Perceived food and labor equity and school attendance among Ugandan children living in kin care

Jini Roby
Brigham Young University - Provo, jini_roby@byu.edu

Stacey Shaw
Brigham Young University - Provo, stacey_shaw@byu.edu

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the *Family, Life Course, and Society Commons*

Original Publication Citation

BYU ScholarsArchive Citation
Roby, Jini; Shaw, Stacey; and George, Laurel. "Perceived food and labor equity and school attendance among Ugandan children living in kin care" (2013). *All Faculty Publications*. 2934.
https://scholarsarchive.byu.edu/facpub/2934

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Perceived food and labor equity and school attendance among Ugandan children living in kin care

Roby J.L., Shaw S.A., George L.H. Perceived food and labor equity and school attendance among Ugandan children living in kin care

Emerging research suggests that biological relatedness contributes to differential treatment between children being raised by kin and the biological children in the caregiver’s household. This potential concern may be elevated especially when household resources are stretched thin. In this study, 518 Ugandan youth and their caregivers were interviewed individually, examining the association between relatedness and perceived food and work equity, and school attendance. Household income, but not relatedness, was negatively associated with food inequity. However, relatedness was positively associated with perceived disparity in the distribution of work among children living in the household, and with children’s school attendance. These findings support and challenge previous findings, raising further research questions and suggesting practice implications.

Key Practitioner Message: • Children in kinship care may be experiencing intrahousehold disparity in the amount of household work they are asked to perform; • Disparity in school attendance between biological and kin children in the same household could have negative implications for the long-term wellbeing of children in kin care; • Programs should be tailored to monitor this type of intrahousehold disparity in treatment.

Kinship-based care, the most common form of nonparental care for children around the world (Roby, 2011), is widely utilized in sub-Saharan Africa, both for purposes of training a child or lending support to a relative (purposive or voluntary fostering), and in times of crisis in the parental household (crisis or involuntary fostering) (Bledsoe, 1994; Goody, 1982; Madhavan, 2004; Mathambo & Gibbs, 2009). Both types of care are typically arranged informally between relatives, with little or no supervision by authorities (Roby, 2011). In the context of more than 13 million children orphaned by the AIDS pandemic in the sub-Saharan region (UNAIDS, 2010), emerging research suggests that the degree of blood relationship between the caregiver and the fostered child may be central to children’s experiences in kin care.

Crisis-triggered, culturally obligatory kin care without reciprocity may portend some inherent challenges – relative scarcity of resources, stigma and risk of maltreatment (Bledsoe, Ewbank, & Isiugo-Abanihe, 1988; Madhavan, 2004). For example, Castle’s (1996) study in Mali found that children in crisis fostering tended to suffer from nutritional disadvantages compared with children receiving voluntary fostering. This concern is sharpened by the fact that crisis kin care has increased dramatically in the past two decades in the sub-Saharan region due to AIDS (Ainsworth & Filmer, 2006; Beegle, Filmer, Stokes, & Tiererova, 2009; Biemba, Beard, Brooks, Bresnahan, & Flynn, 2010; Nyambetha, Wandibba, & Aagaard-Hansen, 2003). Although in some regions of sub-Saharan Africa the adult HIV infection rates have reached a plateau or fallen (Joint United Nations Programme on HIV/AIDS [UNAIDS], 2009a), orphan numbers continue to climb in most countries due to the lag time between HIV infection and the death of parents (Biemba et al., 2010). While caution is urged to avoid stereotyping crisis in caregiving households (Chirwa, 2002; Meintjes & Giese, 2006), the overwhelming evidence from the sub-Saharan region supports the ‘social rupture’ thesis of kin care (Abebe & Aase, 2007; Chirwa, 2002), that is, that the orphan crisis has strained the traditional safety
net of kin care, as limited resources become further stretched (Foster, 2000; Freeman & Nkomo, 2006; Grant & Palmiere, 2003; Heymann & Kidman, 2009). Extended families absorbing orphans are often among the poorest (Heymann & Kidman, 2009; Howard et al., 2006; Miller, Gruskin, Subramanian, & Heymann, 2007). Households caring for orphans are more likely than other parents to suffer financial difficulties, including deficiencies of basic necessities such as food, water, shelter, transportation, or fuel (Heymann, Earle, Rajaraman, Miller, & Bogen, 2007). Barriers to caregiving and income-earning responsibilities are substantially larger for orphan caregivers than for caregivers without orphans, and their resources are often challenged even further by caring for adults with AIDS (Heymann & Kidman, 2009). These financial hardships can be severe and impact the adequacy of food (Howard et al., 2006), access to health care (Lindblade, Odhiambo, Rosen, & DeCock, 2003), education (Ainsworth & Filmer, 2006; Akresh, 2004), and other measures of wellbeing for both the caregiving adults and the children in their households. The burden of caring for orphans within the kin network has been documented in Uganda during the last two decades (Ntozi, 1997; Roby & Shaw, 2008), where increasing orphan numbers, rapid population growth, and insufficient government assistance pose challenges to caring for orphans comprising 19 percent of the under-18 population (Christiansen, 2005; Joint United Nations Programme on HIV/AIDS, 2009b; Ministry of Gender, Labour and Social Development, 2004; Wakhweya et al., 2002).

When few resources are available, kin caregivers may exercise unequal distribution of resources between their biological children and other children in their care. This phenomenon, also known as “Hamilton’s Rule” (Bishai et al., 2003; Case, Paxson, & Ableidinger, 2004; Hamilton, 1964ab), has been frequently attributed to evolutionary biology theory which posits that altruistic behavior toward another individual is a function of the closeness of genetic relatedness. Thus, when resources are scarce, a caregiver may allocate them differentially in favor of children who are more closely related to them, at the expense of children who are more distantly related (Bishai et al., 2003; Case, Lin, & McLanahan, 2000; Case et al., 2004; Oleke, Blystad, Moland, Rekdal, & Heggenhougen, 2006; Oleke, Blystad, & Rekdal, 2005).

Notable differences are emerging regarding the amount of food and work requirements, as well as rates of school attendance, as indicia of intrahousehold discrepancy between biological and kin children within the same households. In relation to food, Bledsoe, Ewbank, and Isiugo-Abanihe (1988) found in Sierra Leone that young children in foster care were more malnourished than children living with their mothers, although older children did not show similar disparities. In their study of nearly 27,000 South African households, Case et al. (2000) found that expenditures on “healthy foods” (fruit, vegetables, and milk) were significantly higher when the child was reared by his or her biological mother, whereas less was spent on food for step-, adoptive, or foster children. Orphaned children living with kin may get less food than biological children (Mathambo & Gibbs, 2009). In Uganda, Bishai et al. (2003) found a clear relationship between the degree of relatedness and child survival, which was largely determined by feeding practices. Oleke et al. (2006) noted in northern Uganda that children living within the extended family often had to work or beg for food.

Differential labor requirements have also been discussed in the sub-Saharan region. In Sierra Leone, Bledsoe et al. (1988) reported significant intrahousehold differences in the degree of punishment between the caregiver’s own children, including withholding food while requiring them to perform usual household duties. Qualitative research in Benin by Gestion d’entreprise en culture Africaine (GECA) et al. (2005, reported in USAID & UNICEF, 2008) suggested that fostered children are often treated differently than the biological children of the head of household, including having to do extra work as well as receiving less food. In that study of 145 children, orphaned and vulnerable children were more than twice as likely as other children to be required to work. On the other hand, Parikh et al. (2007) found in Kwa Zulu Natal, South Africa, that there were no significant differences in education, health, or labor outcomes between biological and kin children in the same household. A more detailed comparison of their study and ours is discussed further in this article.

Differential labor requirements have been noted in Uganda. Oleke et al. (2006, p. 275) described what they found in their 8-month field study in northern Uganda among the Langi tribe of orphaned children living in kin care:

The workload of children aged 7 and above often increased tremendously as they were considered old enough to spend long hours working the fields to make a contribution to the family’s subsistence. . . . Some orphaned children were the first to wake up in the homestead in the morning to clean around the compound, and the last to go to bed at night after ensuring that no item was left out in the dark. Rather than being seen as part of the family, the orphans were often treated more like servants recruited from outside for work purposes.

Additionally, in a small (N = 13) qualitative study (Harms, Jack, Ssebunnya, & Kizza, 2010), the authors reported examples describing unequal workload
distribution and “orphaned youth being treated more harshly compared to other children” (p. 8). Several of the orphaned youth living with kin “alluded to being exploited in their new home situations following the death of their parents” (p. 8). They urged empirical validation of such a possibility and stressed the need for more research focused on the personal perspectives of orphaned youth.

On school attendance, extensive research suggests that children in kin care in sub-Saharan Africa are generally less likely to be attending school than are their peers who live with parents, although they are more likely to go to school than are children living with nonkin (Yamano, Shimamura, & Sserunkuuma, 2006). A study of orphans and non-orphans in the same households in eight high-HIV prevalence countries in sub-Saharan Africa found that orphans aged 15 to 17 always had lower school attendance rates than non-orphans (Mishra & Bignami-Van Assche, 2008). In Uganda, 82 percent of children 10–14 years of age overall were attending school in 2007 (UNGASS Country Progress Report Uganda, 2008), while a Demographic and Health Survey conducted in 2006 showed the ratio of double orphans attending schools as 96 percent of their peers who were living with one or both parents (Joint United Nations Programme on HIV/AIDS, 2009b). Yamano et al. (2006) found that girls aged 15–18 living with nonparent caregivers were less likely to be enrolled in school than were girls living with their parents.

In the present study, we solicited children’s perceptions of the amount of food received, the required workload in the household, and school attendance among the children in the household. We hypothesized that we would find reported disparity on all three variables, with fostered children receiving less favorable treatment, and that this perceived disparity would be associated with caregiver relatedness. Although the age range of our sample was 8 to 18 years of age, to avoid confusion and be consistent with definitions provided by the Convention on the Rights of the Child (United Nations, 1989), we refer to all study participants as “children.”

Methods

Sample

A purposive sample of households in and near Kampala, Uganda, was selected as a component of a program evaluation being conducted for Action for Children (AFC), a community-based nongovernmental organization (NGO) providing family preservation services to households at risk of disintegration (Roby & Shaw, 2008). AFC provides assistance along eight indicators – housing, food security, income generation, children’s educational expenses, health and hygiene needs, community involvement, psychosocial support and peer mentoring – all targeting families in extreme poverty, with services geared to keep families intact and moving toward self-sufficiency. Data for this particular report were collected from two subgroups: (i) caregivers (n = 315) representing 95 percent of the total participating AFC households; and (ii) children between the ages of 8 and 18 years old (n = 518) living in these households. (Younger children were not chosen for this study in order to reduce inaccurate perceptions or reporting.) The final sample of 518 children was reached as follows: Of the 878 children in that age range in the total sample of children, some were away at boarding school or otherwise unavailable. Of those who were physically available, 15 did not complete the interviews either because their caregivers did not give their consent, or the youth chose not to participate. Further after data cleaning, eight child interviews were eliminated due to ambiguities in case identification, resulting in the final sample (N = 518).

Procedures

A cross-sectional design was used for the study and research approval was obtained through the relevant research ethics board prior to data collection. The research team was introduced through AFC to community zone leaders, individuals appointed by the local government councils. These zone leaders initially accompanied the members of the research team to introduce the project and arrange appointments with families. Multilingual local college graduates were trained as interviewers. Caregivers were interviewed at their home and children were interviewed either at home or at an AFC activity at the community center in a private setting. All interviews were conducted in the language chosen by the participant, primarily Luganda. Participating caregivers were given a bar of soap and each child received a pencil as a small token of appreciation for their participation in the study, as recommended by a local research colleague who assisted in supervising project implementation. These data were entered into SPSS version 19 (IBM Corporation, Armonk, NY, USA) for analysis, and later the file was converted to STATA version 12 (StataCorp, College Station, TX, USA) to facilitate multiple imputations in the main analyses.

Measures

Instruments. Two separate caregiver questionnaires were designed: the first seeking information about the caregiver and the household, and the second information on each child in the caregiver’s household (n = 1,417, ages 1–19). A third questionnaire sought information from children about their present life and
future hopes, including the treatment they received in their households. The instruments were developed in English by the researchers in consultation with AFC and a US-based NGO providing funding for the program. The questionnaires were translated into Luganda and Runyoro, the native languages of the participants, and then translated back into English. A local committee provided advisement on cultural accuracy and relevance of the instruments prior to conducting a pilot test of 12 surveys, leading to minor revisions and finalization.

Variables. Data from both caregiver surveys were merged with the child interview data, with variables from all three surveys used in this analysis. Three dependent variables were utilized from the child questionnaire. The first dependent variable, perception of work equity, was measured by the question, “Compared to the other children in your family, do you feel that you work . . . ?” with Likert-type response options \(1 = \text{much more}, 2 = \text{more}, 3 = \text{same}, 4 = \text{less}, 5 = \text{much less}\). The second dependent variable, perception of food equity, was assessed using the question, “Compared to the other children in your family, do you feel you get good food . . . ?” \(1 = \text{much more}, 2 = \text{more}, 3 = \text{same}, 4 = \text{less}, 5 = \text{much less}\). In order to align the direction of the ranking for these questions, the food equity indicator was reverse coded for analysis so that the higher the number, the greater the perceived preferential treatment, and the lower the number, the greater the perception of being discriminated against within the family. Because of small counts in the extreme response categories, \textit{much more} and \textit{much less}, these variables were recoded for use in multinomial logistic regression. The categories \textit{much more} and \textit{more} were combined, as were \textit{less} and \textit{much less} to create a variable with three categories, with perceived equity as the reference category.

Although all children in the participating households were required to be enrolled in school, and caregivers reported 100 percent school attendance for all children in the sample, because there was variation in the children’s reports of school attendance, we examined possible associations between caregiver relatedness and school attendance. Accordingly, the third dependent variable, school attendance, was obtained from the question in the children’s questionnaire which asked, “Do you attend school?” \(1 = \text{yes}, 2 = \text{no}\). School attendance was recoded into \(0 = \text{no}\) and \(1 = \text{yes}\) to facilitate its use in logistic regression analyses.

The key independent variable for this study, the child’s relationship to the caregiver, was a categorical variable drawn from the caregiver interview about each child. Caregiver’s biological sons and daughters \((n = 226)\) was the reference group, compared with grandchild \((n = 205)\) or sibling \((n = 15)\), niece or nephew \((n = 53)\), and other relative \((n = 1)\), step-relative \((n = 10)\) or nonrelative \((n = 11)\). Due to the small number of sibling caregivers, and given that there was no significance on nonparametric tests in predicting work and food equity between these groups, children who were being cared for by grandparents or siblings were grouped together. Similarly, the relatively low numbers of step-relatives, other relatives, and unrelated caregivers were not significantly different, and were combined. Relationship categories were dummy coded for use in the regression.

We controlled for the amount of financial stress on each household using household income (converted to USD), and employed the log transformation of income to adjust for the non-normal distribution of this variable (skewness = 4.095). From the child interviews, we used variables to control for age and gender, as we anticipated that nutritional needs and work expectations might vary by gender and would increase as the child matured. We also controlled for caregiver education level and ratio of nonbiological to biological children in the household, because it is conceivable that household composition might affect perception of food and work equity and school attendance. It was not feasible to control for parental mortality and contact with the child due to missing data.

Analytic approach

We employed multinomial logistic regression in two separate models to explore whether the caregivers’ degree of relatedness to the child was predictive of child perception of equal or disparate treatment in their household with respect to the distribution of work requirements and food. We selected this analysis to examine these main comparisons while accounting for possible differences in outcome variables by income, age, gender, and caregiver education. Using the same control variables, we investigated for possible associations between caregiver relatedness and school attendance, utilizing binomial logistic regression. There were no missing data for the main predictor – child’s relatedness to caregiver. Among control variables, about 14 percent of cases were missing for income, a fraction of a percent for household ratio of nonbiological to biological children in the household, because it is conceivable that household composition might affect perception of food and work equity and school attendance. It was not feasible to control for parental mortality and contact with the child due to missing data.

Results

Table 1 displays the results of the descriptive analysis of variables used in the logistic regression. Most of the
children interviewed were biological children (43%) or grandchildren and siblings (42%), with 10 percent nieces and nephews and 4 percent others. For control variables, gender was nearly equally distributed, with 51 percent female and 49 percent male. The mean age of the children was 12.23 years (SD = 2.8). The annual household income ranged from $5 to $5,202 USD, with a mean of approximately $463 USD (SD = $810.43; Md = $208.00), compared with $1,700 USD, which was the mean annual per capita for Uganda for year 2005 (World Fact Book, 2007). The mean ratio of nonbiological to biological children was 0.38 (SD = 0.39), and caregiver educational levels reflected socioeconomic conditions, with 17 percent of caregivers reporting no formal education, 55 percent some primary education, and 28 percent some secondary or postsecondary education.

For our first key dependent variable – children’s perception of how their share of the work compares with that of the other children in the household – two thirds of the children (66%) said they did the same amount of work when compared with the other children in the household, 23 percent said they did more work, and about 10 percent reported doing less work. Children were likely to report receiving an equal share of good food (81%). Approximately 14 percent reported receiving more good food, and a few (about 5%) reported they received less when compared with others in the household. On the third outcome measure – school attendance – more than 10 percent of the children reported that they did not attend school.

Table 2 displays results for the multinomial logistic regression analyses predicting children’s perceptions of work and food equity. In our interpretations, for relative risk ratios less than 1.0, we report the inverse value and reverse the outcome categories in order to increase comprehensibility of the results (Osborne, 2006). Relative to biological children, the relative risk for nieces or nephews to perceive that they do more work than other children in the household would be 2.8 times more likely on average (p < 0.01), even after controlling for age, gender, income, and household ratio of caregiver’s biological children to nonbiological children. However, on average, children living with grandparents and older siblings did not perceive a difference in their work requirements compared with other children in the household. The control variable “age” was also a significant predictor of perceived workload equity; the younger the child, the greater the likelihood of perceiving that he or she did less work than other children in the household. Given a 1-year increase in age, on average, the relative risk of children to perceive their workload as equal to that of the other children would be 1.18 times more likely (p < 0.01).

No association was found between relatedness to caregiver and food inequity. Instead, household income was associated with the child’s perception of food inequity. For every 1 percent increase in income, the relative risk of perceiving food distribution as equitable among children in their household would be on average 1.39 times more likely, holding covariates constant (p < 0.01). More generally, an increase in

Table 1. Sample characteristics (N = 518).

<table>
<thead>
<tr>
<th>Variables</th>
<th>n</th>
<th>Mean or %</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child’s perceived share of work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>119</td>
<td>23.0%</td>
<td>–</td>
<td>1 = more, 2 = same, 3 = less</td>
</tr>
<tr>
<td>Same</td>
<td>345</td>
<td>66.6%</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>54</td>
<td>10.4%</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Child’s perceived share of good food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>24</td>
<td>4.6%</td>
<td>–</td>
<td>1 = less, 2 = same, 3 = more</td>
</tr>
<tr>
<td>Same</td>
<td>424</td>
<td>81.2%</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>70</td>
<td>13.5%</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>School attendance</td>
<td>468</td>
<td>89.7%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Key independent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child’s relationship to caregiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological child (ref)</td>
<td>226</td>
<td>43.4%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Grandchild or sibling</td>
<td>220</td>
<td>42.2%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Niece or nephew</td>
<td>53</td>
<td>10.2%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Other</td>
<td>22</td>
<td>4.2%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Control variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income (USD equivalent, annual)</td>
<td>449</td>
<td>$463.00</td>
<td>810.43</td>
<td>5 to 5202</td>
</tr>
<tr>
<td>Female</td>
<td>266</td>
<td>51.0%</td>
<td>–</td>
<td>0 = male, 1 = female</td>
</tr>
<tr>
<td>Age of child</td>
<td>516</td>
<td>12.23</td>
<td>2.80</td>
<td>8 to 18 years of age</td>
</tr>
<tr>
<td>Ratio (nonbiological to biological)</td>
<td>293</td>
<td>0.38</td>
<td>0.39</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Caregiver education level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No education</td>
<td>84</td>
<td>17.0%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Some primary</td>
<td>273</td>
<td>55.2%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
<tr>
<td>Some secondary or postsecondary</td>
<td>138</td>
<td>27.9%</td>
<td>–</td>
<td>0 = no, 1 = yes</td>
</tr>
</tbody>
</table>
income is associated with a higher likelihood of perceiving equity of food distribution among children in the household.

As shown in Table 3, relatedness to caregiver, age, and household ratio of biological to nonbiological children of the caregiver were significant predictors of school attendance. The odds of reporting school attendance would be expected to decrease on average by a factor of 0.24 for nieces and nephews (p < 0.05) and for grandchildren and siblings (p < 0.01) compared...
with biological children of caregivers, holding model covariates constant. Because these values are less than 1.0, this relationship may be better understood using the inverse value and reversing the outcome categories (Osborne, 2006). Accordingly, in the present study, the odds of grandchildren or siblings and nieces and nephews reporting that they were not attending school would be 4.17 times greater than the odds of biological children of caregivers. Also, for every year increase in age, we saw on average a decrease by a factor of 0.74 in the odds of reporting school attendance (p < 0.001). Interestingly, household composition was also a significant predictor; a higher ratio of nonbiological to biological children was associated with decreased likelihood of school attendance (OR = 0.26, p < .05).

Discussion

These findings are both in agreement with and distinguished from previous studies. In general, our study adds to the growing knowledge that grandparents are caring for the majority of children who do not live with their biological parents. In the present study, we saw that 69 percent of the children not living with a parent were residing with their grandparents, compared with only about 18 percent living with aunts and uncles. The study also builds upon previous research that children living with grandparents do not tend to perceive intrafamily caregiving as a burden (Bronfenbrenner, 1979, 1986), suggesting how a kin caregiving system can, with support and external assistance (Blystad, Rekdal, & Moland, 2007; World Health Organization, 2011). It is also possible that through income-generating work. Finally, our sample was constituted of the poorest families in the community, those receiving support from AFC. Of particular note is the children’s report that an increase in income in the sample did not impact the workload disparity.

The differential impact of relatedness on perceived food equity and workload is intriguing. Why is food disparity mitigated by income, when stark differences remain in work requirements regardless of the household’s income level? One explanation might be that the consequence of unfair food equity is more tangible and immediately obvious to neighbors and support organizations such as AFC, while the work requirement may be less apparent and/or more culturally tolerated. In addition, there is some suggestion in the literature that in crisis fostering arrangements, the fostered child’s labor is deemed to provide the “reciprocity” missing in voluntary arrangements (Oleke et al., 2006; Oleke, Blystad, Rekdal, & Moland, 2007; World Health Organization, 2011). It is also possible that through income-generating opportunities, adults are away from home more, leaving the bulk of the household chores to the children. The caregiver’s lack of time for housework and lack of adult supervision could exacerbate the gap between biological and kin children in the household. In addition, even though some of the AFC households were “better off” than others in terms of income, most of them are still impoverished, and a comparison with kin care households from a wider range of financial abilities may show a narrower margin. It is also possible that kin children have an inherent feeling of nonbelonging as they do not live with their parents, and might be hypersensitive about their status in the family. However, if this were the case, they would have likely reported a sense of food inequity also.
In any case, while work is a normal part of a household and children are expected to share in the workload appropriate to their age and ability, it is possible that unfair division of work might create a sense of second-class family membership. Further, when workloads are so heavy that children are less able to concentrate on education, long-term disadvantages can be anticipated. Overly heavy workloads can also rob a child of age-appropriate recreation and leisure, which is an important right of developing children (Lester & Russell, 2010; United Nations, 1989). In addition, orphaned children who perceive differential workloads may experience work as exploitative (Harms et al., 2010), raising concerns of increased vulnerability to additional hardships (Oleke et al., 2006). Furthermore, the lower rate of school attendance among kin children might be related to an increased workload at home, which could have a long-lasting negative impact in their lives.

Limitations

There are a number of sampling limitations in this study. While we had a partially built-in control group in that some of the kin children were living in mixed households where both biological and kin children resided, only 10 percent of the children in the sample were nieces and nephews, compared with 42 percent biological children and 43 percent grandchildren or younger siblings of the primary caregiver. Given the imbalance of the groups, generalizability is limited. In addition, some of the kin may have been residing in households with no biological children of the caregiver, in which case they would have compared themselves with other nonbiological children in the home. Also, while the grandparents and adult sibling relationships are clearly blood relations, it is not known how many of the aunts and uncles were blood relatives to the children (vs. through marriage or custom), diluting application of the evolutionary biology theory to the data. Also, we did not differentiate between maternal and paternal orphans, which could have a significant impact on the outcome (Bishai et al., 2003). Finally, because only some of these families had received varied amounts and length of food and income assistance from AFC, the results are generalizable neither to all kin care households nor to those who receive assistance.

Additional limitations were related to instrumental, procedural, data, and sample issues. For one, the income measure was not ideal because self-reported income may not reflect actual differences in household resources due to differences in the ability to produce food and how microcredit loans were reported. A procedural limitation is that the interviews were written down in English rather than in Luganda, and were not recorded, so there could be interpretation errors and nuances lost. Furthermore, self-reported data can be unreliable, and the subjects’ knowledge that the findings would be reported back to the supporting organization in aggregate, even with assurances of confidentiality, might have impacted their responses. Lastly, though ideally we would have been able to discern to which category or categories of relatedness the other children in the household were comparing themselves, the limited size of some groups in the sample prohibited sound statistical results from disaggregating the data by household composition. Also, missing data on measures of maternal and paternal orphanhood did not permit analyses which might have illuminated possible correlations between the children’s perception of fair treatment and their orphan status.

Conclusion

Providing crisis kin care is a daunting task, especially for resource-limited families. Intra-household inequity between biological and kin children is likely to be exacerbated when resources are stretched thin. With increased income, the food inequity gap might be reduced. In turn, questions of how household income can be increased, especially for the poorest of families, raise programming challenges. Social transfers, microcredit loans, and old-age pensions are possible avenues to consider.

Requiring kin children to work more than biological children might be a part of the reciprocity equation for struggling kin caregivers, and might reflect embedded cultural values and practice. It is possible that the children themselves might feel an obligation or responsibility to perform additional work in exchange for their care, and take pride in “doing their part.” However, such disparity in workloads might not only produce a sense of intra-household discrimination, but also impact a child’s educational outcomes if sufficient time is not allotted for attending school or completing homework. Additionally, the child’s psychological health and sense of wellbeing might be negatively affected if the increased workload is equated with being relegated to a lower status within the family. School attendance might be hindered not only by the increased workload but also by the required costs of supplies and uniforms.

Community programs addressing families providing kinship care have a role in reducing unfair treatment through raising awareness and increasing opportunities for caregivers and children to share their experiences and access support when needed. More in-depth research involving both the caregivers and children in kin care households could shed light on the relevant dynamics that can be targeted in terms of intervention and prevention.
References

