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Abstract: Integrated water resources management (IWRM) is a planning framework to balance tradeoffs 
between competing water uses within a watershed. One tool available to aid planners with IWRM is the 

Watershed Management Optimization Support Tool (WMOST), an Excel-based tool that supports 
decision-making by optimizing for cost effective solutions that meet water quantity and quality regulations. 
In this case study, WMOST was used to assess multiple management options for the nutrient-impaired 

Taunton River basin in Massachusetts, United States. Nitrogen water quality targets were determined 
from regional Total Maximum Daily Loads, which suggest that a 20% reduction in non-point sources 
(NPS) is necessary to protect the downstream estuary of Mt. Hope Bay. To meet these goals WMOST 

was used to model the implementation of stormwater best management practices and riparian 
restoration. Preliminary results show implementing a combination of infiltration basins and restoration of 
riparian areas that receive high nutrient loads is the most cost-effective solution for reducing nitrogen 

loadings in the upper Taunton River basin. This paper outlines required input data, highlights the 
capabilities of WMOST, and provides preliminary analyses and solutions to a real-world problem. 
 

Keywords: Watershed Resources Management, Decision Support Tools, Water Quality, Best 
Management Practices, Riparian Buffers 
 

 
1 INTRODUCTION 
 

Water managers face many decisions related to water demand, maintaining healthy aquatic habitats, 
reservoir operations, pollutant reduction requirements, and other water quantity and quality needs that are 
interconnected, with competing goals to meet specific requirements  (Pahl-Wostl, 2007). The Global Water 

Partnership, an international network of water resources organizations defines integrated water resources 
management (IRWM) as a planning strategy to enable sustainable water resources development, by 
establishing policies, strategies and legislation through management and sustainable practices (UNEP-

DHI Centre for Water and Environment, 2009). IWRM enables water resources managers to 
systematically assess tradeoffs among competing goals within a watershed. A recent report introduced a 
collaborative strategic approach to reduce nutrient pollution in waters across the U.S. (US Water Alliance 

et al., 2017). This report outlines the need for a statewide institution that could support strategies to 
reduce nutrients for stakeholders with competing interests by offering financing, governance, and 
operational functions (US Water Alliance et al., 2017). Furthermore, the report highlights that IWRM is 

difficult to incorporate in practice because the “American system of water management is fragmented, 
which constrains water users”. Decision-support tools can alleviate this challenge by providing 
stakeholders with information on the tradeoffs between different management options. 

 
Decision-support tools are adaptable and can filter through numerous alternative planning strategies and 
goals to reach a user-specified objective (Matthies, Giupponi, and Ostendorf, 2007). A simple decision-

support tool was created for watershed scale analyses to screen tradeoffs between structural and non-
structural management options to understand competing benefits for water quantity goals (Zoltay et al., 
2010). Building on this model, the United States Environmental Protection Agency (EPA) created the 
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Watershed Management Optimization Support Tool (WMOST). The first version of WMOST incorporated 
water quantity management options, the second version provided users with options to input default 

databases, a stormwater management module, and a flood module to evaluate flood related damages. 
The most current version of WMOST v3, adds water quality components to the model. This report will 
focus on a case study in Taunton, MA to highlight the capabilities of WMOST v3. See Detenbeck et al. 

(2018a) in this proceedings for a summary of WMOST components. 
 
 

2 Case Study 
 
Freshwater ecosystems across the Northeast have been severely degraded through years of pollution 

from wastewater effluent, stormwater, agriculture runoff, and various other pollutants (U.S. EPA, 2000a, 
2000b). This study focuses on the 220km2 Wading – Threemile River Watershed in the Upper Taunton 
basin in lower Massachusetts, USA, where nearly 50% of the basin is developed or agricultural land 

(Figure 1). The basin is subject to both nonpoint and point source loadings, with multiple water bodies 
listed on the Massachusetts state 303(d) list as impaired due to eutrophication, pathogens, or other 
pollutants. The basin includes nine towns with both groundwater extraction and surface sources for 

drinking water. Towns also buy and sell water to make-up for deficiencies during low flow periods. The 
EPA and a consortium of interest groups identified goals to protect undeveloped areas which provide 
environmental benefits to the watershed and to protect the downstream estuary of Mt. Hope Bay. 

WMOST is being applied to identify management strategies to reduce non-point sources (NPS) water 
pollution within the watershed, among other goals. 
 

 
Figure 1. Land use classification in the Wading - Threemile River Watershed in Southern Massachusetts. 

Soil classes Sand/Gravel are open and Till/Fine-Grained are cross-hatched  
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2.1 Model Set-up 
 

WMOST has a Microsoft ® Excel interface that guides users through each input required by the 
optimization program. This outline highlights a few components of WMOST, while the manual provides an 
in-depth guide and description of WMOST (Detenbeck et al., 2018b). Below, numbered items name 

specific WMOST components, letter items are descriptions of watershed components, and bullet items 
are the case study data descriptions and sources. 
 

1. Baseline Hydrology Module 
a. WMOST has options to either manually import baseline data or to automatically retrieve these 

time series from a server using menu selections in the tool. These data can also be accessed 
interactively using the EPA’s Estuary Data Mapper (EDM; www.epa.gov/edm). EDM has a 
database of input WMOST hydrology and loading time series for a select number of watersheds 

across the Northeastern U.S. These time series are generated from hydrologic models such as 
the Hydrologic Simulation Program Fortran (HSPF; Bicknell et al., 2001), Stormwater 
Management Model (SWMM; U.S. EPA, 2008), and the Soil Water and Assessment Tool (SWAT; 

Arnold et al., 1998 and Arnold and Fohrer, 2005). Data inputs for time series and watershed 
characteristics, such as % effective imperviousness and infiltration rates, are organized by 
Hydrologic Response Units (HRU; i.e., unique combination of landuse and soil class).  

• Wading – Threemile is separated into ten land-use classes and three soil groups (sand/gravel, 
till/fine-grained, and combined). We uploaded SWMM-generated hydrology and loading time 
series. The SWMM model hydrology parameters and loading build-up\wash-off coefficients 
were calibrated for New England during development of EPA’s OPTI-TOOL, a tool to evaluate 

watershed or site-specific stormwater management options (Tetra Tech, 2015a, 2015b). 

2. Stormwater Management 

a. WMOST interacts with the EPA’s System for Urban Stormwater Treatment and Analysis 
Integration (SUSTAIN), which generates managed hydrology and loading time series for each 
HRU by Best Management Practice (BMP) combination. BMPs require design depths (a design 

parameter to meet certain water quantity and/or quality targets) 

• This model tested nine structural BMPs: bioretention basin, enhanced biofiltration with internal 
storage reservoir, extended dry detention basin, grass swale with underdrain, gravel wetland, 

infiltration basin, infiltration chamber, infiltration trench, and wet pond. Each BMP was 
modeled with a 5.08cm design depth, and using default SUSTAIN values for capital and 
maintenance costs, 1st order pollutant lost rates, and BMP parameters (U.S. EPA, 2009). 

b. Riparian buffers are forested areas that border water bodies and provide benefits such as 
pollutant removal and reduction in runoff to streams and lakes (Klapproth and Johnson, 2009). 
We used the Riparian Analysis Toolbox, an ArcGIS add-on, to identify riparian areas for potential 

conservation or restoration, as well as the upland zones that produce runoff and loadings to 
downslope riparian segments (Baker and Van Appledorn, 2010). This tool has been modified to 
delineate 30m buffers using fine-resolution National Hydrography Dataset Plus version 2 and 

10m digital elevation models. Output from this tool is used to rank riparian segments by up-
gradient loads and then categorize these segments into high, medium, and low relative load 
groups. For either restoration or conservation scenarios, each relative load riparian group is 

assigned pollutant load adjustment efficiencies in WMOST, as well as capital and maintenance 
costs. WMOST models riparian areas as a binary decision where it can only choose all or none of 
the riparian area in a specific HRU and relative load group to restore or conserve.  

• In the Wading – Threemile basin there is approximately 190.6 hectares of riparian area that 

could be restored to forested area. 
 

3. Water Use and Demand Management 

a. Potable water demand is categorized by users within the watershed such as; unaccounted water 
(leaks), residential, residential institutions, commercial, agricultural, industrial, municipal, or other. 

There are several data sources for water demand information such as the United States 
Geological Survey (USGS) county level data or town water use information.  
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• Massachusetts requires towns to report water use information through Annual Statistic 
Reports (ASR). These reports include monthly water demand, groundwater or surface water 

withdrawals by pumping station, and interbasin transfer of water to or from other towns. This 
model included wastewater nitrogen loadings associated with residential users based on 2010 
CENSUS and 2.66 kg/capita/day of nitrogen produced (U.S. EPA and MA EOAE, 1991). 

b. Potential non-potable water use such as outdoor irrigation and toilet flushing is accounted for by 
assigning a maximum percentage of demand to non-potable uses and recalculating total potable 
use.  

• The default maximum non-potable use for all users is 45% and average non-potable 
seasonality values were derived from the Massachusetts Water Management Act. 

c. Septic systems on public water and discharging outside of the basin do not recharge groundwater 
and do not contribute to baseflow within the watershed; thus, accounting for septic systems 

discharging inside or outside of the basin is necessary (Detenbeck et al., 2018b).  

• Based on utility boundaries for sewered and nonsewered areas and CENSUS population 
estimates, 62% of public water users have septic systems within the Wading – Threemile 

watershed. Septic systems also discharge nutrients to groundwater systems. A default value 
was provided for daily average septic effluent concentrations and then adjusted as part of the 
calibration process as needed. 

4. Water Supply Sources and Infrastructure 
a. Surface Water System: 

• The maximum storage volume of the most downstream lake in the basin, Sheppard’s Factory 

Pond, was obtained from a database of modeled lake morphology for the Northeastern U.S. 

(Hollister et al., 2011). Surface water withdrawals were derived from ASR pumping information. 

Surface water pollutant discharges were calculated from point sources, from EPA’s Discharge 

Monitoring Database (DMR; https://echo.epa.gov) of monthly flow and pollutant concentration 

values. Calibrated values include an initial lake volume with minimum and maximum bounds, as 

well as initial pollutant concentration and 1st order loss rates for nitrogen. 

b. Groundwater:  

• The maximum groundwater storage volume was estimated from aquifer information.  Initial and 

minimum groundwater volumes were established during calibration. ASR reports supplied 

groundwater withdrawals from pumping wells. Groundwater discharges included septic systems 

discharging inside the basin but receiving public water supplies from outside the basin, and 

other private discharges. Private well withdrawals were also incorporated within the basin. 

Calibrated values and time series included the groundwater recession coefficient, groundwater 

pollutant discharge time series (due to uncertainties in source data), initial pollutant 

concentration, and discharge loss rates. 

c. Interbasin Transfer of water and wastewater:  

• Towns across New England often sell or buy water from other towns to account for surplus or 

deficiencies within a respective town. Interbasin transfer of water or wastewater with the 

associated costs were derived from ASRs. 

d. Water Infrastructure: Infrastructure components such as: facility capacity, costs, pollutant effluent, 
management data for water treatment plants (WTP), potable distribution system, and the 

wastewater treatment plant (WWTP). Data were obtained from utility websites and regional data. 
e. Measured streamflow data was obtained at the outlet of the watershed from the USGS gauge 

01109060 on Threemile River near North Dighton, MA. Monitoring data were very limited; thus, 

measured pollutant concentration values were calculated from 2002 SPARROW (Spatially 
Referenced Regressions on Watershed attributes) modeled total yearly load at the outlet of the 
river. These measured values were used to calibrate the model. 

 
 
2.2 NEOS Online Server 

 
After required data is entered into WMOST spreadsheets, WMOST creates optimization files for use with 
the NEOS online server (https://neos-server.org/neos/). NEOS is a free numerical optimization program 
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service. For WMOST, users have the option to choose between two non-linear algorithms that are part of 
the Basic Open-source Nonlinear Mixed Integer program (Bonmin) (Bonami et al., 2008). The 

optimization set-up files are then uploaded to the NEOS server to run on the online servers to terminate 
at an optimal solution and results are returned showing if a model reaches an optimal solution 
successfully or if there was an infeasibility within the model. Infeasibilities occur in the model for several 

reasons, such as inability to meet target constraints, the model could run out of water if demand and 
withdrawals information is not accurate, or inaccurate starting values. 
 

 
2.3 Calibration 
 

The calibration period for the Wading – Threemile case study was 2002-2006 which includes both a 
relatively dry year (2002) and a wet year (2005). At the local climatological rain gauge (WBAN14765), the 
median yearly precipitation between 1960 and 2014 was 113.74cm, where 2002 and 2005 yearly 

precipitation was 106.81cm and 142.88cm respectfully. The modeled streamflow hydrology has a Nash-
Sutcliffe Efficiency (NSE) of 0.34, R2 of 0.50, relative percent error of 50.1%, and a median bias of 0.45 
m3/sec. The model tended to overestimate lower flows in the fall months and underestimate larger flows 

in the spring months. The modeled baseflow was overestimated, which could be due to inaccurate 
groundwater parameters in the SWMM input time series. This is an acceptable fit, given the complexity of 
real-world conditions, the lack of measured water quality data available, and the intended use of this 

model for screening purposes. There was one outlier on October 15, 2005, where the model predicts a 
streamflow of 101 m3/sec and the measured streamflow is 26 m3/sec. 
 

After the model was calibrated to the best fit possible, WMOST was run to assess trade-offs between use 
of structural BMPs and riparian buffer restoration to reduce NPS nitrogen by 20%. While the downstream 
Mt. Hope Bay within the Narragansett Bay estuary does not yet have an established Total Maximum Daily 

Load (TMDL) for nitrogen, permits for wastewater treatment plants in the Taunton watershed refer to 
regional goals for reducing NPS nitrogen by 20%, so we adopted this as a target for the current case 
study. We conducted a progression of optimization runs described as follows:  

I. The first optimization run considered nine different BMPs of equal design depths (5.08cm) to 
determine which BMP was most cost-effective for meeting the nitrogen load reduction target.  

II.  For the BMP identified in (I), two additional design depths (2.54cm and 1.5cm) were considered in 

a second optimization to narrow in on a cost-effective depth given that across New England, 
smaller sized storms are more frequent. The median storm event between 1960 – 2014 was 
0.41cm and 80% of all daily precipitation events were 1.5cm or smaller (NCDC Local 

Climatological Data, WBAN14765). 
III.  The third optimization considered only riparian buffer restoration. 
IV. The fourth optimization considered a combination of riparian buffer restorat ion and the BMP 

identified in (I) with the design depth identified in (II). 
V. Model runs III-IV were repeated for a wetter year, 2005, to assess the effect of weather variabi lity 

on the robustness of management decisions. 

 
 
3 Discussion and Results 

 
Of the nine BMPs modeled with 5.08cm design depths, WMOST identified infiltration basins as the most 
cost-effective structural BMP to meet the nitrogen load reduction target. Thus, infiltration basins with 

design depths of 2.54cm and 1.5cm were also modeled. Of these options, infiltrations basins with design 
depths of 1.5cm were determined to be the most cost-effective. Baseline scenario runs were compared to 
model runs with management options that implemented 1.5cm infiltration basins across developed HRU 

classes, implemented restoration of developed and agriculture riparian areas, or implemented a 
combination of the two management options (Table 1).     
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Table 1. Optimization results for Wading - Threemile River basin with a least cost objective and imposed 
constraint of 20% annual nitrogen load reduction for the dry year of 2002 and wet year of 2005. The italics 

text refers to results for 1.5cm infiltration basins and the bold text refers to riparian buffer restoration 

Year Model Run 

Max 
Daily 

Load 
(kg) 

Annual 
Load 
(kg) 

Daily 
Reduction 

(%) 

Implementation/ 
Restoration 
(Hectares) 

Total Cost 

(Millions $) 

2005 (wet) Baseline 2625 85,503 -- -- 2.255 

 
1.5 cm 

Infiltration Basin 

(II) 

2100 82,952 20 1374 2.648 

 
Riparian Buffer 

Restoration (III) 
2346 78,559 11 191 3.939 

 

1.5 cm 
Infiltration Basin 

+ Riparian 
Buffer 

Restoration (IV) 

2100 82,952 20 1374 2.648 

       

2002 (dry) Baseline 655 73,567 -- -- 2.261 

 

1.5 cm 

Infiltration Basin 
(II) 

524 67,331 20 440 4.164 

 
Riparian Buffer 
Restoration (III) 

524 67,030 20 111 3.223 

 

1.5 cm 

Infiltration Basin 
+ Riparian 

Buffer 

Restoration (IV) 

524 67,106 20 37 + 106 3.271 

 
 
The baseline scenario for 2002 with no target nitrogen constraint had a maximum daily load of 655 kg N 

and a total annual load of 73,567 kg N, at a total cost of $2.261 million for existing management practices 
to supply water demand and wastewater treatment needs. These included costs to operate and maintain 
the WTP, WWTP, pumping to meet demand, and the interbasin transfer of water and wastewater.  The 

optimization with 1.5cm infiltration basins treated stormwater runoff from 440 hectares of the 
commercial/till HRU to produce an annual load of 67,331 kg N at a total cost of $4.164 million. Infiltration 
basins were implemented on an HRU with a large percent effective imperviousness because by treating 

this HRU with a BMP, the reduction in load would be larger than other HRUs with less impervious area. 
The next optimization (III) restored 111 hectares of riparian area with high and medium loads, producing 
an annual load of 67,030 kg N at a total cost of $3.223 million. This was the least cost management 

option to reduce nitrogen loads during 2002. The combination optimization (IV) with an upper limit of 20 
hectares treated by infiltration basins on a single HRU, modeled 20 hectares treated with infiltration 
basins on low density-residential/till and 17 hectares treated of commercial/till, and 106 hectares of 

riparian restoration to forested area, with an annual load of 67,106 kg N at a total cost of $3.271 million. 
 
The baseline scenario for 2005 with no target constraint had a maximum daily load of 2625 kg N and an 

annual load of 85,503 kg N, at a total cost of $2.255 million. 2005 was an overall wet year which also 
included a major tropical storm on October 15, 2005, which had large influence on the results for the wet 
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year. The optimization with 1.5cm infiltration basins treated 1374 hectares of open/till and low-density 
residential/till HRUs with an annual load of 82,952 kg N at a total cost of $2.648 million. Compared to 

2002 results, the solver implemented on cheaper HRUs with less impervious area, although 2005 results 
implemented more acres treated with infiltration basins. Restoring all riparian area to forested area was 
not effective in reaching the 20% load reduction for nitrogen, because of the large maximum daily load 

associated with the tropical storm. The combination optimization indicated that the cheapest and most 
effective option to implement was low cost infiltration basins on HRUs with less impervious area. 
 

Overall conclusions to reduce non-point source nitrogen are described below: 

• Infiltration basins with smaller design depths are the most cost effective structural BMP  

• Riparian buffers are generally more cost-effective at reducing annual nitrogen loads than 
infiltration basins but alone provide insufficient treatment capacity during wet years  

• Infiltration basins are generally more effective at reducing large daily loads than riparian buffer 
restoration during wet periods   

• With a changing climate the magnitude, frequency, and duration of wet and dry periods will 

increase (IPCC, 2014). Preliminary results indicate that a combination of management practices 
would be best suited to handle the variation of future climatic conditions. These results could vary 
in different climatic regions and under future scenarios  

 
 
4 Limitations and Future Work 

 
WMOST is a decision support tool to aid water managers in finding solutions to complex water quantity 
and quality issues. WMOST is meant to provide users with tangible results to incorporate in future grants 

and give stakeholders the opportunity to present the benefits of different management options.  
 
One limitation of WMOST is that it’s a single objective optimization model, where targets or goals can only 

be modeled as constraints or as one objective. For example, by setting a goal to reduce nitrogen as a 
constraint, the model can only produce one solution. To provide more flexibility in exploring options, a 
multi-objective version of WMOST is in development, which would allow a user to analyse decisions with 

objectives that minimize cost and minimize the pollutant load simultaneously (Piscopo et al., 2018). This 
gives users the ability to observe solutions across a tradeoff curve, which enables stakeholders to make 
more informed decisions within a watershed. 

 
In addition to improving the capabilities of WMOST, this case study will be expanded.  We will assess 
additional management options and targets such as enhancing groundwater recharge and reducing 

flooding across different climate scenarios. We will also model and assess the effect of different climate 
scenarios and future development projections on water quality and quantity within the basin.  
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