency for the study period,

Npredicted = predictive model estimate of average crash frequency for the study

period under the given conditions,

Nobserved = observed crash frequency at the site over the study period,

w = weighted adjustment to be placed on the predictive model estimate, and

k = overdispersion parameter of the associated safety performance function (SPF)

used to estimate Npredicted (AASHTO 2010).

Where an SPF is not readily available, negative binomial regression may be utilized to

estimate the overdispersion parameter and to create a custom SPF for determining Npredicted.

Thus, from Equation 2.1, EB methods estimate the expected number of crashes on a roadway

as a combination of crash counts for that specific roadway and the predicted number of

crash counts based on a model for similar roadways. The advantage of this method over

utilizing crash counts alone includes accounting for regression to the mean bias. The expected

number of crashes may then be compared with those of a reference population of similar

characteristics where the crash prevention project was not implemented in order to determine

whether or not the project was effective.
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The Bayesian framework builds upon the advantages of the traditional EB method

by allowing prior information to be incorporated into the model. Additional advantages to

Bayesian methodology include obtaining a posterior distribution rather than simply a point

estimate with appropriate standard error as is done in this implementation of EB methods.

Furthermore, inferences from the posterior distribution within Bayesian methods are flexible

and highly interpretable.

2.2 Bayesian Methods

The process of inferring population parameters from sample data involves first formulating

a postulated model from which the data were drawn. The postulated model for the ith ob-

servation is a likelihood function f(yi|θ) where yi is the data value and θ is the collection

of parameters required to specify the likelihood fully. Frequentist methods of analysis af-

firm that model parameters θ are fixed, though unknown, constants. They estimate θ and

typically provide an estimate of the error surrounding the estimate for θ.

The Bayesian philosophy about θ differs from the classical paradigm. Bayesian meth-

ods regard population model parameters θ as distributions rather than fixed constants. Each

potential parameter value has a likelihood of occurring. Two views of θ are critical in

Bayesian analysis: the view of θ before data collection, also known as the a priori view of θ,

and the view of θ after incorporating information from the data, known as the a posteriori

view of θ. The combination of the data and the prior distribution of θ to form the posterior

distribution of θ is the central theory behind Bayesian methodology. Identification of an

appropriate data model and prior distribution are crucial to Bayesian analysis.

Data are incorporated into Bayesian inference through a likelihood function. The

likelihood dictates how likely the data are given specific parameter values. It is essential to

choose a likelihood that corresponds well with the data in terms of support. For example,

the normal distribution likelihood is a poor choice for crash counts because a normally

distributed random variable can take values anywhere from −∞ to ∞, but crash counts
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can only be integer values greater than or equal to zero. The Poisson likelihood is more

appropriate because the support of the likelihood function matches the support of the data.

Failing to select an appropriate likelihood can lead to poor results.

Bayesian methodology also preserves the likelihood principle, which states that infer-

ence from proportional likelihoods should lead to the same conclusions (Casella and Berger

2002). This principle is not always preserved in classical inference; experimental design can

often change the conclusions made in classical analysis. Bayesian use of the data through

the likelihood prevents this problem from occurring.

The information or intuition possessed about a situation independent of any data

collection is summarized into prior distributions for the data likelihood parameters. These

distributions assign a likelihood for every value the parameter can take based upon the ana-

lyst’s belief prior to collection and analysis of the data. If the analyst is uncertain about his

or her belief, the variance of the prior distribution may be increased comparatively, making

the prior distribution more diffuse. Likewise, if the analyst is more confident about the

prior information or is basing his or her belief on prior experimentation, a distribution with

smaller variance may be selected. When few data are available, the prior will generally play

a large role in the inference made. Thus, care should be taken to specify prior distributions

in a thoughtful and meaningful way. If many data are available, the importance of the prior

distribution is reduced as the prior holds less weight compared to the data.

The prior and the data likelihood are combined together to form the posterior dis-

tribution. As each person may uniquely define a prior distribution, so can each posterior

distribution vary. Although this prevents researchers from arriving at one unique answer

with the same data, if a prior is selected thoughtfully, the inference made from the posterior

distribution will be quite useful.

The prior distribution, data likelihood, and posterior distribution are related using

conditional probability rules found in the literature (Casella and Berger 2002). Consider
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simple events A and B. The conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
, (2.3)

where P (B) > 0. Using this fact and realizing similarly that P (A∩B) = P (B|A)P (A) , the

resulting formula is

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
, (2.4)

with the final equality holding by the law of total probability. This expression is known

as Bayes’ Theorem. Extending Bayes’ Theorem beyond the simple events A and B in the

previous statement, let A be the population model parameters θ, and B be the data y. The

resulting expression is given by

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

, (2.5)

where the following definitions hold:

y = the vector of data,

θ = the vector of parameters required for the data likelihood,

f(y|θ) = the likelihood of the data given the parameters θ,

π(θ) = the prior distribution of θ, and

π(θ|y) = the posterior distribution of θ given the data y.

This expression of Bayes theorem provides the theoretical framework for Bayesian statistics

(Carlin and Louis 2009) constituting the method for combining the prior and likelihood into

the posterior distribution.

Note that the integral in the denominator of the posterior distribution in Equation 2.5

is equivalent to P (y) or the probability of the entire dataset integrated over the distribution

of θ. This quantity is fixed and is referred to as the normalization constant because it

allows the posterior distribution to become a proper probability density function, which
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must, by definition, integrate or sum to one (Casella and Berger 2002). In many cases, the

integral may be extremely difficult to evaluate. For this reason, Bayesian modeling did not

become widespread until relatively recently when computing resources became sufficiently

advanced to support methods for obtaining the posterior distribution without utilizing the

normalization constant. This is accomplished through MCMC methods, which are discussed

in greater detail in Section 2.4.

2.3 Hierarchical Poisson Regression Models

The Poisson Distribution

Before outlining the method of Poisson regression, characteristics of the Poisson distribution

should be considered. The Poisson distribution is commonly utilized to model count data

(Bolstad 2010), and thus is a good candidate for modeling the number of crashes on a

specific roadway segment over a specified period of time. The probability mass function of

a Poisson-distributed random variable (Casella and Berger 2002) is

f(y|θ) =
eθθy

y!
, (2.6)

where y is a realization of the random variable Y , θ is the mean of the distribution, and

y ∈ {0, 1, 2, 3, . . .}. The support of this density allows for any number of crashes to occur on

a particular segment.

Another characteristic of the Poisson distribution is that the mean of the distribution

is equal to the variance of the distribution (Casella and Berger 2002). While this detail is

useful in many situations, correction may be required for situations where this equal mean

and variance assumption is violated. Miranda-Moreno, Fu, Saccomanno, and Labbe (2005)

discuss approaches that account for this overdispersion, one of which is implemented in model

3 of this project.
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Regression Models

Regression is the process by which a random variable, such as the number of crashes on a

roadway segment, is modeled by a set of covariates. Frequently, the covariates are related to

the random variable linearly through the mean (Hocking 2003). This implies that the mean

of the random variable (θ) can be represented as a linear combination of covariates (xj)

θ = β1x1 + β2x2 + · · ·+ βpxp, (2.7)

where p is the number of covariates included in the model.

Often, however, this relationship is constructed with a link function. A link function

is frequently required because the linear combination of covariates can range from −∞ to

∞, but the mean of the random variable of interest may be limited to the interval [0,∞) or

require other constraints (Bolstad 2010). This is indeed the case for the Poisson distribution

where θ ≥ 0. Bolstad (2010) describes that the most common link function for Poisson

random variables is the log-link function, which creates the relationship

log(θ) = β1x1 + β2x2 + . . .+ βpxp. (2.8)

This link plays a crucial role in both Bayesian and traditional Poisson regression analyses.

Bayesian Hierarchical Poisson Regression Models

As the methods employed in this project are inherently Bayesian, both the likelihood and

prior distributions for the Poisson regression model will be developed.

The joint likelihood of the data f(y|θ) is found by assuming that each of the observa-

tions is exchangeable and by multiplying the likelihoods together (Casella and Berger 2002)

such that

f(y|θ) =
n∏
i=1

eθiθi
yi

yi!
(2.9)

=
e
∑n
i=1 θi

∏n
i=1 θi

yi∏n
i=1 yi!

,
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where θi is the mean of the Poisson distribution for the ith observation yi, and n is the

total number of observations. Knowing that log(θi) = β1xi1 + β2xi2 + . . .+ βpxip, the joint

likelihood can be expressed as

f(y|β) = exp

[
n∑
i=1

exp(ηi)

]
n∏
i=1

exp(ηi)
yi

yi!
(2.10)

∝ exp

[
n∑
i=1

exp(ηi)

]
n∏
i=1

exp(ηi)
yi ,

where ηi = β1xi1 + β2xi2 + . . .+ βpxip.

As was mentioned in Section 2.2, the normalization constant is not required for

MCMC methods of obtaining the posterior distribution; thus, the joint likelihood up to

a constant is sufficient to obtain the posterior distribution. The proportional likelihood

expression in Equation 2.10 will therefore form the data portion of the Bayesian analysis.

A common choice of prior for β is multivariate normal with zero cross-covariances

(Bolstad 2010), which is equivalent to a series of independent normal priors for each βj. The

multivariate normal density function (Hocking 2003) for a random variable vector X in k

dimensions is

π(β) =
1

(2π)k/2|Σ|1/2
exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
, (2.11)

where

k = the dimension of β (generally the number of covariates in the model),

x = the vector of k realizations of the multivariate normal random variable,

µ = the mean vector of the multivariate normal random variable,

Σ = the variance-covariance matrix of the multivariate normal random variable, and

|Σ| = the determinant of the variance-covariance matrix.

When the covariances are equal to zero, the prior simplifies into the product of k normal

distributions as follows:

π(β) =
1

(2π)k/2
∏k

i=1 σi
exp

[
−1

2

k∑
i=1

(βi − µi)2

σ2
i

]
, (2.12)
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where the realization, mean, and variance for the ith dimension are denoted by βi, µi, and

σ2
i respectively.

With the likelihood derivations in Equation 2.10 and the prior derivations in Equation

2.11, the posterior distribution, up to a constant, is given by

π(β|y) ∝ f(y|β)π(β)

= exp

[
n∑
i=1

exp(ηi)

][
n∏
i=1

exp(ηi)
yi

]
1

(2π)p/2
∏p

i=1 σi
exp

[
−1

2

p∑
i=1

(xi − µi)2

σ2
i

]
.

(2.13)

As the marginal posterior densities are not available in closed form, MCMC methods

are utilized to obtain marginal posterior distributions for each of the β parameters from the

joint posterior distribution expressed in Equation 2.13.

2.4 MCMC Methods

Though MCMC methods are increasingly used with improved technology, they have founda-

tions of more than half a century ago. Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller

(1953) proposed using Monte Carlo methods for multiple complex integrals. This involved

integrating over a random sampling of points rather than a specific array of points. Hastings

(1970) extended the use of Monte Carlo methods using Markov chains. He thoroughly dis-

cussed the theory and implications behind this method. Geman and Geman (1984) extended

these principles by introducing the Gibbs sampler, which allows for marginal distributions

to be calculated using conditional distributions. Gelfand and Smith (1990) further discuss

Gibbs sampling and provide several examples that utilize this and other MCMC methods.

MCMC methods are currently utilized in many fields and are the key to Bayesian analyses

with difficult posterior forms.
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Gibbs Sampling

Gibbs sampling is widely used and is referenced in several sources of literature (Gelman,

Carlin, Stern, and Rubin 2004; Hamada, Wilson, Reese, and Martz 2008; Carlin and Louis

2009; Bolstad 2010). The Gibbs sampler algorithm allows for posterior draws to be obtained

from the complete conditional distributions [θi] of the parameters in θ. The algorithm is as

follows:

(1) Start with θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
r ), where r is the number of parameters in the

model. Note that the algorithm is quite robust to starting values.

(2) Set i = 1.

(3) Generate an observation θ
(i)
1 from π(θ1|θ(i−1)2 , . . . , θ

(i−1)
r ,y) = [θ1].

(4) Generate an observation θ
(i)
2 from [θ2].

(5) Continue sequential generation until θ
(i)
r from [θr] is obtained.

(6) Repeat steps (3) through (5) T +B times, where B is the number of burn-in itera-

tions, and T is the desired number of draws from the posterior distribution.

The resulting draws are considered random realizations from the joint posterior distribution

of θ|y.

Metropolis Hastings Algorithm

The random walk Metropolis Hastings algorithm is used in conjunction with Gibbs sampling

when complete conditional distributions are available only up to a constant. The algorithm

also allows for drawing from the full posterior distribution π(θ|y) utilizing the posterior

distribution up to a constant g(θ) = f(y|θ)π(θ), if desired. Some of the draws are rejected,

allowing the sample to converge to the posterior distribution. A candidate density based
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on the previous value, q(θ∗|θ(t−1)) is used for obtaining draws. The Metropolis Hastings

algorithm is outlined as follows, after an initial θ(0) is obtained (Carlin and Louis 2009):

For t = 1, . . . , T , where T is the number of desired draws, repeat:

1. Draw a candidate θ∗ from q(·|θ(t−1)).

2. Calculate

r = min

(
g(θ∗)q(θ∗|θ(t−1))

g(θ(t−1))q(θ(t−1)|θ∗)

)
. (2.14)

3. Accept θ∗ as θ(t) with probability of r.

4. Repeat until convergence.

With the conditions that are typically satisfied for a majority of statistical models, θ(t)

converges in distribution to a draw from the posterior π(θ|y) (Carlin and Louis 2009).

2.5 Model Comparison

Model selection in statistical analysis is critical. In the Bayesian paradigm, three methods

for evaluating models include Bayes’ Factors, Bayesian Information Criterion (BIC), and

Deviance Information Criterion (DIC). Hamada et al. (2008) give meaningful tutorials to

these three model selection criteria, which are summarized below.

Bayes’ Factors

Bayesian methodology evaluates models based on the odds that a model is true. Consider the

case where there are two probability models M1 and M2 that are considered as approximating

the process that produced the observed data set. Let the likelihood functions and prior

distributions of these probability models be f(y|θ1,M1)p(θ1|M1) and f(y|θ2,M2)p(θ2|M2)

respectively. Let P (M1) be the prior probability for model M1 and P (M2) = 1− P (M1) be

the prior probability of the second probability model. The posterior odds that model M1 is
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true are then

P [M1|y]

P [M2|y]
=
P (y|M1)P (M1)

P (y|M2)P (M2)

=
P (M1)

P (M2)
× m1(y|M1)

m2(y|M2)
, (2.15)

where mi(Y|Mi) is the marginal distribution of y given the Mi sampling model. Note then

that Equation 2.15 states that the posterior odds is the product of the prior odds multiplied

by the Bayes’ factor, where the Bayes’ factor is defined as the ratio of the marginal densities

of the data under two potential sampling models (Hamada et al. 2008).

If the posterior odds, as shown in Equation 2.15, are greater than one, the sampling

model M1 is more likely. If the posterior odds are less than one, the sampling model M2 is

more probable. The posterior odds reduce to the Bayes factor if the prior probabilities for

each model are 0.5. Thus, the marginal distributions of the data under sampling model i,

mi(y|Mi) i = 1, 2, play an important role in determining a posteriori which model is more

likely through Bayes’ factors.

As Bayes’ factors are difficult to compute, the Laplace approximation is used, which

is discussed by DiCiccio, Kass, Raferty, and Wasserman (1997).

BIC

Hamada et al. (2008) define BIC as

BIC = −2 log[f(y|θ̂)] + log(n)k, (2.16)

where y are the data, θ̂ is an estimate of θ from the posterior distribution (such as the

posterior mean, median, or mode), n is the number of observations, and k is the number of

parameters in θ. A lower BIC indicates a better model; fit is penalized by model complexity

through log(n)k. Comparing the BIC of different models is a useful way of determining

which models are better.
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DIC

DIC is especially helpful in evaluating the superiority of one model to another in a hierarchical

setting. For this reason, when the other two criterion do not agree, final decisions in this

project are made using DIC. The advantage lies in the fact that DIC does not require the

analyst to specify the number of parameters in the model as required for BIC. An effective

number of parameters is calculated. Hamada et al. (2008) define model deviance as

D(θ) = −2 log[f(y|θ)]. (2.17)

The expected deviance is then defined as

D̄ = Eθ[D]. (2.18)

This can be found using a Monte Carlo sample from the posterior distribution as the mean

of −2 times the log likelihood of y given each individual draw from the joint posterior

distribution. The number of effective parameters pD is then calculated as

pD = D̄ −D[θ̄], (2.19)

where θ̄ is the vector of marginal posterior means or medians from the Monte Carlo sample

of the joint posterior distribution. DIC is then defined by Hamada et al. (2008) as

DIC = D̄ + pD. (2.20)

As with BIC, models with smaller values of DIC relatively are preferable to alternate models.

2.6 Goodness of Fit

Two measures of goodness of fit are utilized in this project. The first is the Bayesian χ2

goodness-of-fit test. The second utilizes predictive distributions and quantiles to assess fit.
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Bayesian χ2 Goodness-of-Fit

This test is rooted in the Pearson’s χ2 goodness of fit test. The interval from 0 to 1 is broken

into K evenly-spaced intervals. Hamada et al. (2008) suggest using K ≈ n0.4. For each

draw of the posterior distribution, compute the cumulative distribution function for each

observation yi. For all i, these numbers fall between 0 and 1. Let mk, k = 1, . . . , K be the

total number of cumulative distribution function values among all n observations that fall in

the kth interval between 0 and 1. The test statistic for this posterior draw is then computed

as

RB(θ̃) =
K∑
k=1

(mk − n/K)2

n/K
, (2.21)

which is distributed χ2
K−1 under the null hypothesis that the model fits well. The p-value for

each of the draws from the posterior distribution may then be calculated. The proportion

of p-values below 0.05 ought to be close to 0.05 under the null hypothesis. A model with a

higher proportion of p-values below 0.05 fits more poorly.

This method will be principally used to determine whether or not models fit appro-

priately as it is a numeric value that can easily be compared to other models.

Predictive Distributions and Quantiles

Gelman et al. (2004) propose comparing the posterior predictive distribution for each ob-

servation with the corresponding data value as a method of evaluating goodness of fit. The

quantile of the datapoint from the posterior predictive distribution may be obtained. The

distribution of quantiles of all the datapoints ought to be uniformly distributed according to

the probability integral transformation theorem which states that a continuous cumulative

distribution function is uniformly distributed from zero to one (Casella and Berger 2002).

Figure 2.1 shows a posterior predictive distribution and the corresponding data point.

Figure 2.2 compares the distributions of differences of two different models; the better-fitting

model produces the distribution on the left, which follows a uniform distribution relatively
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well; the somewhat poor-fitting model produces the distribution on the right, which is not

uniformly distributed.
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Figure 2.1: Comparison of data value with a posterior predictive distribution.

With these foundations in Bayesian methodology and crash analysis, the methods

and models used in evaluating before and after traffic studies may be developed and dis-

cussed.
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Figure 2.2: Comparison of distributions of quantiles for two models. The model whose
distribution is on the left fits well. The model whose distribution is on the right fits more
poorly.
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chapter 3

METHODS

This chapter first outlines the two types of traffic projects (cable barriers and raised medians)

that will be considered in the analysis of this project. The five models that will be utilized

to fit the data will then be introduced and briefly discussed.

3.1 Cable Barriers and Raised Medians

Cable Barriers

Cable barriers are constructed of wire rope and small posts and are frequently used in medians

of highway systems. They are relatively inexpensive to install and are quite effective at

reducing cross-median crashes, which are generally quite severe as both directions of traffic

are usually flowing at high speeds (AASHTO 2006).

The before-after crash analysis of cable barriers will focus on three different types of

crashes: cross-median, severe, and overall. Cross-median crashes ought to be less prevalent

as their reduction is the underlying goal of cable barriers. Severe crashes are also considered

because it is expected that reduction of cross-median crashes should also reduce severe

crashes. Severe crashes are those that resulted in either a fatality or incapacitating injury.

Overall crashes are also of interest to determine whether cable barriers may have influenced

overall crash frequency at each of the sites of interest.

In Utah, cable barriers have been installed primarily on the freeway system. Seven

sites were considered for this study from either I-15 or I-215. A summary of the sites is

provided in Table 3.1 (Schultz, Thurgood, Olsen, and Reese 2010). The site index will be

used to identify sites throughout the presentation of the results.
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Data from all sites were obtained between 2002 and 2008. One data point summa-

rizing the number of crashes occurring on the roadway segment is available for each year.

The installation year is indicated in Table 3.1. Data from the installation years are modeled

separately from the before and after periods in the analysis as factors involved with the

installation may have temporarily effected crash rates.

Table 3.1: Summary of Cable Barrier Sites

Site Route Location Begin Mile End Mile Install Year
1 I-15 Provo S-curves to University Parkway 267 269 2004
2 I-15 Between Pintura and Kolob Canyons 36 38 2005
3 I-15 Spanish Fork to SR 75 257 261 2005
4 I-15 South Layton to Syracuse 330 334 2006
5 I-15 600 N to 2300 N Salt Lake 309 312 2007
6 I-215 3100 S to 3800 S Salt Lake 1.5 2.5 2007
7 I-215 2100 S to 4500 S Salt Lake 17 19.5 2007

Raised Medians

A raised median is a barrier, generally constructed of concrete or landscaping, that is installed

in the median of the roadway. Raised medians are often useful in reducing crashes by limiting

the number of conflict points, such as the number of places where vehicles may turn left.

They are also thought to be useful in reducing head-on collisions where a vehicle may cross

into oncoming traffic (Transportation Research Board (TRB) 2003).

Reduction in the number of severe crashes is perhaps the most important indicator as

to whether or not raised medians are effective at a particular site. An additional consideration

is the reduction of cross-median crashes. Finally, the total number of crashes are considered

to provide information as to whether the installation of raised medians influences the number

of overall crashes.

The sites for raised medians are summarized in Table 3.2 (Schultz et al. 2010). These

sites are generally located where many cars pass each day for business and other access.

Note that the milepoints shown are the most current values and that milepoints varied
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slightly for earlier years based on former milepoint systems. Any differences were reconciled

in the analysis according to information provided by the Utah Department of Transportation

(UDOT). Data are available from 1998 to 2008 for raised medians.

Table 3.2: Summary of Raised Median Sites

Site Route Location Begin Mile End Mile Install Year
1 265 University Parkway 1.20 1.96 2002
2 74 Alpine Highway 2.40 4.29 2002
3 186 400/500 South 5.48 7.53 2001
4 71 12300 South 4.55 5.45 2004
5 34 St. George Blvd. 0.00 1.74 2006
6 36 SR 36 59.29 60.82 2005

Each of the three types of crashes for both cable barriers and raised medians will be

fit with each model in this project.

3.2 Models for Analyzing Efficacy of Traffic Hazard Remediation

Five models are proposed for analyzing efficacy of crash-reduction projects. The first three

of these models each are founded upon the principles of hierarchical Poisson regression. For

these models, the basic modeling strategy is to create unique intercepts for before, after,

and installation time periods. If enough data are available and such results are desired,

unique parameters corresponding to different time periods for other covariates, such as annual

average daily traffic (AADT ), may also be used. Utilizing AADT is important in the analysis

process because traffic flow can change between before and after periods. The fourth model

fits crashes over time and comparisons may be made between years before, during, and

after the implementation of the remediation project. The final model utilizes the methods

discussed in the HSM (AASHTO 2010) and represents the classical approach utilized by the

civil engineering community.
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Model 1: Standard Poisson Regression

The first model uses standard Bayesian Poisson regression and is written

yi ∼ Poisson(θi), (3.1)

log(θi) = Xiβ,

with prior distribution for β

β ∼MVN(m,S),

where

yi = the observed number of crashes per mile for observation i,

θi = the mean number of crashes per mile for observation i,

Xi = the ith row of the covariate matrix X,

β = the vector of parameters corresponding with X,

m = a vector of constants, and

S = a constant covariance matrix.

The matrix X consists of all covariates desired in the analysis. Most of the analyses will

include an intercept for the before period, an intercept for the after period, an intercept for

the installation period, and a coefficient for AADT values for each observation. When more

than one site is being considered, as in this analysis, these columns of the X matrix are

provided for each individual site.

Model 2: Hyperpriors

The second model expands the first model by adding hyperpriors to the prior distribution for

β. This allows for the parameters from each site to come from an overall population distri-

bution of parameters borrowing strength across sites. Rather than designate a multivariate
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normal prior for β with fixed mean vector m and fixed covariance matrix S, designate a

multivariate normal prior for β with mean vector µβ and covariance matrix Σβ where the

mean vector µβ has a multivariate normal prior with mean vector m and covariance matrix

S, and the diagonal elements of the covariance matrix Σβ are distributed inverse gamma

with shape a and scale b. For this analysis, the cross-covariances of Σβ are chosen to be zero

and thus do not require hyperpriors. The model then takes the form

yi ∼ Poisson(θi), (3.2)

log(θi) = Xiβ,

with prior distributions

β ∼MVN(µβ,Σβ),

µβ ∼MVN(m,S), and

Σβ,ii ∼ IG(ai, bi) i = 1, . . . , p,

where

p = the number of columns in X, and

ai, bi = scalar constants greater than 0.

Hyperparameters m, S, ai, and bi may then be selected in order to represent the a priori

knowledge about the model. The sites pool together in forming the distributions of µβ and

Σβ.

Model 3: Overdispersion

It is often the case that for crash count data the equal mean and variance assumption of

the Poisson likelihood is violated. One method proposed by Miranda-Moreno et al. (2005)

compensates for this fact by letting the mean of the ith Poisson distribution include not only

θ, but a multiplicative factor that has an expected value of 1, but higher or smaller variance.
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This can be achieved by adding a term to the log link that has expected value of zero. The

third model is based on this principle.

The model for this approach is written

yi ∼ Poisson(θi), (3.3)

log(θi) = Xiβ + η,

with

β ∼MVN(µβ,Σβ),

µβ ∼MVN(m,S),

Σβ,ii ∼ IG(ai, bi) i = 1, . . . , p,

η ∼ N(0, τη), and

τη ∼ IG(aη, bη),

where all symbols represent those defined in the hyperprior model. If the data are truly

overdispersed, this model will likely perform better than the first two.

Model 4: Dynamic Linear Model

West and Harrison (1989) describe dynamic linear models as a flexible tool used in Bayesian

forecasting. Leininger, Reese, Burraston, and Rutkowski (2010) utilize a dynamic linear

model to develop criminal career trajectory latent classes. Their model can be extended to

before-after studies by modeling the crash levels over time and paying particular attention

to when the accident remediation was installed. This comprises the fourth model. With

respect to notation, let:

• i index the individual roadway segment; i = 1, 2, . . . , N

• j index the year of interest with j = 1 corresponding to the first year of data; j =

1, . . . , J
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• k index the sites of interest; k = 1, . . . , K

• yij be the number of crashes per mile for the ith observation during the jth time period

• λjk be the expected mean and variance of the number of crashes per mile (after zero-

inflation adjustment as shown in the likelihood) of roadway segments from site k during

the jth time period

• Ci be an indicator for which site the ith roadway segment corresponds to

• πk be the probability that a segment will be in a safe state of no crashes for site k

The likelihood is

N∏
i=1

J∏
j=1

(
K∑
i=1

I(Ci = k)

(
πkI(yij = 0) + (1− πk)

e−λjkλ
yij
jk

yij!

))
. (3.4)

The priors for this analysis are

θ1k ∼ Normal(m1, τ
2
k ), for k = 1, 2, . . . , K where log(λ1k) = θ1k,

θjk ∼ Normal(θj−1,k, τ
2
k ), where log(λjk) = θjk, for j = 2, 3, . . . , J and k = 1, 2, . . . , K ,

πk ∼ Beta(α, β) for k = 1, 2, . . . , K,

α ∼ Gamma(aα, bα),

β ∼ Exponential(c), and

τ 2k ∼ InverseGamma(aτ , bτ ) for k = 1, 2, . . . , K,

where m1, aα, bα, c, aτ , and bτ are constants. This model works as a flexible and smooth

Bayesian regression method.

The complete conditional distributions required for each of these models are contained

in Appendix C. The code utilized to fit each of the models is presented in Appendix D.

Model 5: Traditional Approach

This model was outlined in Section 2.1 as part of the literature review. Reference roadway

segments were obtained by taking half the segment length before and half the segment length
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after the segment of interest. Estimates were obtained for the expected number of crashes

for all of the project sites and reference sites. Confidence intervals were then constructed for

these estimates. The segments for which the project confidence interval and the reference

confidence interval intersect were considered to not have a reduction. Where the project

confidence interval exceeded the reference confidence interval entirely, it was determined

that a reduction occurred.

With the five models outlined, analyses may be performed and results obtained for

determining whether or not cable barriers and raised medians are effective at reducing crash

severity and frequency on Utah roadways.
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chapter 4

RESULTS

This chapter presents the results of the analyses of this project. First, the simulation study

concerning prior sensitivity is discussed. Then model selection results are presented and

followed by goodness of fit results. Methods of summarizing posterior distributions for

before and after studies are then addressed. Results are then presented and discussed from

both the hierarchical and traditional analyses approaches.

4.1 Prior Sensitivity Simulation Study

Simulation Study

An analysis of posterior sensitivity to changes in the prior distributions was performed.

As the amount of data for some roadway segments, particularly for after time periods, is

often quite small, the prior can indeed be very important. The model was fit with different

prior values in order to determine the extent to which the results change based on the prior

distribution.

Model 2 was used for this simulation. For all simulations, m = 0. The varying

parameter values are shown in Table 4.1. These simulations were conducted with varying

sample sizes: 4, 20, and 100. Evaluations of priors were performed with respect to whether

posterior credible intervals capture the actual parameter values.

Table 4.1: Proposed parameter values for simulation study.

Parameter Hyperparameter Values
S Diagonal matrix with elements 1, 10, and 100
Σii ai = 2.01 and bi = 0.01, 0.10, and 0.5
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In order to increase the efficiency of the simulations, a fractional factorial design was

used as discussed by Lawson (2010). This allows the nine main effects to be estimated

without needing to run all 27 parameter combinations (three parameters, including the

varying sample sizes, each with three levels). A list of the runs of the simulation as produced

using the %mktruns() and the %mktex() macros in SAS is shown in Table 4.2. This set of

simulations produces an orthogonal design as desired. Each of the nine simulations was

performed 1,000 times on randomly-generated datasets.

Table 4.2: List of Simulations Performed.

Run Sii bi n
1 1 0.50 20
2 10 0.10 20
3 10 0.01 100
4 10 0.50 4
5 100 0.10 4
6 100 0.50 100
7 100 0.01 20
8 1 0.10 100
9 1 0.01 4

The estimated coverage of the β parameters by 95% highest posterior density (HPD)

credible intervals for each of the varying hyperparameters and sample sizes is shown in Table

4.3. As shown, all of the coverage probabilities are above 0.95. Ideally, the probabilities would

be equal to 0.95. Higher values may indicate that the variances of the posterior distributions

are wider than they need to be for 95% coverage. Additionally, the bias inherent with the

specification of a prior distribution may lead to this result.

Table 4.3: Coverage Probabilities

Sii
Value 1 10 100

Coverage 0.9617 0.9638 0.9620

bi
Value 0.01 0.10 0.50

Coverage 0.9533 0.9646 0.9696

n
Value 4 20 100

Coverage 0.9805 0.9558 0.9512
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With respect to Sii, the coverage is closest to 0.95 when Sii = 1. These three values,

however, are particularly close. Concerning bi, the coverage is closest to 0.95 with bi = 0.01.

These values, however, are also quite close. Larger sample sizes resulted in coverage prob-

abilities closer to 0.95. Having established that the coverage does not change dramatically

with respect to the prior specification, in the final analyses, the analyst may select his or her

prior as deemed appropriate and reasonable.

Prior specification

Based on the simulation study and the desire to obtain narrower credible intervals, it was

determined to use the following prior values: for model 1, let m = 0 and let S be a diagonal

matrix with 1 on the diagonal; for model 2, let m and S be defined as in model 1; also, let

ai be 3.0 and bi be 0.5; for model 3, let m, S, ai and bi be defined as in model 2, and let

aη = 5 and bη = 0.7; finally, for model 4, let m1 be equal to the number of crashes occurring

in the year previous to the first year utilized in the analysis , let aα = 1, bα = 1 and c = 1;

also, let aτ = 5 and bτ = 0.2. All of these priors are fairly non-informative as this is the first

such study conducted by UDOT.

4.2 Model Comparison

Each of the four models was fit using Gibbs sampling with Metropolis-Hastings steps where

required. For each model, 500,000 draws from the posterior distribution were obtained. The

Bayes’ factor, BIC, and DIC for each of the models are presented in Tables 4.4 and 4.5 for

cable barriers and raised medians respectively. The DIC is ultimately the criterion that was

chosen to determine which model to use. This is due to the fact that DIC appropriately

accounts for the hierarchy of a Bayesian hierarchical model. Model 1 performed best for

severe and cross median crashes on cable barriers as well as for severe crashes on raised

medians. Model 3 performed best for overall crashes on cable barriers and for cross median
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crashes on raised medians. Model 4 performed best on overall crashes for raised medians.

Model 2 did not outperform the other models in any case in this analysis.

The conclusion drawn from these results is that the models will perform differently

dependent upon the type of crashes. In some of the cases, the data must have truly been

overdispersed, and thus Model 3 performed best. This was the case with overall crashes on

cable barriers where the number of crashes is larger than other crash types and on cross-

median crashes for raised medians where the mean number of crashes is close to zero, but

the variance is larger. In other cases, the data may not contain extra Poisson variability

and Model 1 worked best. As a general procedure for the UDOT, it is recommend to fit all

the models discussed and use the one that fits best for the given dataset in order to draw

conclusions about whether crashes were reduced by the crash remediation project.

Table 4.4: Model Comparison for Cable Barriers

Severe Crashes
Model log(BF ) BIC pD DIC
1 -76.5032 227.1847 13.9729 146.1595
2 -48.4523 227.7714 16.3499 151.5002
3 -64.9612 280.8125 15.9477 149.2514
4 -247.3220 357.8889 47.2392 199.3991

Cross Median Crashes
Model log(BF ) BIC pD DIC
1 -65.4019 210.7403 12.2102 126.1897
2 -57.7426 211.0670 14.0148 130.1256
3 -60.9852 264.9844 12.6462 126.8204
4 -327.9390 331.0424 39.3265 156.7270

Overall Crashes
Model log(BF ) BIC pD DIC
1 -233.7677 399.1907 20.8409 331.9014
2 -181.7065 397.0614 22.0492 332.1889
3 -198.7380 466.9204 7.5178 318.4995
4 -227.3238 512.5594 49.5394 358.6695
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Table 4.5: Model Comparison for Raised Medians

Severe Crashes
Model log(BF ) BIC pD DIC
1 -129.4234 310.8156 14.7889 239.8416
2 -125.6251 308.8434 17.0195 242.3307
3 -132.5646 367.6025 17.5369 243.4694
4 -460.0211 486.9270 58.4758 268.7063

Cross Median Crashes
Model log(BF ) BIC pD DIC
1 -54.5380 178.9118 8.7846 95.3929
2 -4.9821 171.2600 8.0946 86.8975
3 -34958.9400 227.1173 7.0213 81.9530
4 -754.9060 391.5683 18.0062 92.4083

Overall Crashes
Model log(BF ) BIC pD DIC
1 -440.9719 723.0915 20.2425 663.0246
2 -376.6124 715.2383 22.4042 659.4949
3 -404.8238 782.6950 10.4775 644.4431
4 -381.8761 697.3386 67.6413 496.8489

4.3 Goodness of Fit

After determining the best models according to DIC, it is useful to determine whether or not

the models fit well at all. In order to do this, Bayesian χ2 values and corresponding p-values

are computed for each of the sampled values from the posterior distribution as outlined in

Section 2.6. The proportions of the p-values less than 0.05 are shown in Table 4.6. Values

close to and below 0.05 indicate good fitting models. This table shows that none of the

models fit cross-median crashes particularly well. One hypothesis as to why this occurred

is perhaps that so many of the data values are zero (about 27% are zero for cable barriers

and about 82% are zero for raised medians). Perhaps models 1 through 3 would fit better

for these data if a zero-inflated Poisson likelihood were used. The same reason may apply

to why none of the models fit excellently with the severe crashes (though the proportions of

zero values are smaller for severe crashes). One explanation why the zero-inflated dynamic
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linear model did not fit well in either of these cases is that fit of the dynamic linear model

is more highly dependent upon the prior distributions specified. An additional simulation

study may be required to further explore this hypothesis. For overall crashes, however,

model 3 fits extremely well for cable barriers, and model 4 fits quite well for raised medians,

especially when compared to the other models.

The model with the smallest DIC corresponded with the model that fit best for cross-

median and overall crashes on cable barriers and for overall crashes on raised medians. For

those where the same conclusion is not reached as to the preferable model, none of the models

fit decidedly well. Additional models considering different likelihood and prior specifications

may be explored to see if a model with better fit can be obtained.

Table 4.6: Proportion of Bayesian χ2 P -Values Less Than 0.05

Cable Barriers
Crash Type Model 1 Model 2 Model 3 Model 4
Severe 0.7689 0.7323 0.7822 0.9916
Cross-Median 0.8001 0.8660 0.9381 1.0000
Overall 0.1615 0.0725 0.0468 0.1136

Raised Medians
Crash Type Model 1 Model 2 Model 3 Model 4
Severe 0.4087 0.3921 0.3966 0.9943
Cross-Median 0.9998 1.0000 1.0000 1.0000
Overall 0.7033 0.6664 0.6995 0.0815

The second method for determining goodness of fit of a model did not lead to definitive

conclusions as to which models fit well and which did not. Some problems with this method

may have included the relatively small number of datapoints and the fact that the Poisson

cumulative distribution function is a step function, rather than continuous. Future work

with more observations may yield more success with this method.
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After the goodness of fit analysis, it was determined to use those models selected by

the DIC criterion in order to produce inferential results about the benefit of cable barriers

and raised medians.

4.4 Posterior Summarization

Once the posterior distributions for the model parameters are obtained, they must be sum-

marized appropriately in order to be able to make informed decisions about the effectiveness

of the traffic safety measure. Several meaningful summaries include the posterior distribu-

tion of factor change between before and after periods, the probability of reduction, posterior

credible intervals, and distributions of differences.

Posterior Distribution of Factor Change between Before and After Periods

Comparing θAi with θBi, where θAi represents the mean number of crashes per mile using

the covariates of the ith observation in the after time period and θBi represents the mean

number of crashes per mile using the covariates of the ith observation in the before time

period, is important in posterior summarization for before and after studies. One method of

comparing θAi and θBi is by using the posterior distribution of the ratio
θAi
θBi

.

The posterior distribution of
θAi
θBi

can be obtained using simulation based change of

variables. This principle states that if θi, . . . ,θm are draws from the posterior distribu-

tion π(θ|y), then g(θ1), . . . , g(θm) ∼ π(g(θ)|y) which is the density of the transformed θ

(Hamada et al. 2008). Thus, draws from the posterior distributions of θAi and θBi may be

obtained for a specific level of AADT using the draws from the posterior distributions of βA,

βB, and β1 (the β coefficients in a model where there is an intercept for after and before time

periods and AADT respectively). Draws from the posterior distribution of
θAi
θBi

may then

be obtained by dividing the draws of the posterior distribution of θAi by the draws of the

posterior distribution of θBi . From this distribution, several desired results can be obtained.
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This method of obtaining the posterior of
θAi
θBi

requires that a specific value of AADT

be used to obtain realizations from θAi and θBi . The distribution can also be obtained

without using specific AADT values if the coefficient for AADT is modeled the same for

before and after periods. Mathematically, θAi and θBi are denoted by

θA = exp(βA + β1AADTi), and (4.1)

θB = exp(βB + β1AADTi), (4.2)

where βB and βA correspond to the before and after intercepts respectively, and β1 is the

coefficient for the AADT covariate. The ratio of θAi and θBi, simplified to reflect the case

where only the intercept is modeled differently for before and after time periods, is

θAi
θBi

=
exp(βA + β1AADTi)

exp (βB + β1AADTi)
(4.3)

= exp(βA − βB + β1AADTi − β1AADTi)

= exp(βA − βB).

Note that the final expression of Equation 4.3 is no longer dependent upon i. Thus, when

only the intercept is changed for before and after analyses, the exponentiated distribution

of the differences βA − βB is utilized to obtain the posterior distribution of
θAi
θBi

.

When this distribution is obtained, it may be represented graphically with a kernel

density estimation. This allows the researcher to see how the after crashes compare to the

before crashes in much more detail. The distribution conveys more than just a summary

statistic.

Probability of Reduction

The posterior distribution of
θAi
θBi

also allows the researcher to declare a probability of reduc-

tion in crashes. This is calculated as the proportion of simulated values from the posterior

of
θAi
θBi

that are below one.
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The reporting of this probability is a highly valuable feature of Bayesian hierarchical

analysis that allows DOTs to independently determine what probability of decrease qualifies

a project, from their perspective, as effective.

Credible Intervals

The posterior distribution of
θAi
θBi

also results in the ability to measure the extent of the

increase or decrease in crashes. This is done well by using the posterior mean or median and

credible intervals.

A 95% HPD credible interval is the interval such that 95% of the posterior density is

contained within the interval and the posterior density value of no point outside the HPD

interval exceeds that of any point inside the interval (Carlin and Louis 2009). This interval

is interpreted by stating that there is a 0.95 probability that the true factor reduction of

crashes between the before and after periods is somewhere in the range of the interval. This

intuitive interpretation is a key advantage of Bayesian methods.

Distributions of Differences

The distribution of differences in mean number of severe crashes calculated with after minus

before for a specific segment is also a useful posterior summary. Negative values suggest that

the mean number of crashes was decreased between the before and after time periods.

An additional distribution of differences that is of interest is the posterior predictive

distribution of differences. This distribution shows the probability that there were x fewer

crashes per year per mile in the after period. From this distribution more specific proba-

bilities, such as the probability that crashes were reduced by five or more crashes, can be

calculated. This distribution is extremely useful when quantifying the true benefit of a safety

project.
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These posterior summaries are particularly useful for evaluating efficacy of traffic

safety remediation in before-after studies. Similar results are available using the posterior

distributions of the dynamic linear model.

4.5 Before-After Study Results

The results of the models selected using DIC for both cable barriers and raised medians

for each crash type are now presented. A complete set of plots representing the posterior

distribution of factor change and the posterior predictive distributions of differences for each

site with respect to each type of crash is presented in Appendix A.

Cable Barriers

severe crashes Model 1 was selected to analyze the severe crash data evaluating cable

barriers. The results are presented in Table 4.7. Sites 2 and 6 were most successful in having

a reduction of crashes after the cable barriers were installed, with probabilities of reduction

equal to 0.96 and 0.94 respectively. Moderate success is also observed on sites 4, 5, and

7 where the probability of reduction is above 0.80. Though the other sites have no strong

indication of reduction, none of them show indication that severe crashes were increased by

the cable barriers.

Table 4.7: Results for Severe Crashes on Cable Barriers.

Probability Lower Median Upper
of Factor Factor Factor

Site Route Decrease Change Change Change
1 15 0.67 0.15 0.77 2.12
2 15 0.96 0.01 0.24 0.90
3 15 0.59 0.12 0.86 2.50
4 15 0.81 0.05 0.56 1.63
5 15 0.81 0.02 0.48 1.81
6 215 0.94 0.01 0.26 1.04
7 215 0.83 0.03 0.49 1.65
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cross-median crashes Model 1 was utilized to analyze the cross-median crash data for

cable barriers. The results are presented in Table 4.8. Site 2 had the most drastic result

with a 0.94 probability of reduction. Sites 6 and 7 also have large probabilities of reduction.

The remaining three sites have probabilities greater than or equal to 0.70. It is therefore

concluded that cable barriers are quite effective at reducing cross-median crashes.

Table 4.8: Results for Cross-Median Crashes on Cable Barriers

Probability Lower Median Upper
of Factor Factor Factor

Site Route Decrease Change Change Change
1 15 0.74 0.04 0.61 2.19
2 15 0.94 0.02 0.31 1.05
3 15 0.78 0.03 0.54 2.00
4 15 0.70 0.03 0.65 2.51
5 15 0.72 0.02 0.58 2.52
6 215 0.89 0.01 0.34 1.44
7 215 0.88 0.01 0.35 1.51

overall crashes Model 3 was used to produce the results for overall crashes on cable

barriers. These results are displayed in Table 4.9. The only site with an impressive proba-

bility of reduction in crashes was site 6 with a probability of 1.00. Several of the sites have

very low probabilities that indicate that overall crashes are not decreased by cable-barriers.

Table 4.9: Results for Overall Crashes on Cable Barriers

Probability Lower Median Upper
of Factor Factor Factor

Site Route Decrease Change Change Change
1 15 0.01 1.02 1.46 1.99
2 15 0.26 0.60 1.21 2.07
3 15 0.00 1.34 1.96 2.69
4 15 0.00 1.13 1.51 1.95
5 15 0.67 0.66 0.94 1.24
6 215 1.00 0.28 0.53 0.82
7 215 0.00 1.13 1.56 2.07

37



Overall, it appears that cable barriers were quite effective at reducing severe crashes

and cross-median crashes, although they were ineffective at reducing overall crashes. It is

therefore asserted that cable barriers should continue to be implemented at locations where

severe crashes are high, particularly when many are the result of crossing over the median

of the highway.

Raised Medians

severe crashes Model 1 was used to evaluate the reduction of severe crashes on raised

median sites. These results are shown in Table 4.10. Sites 1 and 3 have high probabilities of

reduction of severe crashes, 1.00 and 0.99 respectively. Sites 5 and 6 also have probabilities

of reduction greater than 0.80. For sites 2 and 4, it is likely that there was no effect of the

raised medians on severe crashes.

Table 4.10: Results for Severe Crashes on Raised Medians

Probability Lower Median Upper
of Factor Factor Factor

Site Route Decrease Change Change Change
1 265 1.00 0.21 0.41 0.67
2 74 0.41 0.11 1.20 4.50
3 186 0.99 0.11 0.35 0.77
4 71 0.46 0.42 1.03 2.04
5 34 0.85 0.11 0.56 1.41
6 36 0.90 0.04 0.40 1.30

cross-median crashes Cross-median crashes on raised medians were fit using model 3.

The results of this analysis are shown in Table 4.11. None of the sites appear to have

undergone a reduction in cross-median crashes due to the raised medians. Perhaps this is

because of the inherently low values of cross-median crashes on raised medians. The lack of

fit of this model may also be influential in obtaining this result.
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Table 4.11: Results for Cross-Median Crashes on Raised Medians

Probability Lower Median Upper
of Factor Factor Factor

Site Route Decrease Change Change Change
1 265 0.03 0.03 11.26 258.44
2 74 0.17 0.00 4.44 94.28
3 186 0.14 0.01 5.21 120.33
4 71 0.10 0.05 4.93 56.29
5 34 0.08 0.02 8.27 195.26
6 36 0.32 0.00 2.08 33.61

overall crashes The dynamic linear model (model 4) was selected to model overall

crashes on raised medians. This model both had a dramatically lower DIC and a better fit

than the other three models for the same data. Figures 4.1 through 4.6 show the graphical

representations of the dynamic linear model. As an explanation of the figures, the data are

indicated with points, the center dotted band represents the posterior median, the dashed

bands are 95% HPD credible intervals for the mean, and the dashed-dotted bands are 95%

HPD credible intervals for the predictive distribution. The vertical solid line indicates the

installation year.

The posterior medians follow the data quite well. This model, especially for site 1 due

to the downward spike, may indeed be overfitting the data. It is noted that the number of

overall crashes on raised medians is relatively high compared to the number of other crashes

in the analysis. Perhaps the prior specification favored models where the mean number

of crashes would be larger. This would potentially explain why the dynamic linear model

performed so well in this case, but worse with the other response variables. For these data,

the dynamic linear model appears to be very effective.

Table 4.12 presents comparable results for model 4 as were shown for data analyzed

with models 1 and 3. The before and after distributions of means were created by using

simulation-based change of variables to produce average distributions of the before and after

periods. These were then used to compare the treatments as with models 1 and 3. The
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Figure 4.1: Dynamic Linear Model for Site 1.
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Figure 4.2: Dynamic Linear Model for Site 2.
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Figure 4.3: Dynamic Linear Model for Site 3.
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Figure 4.4: Dynamic Linear Model for Site 4.
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Figure 4.5: Dynamic Linear Model for Site 5.

●
●

●

●

●

●

●

●

●

●

●

1998 2000 2002 2004 2006 2008

0
5

10
15

20
25

30

Year

O
ve

ra
ll 

C
ra

sh
es

 p
er

 M
ile

Figure 4.6: Dynamic Linear Model for Site 6.
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probability of reduction in crashes is high for sites 3, 5, and 6. These sites almost certainly

had a reduction of crashes in the after period, as may be observed in their respective dynamic

linear model figures. In the case of sites 1 and 4, there appears to have been an increase in

overall crashes. Limitations of this dynamic linear model, however, include that no covariate

for AADT was utilized in the analysis. Perhaps crashes increased on those roadways simply

because the traffic volume increased. In any case, the dynamic linear model appears to have

been effective in establishing the efficacy of raised medians in reducing overall crashes on

several of the study sites.

Table 4.12: Results for Overall Crashes on Raised Medians

Probability Lower Median Upper
of Factor Factor Factor

Site Route Decrease Change Change Change
1 265 0.04 0.98 1.13 1.28
2 74 0.56 0.59 0.96 1.45
3 186 0.95 0.63 0.81 1.02
4 71 0.00 1.34 1.50 1.66
5 34 1.00 0.56 0.69 0.82
6 36 0.94 0.39 0.69 1.04

All crash types considered, the raised medians appear to be effective at reducing

severe and, to a large extent, overall crashes. Cross-median crashes, however, do not appear

to be reduced by raised medians.

4.6 Traditional Results

The traditional model as described in Section 2.1 was also utilized to determine which sites

had a reduction of crashes due to the respective safety project. The reference population

was formed from the segments of roadway just before and just after the segments where the

safety project was implemented. While a more diverse and larger reference population may

be obtained, this reference ought to provide detail as to whether or not any reduction of

crashes is occurring due to the safety project. One potential confounding variable is the fact
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that there may be residual benefits of the raised median or cable barrier on the roadway

segments just before or just after where the safety measure was installed.

The SPFs and overdispersion parameters were estimated with negative binomial re-

gression using AADT and segment length as predictor variables. Only the after period was

considered. Separate analyses were conducted for each year as the number of after years for

each site was not uniform.

The results of this analysis are presented in Appendix B. While this analysis is some-

what simplified as compared to the full set of procedures described by Hauer et al. (2002)

and AASHTO (2010), the results show that the only improvement on all study sites over all

crash and safety project types were overall crashes for cable barriers on site 1 during all years

and on site 4 during 2008. Enough tests were performed, however, that the Type I error rate

is expected to be inflated. The hierarchical Bayesian approach yields more interpretable and

dependable results without the need to obtain data from a reference population or construct

an SPF separately from the overall analysis.
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chapter 5

CONCLUSION

In this project, five models for evaluating efficacy of safety projects by DOTs across the

United States have been presented. Three of these models are variations of Bayesian Poisson

regression. One of these models used a dynamic linear model under the zero-inflated Poisson

likelihood to model the crash data. An additional model represented traditional approaches

used commonly by civil engineers in evaluating safety projects.

The model that fits best is not always clear before modeling the data itself. It is

recommended that DOTs fit several models for their specific data, perhaps all five discussed

in this project, and use DIC and goodness of fit measures in order to select the best model

for their situation. This process can be largely automated for improvement of efficiency and

for ease of implementation. The results obtained from Bayesian analyses provides strong

flexibility and interpretation in making decisions about how to utilize safety budgets most

effectively to save lives on U.S. roadways.

The analyses show that cable barriers are very effective at reducing severe and cross-

median crashes. Raised medians are also quite effective at reducing severe crashes. Now

efficacy is established, these models may be extended and used to identify sites that will

likely benefit most from these and other safety projects.

Future work with this project involves determining the prior sensitivity of the dynamic

linear models and developing methods for eliciting effective prior distributions for such a

model. Also, it would be interesting to extend the Poisson regression in models 1 through 3

to a zero-inflated Poisson likelihood in certain situations—such as with cross-median crashes.

These models should be compared to those presented in this research using DIC and goodness
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of fit procedures in order to determine which models perform best for before-after studies of

traffic remediation projects.

Overall, the effects of this project on safety can be extremely beneficial in determining

the efficacy of existing and new safety projects. DOTs can use these principles to continually

evaluate their efforts in order to determine how to best serve the public and save lives of the

citizens who drive on their roadways each day.
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appendix a

HIERARCHICAL MODEL RESULTS

This appendix contains a complete set of results for each type of crash for both cable barriers

and raised medians. The plot on the left represents the factor change in crashes between the

before and after periods. Values larger than 1 indicate an increase in crashes while values

less than 1 indicate a reduction in crashes. The plot on the right is the posterior predictive

distribution of differences, which is the probability of a certain number of crashes being

reduced (negative numbers) or increased (positive numbers) between the before and after

time periods.
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Figure A.1: Severe Crash Results on Cable Barriers for Site 1.
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Figure A.2: Severe Crash Results on Cable Barriers for Site 2.
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Figure A.3: Severe Crash Results on Cable Barriers for Site 3.
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Figure A.4: Severe Crash Results on Cable Barriers for Site 4.
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Figure A.5: Severe Crash Results on Cable Barriers for Site 5.
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Figure A.6: Severe Crash Results on Cable Barriers for Site 6.
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Figure A.7: Severe Crash Results on Cable Barriers for Site 7.
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Cross-Median Crashes
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Figure A.8: Cross-Median Crash Results on Cable Barriers for Site 1.
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Figure A.9: Cross-Median Crash Results on Cable Barriers for Site 2.
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Figure A.10: Cross-Median Crash Results on Cable Barriers for Site 3.
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Figure A.11: Cross-Median Crash Results on Cable Barriers for Site 4.
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Figure A.12: Cross-Median Crash Results on Cable Barriers for Site 5.
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Figure A.13: Cross-Median Crash Results on Cable Barriers for Site 6.
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Figure A.14: Cross-Median Crash Results on Cable Barriers for Site 7.
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Figure A.15: Overall Crash Results on Cable Barriers for Site 1.
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Figure A.16: Overall Crash Results on Cable Barriers for Site 2.
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Figure A.17: Overall Crash Results on Cable Barriers for Site 3.
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Figure A.18: Overall Crash Results on Cable Barriers for Site 4.
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Figure A.19: Overall Crash Results on Cable Barriers for Site 5.
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Figure A.20: Overall Crash Results on Cable Barriers for Site 6.
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Figure A.21: Overall Crash Results on Cable Barriers for Site 7.
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Figure A.22: Severe Crash Results on Raised Medians for Site 1.
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Figure A.23: Severe Crash Results on Raised Medians for Site 2.
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Figure A.24: Severe Crash Results on Raised Medians for Site 3.
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Figure A.25: Severe Crash Results on Raised Medians for Site 4.
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Figure A.26: Severe Crash Results on Raised Medians for Site 5.
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Figure A.27: Severe Crash Results on Raised Medians for Site 6.
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Figure A.28: Cross-Median Crash Results on Raised Medians for Site 1.
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Figure A.29: Cross-Median Crash Results on Raised Medians for Site 2.
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Figure A.30: Cross-Median Crash Results on Raised Medians for Site 3.
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Figure A.31: Cross-Median Crash Results on Raised Medians for Site 4.
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Figure A.32: Cross-Median Crash Results on Raised Medians for Site 5.
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Figure A.33: Cross-Median Crash Results on Raised Medians for Site 6.
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Figure A.34: Overall Crash Results on Raised Medians for Site 1.
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Figure A.35: Overall Crash Results on Raised Medians for Site 2.
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Figure A.36: Overall Crash Results on Raised Medians for Site 3.
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Figure A.37: Overall Crash Results on Raised Medians for Site 4.
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Figure A.38: Overall Crash Results on Raised Medians for Site 5.
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Figure A.39: Overall Crash Results on Raised Medians for Site 6.
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appendix b

TRADITIONAL METHOD RESULTS

The following results were obtained using the traditional method discussed in Section 2.1.

Results are presented for both raised medians and cable barriers concerning all three crash

types. Improvement, which is indicated in the last column of each of the tables, was deter-

mined by whether or not the confidence intervals, which are created by

Nexpected ± 2 ∗ σ̂, (B. 1)

where σ is estimated by Hauer et al. (2002) as

σ̂ =
√

(1− w)×Nexpected, (B. 2)

for the safety project sites and the reference sites overlapped. Using this method, the only

improvement occurred on overall crashes for cable barriers.
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B.1 Cable Barriers

Table B.1: Results of Traditional Analysis for Severe Crashes on Cable Barriers

Project Site Reference Site

Site Year w Nexp Nobs LB UP w Nexp Nobs LB UB Imp.

1 2005 0.72 2.57 3 0.88 4.27 0.60 4.85 6 2.08 7.63 No
1 2006 0.71 3.57 6 1.53 5.62 0.58 3.42 2 1.03 5.80 No
1 2007 0.69 2.54 2 0.77 4.30 0.56 6.23 8 2.92 9.53 No
1 2008 0.73 2.26 2 0.68 3.83 0.61 4.76 6 2.04 7.49 No
2 2006 0.96 0.26 0 0.05 0.46 0.96 0.25 0 0.05 0.46 No
2 2007 0.96 0.26 0 0.05 0.47 0.96 0.30 1 0.08 0.52 No
2 2008 0.96 0.26 0 0.05 0.46 0.96 0.26 0 0.05 0.46 No
3 2006 0.67 4.01 6 1.72 6.31 0.54 6.04 7 2.72 9.36 No
3 2007 0.66 3.78 5 1.52 6.03 0.56 4.04 3 1.38 6.70 No
3 2008 0.68 3.32 4 1.24 5.40 0.58 3.90 3 1.33 6.47 No
4 2007 0.57 6.16 8 2.89 9.42 0.48 6.85 7 3.08 10.61 No
4 2008 0.61 2.41 0 0.48 4.33 0.54 4.74 4 1.78 7.71 No
5 2008 0.61 2.85 1 0.73 4.96 0.45 4.00 1 1.02 6.98 No
6 2008 0.89 0.68 0 0.13 1.22 0.91 0.59 0 0.12 1.06 No
7 2008 0.70 2.46 2 0.74 4.18 0.74 2.39 3 0.82 3.97 No
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Table B.2: Results of Traditional Analysis for Cross-Median Crashes on Cable Barriers

Project Site Reference Site

Site Year w Nexp Nobs LB UP w Nexp Nobs LB UB Imp.

1 2005 0.57 2.20 4 0.26 4.14 0.53 2.90 5 0.56 5.23 No
1 2006 0.57 0.94 1 -0.34 2.21 0.52 0.56 0 -0.47 1.59 No
1 2007 0.56 0.51 0 -0.43 1.46 0.52 0.57 0 -0.48 1.61 No
1 2008 0.58 0.50 0 -0.42 1.41 0.53 1.01 1 -0.36 2.39 No
2 2006 0.74 0.31 0 -0.26 0.88 0.74 0.31 0 -0.26 0.87 No
2 2007 0.74 0.57 1 -0.21 1.35 0.74 0.31 0 -0.26 0.88 No
2 2008 0.74 0.57 1 -0.20 1.34 0.74 0.57 1 -0.20 1.34 No
3 2006 0.41 0.69 0 -0.58 1.96 0.37 0.74 0 -0.63 2.10 No
3 2007 0.41 2.46 3 0.05 4.87 0.38 1.98 2 -0.24 4.20 No
3 2008 0.41 1.86 2 -0.23 3.95 0.38 1.34 1 -0.48 3.17 No
4 2007 0.38 3.22 4 0.39 6.06 0.35 2.71 3 0.06 5.36 No
4 2008 0.39 0.71 0 -0.60 2.02 0.37 3.90 5 0.76 7.05 No
5 2008 0.46 1.17 1 -0.42 2.76 0.41 0.69 0 -0.59 1.98 No
6 2008 0.73 0.32 0 -0.27 0.92 0.74 0.31 0 -0.26 0.88 No
7 2008 0.53 0.55 0 -0.47 1.56 0.55 0.53 0 -0.45 1.51 No

Table B.3: Results of Traditional Analysis for Overall Crashes on Cable Barriers

Project Site Reference Site

Site Year w Nexp Nobs LB UP w Nexp Nobs LB UB Imp.

1 2005 0.13 82.23 82 65.31 99.15 0.09 123.15 123 101.99 144.31 Yes
1 2006 0.12 70.48 68 54.76 86.19 0.09 111.90 110 91.68 132.12 Yes
1 2007 0.12 86.84 86 69.34 104.34 0.08 155.73 157 131.80 179.65 Yes
1 2008 0.13 80.30 80 63.60 97.00 0.09 156.46 160 132.63 180.28 Yes
2 2006 0.43 14.40 13 8.70 20.11 0.44 14.91 14 9.11 20.70 No
2 2007 0.43 12.78 10 7.39 18.16 0.43 10.46 6 5.59 15.33 No
2 2008 0.44 23.99 30 16.63 31.35 0.44 17.21 18 10.97 23.44 No
3 2006 0.08 139.12 139 116.51 161.72 0.06 110.92 105 90.45 131.38 No
3 2007 0.08 187.29 191 161.03 213.55 0.06 126.55 122 104.73 148.38 No
3 2008 0.08 204.13 210 176.76 231.50 0.06 126.21 122 104.44 147.98 No
4 2007 0.06 206.36 207 178.50 234.21 0.05 245.39 245 214.80 275.97 No
4 2008 0.07 178.38 179 152.60 204.16 0.05 250.94 253 220.14 281.74 Yes
5 2008 0.08 153.42 154 129.64 177.20 0.05 189.53 187 162.69 216.37 No
6 2008 0.30 20.07 16 12.55 27.60 0.32 31.57 34 22.31 40.84 No
7 2008 0.11 145.93 152 123.18 168.69 0.13 109.37 113 89.84 128.89 No
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B.2 Raised Medians

Table B.4: Results of Traditional Analysis for Severe Crashes on Raised Medians

Project Site Reference Site

Site Year w Nexp Nobs LB UP w Nexp Nobs LB UB Imp.

1 2003 0.40 2.60 3 0.09 5.10 0.39 3.25 4 0.43 6.08 No
1 2004 0.38 3.89 5 0.79 7.00 0.38 5.18 7 1.58 8.77 No
1 2005 0.38 3.27 4 0.43 6.12 0.38 3.30 4 0.43 6.17 No
1 2006 0.35 2.13 2 -0.22 4.47 0.38 0.80 0 -0.60 2.20 No
1 2007 0.33 2.22 2 -0.23 4.66 0.32 2.24 2 -0.23 4.71 No
1 2008 0.34 1.52 1 -0.49 3.53 0.33 0.87 0 -0.66 2.39 No
2 2003 0.41 1.35 1 -0.43 3.13 0.48 0.67 0 -0.51 1.84 No
2 2004 0.41 1.35 1 -0.43 3.13 0.48 1.19 1 -0.38 2.76 No
2 2005 0.41 2.52 3 0.09 4.96 0.46 2.30 3 0.08 4.52 No
2 2006 0.41 0.76 0 -0.58 2.11 0.46 0.70 0 -0.53 1.92 No
2 2007 0.41 0.77 0 -0.58 2.11 0.46 1.24 1 -0.40 2.87 No
2 2008 0.41 0.76 0 -0.58 2.10 0.46 0.69 0 -0.52 1.91 No
3 2002 0.35 5.42 7 1.66 9.18 0.31 4.32 5 0.88 7.76 No
3 2003 0.35 2.16 2 -0.22 4.53 0.32 3.62 4 0.47 6.77 No
3 2004 0.35 5.42 7 1.66 9.18 0.34 6.78 9 2.55 11.00 No
3 2005 0.35 2.15 2 -0.22 4.51 0.34 6.12 8 2.10 10.13 No
3 2006 0.27 1.69 1 -0.54 3.91 0.27 3.14 3 0.11 6.18 No
3 2007 0.26 1.70 1 -0.54 3.94 0.25 4.70 5 0.95 8.45 No
3 2008 0.26 1.69 1 -0.54 3.93 0.25 1.71 1 -0.55 3.97 No
4 2005 0.44 4.66 7 1.42 7.89 0.44 1.85 2 -0.19 3.89 No
4 2006 0.43 1.31 1 -0.42 3.03 0.44 0.73 0 -0.55 2.02 No
4 2007 0.43 3.60 5 0.73 6.47 0.43 2.43 3 0.09 4.78 No
4 2008 0.44 0.73 0 -0.55 2.01 0.44 1.29 1 -0.41 2.98 No
5 2007 0.35 2.13 2 -0.22 4.48 0.41 0.76 0 -0.58 2.10 No
5 2008 0.36 0.83 0 -0.63 2.28 0.42 0.75 0 -0.56 2.06 No
6 2006 0.36 1.47 1 -0.47 3.41 0.36 1.47 1 -0.47 3.41 No
6 2007 0.35 0.84 0 -0.64 2.31 0.35 0.84 0 -0.64 2.31 No
6 2008 0.40 0.78 0 -0.59 2.14 0.40 1.37 1 -0.44 3.19 No
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Table B.5: Results of Traditional Analysis for Cross-Median Crashes on Raised Medians

Project Site Reference Site

Site Year w Nexp Nobs LB UP w Nexp Nobs LB UB Imp.

1 2003 0.55 0.17 0 -0.39 0.72 0.53 0.17 0 -0.40 0.75 No
1 2004 0.52 0.18 0 -0.40 0.76 0.51 0.18 0 -0.41 0.77 No
1 2005 0.52 0.18 0 -0.40 0.76 0.51 0.18 0 -0.41 0.77 No
1 2006 0.48 0.19 0 -0.44 0.83 0.52 0.18 0 -0.40 0.75 No
1 2007 0.43 1.35 2 -0.40 3.10 0.42 0.22 0 -0.49 0.92 No
1 2008 0.45 0.76 1 -0.54 2.05 0.44 0.21 0 -0.48 0.90 No
2 2003 0.71 0.11 0 -0.25 0.46 0.74 0.10 0 -0.22 0.41 No
2 2004 0.71 0.11 0 -0.25 0.46 0.74 0.10 0 -0.22 0.41 No
2 2005 0.71 0.11 0 -0.25 0.46 0.72 0.10 0 -0.24 0.45 No
2 2006 0.71 0.40 1 -0.28 1.09 0.72 0.11 0 -0.24 0.45 No
2 2007 0.70 0.11 0 -0.25 0.47 0.71 0.11 0 -0.24 0.45 No
2 2008 0.71 0.11 0 -0.25 0.46 0.72 0.10 0 -0.24 0.45 No
3 2002 0.63 0.14 0 -0.31 0.58 0.58 0.16 0 -0.36 0.67 No
3 2003 0.63 0.14 0 -0.31 0.59 0.58 0.15 0 -0.35 0.66 No
3 2004 0.63 0.14 0 -0.31 0.58 0.62 0.14 0 -0.32 0.60 No
3 2005 0.64 0.14 0 -0.31 0.58 0.62 0.14 0 -0.32 0.60 No
3 2006 0.49 0.70 1 -0.50 1.90 0.49 0.19 0 -0.43 0.81 No
3 2007 0.48 0.72 1 -0.51 1.94 0.46 0.20 0 -0.46 0.86 No
3 2008 0.48 0.19 0 -0.44 0.82 0.46 0.20 0 -0.45 0.85 No
4 2005 0.63 0.14 0 -0.31 0.59 0.63 0.14 0 -0.31 0.59 No
4 2006 0.62 1.67 4 0.07 3.27 0.63 0.14 0 -0.32 0.59 No
4 2007 0.61 0.14 0 -0.33 0.61 0.62 0.14 0 -0.32 0.60 No
4 2008 0.63 0.14 0 -0.31 0.59 0.63 0.14 0 -0.31 0.59 No
5 2007 0.60 0.94 2 -0.28 2.16 0.53 0.17 0 -0.39 0.74 No
5 2008 0.62 0.53 1 -0.37 1.42 0.55 0.17 0 -0.38 0.71 No
6 2006 0.59 0.15 0 -0.35 0.65 0.59 0.56 1 -0.40 1.53 No
6 2007 0.58 0.58 1 -0.41 1.58 0.58 0.16 0 -0.36 0.67 No
6 2008 0.65 0.13 0 -0.29 0.55 0.65 0.13 0 -0.29 0.55 No

79



Table B.6: Results of Traditional Analysis for Overall Crashes on Raised Medians

Project Site Reference Site

Site Year w Nexp Nobs LB UP w Nexp Nobs LB UB Imp.

1 2003 0.02 78.94 79 61.39 96.49 0.02 60.50 60 45.13 75.87 No
1 2004 0.02 115.26 116 94.03 136.48 0.02 104.59 105 84.36 124.82 No
1 2005 0.02 105.48 106 85.17 125.78 0.02 91.87 92 72.91 110.83 No
1 2006 0.02 29.37 28 18.63 40.10 0.02 17.53 16 9.25 25.81 No
1 2007 0.02 117.00 117 95.54 138.46 0.02 85.59 85 67.23 103.95 No
1 2008 0.02 82.48 82 64.48 100.49 0.02 47.15 46 33.53 60.76 No
2 2003 0.06 13.99 13 6.75 21.22 0.06 9.31 8 3.40 15.21 No
2 2004 0.06 14.92 14 7.45 22.40 0.06 6.51 5 1.57 11.45 No
2 2005 0.06 23.35 23 14.00 32.70 0.06 13.14 12 6.10 20.18 No
2 2006 0.06 12.13 11 5.38 18.87 0.06 18.81 18 10.39 27.24 No
2 2007 0.06 17.76 17 9.60 25.91 0.06 15.05 14 7.51 22.58 No
2 2008 0.06 12.11 11 5.38 18.85 0.06 13.14 12 6.10 20.18 No
3 2002 0.05 69.34 71 53.10 85.58 0.04 80.57 82 62.98 98.16 No
3 2003 0.05 59.87 61 44.78 74.96 0.04 62.29 63 46.83 77.75 No
3 2004 0.05 73.16 75 56.48 89.84 0.05 70.42 72 54.04 86.79 No
3 2005 0.05 54.11 55 39.77 68.45 0.05 62.79 64 47.33 78.25 No
3 2006 0.03 39.76 39 27.33 52.18 0.03 33.91 33 22.44 45.39 No
3 2007 0.03 51.46 51 37.32 65.60 0.03 35.00 34 23.32 46.67 No
3 2008 0.03 70.87 71 54.28 87.47 0.03 38.88 38 26.57 51.18 No
4 2005 0.04 168.77 173 143.25 194.29 0.04 39.50 39 27.16 51.85 No
4 2006 0.03 153.58 157 129.22 177.94 0.03 47.24 47 33.74 60.75 No
4 2007 0.03 163.32 167 138.19 188.45 0.03 62.72 63 47.15 78.28 No
4 2008 0.04 121.52 124 99.87 143.18 0.04 52.99 53 38.69 67.29 No
5 2007 0.04 114.13 117 93.20 135.06 0.02 66.46 66 50.34 82.59 No
5 2008 0.04 104.32 107 84.33 124.30 0.02 37.06 36 25.03 49.10 No
6 2006 0.04 10.55 9 4.17 16.93 0.04 21.15 20 12.12 30.18 No
6 2007 0.03 16.36 15 8.41 24.31 0.03 27.95 27 17.56 38.34 No
6 2008 0.05 11.39 10 4.80 17.99 0.05 7.58 6 2.20 12.96 No
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appendix c

COMPLETE CONDITIONAL DISTRIBUTIONS

This appendix presents the complete conditional distributions required for Gibbs sampling

in this project. Note that for this project and for all of the derivations of the complete con-

ditional distributions presented here, prior covariances of multivariate normal distributions

are set to be zero. This appears to be a reasonable decision based on our lack of detailed

prior information.

C.1 Model 1

This model does not require complete conditional distributions because the entire posterior

distribution can be sampled from using the Metropolis-Hastings algorithm. The posterior

distribution takes the form

π(β|y) ∝ exp

[
n∑
i=1

exp(Xiβ)

][
n∏
i=1

exp(yiXiβ)

]
exp

[
−1

2

p∑
j=1

(βj − µj)2

σ2
j

]
(C. 1)

where the X and β matrices are defined appropriately and the µ and σ parameters are prior

constants.

C.2 Model 2

The complete conditional distributions for this model are defined below.

[βjk] ∝ exp

(
−

n∑
i=1

exp(Xiβ)

)
×

n∏
i=1

exp(yiXiβ) ×

exp(−[2σ2
k]
−1(βjk − µβk)2)

[µβj ] ∼ N

(
σ2
µβk

∑K
k=1 βjk + σ2

βk
µµβk

Kσ2
µβk

+ σ2
βk

,
σ2
µβk
σ2
βk

Kσ2
µβk

+ σ2
βk

)

81



[σ2
βj

] ∼ IG

ak +
K

2
,

[
1

2

K∑
k=1

(βjk − µβk)2 +
1

bk

]−1
C.3 Model 3

The complete conditional distributions for this model are presented in the equations that

follow.

[βkj] ∝ exp

(
−

n∑
i=1

exp(Xiβ)

)
×

n∏
i=1

exp(yiXiβ) × exp(−[2σ2
k]
−1(βjk − µk)2)

[µk] ∼ Normal

(
S2
∑J

j=1 βkj + σ2
km

S2J + σ2
k

,
σ2
k + S2

S2J + σ2
k

)

[σ2
k] ∼ IG

ak + J/2,

[
1

2

J∑
j=1

(βkj − µk)2 +
1

bk

]−1
[ηt] ∝

N∏
i=1

Poissonpmf (θiηt)Gammapdf (ηt, φt, 1/φy)

[φt] ∝ Gammapdf (ηt, φt, 1/φt)Gammapdf (φt, aφ, bφ)

C.4 Model 4

The complete conditional distributions for the dynamic linear model are shown below.

[θ1k] ∝
∏
i:Ci=k

[
π1k(I(yi1 = 0)) + (1− π1k)

exp(− exp(θ1k)) exp(θ1kyi1)

yi1!

]
×

exp

(
− 1

2τ 2k
(θ1k −m1)

2

)
× exp

(
− 1

2τ 2k
(θ2k − θ1k)2

)
∝
∏
i:Ci=k

[
π1k(I(yi1 = 0)) + (1− π1k)

exp(− exp(θ1k)) exp(θ1kyi1)

yi1!

]
×

exp

(
− 1

τ 2k
[θ1k(θ1k −m1 − θ2k)]

)
[θjk]

∗ ∝
∏
i:Ci=k

[
πjk(I(yij = 0)) + (1− πjk)

exp(− exp(θjk)) exp(θjkyij)

yij!

]
×

exp

(
− 1

2τ 2k
(θjk − θj−1,k)2

)
× exp

(
− 1

2τ 2k
(θj+1,k − θjk)2

)
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∝
∏
i:Ci=k

[
πjk(I(yij = 0)) + (1− πjk)

exp(− exp(θjk)) exp(θjkyij)

yij!

]
×

exp

(
− 1

τ 2k
[θjk(θjk − θj−1,k − θj+1,k)]

)
∗for j = 2, . . . , J − 1

[θJk] ∝
∏
i:Ci=k

[
πJk(I(yiJ = 0)) + (1− πJk)

exp(− exp(θJk)) exp(θJkyiJ)

yiJ !

]
×

exp

(
− 1

2τ 2k
(θJk − θJ−1,k)2

)
∝
∏
i:Ci=k

[
πJk(I(yiJ = 0)) + (1− πJk)

exp(− exp(θJk)) exp(θJkyiJ)

yiJ !

]
×

exp

(
− 1

2τ 2k
[θ2Jk − 2θJkθJ−1,k]

)
[πjk] ∝

∏
i:Ci=k

[
πJk(I(yij = 0)) + (1− πjk)

exp(− exp(θjk)) exp(θjkyiJ)

yij!

]
πα−1jk (1− πjk)β−1

[α] ∝
J∏
j=1

K∏
k=1

[
Γ(α + β)

Γ(α)
πα−1jk

]
αaα−1 exp

(
α

bα

)

∝
[

Γ(α + β)

Γ(α)

]JK
exp

(
−α

(
−

J∑
j=1

k∑
k=1

log(πjk) +
1

bα

))
αaα−1

[β] ∝
J∏
j=1

K∏
k=1

[
Γ(α + β)

Γ(β)
(1− πjk)β−1

]
exp

(
−β
c

)

∝
[

Γ(α + β)

Γ(β)

]JK
exp

(
−β

(
−

J∑
j=1

k∑
k=1

log(1− πjk) +
1

c

))

[τ 2k ] ∝ (τ 2k )−1/2 exp

(
− 1

2τ 2k
(θ1k −m1)

2

) J∏
j=2

(τ 2k )−1/2 exp

(
− 1

2τ 2k
(θjk − θj−1,k)2

)
×

(τ 2k )−(aτ+1) exp

(
− 1

τ 2k bτ

)

⇒ τ 2k ∼ IG

aτ +
J

2
,

[
1

2
(θ1k −m1)

2 +
1

2

J∑
j=2

(θjk − θj−1,k)2 +
1

bτ

]−1
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appendix d

CODE

This Appendix presents the code utilized for each model in this analysis. Code for models 1

through 3 is written in C. Code for model 4 is written in R.

D.1 Model 1

C Code Used for Sampler

Main File

// Metropo l i s sampler with random walk .

#inc lude <s t d i o . h>
#inc lude <g s l / g s l r n g . h> // r equ i r ed f o r random number gene ra t i on
#inc lude <g s l / g s l r a n d i s t . h> // r equ i r ed f o r data gene ra t i on from d i s t r i b u t i o n s
#inc lude <math . h>
#inc lude <s t d l i b . h>
#inc lude ” g s l l i n a l g . h”

// Def ine p i and the random d i g i t constant

# de f i n e p i 3 .141593
g s l r n g ∗ r ;

// Inc lude s p e c i f i c header f i l e f o r t h i s a n a l y s i s

#inc lude ”mcmcheader . txt ”

// Inc lude func t i on s needed f o r the ana l y s i s

#inc lude ” p o i s l l . h”
#inc lude ”mvnprior . h”
#inc lude ”mvnran . h”
#inc lude ”rgen2dar . h”
#inc lude ”cov cho l . h”

// Begin Main Function

i n t main ( void ) {

i n t ntune=1000;

// Def ine i n t e g e r s

i n t i ;
i n t j ;
i n t nco l = nparam ∗ n s i t e ;
i n t k ;
i n t y ;

// Source the data

#inc lude ”data . txt ”
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#inc lude ” f i l e . txt ”

r e s e t g en (651) ;

// Create the matr i ce s that w i l l hold the e s t imate s .

double beta [ nco l ] ;

// Set the i n i t i a l va lue s .

f o r ( i =0; i<nparam ; i++){

f o r ( j =0; j<n s i t e ; j++){
beta [ i ∗ n s i t e + j ] = prmu [ i ] ;
}
}

double be ta s t a r [ nco l ] ;

double acceptmult i =0;

// Obtain the cho le sky decomposit ion o f the candidate covar iance matrix .

double candvct [ nco l ] [ nco l ] ;

i n t i 2 ; i n t j 2 ; i n t i 3 ; i n t j 3 ;

f o r ( i 2 =0; i2<nco l ; i 2++){
f o r ( j 2 =0; j2<nco l ; j 2++){

candvct [ i 2 ] [ j 2 ] = candvc [ i 2 ] [ j 2 ] ∗ pow( tune , 2 ) ;

}
}

double cho l [ nco l ] [ nco l ] ;
cho l e sky ( candvct , cho l ) ;

double u ;

// Tune the Gibbs Sampler

i n t z ;
f o r ( z=0; z<15; z++){

acceptmul t i = 0 ;

f o r ( i =0; i<ntune ; i++) {

// Obtain a draw from the mu l t i va r i a t e normal candidate d i s t r i b u t i o n and determine to
accept or r e j e c t i t .

mvnran ( beta , chol , b e ta s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
i f ( l og (u) < l o g l i k ( betas tar ,X,Y, prmu , prvar ,−1) − l o g l i k ( beta ,X,Y, prmu , prvar ,−1) ) {
acceptmul t i = acceptmul t i + 1 ;
f o r ( j =0; j<nco l ; j++){
beta [ j ] = be ta s t a r [ j ] ;
}
}

}
p r i n t f ( ”Accept %f with tune = %f \n” , acceptmul t i /ntune , tune ) ;
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i f ( z>0){

i f ( acceptmul t i /ntune < .25){ tune = tune ∗ . 9 ;}
i f ( acceptmul t i /ntune > .27){ tune = tune ∗1 .1 ;}

f o r ( i 2 =0; i2<nco l ; i 2++){
f o r ( j 2 =0; j2<nco l ; j 2++){

candvct [ i 2 ] [ j 2 ] = candvc [ i 2 ] [ j 2 ] ∗ pow( tune , 2 ) ;

}
}

cho l e sky ( candvct , cho l ) ;

}

}

// Pr int the i n i t i a l va lue s

f o r ( j =0; j<(ncol −1) ; j++){
f p r i n t f (mcmcf ,”% f , ” , beta [ j ] ) ; }

f p r i n t f (mcmcf ,”% f ” , beta [ ncol −1]) ;
f p r i n t f (mcmcf , ”\ n ”) ;

acceptmul t i = 0 ;

// Begin the Gibbs Sampler

f o r ( i =1; i<(nsims ) ; i++){

// Obtain a draw from the mu l t i va r i a t e normal candidate d i s t r i b u t i o n and determine to
accept or r e j e c t i t .

mvnran ( beta , chol , b e ta s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
i f ( l og (u) < l o g l i k ( betas tar ,X,Y, prmu , prvar ,−1) − l o g l i k ( beta ,X,Y, prmu , prvar ,−1) ) {

acceptmul t i = acceptmul t i + 1 ;
f o r ( j =0; j<nco l ; j++){
beta [ j ] = be ta s t a r [ j ] ;
}

}

// Pr int a l l o f the parameter va lue s f o r t h i s i t e r a t i o n

f o r ( j =0; j<(ncol −1) ; j++){
f p r i n t f (mcmcf ,”%−20.20 f , ” , beta [ j ] ) ; }

f p r i n t f (mcmcf ,”%−20.20 f ” , beta [ ncol −1]) ;
f p r i n t f (mcmcf , ”\ n ”) ;
// Begin the next i t e r a t i o n

}

// Pr int the acceptance ra t e to the te rmina l .

p r i n t f ( ”Accept %f \n” , acceptmul t i /nsims ) ;
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f c l o s e (mcmcf ) ;

r e turn ;

}

Header Files

FILE ∗mcmcf ; mcmcf = fopen ( ”beta rm c . txt ” , ”w”) ;

// This i s the Poisson Log L ike l i hood func t i on

double l o g l i k ( double ∗p , double x [ n ] [ nparam∗ n s i t e ] , double ∗y , double ∗prmu , double ∗prvar ,
i n t condi ) {

// The theta vec to r r ep r e s en t s b0 + b1∗x1 + b2∗x2 . . .
double theta [ n ] ;

// I n i t i a l i z e loop incrementors

i n t i 2 ;
i n t j 2 ;

// I n i t i a l i z e the two components o f t h i s l i k e l i h o o d

double sumtheta=0;
double ysumtheta=0;

f o r ( j 2 =0; j2<n ; j 2++){
// Ca lcu la te theta f o r each obse rvat i on
theta [ j 2 ] = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

theta [ j 2 ] = theta [ j 2 ] + x [ j 2 ] [ i 2 ] ∗ p [ i 2 ] ;
}

// Add to each o f the components as needed
sumtheta =sumtheta + exp ( theta [ j 2 ] ) ;
// p r i n t f ( ”Here i t i s %f \n” , exp ( theta [ j 2 ] ) ) ;
ysumtheta =ysumtheta + y [ j 2 ] ∗ theta [ j 2 ] ;

}

i f ( condi>=0){
i n t tempi = f l o o r ( condi / n s i t e ) ;
double normalpart = − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ condi ] − prmu [ tempi ] , 2 ) ;

// Return the ac tua l l i k e l i h o o d value
// p r i n t f ( ”The sumtheta i s %f \n” , sumtheta ) ;
// p r i n t f ( ”The ysumtheta i s %f \n” , ysumtheta ) ;
r e turn ( −sumtheta + ysumtheta + normalpart ) ;

} e l s e {

i n t tempi ;
double normalpart = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

tempi = f l o o r ( i 2 / n s i t e ) ;
normalpart= normalpart − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ i 2 ] − prmu [ tempi ] , 2 ) ;

}

r e turn ( −sumtheta + ysumtheta + normalpart ) ;

}
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}

void mvnran ( double ∗means , double cho l [ nparam∗ n s i t e ] [ nparam∗ n s i t e ] , double ∗mvn) {

i n t i 2 ; i n t k2 ; i n t l 2 ;
i n t i ; i n t j ;

double norms [ nparam∗ n s i t e ] ;

f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){
norms [ i 2 ] = g s l r a n gau s s i a n ( r , 1 ) ;
// p r i n t f ( ”Normal %d : %f ” , i , norms [ i ] ) ;
}
// p r i n t f ( ”\n ”) ;

i n t n i t e r = 0 ;

f o r ( k2=0;k2<nparam∗ n s i t e ; k2++){
mvn[ k2 ] = 0 ;
f o r ( l 2 =0; l2<nparam∗ n s i t e ; l 2++){

mvn[ k2 ] = mvn [ k2 ] + norms [ l 2 ] ∗ cho l [ l 2 ] [ k2 ] ;
// p r i n t f ( ”Chol %d : %f ” , l , cho l [ k ] [ l ] ) ;
}

// p r i n t f ( ”MVN %d : %f ” , k ,mvn [ k ] ) ;
mvn [ k2 ] = mvn [ k2 ] + means [ k2 ] ;

}

// f o r ( i 2 = 0 ; i 2 < nparam ; i 2++) {
// p r i n t f ( ”mvn %f \n” , mvn [ i 2 ] ) ;

//}

r e turn ;

}

void r e s e t g en ( i n t seed ) {

// ###### se t up random number genera tor ########################### /
const g s l r n g t yp e ∗ TT;
g s l r ng env s e tup ( ) ;
TT = g s l r n g d e f a u l t ;
r = g s l r n g a l l o c (TT) ;
g s l r n g s e t ( r , seed ) ; // s e t seed based on s imu la t i on number
g s l r n g f r e e ( r ) ; // func t i on f r e e s a l l the memory a s s o c i a t ed with the genera to r r

// ################################################################# /

return ;
}

double ∗∗ Make2DDoubleArray ( i n t arraySizeX , i n t arraySizeY ) {
double ∗∗ theArray ;
theArray = ( double ∗∗) mal loc ( arraySizeX ∗ s i z e o f ( double ∗) ) ;
i n t i ;
f o r ( i = 0 ; i < arraySizeX ; i++)

theArray [ i ] = ( double ∗) mal loc ( arraySizeY ∗ s i z e o f ( double ) ) ;
r e turn theArray ;

}

/∗
∗ cov cho l . c
∗
∗
∗ Created by Andrew Olsen on 10/16/10.
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∗ Copyright 2010 Brigham Young Un ive r s i ty . Al l r i g h t s r e s e rved .
∗
∗/

// Create the covar iance matrix
/∗
void cov ( double ∗∗ beta , double ∗ EX, double sigma [ n s i t e ∗nparam ] [ n s i t e ∗nparam ] ) {

i n t nco l = n s i t e ∗ nparam ;
i n t j ;
i n t i ;
i n t k ;

// double EX[ nco l ] ;
double EXS[ nco l ] [ nco l ] ;

f o r ( j =0; j<nco l ; j++){
EX[ j ] = 0 ;
f o r ( i =(nburn /2) ; i<nburn ; i++){

EX[ j ] = EX[ j ] + beta [ i ] [ j ] ;
}
EX[ j ] = EX[ j ] / ( nburn /2) ;

}

f o r ( j =0; j<nco l ; j++){
f o r ( k=j ; k<nco l ; k++){

EXS[ j ] [ k ] = 0 ;
f o r ( i =(nburn /2) ; i<nburn ; i++){

EXS[ j ] [ k ] = EXS[ j ] [ k ] + beta [ i ] [ j ] ∗ beta [ i ] [ k ] ;
}
EXS[ j ] [ k ] = EXS[ j ] [ k ] ;

}
}

// double sigma [ nco l ] [ nco l ] ;

f o r ( j =0; j<nco l ; j++){
f o r ( k=j ; k<nco l ; k++){

sigma [ j ] [ k ] = (EXS[ j ] [ k ] − ( nburn /2) ∗EX[ j ] ∗ EX[ k ] ) / ( ( nburn /2) − 1) ;
sigma [ k ] [ j ] = sigma [ j ] [ k ] ;
// p r i n t f ( ”Variance Value %−20.20 f \n” , sigma [ j ] [ k ] ) ;

}
}

r e turn ;
}
∗/

// Create the cho le sky decompos it ion .

void cho le sky ( double sigma [ n s i t e ∗nparam ] [ n s i t e ∗nparam ] , double cho l [ n s i t e ∗nparam ] [ n s i t e ∗
nparam ] ) {
i n t i ; i n t j ; i n t k ;
i n t nco l=n s i t e ∗ nparam ;

cho l [ 0 ] [ 0 ] = sq r t ( sigma [ 0 ] [ 0 ] ) ;
f o r ( i =1; i<nco l ; i++){

cho l [ 0 ] [ i ] = sigma [ 0 ] [ i ] / cho l [ 0 ] [ 0 ] ;
}

double t k i s ;
double tktk ;

f o r ( i =1; i<nco l ; i++){
f o r ( j =0; j<nco l ; j++){

i f ( j<i ) { cho l [ i ] [ j ]=0;} e l s e {
i f ( i != j ) {
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tktk=0;
f o r ( k=0;k<( i ) ; k++){ tktk = tktk + cho l [ k ] [ i ] ∗ cho l [ k ] [ j ] ;}
cho l [ i ] [ j ] = ( sigma [ i ] [ j ] − tktk ) / cho l [ i ] [ i ] ;

} e l s e {
t k i s = 0 ;
f o r ( k=0;k<( i ) ; k++){ t k i s = t k i s + pow( cho l [ k ] [ i ] , 2 ) ; }
cho l [ i ] [ i ] = sq r t ( ( sigma [ i ] [ i ] − t k i s ) ) ;

}
}

}
}

f o r ( i =0; i<nco l ; i++){
f o r ( j =0; j<nco l ; j++){

// p r i n t f ( ”Cholesky Value %−20.20 f \n” , cho l [ i ] [ j ] ) ;
}
// p r i n t f ( ”\n ”) ;

}

r e turn ;
}

D.2 Model 2

C Code Used for Sampler

Main File

// Metropo l i s sampler with independent candidate dens i ty draws .

#inc lude <s t d i o . h>
#inc lude <g s l / g s l r n g . h> // r equ i r ed f o r random number gene ra t i on
#inc lude <g s l / g s l r a n d i s t . h> // r equ i r ed f o r data gene ra t i on from d i s t r i b u t i o n s
#inc lude <math . h>
#inc lude <s t d l i b . h>
#inc lude ” g s l l i n a l g . h”

// Def ine p i and the random d i g i t constant

# de f i n e p i 3 .141593
g s l r n g ∗ r ;

// Inc lude s p e c i f i c header f i l e f o r t h i s a n a l y s i s

#inc lude ”mcmcheader . txt ”

// Inc lude func t i on s needed f o r the ana l y s i s

#inc lude ” p o i s l l . h”
#inc lude ”mvnprior . h”
#inc lude ”mvnran . h”
#inc lude ”rgen2dar . h”
#inc lude ”cov cho l . h”

// Begin Main Function

i n t main ( void ) {

i n t ntune=1000;

// Def ine i n t e g e r s

i n t i ;
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i n t j ;
i n t nco l = nparam ∗ n s i t e ;
i n t k ;
i n t y ;

// Source the data

#inc lude ”data . txt ”

#inc lude ” f i l e . txt ”

r e s e t g en (651) ;

// Create the matr i ce s that w i l l hold the e s t imate s .

double beta [ nco l ] ;
double mu[ nparam ] ;
double s i g [ nparam ] ;

// Set the i n i t i a l va lue s .

f o r ( i =0; i<nparam ; i++){

mu[ i ] = prmu [ i ] ;
s i g [ i ] = 1/( pra [ i ] ∗ prb [ i ] ) ;

f o r ( j =0; j<n s i t e ; j++){
beta [ i ∗ n s i t e + j ] = prmu [ i ] ;
}
}

double be ta s t a r [ nco l ] ;

double sumbk [ nparam ] ;
double sumbkmms [ nparam ] ;
double condmu ;
double condvar ;
double conda ;
double condb ;

double acceptmult i =0;

// Obtain the cho le sky decomposit ion o f the candidate covar iance matrix .

double candvct [ nco l ] [ nco l ] ;

i n t i 2 ; i n t j 2 ; i n t i 3 ; i n t j 3 ;

f o r ( i 2 =0; i2<nco l ; i 2++){
f o r ( j 2 =0; j2<nco l ; j 2++){

candvct [ i 2 ] [ j 2 ] = candvc [ i 2 ] [ j 2 ] ∗ pow( tune , 2 ) ;

}
}

double cho l [ nco l ] [ nco l ] ;
cho l e sky ( candvct , cho l ) ;

double u ;

// Tune the Gibbs Sampler

i n t z ;
f o r ( z=0; z<15; z++){
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acceptmul t i = 0 ;

f o r ( i =0; i<ntune ; i++) {

// Obtain a draw from the mu l t i va r i a t e normal candidate d i s t r i b u t i o n and determine to
accept or r e j e c t i t .

mvnran ( beta , chol , b e ta s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
// p r i n t f ( ” l l %f ” , l o g l i k ( beta ,X,Y,mu, s ig ,−1) ) ;
i f ( l og (u) < l o g l i k ( betas tar ,X,Y,mu, s ig ,−1) − l o g l i k ( beta ,X,Y,mu, s ig ,−1) ) {

acceptmul t i = acceptmul t i + 1 ;
f o r ( j =0; j<nco l ; j++){

beta [ j ] = be ta s t a r [ j ] ;
}

}

// Now sample from the other complete c ond i t i o na l d i s t r i b u t i o n s .

// Sum the betas

f o r ( k=0;k<nparam ; k++){
sumbk [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbk [ k ] = sumbk [ k ] + beta [ k∗ j + j ] ;
}

}

// Get the draws f o r the mu k parameters .

f o r ( k=0;k<nparam ; k++){
condmu = ( prvar [ k ] ∗ sumbk [ k ] + s i g [ k ] ∗ prmu [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ] ) ;
condvar = ( prvar [ k ] ∗ s i g [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ] ) ;
mu[ k ] = g s l r a n gau s s i a n ( r , s q r t ( condvar ) ) + condmu ;
// p r i n t f ( ”mu %f \n” ,mu[ k ] ) ;

}

// Sum the betas minus the mus squared

f o r ( k=0;k<nparam ; k++){
sumbkmms [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbkmms [ k ] = sumbkmms [ k ] + pow( beta [ k∗ j +1] − mu[ k ] , 2 ) ;
}

}

// Get the draws f o r the s i g k parameters .

f o r ( k=0;k<nparam ; k++){
conda = pra [ k ] + n s i t e /2 ;
condb = 1 / ( . 5 ∗ sumbkmms [ k ] + (1/ prb [ k ] ) ) ;
s i g [ k ] = 1/ gsl ran gamma ( r , conda , condb ) ;
// p r i n t f ( ” s i g %f \n” , prb [ k ] ) ;

}

}
p r i n t f ( ”Accept %f with tune = %f \n” , acceptmul t i /ntune , tune ) ;

i f ( z>0){
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i f ( acceptmul t i /ntune < .23){ tune = tune ∗ . 9 ;}
i f ( acceptmul t i /ntune > .30){ tune = tune ∗1 .1 ;}

f o r ( i 2 =0; i2<nco l ; i 2++){
f o r ( j 2 =0; j2<nco l ; j 2++){

candvct [ i 2 ] [ j 2 ] = candvc [ i 2 ] [ j 2 ] ∗ pow( tune , 2 ) ;

}
}

cho l e sky ( candvct , cho l ) ;

}

}

// Pr int the i n i t i a l va lue s

f o r ( j =0; j<(nco l ) ; j++){
f p r i n t f (mcmcf ,”% f , ” , beta [ j ] ) ; }

f o r ( k=0;k<nparam ; k++){
f p r i n t f (mcmcf ,”% f ,% f ” ,mu[ k ] , s i g [ k ] ) ;
i f (k<(nparam−1) ) { f p r i n t f (mcmcf , ” , ”) ;} e l s e { f p r i n t f (mcmcf , ”\ n ”) ;}

}

acceptmul t i = 0 ;

// Begin the Gibbs Sampler

f o r ( i =1; i<(nsims ) ; i++){

// Obtain a draw from the mu l t i va r i a t e normal candidate d i s t r i b u t i o n and determine to
accept or r e j e c t i t .

mvnran ( beta , chol , b e ta s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
i f ( l og (u) < l o g l i k ( betas tar ,X,Y,mu, s ig ,−1) − l o g l i k ( beta ,X,Y,mu, s ig ,−1) ) {

acceptmul t i = acceptmul t i + 1 ;
f o r ( j =0; j<nco l ; j++){
beta [ j ] = be ta s t a r [ j ] ;
}

}

// Now sample from the other complete c ond i t i o na l d i s t r i b u t i o n s .

// Sum the betas

f o r ( k=0;k<nparam ; k++){
sumbk [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbk [ k ] = sumbk [ k ] + beta [ k∗ j + j ] ;
}

}

// Get the draws f o r the mu k parameters .

f o r ( k=0;k<nparam ; k++){
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condmu = ( prvar [ k ] ∗ sumbk [ k ] + s i g [ k ] ∗ prmu [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ]
) ;

condvar = ( prvar [ k ] ∗ s i g [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ] ) ;
mu[ k ] = g s l r a n gau s s i a n ( r , s q r t ( condvar ) ) + condmu ;

}

// Sum the betas minus the mus squared

f o r ( k=0;k<nparam ; k++){
sumbkmms [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbkmms [ k ] = sumbkmms [ k ] + pow( beta [ k∗ j +1] − mu[ k ] , 2 ) ;
}

}

// Get the draws f o r the s i g k parameters .

f o r ( k=0;k<nparam ; k++){
conda = pra [ k ] + n s i t e /2 ;
condb = 1 / ( . 5 ∗ sumbkmms [ k ] + (1/ prb [ k ] ) ) ;
s i g [ k ] = 1/ gsl ran gamma ( r , conda , condb ) ;

}

// Pr int a l l o f the parameter va lue s f o r t h i s i t e r a t i o n

f o r ( j =0; j<(nco l ) ; j++){
f p r i n t f (mcmcf ,”%−20.20 f , ” , beta [ j ] ) ; }

f o r ( k=0;k<nparam ; k++){
f p r i n t f (mcmcf ,”% f ,% f ” ,mu[ k ] , s i g [ k ] ) ;
i f (k<(nparam−1) ) { f p r i n t f (mcmcf , ” , ”) ;} e l s e { f p r i n t f (mcmcf , ”\ n ”) ;}

}

// Begin the next i t e r a t i o n

}

// Pr int the acceptance ra t e to the te rmina l .

p r i n t f ( ”Accept %f \n” , acceptmul t i /nsims ) ;

f c l o s e (mcmcf ) ;

r e turn ;

}

Header Files

FILE ∗mcmcf ; mcmcf = fopen ( ”beta rm c . txt ” , ”w”) ;

// This i s the Poisson Log L ike l i hood func t i on

double l o g l i k ( double ∗p , double x [ n ] [ nparam∗ n s i t e ] , double ∗y , double ∗prmu , double ∗prvar ,
i n t condi ) {

// The theta vec to r r ep r e s en t s b0 + b1∗x1 + b2∗x2 . . .
double theta [ n ] ;

// I n i t i a l i z e loop incrementors

i n t i 2 ;
i n t j 2 ;
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// I n i t i a l i z e the two components o f t h i s l i k e l i h o o d

double sumtheta=0;
double ysumtheta=0;

f o r ( j 2 =0; j2<n ; j 2++){
// Ca lcu la te theta f o r each obse rvat i on
theta [ j 2 ] = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

theta [ j 2 ] = theta [ j 2 ] + x [ j 2 ] [ i 2 ] ∗ p [ i 2 ] ;
}

// Add to each o f the components as needed
sumtheta =sumtheta + exp ( theta [ j 2 ] ) ;
// p r i n t f ( ”Here i t i s %f \n” , exp ( theta [ j 2 ] ) ) ;
ysumtheta =ysumtheta + y [ j 2 ] ∗ theta [ j 2 ] ;

}

i f ( condi>=0){
i n t tempi = f l o o r ( condi / n s i t e ) ;
double normalpart = − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ condi ] − prmu [ tempi ] , 2 ) ;

// Return the ac tua l l i k e l i h o o d value
// p r i n t f ( ”The sumtheta i s %f \n” , sumtheta ) ;
// p r i n t f ( ”The ysumtheta i s %f \n” , ysumtheta ) ;
r e turn ( −sumtheta + ysumtheta + normalpart ) ;

} e l s e {

i n t tempi ;
double normalpart = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

tempi = f l o o r ( i 2 / n s i t e ) ;
// p r i n t f ( ”tempi %f ” , prmu [ tempi ] ) ;
normalpart= normalpart − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ i 2 ] − prmu [ tempi ] , 2 ) ;
// p r i n t f ( ” s t u f f %f \n” ,pow(p [ i 2 ] − prmu [ tempi ] , 2 ) ) ;

}

r e turn ( −sumtheta + ysumtheta + normalpart ) ;

}

}

void mvnran ( double ∗means , double cho l [ nparam∗ n s i t e ] [ nparam∗ n s i t e ] , double ∗mvn) {

i n t i 2 ; i n t k2 ; i n t l 2 ;
i n t i ; i n t j ;

double norms [ nparam∗ n s i t e ] ;

f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){
norms [ i 2 ] = g s l r a n gau s s i a n ( r , 1 ) ;
// p r i n t f ( ”Normal %d : %f ” , i2 , norms [ i 2 ] ) ;
}
// p r i n t f ( ”\n ”) ;

i n t n i t e r = 0 ;

f o r ( k2=0;k2<nparam∗ n s i t e ; k2++){
mvn[ k2 ] = 0 ;
f o r ( l 2 =0; l2<nparam∗ n s i t e ; l 2++){

mvn[ k2 ] = mvn [ k2 ] + norms [ l 2 ] ∗ cho l [ l 2 ] [ k2 ] ;
// p r i n t f ( ”Chol %d : %f ” , l , cho l [ k ] [ l ] ) ;
}
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// p r i n t f ( ”MVN %d : %f ” , k2 ,mvn [ k2 ] ) ;
mvn [ k2 ] = mvn [ k2 ] + means [ k2 ] ;

}

// f o r ( i 2 = 0 ; i 2 < nparam ; i 2++) {
// p r i n t f ( ”mvn %f \n” , mvn [ i 2 ] ) ;

//}

r e turn ;

}

void r e s e t g en ( i n t seed ) {

// ###### se t up random number genera tor ########################### /
const g s l r n g t yp e ∗ TT;
g s l r ng env s e tup ( ) ;
TT = g s l r n g d e f a u l t ;
r = g s l r n g a l l o c (TT) ;
g s l r n g s e t ( r , seed ) ; // s e t seed based on s imu la t i on number
g s l r n g f r e e ( r ) ; // func t i on f r e e s a l l the memory a s s o c i a t ed with the genera to r r

// ################################################################# /

return ;
}

double ∗∗ Make2DDoubleArray ( i n t arraySizeX , i n t arraySizeY ) {
double ∗∗ theArray ;
theArray = ( double ∗∗) mal loc ( arraySizeX ∗ s i z e o f ( double ∗) ) ;
i n t i ;
f o r ( i = 0 ; i < arraySizeX ; i++)

theArray [ i ] = ( double ∗) mal loc ( arraySizeY ∗ s i z e o f ( double ) ) ;
r e turn theArray ;

}

/∗
∗ cov cho l . c
∗
∗
∗ Created by Andrew Olsen on 10/16/10.
∗ Copyright 2010 Brigham Young Un ive r s i ty . Al l r i g h t s r e s e rved .
∗
∗/

// Create the covar iance matrix
/∗
void cov ( double ∗∗ beta , double ∗ EX, double sigma [ n s i t e ∗nparam ] [ n s i t e ∗nparam ] ) {

i n t nco l = n s i t e ∗ nparam ;
i n t j ;
i n t i ;
i n t k ;

// double EX[ nco l ] ;
double EXS[ nco l ] [ nco l ] ;

f o r ( j =0; j<nco l ; j++){
EX[ j ] = 0 ;
f o r ( i =(nburn /2) ; i<nburn ; i++){

EX[ j ] = EX[ j ] + beta [ i ] [ j ] ;
}
EX[ j ] = EX[ j ] / ( nburn /2) ;

}

f o r ( j =0; j<nco l ; j++){
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f o r ( k=j ; k<nco l ; k++){
EXS[ j ] [ k ] = 0 ;
f o r ( i =(nburn /2) ; i<nburn ; i++){

EXS[ j ] [ k ] = EXS[ j ] [ k ] + beta [ i ] [ j ] ∗ beta [ i ] [ k ] ;
}
EXS[ j ] [ k ] = EXS[ j ] [ k ] ;

}
}

// double sigma [ nco l ] [ nco l ] ;

f o r ( j =0; j<nco l ; j++){
f o r ( k=j ; k<nco l ; k++){

sigma [ j ] [ k ] = (EXS[ j ] [ k ] − ( nburn /2) ∗EX[ j ] ∗ EX[ k ] ) / ( ( nburn /2) − 1) ;
sigma [ k ] [ j ] = sigma [ j ] [ k ] ;
// p r i n t f ( ”Variance Value %−20.20 f \n” , sigma [ j ] [ k ] ) ;

}
}

r e turn ;
}
∗/

// Create the cho le sky decompos it ion .

void cho le sky ( double sigma [ n s i t e ∗nparam ] [ n s i t e ∗nparam ] , double cho l [ n s i t e ∗nparam ] [ n s i t e ∗
nparam ] ) {
i n t i ; i n t j ; i n t k ;
i n t nco l=n s i t e ∗ nparam ;

cho l [ 0 ] [ 0 ] = sq r t ( sigma [ 0 ] [ 0 ] ) ;
f o r ( i =1; i<nco l ; i++){

cho l [ 0 ] [ i ] = sigma [ 0 ] [ i ] / cho l [ 0 ] [ 0 ] ;
}

double t k i s ;
double tktk ;

f o r ( i =1; i<nco l ; i++){
f o r ( j =0; j<nco l ; j++){

i f ( j<i ) { cho l [ i ] [ j ]=0;} e l s e {
i f ( i != j ) {

tktk=0;
f o r ( k=0;k<( i ) ; k++){ tktk = tktk + cho l [ k ] [ i ] ∗ cho l [ k ] [ j ] ;}
cho l [ i ] [ j ] = ( sigma [ i ] [ j ] − tktk ) / cho l [ i ] [ i ] ;

} e l s e {
t k i s = 0 ;
f o r ( k=0;k<( i ) ; k++){ t k i s = t k i s + pow( cho l [ k ] [ i ] , 2 ) ; }
cho l [ i ] [ i ] = sq r t ( ( sigma [ i ] [ i ] − t k i s ) ) ;

}
}

}
}

f o r ( i =0; i<nco l ; i++){
f o r ( j =0; j<nco l ; j++){

// p r i n t f ( ”Cholesky Value %−20.20 f \n” , cho l [ i ] [ j ] ) ;
}
// p r i n t f ( ”\n ”) ;

}

r e turn ;
}
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D.3 Model 3

C Code Used for Sampler

Main File

// Metropo l i s sampler with independent candidate dens i ty draws .

#inc lude <s t d i o . h>
#inc lude <g s l / g s l r n g . h> // r equ i r ed f o r random number gene ra t i on
#inc lude <g s l / g s l r a n d i s t . h> // r equ i r ed f o r data gene ra t i on from d i s t r i b u t i o n s
#inc lude <math . h>
#inc lude <s t d l i b . h>
#inc lude ” g s l l i n a l g . h”

// Def ine p i and the random d i g i t constant

# de f i n e p i 3 .141593
g s l r n g ∗ r ;

// Inc lude s p e c i f i c header f i l e f o r t h i s a n a l y s i s

#inc lude ”mcmcheader . txt ”

// Inc lude func t i on s needed f o r the ana l y s i s

#inc lude ” p o i s l l . h”
#inc lude ”mvnprior . h”
#inc lude ”mvnran . h”
#inc lude ”rgen2dar . h”
#inc lude ”cov cho l . h”

// Begin Main Function

i n t main ( void ) {

i n t ntune=1000;

// Def ine i n t e g e r s

i n t i ;
i n t j ;
i n t nco l = nparam ∗ n s i t e ;
i n t k ;
i n t y ;

// Source the data

#inc lude ”data . txt ”

#inc lude ” f i l e . txt ”

r e s e t g en (651) ;

// Create the matr i ce s that w i l l hold the e s t imate s .

double beta [ nco l ] ;
double mu[ nparam ] ;
double s i g [ nparam ] ;
double eta [ nz ] ;
double etamu [ nz ] ;
double e t a s i g [ nz ] ;

// Set the i n i t i a l va lue s .
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f o r ( i =0; i<nparam ; i++){

mu[ i ] = prmu [ i ] ;
s i g [ i ] = 1/( pra [ i ] ∗ prb [ i ] ) ;

f o r ( j =0; j<n s i t e ; j++){
beta [ i ∗ n s i t e + j ] = prmu [ i ] ;
}
}

f o r ( i =0; i<nz ; i++){
etamu [ i ] = 0 ;
e t a s i g [ i ] = 1 ;

}

double be ta s t a r [ nco l ] ;
double e t a s t a r [ nz ] ;

double sumbk [ nparam ] ;
double sumbkmms [ nparam ] ;
double condmu ;
double condvar ;
double conda ;
double condb ;

double acceptmult i =0;
double accepte ta =0;

// Obtain the cho le sky decomposit ion o f the candidate covar iance matrix .

double candvct [ nco l ] [ nco l ] ;
double candvcetaprime [ nz ] [ nz ] ;

i n t i 2 ; i n t j 2 ; i n t i 3 ; i n t j 3 ;

f o r ( i 2 =0; i2<nco l ; i 2++){
f o r ( j 2 =0; j2<nco l ; j 2++){

candvct [ i 2 ] [ j 2 ] = candvc [ i 2 ] [ j 2 ] ∗ pow( tune , 2 ) ;

}
}

f o r ( i 2 =0; i2<nz ; i 2++){
f o r ( j 2 =0; j2<nz ; j 2++){

candvcetaprime [ i 2 ] [ j 2 ] = candvceta [ i 2 ] [ j 2 ] ;

}
}

double cho l [ nco l ] [ nco l ] ;
cho l e sky ( candvct , cho l ) ;

double cho l e t a [ nz ] [ nz ] ;

cho l e skye ta ( candvceta , cho l e t a ) ;

double u ;

// Tune the Gibbs Sampler

i n t z ;
f o r ( z=0; z<15; z++){
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acceptmul t i = 0 ;
accepte ta = 0 ;

f o r ( i =0; i<ntune ; i++) {

// Obtain a draw from the mu l t i va r i a t e normal candidate d i s t r i b u t i o n and determine to
accept or r e j e c t i t .

mvnran ( beta , chol , b e ta s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
i f ( l og (u) < l o g l i k ( betas tar , eta ,X, Z ,Y,mu, s ig ,−1) − l o g l i k ( beta , eta ,X, Z ,Y,mu, s ig ,−1) ) {

acceptmul t i = acceptmul t i + 1 ;
f o r ( j =0; j<nco l ; j++){

beta [ j ] = be ta s t a r [ j ] ;
}

}

// Now sample from the other complete c ond i t i o na l d i s t r i b u t i o n s .

// Update the var iance components .

mvnraneta ( eta , cho le ta , e t a s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform

i f ( l og (u) < l o g l i k two ( beta , e ta s ta r ,X, Z ,Y, etamu , e ta s i g ,−1) − l o g l i k two ( beta , eta ,X, Z ,Y,
etamu , e ta s i g ,−1) ) {

accepte ta = accepte ta + 1 ;
f o r ( j =0; j<nz ; j++){

eta [ j ] = e t a s t a r [ j ] ;
}

}

// Sum the betas

f o r ( k=0;k<nparam ; k++){
sumbk [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbk [ k ] = sumbk [ k ] + beta [ k∗ j + j ] ;
}

}

// Get the draws f o r the mu k parameters .

f o r ( k=0;k<nparam ; k++){
condmu = ( prvar [ k ] ∗ sumbk [ k ] + s i g [ k ] ∗ prmu [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ] ) ;
condvar = ( prvar [ k ] ∗ s i g [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ] ) ;
mu[ k ] = g s l r a n gau s s i a n ( r , s q r t ( condvar ) ) + condmu ;

}

// Sum the betas minus the mus squared

f o r ( k=0;k<nparam ; k++){
sumbkmms [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbkmms [ k ] = sumbkmms [ k ] + pow( beta [ k∗ j +1] − mu[ k ] , 2 ) ;
}

}

// Get the draws f o r the s i g k parameters .

f o r ( k=0;k<nparam ; k++){
conda = pra [ k ] + n s i t e /2 ;
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condb = 1 / ( . 5 ∗ sumbkmms [ k ] + (1/ prb [ k ] ) ) ;
s i g [ k ] = 1/ gsl ran gamma ( r , conda , condb ) ;

}

// Update the sigma parameter f o r the added var iance components
sumbkmms [ k ] = 0 ;
f o r ( k=0;k<nz ; k++){

sumbkmms [ k ] = sumbkmms [ k ] + pow( eta [ k ] , 2 ) ;
}

f o r ( k=0;k<nz ; k++){
conda = etapra [ k ] + nz /2 ;
condb = 1 / ( . 5 ∗ sumbkmms [ k ] + (1/ etaprb [ k ] ) ) ;
e t a s i g [ k ] = 1/ gsl ran gamma ( r , conda , condb ) ;

}

}
p r i n t f ( ”Accept betas %f w/ %f and e ta s %f w/ %f \n” , acceptmul t i /ntune , tune , accepte ta /

ntune , tuneeta ) ;

i f ( z>0){

i f ( acceptmul t i /ntune < .23){ tune = tune ∗ . 9 ;}
i f ( acceptmul t i /ntune > .30){ tune = tune ∗1 .1 ;}
i f ( accepte ta /ntune < .23){ tuneeta = tuneeta ∗ . 9 ; }
i f ( accepte ta /ntune > .30){ tuneeta = tuneeta ∗ 1 . 1 ; }

f o r ( i 2 =0; i2<nco l ; i 2++){
f o r ( j 2 =0; j2<nco l ; j 2++){

candvct [ i 2 ] [ j 2 ] = candvc [ i 2 ] [ j 2 ] ∗ pow( tune , 2 ) ;

}
}

f o r ( i 2 =0; i2<nz ; i 2++){
f o r ( j 2 =0; j2<nz ; j 2++){

candvceta [ i 2 ] [ j 2 ] = candvcetaprime [ i 2 ] [ j 2 ] ∗ pow( tuneeta , 2 ) ;

}
}

cho l e sky ( candvct , cho l ) ;
cho l e skye ta ( candvceta , cho l e t a ) ;

}

}

// Pr int the i n i t i a l va lue s

f o r ( j =0; j<(nco l ) ; j++){
f p r i n t f (mcmcf ,”% f , ” , beta [ j ] ) ; }

f o r ( j =0; j<(nz ) ; j++){
f p r i n t f (mcmcf ,”% f , ” , eta [ j ] ) ; }

f o r ( k=0;k<nparam ; k++){
f p r i n t f (mcmcf ,”% f ,%f , ” ,mu[ k ] , s i g [ k ] ) ;
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}

f o r ( k=0;k<nz ; k++){
f p r i n t f (mcmcf ,”% f ” , e t a s i g [ k ] ) ;
i f (k<(nz−1) ) { f p r i n t f (mcmcf , ” , ”) ;} e l s e { f p r i n t f (mcmcf , ”\ n ”) ;}

}

acceptmul t i = 0 ;
accepte ta = 0 ;

// Begin the Gibbs Sampler

f o r ( i =1; i<(nsims ) ; i++){

// Obtain a draw from the mu l t i va r i a t e normal candidate d i s t r i b u t i o n and determine to
accept or r e j e c t i t .

mvnran ( beta , chol , b e ta s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
i f ( l og (u) < l o g l i k ( betas tar , eta ,X, Z ,Y,mu, s ig ,−1) − l o g l i k ( beta , eta ,X, Z ,Y,mu, s ig ,−1) ) {

acceptmul t i = acceptmul t i + 1 ;
f o r ( j =0; j<nco l ; j++){

beta [ j ] = be ta s ta r [ j ] ;
}

}

// Now sample from the other complete c ond i t i o na l d i s t r i b u t i o n s .

// Update the var iance components .

mvnraneta ( eta , cho le ta , e t a s t a r ) ;
u = g s l r a n f l a t ( r , 0 , 1 ) ; // Random uniform
i f ( l og (u) < l o g l i k two ( beta , e ta s ta r ,X, Z ,Y, etamu , e ta s i g ,−1) − l o g l i k two ( beta , eta ,X, Z ,Y,

etamu , e ta s i g ,−1) ) {
accepte ta = accepte ta + 1 ;
f o r ( j =0; j<nz ; j++){

eta [ j ] = e t a s t a r [ j ] ;
}

}

// Sum the betas

f o r ( k=0;k<nparam ; k++){
sumbk [ k ] = 0 ;
f o r ( j =0; j<n s i t e ; j++){

sumbk [ k ] = sumbk [ k ] + beta [ k∗ j + j ] ;
}

}

// Get the draws f o r the mu k parameters .

f o r ( k=0;k<nparam ; k++){
condmu = ( prvar [ k ] ∗ sumbk [ k ] + s i g [ k ] ∗ prmu [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ]

) ;
condvar = ( prvar [ k ] ∗ s i g [ k ] ) / ( n s i t e ∗ prvar [ k ] + s i g [ k ] ) ;
mu[ k ] = g s l r a n gau s s i a n ( r , s q r t ( condvar ) ) + condmu ;

}

// Sum the betas minus the mus squared

f o r ( k=0;k<nparam ; k++){
sumbkmms [ k ] = 0 ;
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f o r ( j =0; j<n s i t e ; j++){
sumbkmms [ k ] = sumbkmms [ k ] + pow( beta [ k∗ j +1] − mu[ k ] , 2 ) ;

}
}

// Get the draws f o r the s i g k parameters .

f o r ( k=0;k<nparam ; k++){
conda = pra [ k ] + n s i t e /2 ;
condb = 1 / ( . 5 ∗ sumbkmms [ k ] + (1/ prb [ k ] ) ) ;
s i g [ k ] = 1/ gsl ran gamma ( r , conda , condb ) ;

}

// Get the draws f o r the var iance component var iance .

sumbkmms [ k ] = 0 ;
f o r ( k=0;k<nz ; k++){

sumbkmms [ k ] = sumbkmms [ k ] + pow( eta [ k ] , 2 ) ;
}

f o r ( k=0;k<nz ; k++){
conda = etapra [ k ] + nz /2 ;
condb = 1 / ( . 5 ∗ sumbkmms [ k ] + (1/ etaprb [ k ] ) ) ;
e t a s i g [ k ] = 1/ gsl ran gamma ( r , conda , condb ) ;

}

// Pr int a l l o f the parameter va lue s f o r t h i s i t e r a t i o n

f o r ( j =0; j<(nco l ) ; j++){
f p r i n t f (mcmcf ,”% f , ” , beta [ j ] ) ; }

f o r ( j =0; j<(nz ) ; j++){
f p r i n t f (mcmcf ,”% f , ” , eta [ j ] ) ; }

f o r ( k=0;k<nparam ; k++){
f p r i n t f (mcmcf ,”% f ,%f , ” ,mu[ k ] , s i g [ k ] ) ;

}

f o r ( k=0;k<nz ; k++){
f p r i n t f (mcmcf ,”% f ” , e t a s i g [ k ] ) ;
i f (k<(nz−1) ) { f p r i n t f (mcmcf , ” , ”) ;} e l s e { f p r i n t f (mcmcf , ”\ n ”) ;}

}

// Begin the next i t e r a t i o n

}

// Pr int the acceptance ra t e to the te rmina l .

p r i n t f ( ”Accept beta %f \nAccept eta %f \n” , acceptmul t i /nsims , accepte ta /nsims ) ;

f c l o s e (mcmcf ) ;

r e turn ;

}

Header Files
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FILE ∗mcmcf ; mcmcf = fopen ( ”beta rm c . txt ” , ”w”) ;

// This i s the Poisson Log L ike l i hood func t i on

double l o g l i k ( double ∗p , double ∗pq , double x [ n ] [ nparam∗ n s i t e ] , double z [ n ] [ nz ] , double ∗y ,
double ∗prmu , double ∗prvar , i n t condi ) {

// The theta vec to r r ep r e s en t s b0 + b1∗x1 + b2∗x2 . . .
double theta [ n ] ;

// I n i t i a l i z e loop incrementors

i n t i 2 ;
i n t j 2 ;

// I n i t i a l i z e the two components o f t h i s l i k e l i h o o d

double sumtheta=0;
double ysumtheta=0;

f o r ( j 2 =0; j2<n ; j 2++){
// Ca lcu la te theta f o r each obse rvat i on
theta [ j 2 ] = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

theta [ j 2 ] = theta [ j 2 ] + x [ j 2 ] [ i 2 ] ∗ p [ i 2 ] ;
}

f o r ( i 2 =0; i2<nz ; i 2++){
theta [ j 2 ] = theta [ j 2 ] + z [ j 2 ] [ i 2 ] ∗ pq [ i 2 ] ;

}
// Add to each o f the components as needed
sumtheta =sumtheta + exp ( theta [ j 2 ] ) ;
// p r i n t f ( ”Here i t i s %f \n” , exp ( theta [ j 2 ] ) ) ;
ysumtheta =ysumtheta + y [ j 2 ] ∗ theta [ j 2 ] ;

}

i f ( condi>=0){
i n t tempi = f l o o r ( condi / n s i t e ) ;
double normalpart = − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ condi ] − prmu [ tempi ] , 2 ) ;

// Return the ac tua l l i k e l i h o o d value
// p r i n t f ( ”The sumtheta i s %f \n” , sumtheta ) ;
// p r i n t f ( ”The ysumtheta i s %f \n” , ysumtheta ) ;
r e turn ( −sumtheta + ysumtheta + normalpart ) ;

} e l s e {

i n t tempi ;
double normalpart = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

tempi = f l o o r ( i 2 / n s i t e ) ;
normalpart= normalpart − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ i 2 ] − prmu [ tempi ] , 2 ) ;

}

r e turn ( −sumtheta + ysumtheta + normalpart ) ;

}

}

double l o g l i k two ( double ∗p , double ∗q , double x [ n ] [ nparam∗ n s i t e ] , double z [ n ] [ nz ] , double ∗y
, double ∗prmu , double ∗prvar , i n t condi ) {

// The theta vec to r r ep r e s en t s b0 + b1∗x1 + b2∗x2 . . .
double theta [ n ] ;
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// I n i t i a l i z e loop incrementors

i n t i 2 ;
i n t j 2 ;

// I n i t i a l i z e the two components o f t h i s l i k e l i h o o d

double sumtheta=0;
double ysumtheta=0;

f o r ( j 2 =0; j2<n ; j 2++){
// Ca lcu la te theta f o r each obse rvat i on
theta [ j 2 ] = 0 ;
f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){

theta [ j 2 ] = theta [ j 2 ] + x [ j 2 ] [ i 2 ] ∗ p [ i 2 ] ;
}
f o r ( i 2 =0; i2<nz ; i 2++){

theta [ j 2 ] = theta [ j 2 ] + z [ j 2 ] [ i 2 ] ∗ q [ i 2 ] ;
}
// Add to each o f the components as needed
sumtheta =sumtheta + exp ( theta [ j 2 ] ) ;
// p r i n t f ( ”Here i t i s %f \n” , exp ( theta [ j 2 ] ) ) ;
ysumtheta =ysumtheta + y [ j 2 ] ∗ theta [ j 2 ] ;

}

i f ( condi>=0){

} e l s e {

i n t tempi ;
double normalpart = 0 ;
f o r ( i 2 =0; i2<nz ; i 2++){

tempi = f l o o r ( i 2 / n s i t e ) ;
normalpart= normalpart − 1/(2 ∗ prvar [ tempi ] ) ∗ pow(p [ i 2 ] − prmu [ tempi ] , 2 ) ;

}

r e turn ( −sumtheta + ysumtheta + normalpart ) ;

}

}

void mvnran ( double ∗means , double cho l [ nparam∗ n s i t e ] [ nparam∗ n s i t e ] , double ∗mvn) {

i n t i 2 ; i n t k2 ; i n t l 2 ;
i n t i ; i n t j ;

double norms [ nparam∗ n s i t e ] ;

f o r ( i 2 =0; i2<nparam∗ n s i t e ; i 2++){
norms [ i 2 ] = g s l r a n gau s s i a n ( r , 1 ) ;
// p r i n t f ( ”Normal %d : %f ” , i , norms [ i ] ) ;
}
// p r i n t f ( ”\n ”) ;

i n t n i t e r = 0 ;

f o r ( k2=0;k2<nparam∗ n s i t e ; k2++){
mvn[ k2 ] = 0 ;
f o r ( l 2 =0; l2<nparam∗ n s i t e ; l 2++){

mvn[ k2 ] = mvn [ k2 ] + norms [ l 2 ] ∗ cho l [ l 2 ] [ k2 ] ;
// p r i n t f ( ”Chol %d : %f ” , l , cho l [ k ] [ l ] ) ;
}

// p r i n t f ( ”MVN %d : %f ” , k ,mvn [ k ] ) ;
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mvn[ k2 ] = mvn [ k2 ] + means [ k2 ] ;
}

// f o r ( i 2 = 0 ; i 2 < nparam ; i 2++) {
// p r i n t f ( ”mvn %f \n” , mvn [ i 2 ] ) ;

//}

r e turn ;

}

void mvnraneta ( double ∗means , double cho l [ nz ] [ nz ] , double ∗mvn) {

i n t i 2 ; i n t k2 ; i n t l 2 ;
i n t i ; i n t j ;

double norms [ nz ] ;

f o r ( i 2 =0; i2<nz ; i 2++){
norms [ i 2 ] = g s l r a n gau s s i a n ( r , 1 ) ;
// p r i n t f ( ”Normal %d : %f ” , i , norms [ i ] ) ;

}
// p r i n t f ( ”\n ”) ;

i n t n i t e r = 0 ;

f o r ( k2=0;k2<nz ; k2++){
mvn[ k2 ] = 0 ;
f o r ( l 2 =0; l2<nz ; l 2++){

mvn[ k2 ] = mvn [ k2 ] + norms [ l 2 ] ∗ cho l [ l 2 ] [ k2 ] ;
// p r i n t f ( ”Chol %d : %f ” , l , cho l [ k ] [ l ] ) ;

}
// p r i n t f ( ”MVN %d : %f ” , k ,mvn [ k ] ) ;
mvn [ k2 ] = mvn [ k2 ] + means [ k2 ] ;

}

r e turn ;

}

void r e s e t g en ( i n t seed ) {

// ###### se t up random number genera tor ########################### /
const g s l r n g t yp e ∗ TT;
g s l r ng env s e tup ( ) ;
TT = g s l r n g d e f a u l t ;
r = g s l r n g a l l o c (TT) ;
g s l r n g s e t ( r , seed ) ; // s e t seed based on s imu la t i on number
g s l r n g f r e e ( r ) ; // func t i on f r e e s a l l the memory a s s o c i a t ed with the genera to r r

// ################################################################# /

return ;
}

double ∗∗ Make2DDoubleArray ( i n t arraySizeX , i n t arraySizeY ) {
double ∗∗ theArray ;
theArray = ( double ∗∗) mal loc ( arraySizeX ∗ s i z e o f ( double ∗) ) ;
i n t i ;
f o r ( i = 0 ; i < arraySizeX ; i++)

theArray [ i ] = ( double ∗) mal loc ( arraySizeY ∗ s i z e o f ( double ) ) ;
r e turn theArray ;

}
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/∗
∗ cov cho l . c
∗
∗
∗ Created by Andrew Olsen on 10/16/10.
∗ Copyright 2010 Brigham Young Un ive r s i ty . Al l r i g h t s r e s e rved .
∗
∗/

// Create the covar iance matrix
/∗
void cov ( double ∗∗ beta , double ∗ EX, double sigma [ n s i t e ∗nparam ] [ n s i t e ∗nparam ] ) {

i n t nco l = n s i t e ∗ nparam ;
i n t j ;
i n t i ;
i n t k ;

// double EX[ nco l ] ;
double EXS[ nco l ] [ nco l ] ;

f o r ( j =0; j<nco l ; j++){
EX[ j ] = 0 ;
f o r ( i =(nburn /2) ; i<nburn ; i++){

EX[ j ] = EX[ j ] + beta [ i ] [ j ] ;
}
EX[ j ] = EX[ j ] / ( nburn /2) ;

}

f o r ( j =0; j<nco l ; j++){
f o r ( k=j ; k<nco l ; k++){

EXS[ j ] [ k ] = 0 ;
f o r ( i =(nburn /2) ; i<nburn ; i++){

EXS[ j ] [ k ] = EXS[ j ] [ k ] + beta [ i ] [ j ] ∗ beta [ i ] [ k ] ;
}
EXS[ j ] [ k ] = EXS[ j ] [ k ] ;

}
}

// double sigma [ nco l ] [ nco l ] ;

f o r ( j =0; j<nco l ; j++){
f o r ( k=j ; k<nco l ; k++){

sigma [ j ] [ k ] = (EXS[ j ] [ k ] − ( nburn /2) ∗EX[ j ] ∗ EX[ k ] ) / ( ( nburn /2) − 1) ;
sigma [ k ] [ j ] = sigma [ j ] [ k ] ;
// p r i n t f ( ”Variance Value %−20.20 f \n” , sigma [ j ] [ k ] ) ;

}
}

r e turn ;
}
∗/

// Create the cho le sky decompos it ion .

void cho le sky ( double sigma [ n s i t e ∗nparam ] [ n s i t e ∗nparam ] , double cho l [ n s i t e ∗nparam ] [ n s i t e ∗
nparam ] ) {
i n t i ; i n t j ; i n t k ;
i n t nco l=n s i t e ∗ nparam ;

cho l [ 0 ] [ 0 ] = sq r t ( sigma [ 0 ] [ 0 ] ) ;
f o r ( i =1; i<nco l ; i++){

cho l [ 0 ] [ i ] = sigma [ 0 ] [ i ] / cho l [ 0 ] [ 0 ] ;
}

double t k i s ;
double tktk ;
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f o r ( i =1; i<nco l ; i++){
f o r ( j =0; j<nco l ; j++){

i f ( j<i ) { cho l [ i ] [ j ]=0;} e l s e {
i f ( i != j ) {

tktk=0;
f o r ( k=0;k<( i ) ; k++){ tktk = tktk + cho l [ k ] [ i ] ∗ cho l [ k ] [ j ] ;}
cho l [ i ] [ j ] = ( sigma [ i ] [ j ] − tktk ) / cho l [ i ] [ i ] ;

} e l s e {
t k i s = 0 ;
f o r ( k=0;k<( i ) ; k++){ t k i s = t k i s + pow( cho l [ k ] [ i ] , 2 ) ; }
cho l [ i ] [ i ] = sq r t ( ( sigma [ i ] [ i ] − t k i s ) ) ;

}
}

}
}

f o r ( i =0; i<nco l ; i++){
f o r ( j =0; j<nco l ; j++){

// p r i n t f ( ”Cholesky Value %−20.20 f \n” , cho l [ i ] [ j ] ) ;
}
// p r i n t f ( ”\n ”) ;

}

r e turn ;
}

void cho l e skye ta ( double sigma [ nz ] [ nz ] , double cho l [ nz ] [ nz ] ) {
i n t i ; i n t j ; i n t k ;

cho l [ 0 ] [ 0 ] = sq r t ( sigma [ 0 ] [ 0 ] ) ;
f o r ( i =1; i<nz ; i++){

cho l [ 0 ] [ i ] = sigma [ 0 ] [ i ] / cho l [ 0 ] [ 0 ] ;
}

double t k i s ;
double tktk ;

f o r ( i =1; i<nz ; i++){
f o r ( j =0; j<nz ; j++){

i f ( j<i ) { cho l [ i ] [ j ]=0;} e l s e {
i f ( i != j ) {

tktk=0;
f o r ( k=0;k<( i ) ; k++){ tktk = tktk + cho l [ k ] [ i ] ∗ cho l [ k ] [ j ] ;}
cho l [ i ] [ j ] = ( sigma [ i ] [ j ] − tktk ) / cho l [ i ] [ i ] ;

} e l s e {
t k i s = 0 ;
f o r ( k=0;k<( i ) ; k++){ t k i s = t k i s + pow( cho l [ k ] [ i ] , 2 ) ; }
cho l [ i ] [ i ] = sq r t ( ( sigma [ i ] [ i ] − t k i s ) ) ;

}
}

}
}

r e turn ;
}
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D.4 Model 4

R Code Used for Sampler

sampler <− f unc t i on (Y,X,P, nsims , burn , tunetheta , tunepi , tunealpha , tunebeta , data , s a v e f i l e ,m1) {

s e t . seed (651651)

# Load needed l i b r a r i e s

l i b r a r y (MASS)

# Compute the number o f s i t e s and the number o f year s .

K <− n s i t e <− l ength ( unique ( da t a$ s i t e ) )
J <− nyear <− max( data$Year ) − min( data$Year ) + 1

i f ( l ength (m1)==1){m1 <− rep (m1,K) }

# Compute the o v e r a l l number o f parameters , e t c .

ntheta <− nco l (X)
np <− nco l (P)
ntau <− n s i t e
nparam <− ntheta + np + ntau + 2

# Create the p o s t e r i o r matrix

post <− matrix ( nrow=nsims+burn , nco l=nparam)

# Create names f o r the p o s t e r i o r matrix .

t1 <− paste ( ' t h e t a s i t e ' , 1 :K, sep = ' ')
t2 <− paste ( rep ( t1 , each=J ) , ' year ' , rep ( 1 : J ,K) , sep = ' ')
t3 <− paste ( ' p i s i t e ' , 1 :K, sep = ' ')
t4 <− paste ( rep ( t3 , each=J ) , ' year ' , rep ( 1 : J ,K) , sep = ' ')
t5 <− paste ( ' t au s i t e ' , 1 :K, sep = ' ')
t6 <− c ( ' alpha ' , ' beta ' )
t i t l e s <− c ( t2 , t3 , t5 , t6 )
colnames ( post ) <− t i t l e s

# Create a new po i s son func t i on that a l l ows f o r the gamma d i s t r i b u t i o n to be used ra the r
than f a c t o r i a l .

mydpois <− f unc t i on (x , lambda , l og=FALSE) {
i f ( l og==F) {exp(−lambda ) ∗ lambdaˆx / gamma(x+1)} e l s e {
−lambda + x ∗ l og ( lambda ) − lgamma(x+1)
}
}

# Create the l i k e l i h o o d func t i on

y l i k <− f unc t i on (y , lambda , p i ) {
pi ∗ ( y==0) + (1−pi ) ∗ exp (mydpois (y , lambda , l og=T) ) }

# Create the candidate covar iance matrix f o r the theta .
# This matrix puts c o r r e l a t i o n between the years o f a s p e c i f i c s i t e , l e s s and l e s s the

f u r t h e r they are apart .

rho <− . 33
a r 1 f i t <− matrix (0 , nyear , nyear )
f o r ( i in 1 : nyear ) {

f o r ( j in 1 : nyear ) {
a r 1 f i t [ i , j ] <− rho ˆ( abs ( i−j ) )
}
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}

c s the ta <− kronecker ( diag ( tunetheta , n s i t e , n s i t e ) , a r 1 f i t )

# Set the candidate standard dev i a t i on f o r the truncated normal f o r the p i

c s p i <− tunepi

csa <− tunealpha
csb <− tunebeta

# Set the i n i t i a l va lue s . We l e t the theta begin at the p r i o r f o r the f i r s t theta . We l e t
the p i begin at . 1 5 . We l e t the va r i ance s and alpha and beta begin at 1 .

post [ 1 , ] <− c ( rep (m1, each=J ) , rep ( . 1 5 ,K) , rep (1 ,K+2) )

# Write the i n i t i a l va lue s to the f i l e

wr i t e . t ab l e ( rbind ( post [ 1 , ] ) , s a v e f i l e , row . names=F)

# This makes an index o f the f i r s t and l a s t years o f each s i t e .

f i r s t s <− seq (1 , by=nyear , l ength=n s i t e )
l a s t s <− seq ( nyear , by=nyear , l ength=n s i t e )

# This s t o r e s i n i t a l va lue s to the appropr ia te v e c t o r s .

theta <− post [ 1 , 1 : ntheta ]
p i <− post [ 1 , ( ntheta+1) : ( ntheta+np) ]
tau <− post [ 1 , ( ntheta+np+1) : ( ntheta+np+ntau ) ]
alpha <− post [ 1 , ntheta+np+ntau+1]
beta <− post [ 1 , ntheta+np+ntau+2]

# I n i t i a l i z e the acceptance r a t e s to 0 .

atheta <− api <− aalpha <− abeta <− rep (0 , nsims+burn )

# Begin the f o r loop here .

f o r ( i in 2 : ( nsims+burn ) ) {

t h e t a s t a r <− mvrnorm(1 ,mu=theta , Sigma=cs the ta )

# Update a l l o f the the ta s

l l s t a r <− sum( log ( y l i k (Y, exp (X %∗% the t a s t a r ) ,P%∗%pi ) ) ) + sum(dnorm( c ( th e t a s t a r [ f i r s t s ] − m1
, th e t a s t a r [− f i r s t s ] − theta [− l a s t s ] ) , 0 , c ( tau , rep ( tau , each=6) ) , l og=T) )

l l<− sum( log ( y l i k (Y, exp (X %∗% theta ) ,P%∗%pi ) ) ) + sum(dnorm( c ( theta [ f i r s t s ] − m1, theta [−
f i r s t s ] − theta [− l a s t s ] ) , 0 , c ( tau , rep ( tau , each=6) ) , l og=T) )

i f ( l og ( r un i f ( 1 ) ) < l l s t a r − l l ) {
theta <− post [ i , 1 : ntheta ] <− t h e t a s t a r ; atheta [ i ] <− 1
} e l s e {post [ i , 1 : ntheta ] <− theta }

# Now update the p i s

p i s t a r <− rtnorm (np , pi , c sp i , 0 , 1 )

#i f (sum( p i s t a r==0)==0){

l l s t a r <− sum( log ( y l i k (Y, exp (X %∗% theta ) ,P%∗%p i s t a r ) ) ) + sum( dbeta ( p i s t a r , alpha , beta , l og=T
) ) + sum(dtnorm ( pi , p i s t a r , c sp i , 0 , 1 , l og=T) )

l l <− sum( log ( y l i k (Y, exp (X %∗% theta ) ,P%∗%pi ) ) ) + sum( dbeta ( pi , alpha , beta , l og=T) ) + sum(
dtnorm ( p i s t a r , pi , c sp i , 0 , 1 , l og=T) )
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i f ( l og ( r un i f ( 1 ) ) < l l s t a r − l l ) {
pi <− post [ i , ( ntheta+1) : ( ntheta + np) ] <− p i s t a r ; ap i [ i ] <− 1
} e l s e {post [ i , ( ntheta+1) : ( ntheta + np) ] <− pi }

#} e l s e {post [ i , ( ntheta+1) : ( ntheta + np) ] <− pi }

# Now update tau ' s

tempa <− at + nyear /2

d i f f s <− c ( theta [ f i r s t s ] − m1, theta [− f i r s t s ] − theta [− l a s t s ] )

f o r ( k in 1 : n s i t e ) {
idx <− c ( 1 : n s i t e , rep ( 1 : n s i t e , each=(nyear−1) ) )

idx2 <− which ( idx==k)

tempb <− 1/ ( . 5 ∗ sum( ( d i f f s [ idx2 ] ) ˆ2) + 1/bt )

post [ i , ntheta + np + k ] <− tau <− 1/rgamma(1 , shape=tempa , s c a l e=tempb)
}

# Now update alpha

a lphas ta r <− rnorm (1 , alpha , csa )

i f ( a lphastar >0){
l l s t a r <− sum( dbeta ( pi , a lphastar , beta , l og=T) ) + dgamma( a lphastar , shape=aa , s c a l e=ba , l og=T)

l l <− sum( dbeta ( pi , alpha , beta , l og=T) ) + dgamma( alpha , shape=aa , s c a l e=ba , l og=T)

i f ( l og ( r un i f ( 1 ) ) < l l s t a r − l l ) {
alpha <− post [ i , ( ntheta+np+n s i t e +1) ] <− a lphas ta r ; aalpha [ i ] <− 1
} e l s e {post [ i , ( ntheta+np+n s i t e +1) ] <− alpha }

} e l s e {post [ i , ( ntheta+np+n s i t e +1) ] <− alpha }

# Fina l ly , update Beta

be ta s t a r <− rnorm (1 , beta , csb )
i f ( betas tar >0){
l l s t a r <− sum( dbeta ( pi , alpha , betas tar , l og=T) ) + dexp ( betas tar , 1/ c , l og=T)

l l <− sum( dbeta ( pi , alpha , beta , l og=T) ) + dexp ( beta ,1/ c , l og=T)

i f ( l og ( r un i f ( 1 ) ) < l l s t a r − l l ) {
beta <− post [ i , ( ntheta+np+n s i t e +2) ] <− be ta s t a r ; abeta [ i ] <− 1
} e l s e {post [ i , ( ntheta+np+n s i t e +2) ] <− beta }

} e l s e { post [ i , ( ntheta+np+n s i t e +2) ] <− beta }

wr i t e . t ab l e ( rbind ( post [ i , ] ) , s a v e f i l e , row . names=F, append=T, c o l . names=F)

i f ( i /10000==round ( i /10000 ,0) ) { pr in t ( paste ( ' I t e r a t i on ' , i ) ) }

}

accept <− cbind ( atheta , api , aalpha , abeta )
p r i n t ( colMeans ( accept [−(1 : burn ) , ] ) )

r e turn ( post [−(1 : burn ) , ] )

}

atime <− Sys . time ( )

l i b r a r y (msm)

nsims= 500000
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burn = 5000

# Set the working d i r e c t o r y to the C d i r e c t o r y

setwd ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /model4 ' )

source ( ' sampler .R ' )
source ( ' f un c t i on s .R ' )

########################
# Cable Ba r r i e r s #
########################

# Read in the data

cbdata <−read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/ cbdata . csv ' )

# Read in the index

idxcb <− read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/ cbidx . csv ' , header=TRUE)

# Get the 1997 data to use as p r i o r s .

cbdata97 <−read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/ cbdata97 . csv ' )

m1cbc <− l og ( cbdata97$crashes / ( idxcb$EndMile − idxcb$BegMile ) )
m1cbs <− l og ( cbdata97$severe / ( idxcb$EndMile − idxcb$BegMile ) )
m1cbcm <−l og ( cbdata97$crossmed / ( idxcb$EndMile − idxcb$BegMile ) )

aa <− 1
ba <− 1
c <− 1
at <− 5
bt <− . 2

cbdata$year <− cbdata$Year−2001

Xcb <− model . matrix (˜ as . f a c t o r ( s i t e ) : as . f a c t o r ( year )−1, cbdata )
Pcb <− model . matrix (˜ as . f a c t o r ( s i t e )−1, cbdata )

Ycbc <− t ( t ( cbdata$crash ) ) / cbdata$nmil
Ycbs <− t ( t ( cbdata$severe ) ) / cbdata$nmil
Ycbcm<− t ( t ( cbdata$crossmed ) ) / cbdata$nmil

po s t cb s <− sampler (Ycbs , Xcb , Pcb , nsims , burn , . 0 6 , . 0 0 2 5 , . 3 5 , 3 . 2 5 , cbdata , ' e s t ima t e s cb s . txt ' ,
m1cbs )

system ( ' rm e s t ima t e s cb s . txt . gz ' )
system ( ' gz ip e s t ima t e s cb s . txt ' )

post cb cm <− sampler (Ycbcm ,Xcb , Pcb , nsims , burn , . 1 , . 0 0 8 , . 3 6 , 3 . 2 5 , cbdata , ' est imates cb cm . txt
' ,m1cbcm)

system ( ' rm est imates cb cm . txt . gz ' )
system ( ' gz ip est imates cb cm . txt ' )

po s t cb c <− sampler (Ycbc , Xcb , Pcb , nsims , burn , . 0 0 3 , . 0 0 4 , . 3 5 , 3 . 2 5 , cbdata , ' e s t ima t e s cb c . txt ' ,
m1cbc )

system ( ' rm e s t ima t e s cb c . txt . gz ' )
system ( ' gz ip e s t ima t e s cb c . txt ' )

compcbs <− compmodel4 ( pos t cb s , Xcb , Ycbs , Pcb , m1cbs , cbdata )
compcbcm <− compmodel4 ( post cb cm ,Xcb ,Ycbcm , Pcb ,m1cbcm , cbdata )
compcbc <− compmodel4 ( post cb c , Xcb , Ycbc , Pcb , m1cbc , cbdata )
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########################
# Raised Medians #
########################

# Read in the data

rmdata <−read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/rmdata . csv ' )

# Read in the index

idxrm <− read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/medidx . csv ' , header=TRUE)

idxrm97 <− read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/medidx97 . csv ' , header=TRUE
)

rmdata97 <−read . csv ( '˜/Documents/Maste r s Pro j ec t /Code/ Pro j e c t /data/rmdata97 . csv ' )

m1rmc <− l og ( rmdata97$crashes / ( idxrm97$EndMile − idxrm97$BegMile ) )
m1rms <− l og ( rmdata97$severe / ( idxrm97$EndMile − idxrm97$BegMile ) )
# Use a 1 here because I don ' t b e l i e v e the p r i o r va lue should be −I n f .
m1rmcm <−l og ( 1 / ( idxrm97$EndMile − idxrm97$BegMile ) )

aa <− 1
ba <− 1
c <− 1
at <− 5
bt <− . 2

rmdata$year <− rmdata$Year−2001

Xrm <− model . matrix (˜ as . f a c t o r ( s i t e ) : as . f a c t o r ( year )−1,rmdata )
Prm <− model . matrix (˜ as . f a c t o r ( s i t e )−1,rmdata )

# Def ine the Y matr i ce s

Yrmc <− t ( t ( rmdata$crash ) ) / rmdata$nmil
Yrms <− t ( t ( rmdata$severe ) ) / rmdata$nmil
Yrmcm<− t ( t ( rmdata$crossmed ) ) / rmdata$nmil

post rm s <− sampler (Yrms ,Xrm,Prm, nsims , burn , . 0 3 , . 0 0 4 2 , . 3 5 , 2 . 7 , rmdata , ' e s t imate s rm s . txt ' ,
m1rms)

system ( ' rm es t imate s rm s . txt . gz ' )
system ( ' gz ip e s t imate s rm s . txt ' )

post rm cm <− sampler (Yrmcm,Xrm,Prm, nsims , burn , . 3 5 , . 2 4 , 1 . 5 , 1 . 5 , rmdata , ' est imates rm cm . txt ' ,
m1rmcm)

system ( ' rm estimates rm cm . txt . gz ' )
system ( ' gz ip est imates rm cm . txt ' )

post rm c <− sampler (Yrmc ,Xrm,Prm, nsims , burn , . 0 0 1 2 , . 0 0 3 4 , . 3 5 , 3 . 2 , rmdata , ' e s t imates rm c . txt
' ,m1rmc)

system ( ' rm est imates rm c . txt . gz ' )
system ( ' gz ip e s t imates rm c . txt ' )

comprms <− compmodel4 ( post rm s ,Xrm,Yrms ,Prm,m1rms , rmdata )
comprmcm <− compmodel4 ( post rm cm ,Xrm,Yrmcm,Prm,m1rmcm, rmdata )
comprmc <− compmodel4 ( post rm c ,Xrm,Yrmc ,Prm,m1rmc , rmdata )

save . image ( ' model4 . Rdata ' )

save (compcbcm , compcbs , compcbc , comprmcm , comprms , comprmc , f i l e ='model4comp . Rdata ' )
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