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Dynamic Optimization of High-Altitude Solar Aircraft
Trajectories Under Station-Keeping Constraints

R. Abraham Martin∗, Nathaniel S. Gates†, Andrew Ning‡, and John D. Hedengren§
Brigham Young University, Provo, UT, 84602

This paper demonstrates the use of nonlinear dynamic optimization to calculate energy-

optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The

objective is to maximize the total energy in the system while staying within a 3 km mission

radius andmeeting other system constraints. Solar energy capture is modeled using the vehicle

orientation and solar position, and energy is stored both in batteries and in potential energy

through elevation gain. Energy capture is maximized by optimally adjusting the angle of the

aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized

over a 24-hour period at an eight-second time resolution using Nonlinear Model Predictive

Control (NMPC). Results of the simulated flights are presented for all four seasons, showing

8.2% increase in end-of-day battery energy for the most limiting flight condition of the winter

solstice.

I. Introduction
The economic motivations of satellite-like abilities without satellite cost have long inspired the development of High-

Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAVs). The possibilities for long-term communications

and surveillance have attracted specific interest in the area. Beginning with a series of preliminary studies by NASA in

the 1980s and continuing to the present time, this research has continually pushed the boundaries of modern technology

[1–3]. Notable projects include the NASA Helios platform, the AC propulsion SoLong, and the Qinetiq/Airbus Zephyr,

which holds the current world records for both high-altitude and long endurance UAV flight [4–6]. Other current

projects are working to extend the range and endurance of HALE UAVs to facilitate long-term internet broadcasting to

areas without coverage [7]. Since many HALE UAVs are powered by solar panels and use batteries for energy storage,

advancing these technologies is a crucial part of increasing endurance [8]. However, other factors also play an important

role, including the design of the aircraft [9], and the way in which it is operated [10]. Trajectory optimization is one

way in which HALE UAV endurance can be extended while using existing technologies, materials and designs. This

project examines the use of advanced optimization methods to calculate energy-optimal trajectories for solar-powered
∗Graduate Student, Department of Chemical Engineering, 350 CB, Provo, UT 84602
†Graduate Student, Department of Chemical Engineering, 350 CB, Provo, UT 84602
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UAVs under tight station-keeping constraints, such as those imposed by positioning the UAV as a node in a network

constellation.

A. Elevation Optimization

Energy conservation is a key to long endurance solar flight, and a common method for saving energy in HALE UAV

flights is to climb during the day. This stores excess solar energy as potential energy, which can then be extracted during

the night by gliding [6]. This in turn reduces the mass of batteries required for continuous flight, and allows for a lighter

vehicle overall [11].

A sizeable body of work exists on the topic of potential energy storage, and several of the most relevant papers are

described here. Gao et al. explore the equivalence of battery storage and potential energy storage, finding that energy

storage in elevation is most efficient when the initial altitude is low, and the duration of solar radiation is short [6].

The same authors also propose an energy management strategy to control when energy is stored and released from

batteries and elevation [12]. Sachs et al. show that with an optimized elevation profile, it is theoretically possible to

completely eliminate the need for a battery on a solar-powered aircraft [11]. However, their approach makes several key

assumptions. First, the authors assume that the vehicle is traveling in a straight line path from west to east, meaning that

the day-night cycle is shortened significantly with increasing vehicle speed. Second, the authors assume that the aircraft

is able to fly at a range of altitudes spanning nearly 65,000 feet to achieve the zero battery result. In the current project,

the vehicle is restricted both in distance from the starting point and in altitude range. However, the work of Sachs et

al. may still be treated as a theoretical upper bound on the achieved results.

Spangelo et al. study a number of scenarios in which the aircraft is restricted to the surface of a vertical cylinder

[13, 14]. Periodic motion constraints are implemented using periodic splines, and the average net battery power is

maximized. The authors show that their optimized path increases the average power by 30% when compared to a

constant altitude, constant speed path. The current work expands upon this study by allowing the vehicle to travel

anywhere within the volume of the vertical cylinder, rather than only on the surface. This increased flight region allows

for more complex flight maneuvers, and the possibility of more optimal solutions than achieved by previous authors.

B. Incidence Optimization

Another approach to energy conservation is to fly in such a way that the angle between the sun and the solar panels

on the vehicle wings is optimized. This technique maximizes the amount of solar energy that can be obtained throughout

the day. Whitfield has shown in simulations that this type of optimization can increase the possible flight time over

an area of interest by up to two months during a year-long flight. He uses a dual-optimal path planning technique to

plan flight maneuvers a short time window into the future, allowing the vehicle to adapt to changing conditions over

the course of a long flight [15]. Dai et al. describe a similar system in which point-to-point path optimization is done
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using a quaternion representation for aircraft kinematics and solar collection [16]. The resulting optimization problem

is solved using a linear relaxation followed by branch and bound. Klesh and Kabamba also investigate this type of

optimization, deriving a dimensionless power ratio that can be used to decide between loitering and direct flights and

predict the qualitative features of a flight [17, 18]. Through a semi-exhaustive search, Ozoroski et al. show that when

the station-keeping radius is large, the optimal flight pattern is to fly perpendicular to the sun azimuth with vertically

mounted solar panels [19]. Alternatively, Edwards et al. demonstrate that for a constant orbit with low sun elevation

angles, high bank angles provide up to a 15% net power gain over a wings-level orbit [20]. The current work differs from

these studies by relaxing the constant altitude and or bank angle constraints, and by imposing a tighter station-keeping

constraint. As will be shown, this leads to a unique family of solutions due to the necessity of frequent turns to stay

within the mission radius.

C. Combined Elevation and Incidence Optimization

The current work combines and improves upon the previous two approaches by including both elevation and

incidence angle optimization. The most similar completed research on this topic was performed by Hosseini et al. in

2016. The authors describe a system for long endurance surveillance that uses elevation change to store energy. In

addition, the system also accounts for the additional energy available by changing the vehicle orientation. The objective

is to maximize the final state of charge of the aircraft battery by optimizing the vehicle position throughout the day at a

resolution of one hour. The problem is posed as a nonlinear optimization problem, and is reformulated through direct

collocation before solution using a sequential quadratic programming algorithm [21, 22].

The current project improves upon previous work in this area by utilizing a more detailed system model that

includes kinematics, aerodynamics, solar power, atmospheric effects, and battery power. Further mission constraints are

introduced, such as a limited distance from a central point. Additionally, the solution is performed at a higher time

resolution, with system dynamics and aircraft trajectories repeatedly optimized over the duration of the flight using a

nonlinear model predictive control (NMPC) approach. This approach has proven effective in complex UAV control and

estimation problems such as aerial recovery [23], but has not previously been applied to HALE energy optimization.

D. Paper Contributions

This paper contributes to the field by advancing the state of the art in the following areas.

1) The optimization is solved at a finer time resolution over the twenty-four hour period than comparable solutions

in the literature (8 seconds vs 1 hour), exposing system dynamics masked by the larger time step.

2) A unique family of solutions is discovered by imposing a station-keeping constraint within an order of magnitude

of the minimum turning radius of the aircraft. The solutions found are shown to increase the final battery energy

of the HALE UAV system studied by 8–9% over the course of a twenty-four hour flight, with an addition of 8.2%
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final battery energy for the winter solstice (most limiting energy case).

3) The solar-powered HALE trajectory optimization is posed using a nonlinear model predictive control formulation,

reducing the computational complexity of the problem and making a solution computationally feasible at a fine

time resolution.

The paper presents an off-line study that uses environmental modeling, mission and dynamic constraints, and a

dynamic simulation model to optimize HALE missions based on initial flight conditions. A receding horizon strategy

is used in which the simulation time window advances after each solution, and the new forward simulation period is

re-optimized.

II. System Model and Optimization Approach

A. System Modeling

The model for the HALE system is divided into several interconnected sections, including the aircraft dynamics,

solar and atmospheric modeling, power and propulsion, and the system energy balance. This section describes the

individual submodules and their interconnecting links.

1. Aircraft Definition and Mission Conditions

For the purposes of this study, the HALE UAV aircraft is modeled as a large flying wing similar to Facebook’s Aquila.

Using publicly available information on wingspan [24] as a reference, the remaining aircraft dimensions and geometry

are estimated from published photographs of Aquila [25]. The batteries used are assumed to have the same specific

energy as those used by the Zephyr [26]. The payload is assumed to be 25 kg, which would consist of communications

equipment for the mission[27]. Conservative input constraints on lift coefficient, bank angle, thrust, and flight path

angle are added to ensure that the resulting paths are relatively smooth and physically achievable. Detailed parameters

for the UAV system are listed in Table 1, with spanwise parameters in Table 2. The positions of the spanwise parameters

are shown in Figure 1.

Mission conditions for the flight are chosen to represent a HALEUAV acting as a stationary node in a communications

network. To this end, the maximum operational radius is set to 3 km from a center point, which is in the typical range for

such applications [28, 29]. It is typical for HALE UAVs to operate above regulated airspace, which in the United States

ends at 18288 m (60,000 ft) [30]. This altitude is used as a lower limit for the mission. A large portion of the world’s

population lives below 35°latitude, and this is chosen as an upper limit for the mission latitude [26]. Albuquerque New

Mexico is conveniently located at 35 °N, and is chosen as the location for the simulated tests. Four optimization cases

are considered for this study, corresponding to 2017 solar data from the winter solstice, spring equinox, summer solstice,

and fall equinox. Conditions for the four test cases are summarized in Table 3.
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Table 1 Parameters for the HALE UAV system.

Parameter Symbol Value
Total mass m 350 kg
Battery mass mbattery 137 kg

Maximum flight radius Rmax 3 km
Aspect ratio AR 30
Wing area A 60 m2

Wingspan b 42 m
Motor efficiency ηmotor 0.95
Minimum altitude hmin 60,000 ft
Maximum altitude hmax 80,000 ft

Minimum angle of attack αmin 0
Maximum angle of attack αmax 10
Minimum bank angle φmin -5°
Maximum bank angle φmax 5 °

Minimum thrust Tpmin 0 N
Maximum thrust Tpmax 500 N

Minimum flight path angle γmin -5°
Maximum flight path angle γmax 5°

Payload mass mpayload 25 kg
Battery specific energy Ubatt 350 W ·h

kg

Maximum battery energy Ebattmax 59.5 kWh
Maximum discharge rate Pbatterymin -11 kW
Maximum charge rate Pbatterymax 11 kW

Sweep angle Λ 17.5°
Payload power Ppayload 250 W
Solar panel area S 60 m2

Propeller radius rprop 1.58 m
Winglet length - 2 m
Winglet dihedral - 80°

Table 2 Spanwise Parameters for the HALE UAV system.

Parameter Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
Chord (m) 2 1.4 1.4 1.4 1.4 0.5
Twist (deg) 3.07 2.79 2.79 -1.36 -6.49 -4.01
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Fig. 1 Graphical view of aircraft configuration showing position of spanwise parameters [26].

Table 3 Conditions for the selected optimization cases.

Case Parameter Value
All Location Albuquerque, New Mexico
All Latitude 35°N
All Longitude 106.6°W
All Elevation 18.28 km (60,000 ft)

Winter Solstice Date December 21, 2017
Spring Equinox Date March 20, 2017
Summer Solstice Date June 20, 2017
Fall Equinox Date September 22, 2017

2. Aircraft Dynamics

The basic kinematic model for the HALE system is adapted from the six degree of freedom model presented by

Beard and McLain [31]. Aerodynamic forces and load factors are computed using the equations:

q =
1
2
ρV2 (1)

L = qCLS (2)

D = qCDS (3)

where q is the dynamic pressure, ρ is the air density, and V is the aircraft velocity. The variables L and D represent the
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lift and drag forces, whereas CL and CD are the wing lift and drag coefficients, respectively. The surface area of the

wing is represented by S.

The aircraft dynamics are modeled using a point-mass model, which describes the aircraft behavior in response to

thrust, angle of attack, and bank angle inputs. This model is chosen because it captures the major aspects of the aircraft

movement while remaining simple enough to optimize at a fine time resolution. The equations of motion for zero wind

flight are

ÛV =
Tp − D

m
− g sin(γ) (4)

Ûγ = L
mV

cos(φ) − g

V
cos(γ) (5)

Ûψ = L
mV

sin(φ)
cos(γ) (6)

Ûh = V sin(γ) (7)

Ûx = V cos(ψ) cos(γ) (8)

Ûy = V sin(ψ) cos(γ) (9)

where the states x, y, and h are the aircraft north, east, and altitude positions in the inertial reference frame. The aircraft

mass is represented by m, g is gravity, and φ is the aircraft bank angle. The variable Tp represents thrust, γ is the flight

path angle, and ψ is the heading angle.

Aircraft polars are determined using the aircraft analysis tool ASWING [32]. An aircraft is constructed using the

E216 low Reynolds number airfoil as a basis, and the wing lift and drag coefficients are computed using a general

extended lifting-line 3D aerodynamic representation. The aircraft is trimmed at each flight condition when performing

the aerodynamic calculations, and data is collected for a range of angles of attack and Reynolds numbers. The angle of

attack range is chosen in order to avoid stall, and the optimization is constrained to stay within this bound.

To facilitate optimization, the full wing lift curve from ASWING is approximated by a nonlinear surface fit of the

form:

CL(α, Re) = a1 + a2α + a3Re + a4α
2 + a5Re2 + a6αRe (10)

which returns CL given α in degrees, the Reynolds number Re, and the coefficients in Table 4.

The full wing drag coefficient CD from ASWING is also approximated by a nonlinear surface fit of the form shown in

Equation (11), which returns CD given α in degrees, the Reynolds number, and the coefficients listed in Table 5.

CD(α, Re) = b1 + b2Re + b3Re2 + b4α + b5αRe + b6αRe2 + b7α
2 + b8α

2Re + b9α
2Re2 (11)

7



Table 4 Coefficient values for aircraft lift surface fit.

Coefficient Value
a1 3.77421E-01
a2 1.24316E-01
a3 7.64615E-07
a4 -5.68228E-03
a5 -6.44553E-13
a6 -2.65058E-08

Table 5 Coefficient values for aircraft drag surface fit.

Coefficient Value
b1 6.44815E-02
b2 -1.87841E-07
b3 1.79326E-13
b4 -1.11385E-02
b5 3.75046E-08
b6 -3.10591E-14
b7 1.09753E-03
b8 -2.36796E-09
b9 1.58461E-15

To improve the approximation, both equations are fit using only the section of data that is actually used in the flights,

Re from 150,000 to 450,000, and α from 0°to 10°. A sample of the data collected from ASWING at several Reynolds

numbers and the corresponding surface fits are shown in Figure 2.

3. Solar Flux Model

Base solar flux values are calculated using the Simple Model of the Atmospheric Radiative Transfer of Sunshine

(SMARTS) [33], which is a widely used model for predicting clear sky solar irradiance. For a given day, time, and

location, the SMARTS model accounts for solar position and a variety of atmospheric effects to calculate the amount of

energy available from the sun. Table 6 lists the settings used to configure the SMARTS model in this project.

The SMARTS model is time consuming to run, making it unsuitable for a large-scale optimization problem with

millions of potential function calls. To circumvent this problem, the SMARTS model is run prior to the optimization to

generate sun elevation and azimuth information at one-minute intervals for a given day, as well as solar flux data for a

flat plate directly tracking the sun. This data generation takes approximately fifteen minutes on a 2.4 GHz quad-core

Intel i7 processor with 16 GB of RAM. Any required values for time points between the one minute resolution data are

obtained by linear interpolation.

Because it is impossible for the surface of the aircraft to perfectly track the sun, it is necessary to adjust the direct
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Fig. 2 The aircraft lift coefficient vs. drag coefficient at various Reynolds numbers. The solid lines represent
the aerodynamic data gathered from ASWING, while the dashed lines show the surface fit in the range used in
the flights.

Table 6 SMARTS parameter settings used to generate solar flux values.

Parameter Value
Site Latitude 40.2338

Ground Elevation 1.387 km
Aircraft Altitude 20 km
Atmosphere US Standard Atmosphere 1976
Water Vapor From reference atmosphere and altitude

Ozone Default
Gaseous Absorption Default
CO2 Concentration 370 ppmv

Extraterrestrial Spectrum Gueymard 2004
Aerosol Model Shettle and Fenn Tropospheric

Atmospheric Turbidity 0.001503
Regional Albedo Dry Long Grass

Tilt Sun Tracking Surface
Spectral Range 280-4000 nm
Solar Constant 1366.1 W/m2

Solar Constant Correction Factor 1.0
Output Global Tracking Irradiance

Circumsolar Calculations Bypass
Smoothing Filter Bypass

Illuminance Bypass
UV Bypass
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tracking flux from SMARTS to account for the actual orientation of the aircraft. This is done through the obliquity

factor, µsolar , as detailed below. First, the sun direction vector ¯SN is calculated from the solar azimuth (φs) and zenith

(θs) as shown in Equation (12).

¯SN =



cos(φs) sin(θs)

sin(φs) sin(θs)

cos(θs)


(12)

Next the surface normal of the wing N̄ is calculated using the aircraft pose:

N̄ =



cos(−φ) sin(−θ) sin(ψ) − cos(ψ) sin(−φ)

cos(−φ) cos(ψ) sin(−θ) + sin(−φ) sin(ψ)

cos(−φ) cos(−θ)


(13)

where θ represents the aircraft pitch angle, defined here as θ = α + γ. In these calculations, the wing is assumed to be a

flat surface. Finally, the obliquity factor µsolar is calculated as the dot product of the normalized sun vector and the

normalized surface normal (Eq. (14)).

µsolar =
¯SN
| | ¯SN | |

· N̄
| |N̄ | |

(14)

To model the effect of solar radiation on the solar panel efficiency, the solar panel system is first modeled using

the methods described by Villalva et al. [34]. This framework relates the output solar panel voltage and current to

the input solar flux and panel temperature. The model is then tuned, using the approach described by Vika [35], to

data from Alta Devices 2017 specifications for single-junction GaAs cells, which represent a light, flexible, efficient

solar array appropriate for high-altitude aircraft applications. Finally, these results are then fit with a reduced order

model to produce Equation (15), with the coefficients detailed in Table 7. The behavior of the efficiency correction is

demonstrated in Figure 3a at -56.5°C, the 1976 Standard Atmosphere temperature at 18 km.

Table 7 Coefficient values for solar panel efficiency fit.

Coefficient Value
c1 0.0496
c2 0.01
c3 1.5692E-5
c4 0.1414
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ηpanel(Gsol) = c1 log10(Gsol + c2) − c3Gsol + c4 (15)

Using this equation for solar panel efficiency simplifies the dynamic optimization problem compared with solving

the full system of implicit equations proposed by Villalva [34]. Here, the variable ηpanel represents the efficiency of the

solar panel, and Gsol is the orientation corrected solar irradiance in W/m2.

The primary quantity of interest of course is the energy available to the UAV from the sun. The total solar power

received by the wing, Psolar , is calculated as

Psolar = µsolarηpanelSFs (16)

where Fs is the direct tracking flux calculated by the SMARTS model for the given location and time.

As modeled, the solar energy received by the UAV depends upon the position of the sun and time of day, the pose of

the aircraft, and the efficiency of the solar panel. These considerations combine to create a highly nonlinear response, as

demonstrated in Figure 3b, which shows the effect of a circular orbit path on the solar energy received.
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Fig. 3 The efficiency of the solar panels at -56.5°C (3a), and the total solar power received during a steady-state
circular orbit on the winter solstice (3b).

4. Standard Atmosphere Model

The dependence of air density on elevation is modeled using the relevant section of the 1976 Standard Atmosphere,

as described by
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ρair = ρ11 exp
[
−

(
g

RairT11

)
(h − 11000)

]
(17)

where ρ11 and T11 are respectively the air density and temperature at 11 km, and Rair is the gas constant for air. Values

for these parameters are given in Table 8.

Table 8 Standard Atmosphere reference parameters.

Parameter Value
Rair 287.041 m2

s2K

ρ11 0.364 kg

m3

T11 216.66 K

5. Propulsion Model

To complete the energy balance calculations for the system, the amount of energy used by the aircraft in flight must

be calculated. The maximum theoretical efficiency of the propeller is calculated as

Adisk = π R2
prop (18)

ηprop =
2

1 +
(

Tp

Adisk v2 rho
2
+ 1

)1/2 (19)

where the variable Adisk is the area of the disk swept out by the propeller. Rprop is the radius of the propeller, and

ηprop is the propeller efficiency. The propeller efficiency is then multiplied by the motor efficiency ηmotor to obtain

the total efficiency of the propulsion system ηpropulsion, which in turn is used to calculated the power required by the

propulsion system Ppropulsion

ηpropulsion = ηpropηmotor (20)

Ppropulsion =
vTp

ηpropulsion
(21)

Finally, the total power required for flight PN is calculated as

PN = Ppayload + Ppropulsion (22)

where Ppayload represents the power required by the payload of the aircraft, which for the case of this study would be
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communication equipment.

6. Energy Balance

The energy balance for the system is defined as

Ptotal = Psolar − Pbattery − Ppropulsion − Ppayload ≥ 0 (23)

That is to say, the power supplied by the solar panels (Psolar ) and the battery (Pbattery) must balance the power required

by the propulsion system (Ppropulsion) and the aircraft payload (Ppayload). For feasible flight, Ptotal must be greater

than or equal to 0. For energy leaving the battery, Pbattery is defined as negative; for energy entering the battery,

Pbattery is defined as positive. Energy stored in the battery is represented as

ÛEbattery = Pbattery (24)

In addition, potential energy stored as elevation is considered by comparing the current height with the initial height

h0, as in

Epotential = mg(h − h0) (25)

Combined with the energy stored in the battery, this leads to the following definition of the total energy (Etotal) stored

in the system

Etotal = Ebattery + Epotential (26)

The significance of this quantity is described in the next section.

B. Trajectory Optimization

The goal of the trajectory optimization for HALE aircraft is generally to extend the flight for as long as possible

while meeting mission constraints and satisfying system dynamics. While factors such as mechanical wear and material

fatigue play a role in flight time, the main factor in potential flight length for a solar-powered HALE vehicle is the total

energy available to the system. The objective function for the optimization is therefore posed as
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maximize
∫ t f

t0

Etotal(Tp, α, φ, Pbattery)

with respect to Tp, α, φ, Pbattery

subject to
√

x2 + y2 ≤ Rmax

hmin ≤ h ≤ hmax

Tpmin ≤ Tp ≤ Tpmax

CLmin ≤ CL(α) ≤ CLmax

φmin ≤ φ ≤ φmax

Pbatterymin ≤ Pbattery ≤ Pbatterymax

γmin ≤ γ ≤ γmax

Ebatt ≤ Ebattmax

Ptotal ≥ 0

(27)

where t0 represents the initial time, t f is the final time, and Rmax is the mission flight radius.

As outlined in Equation (27), the system is constrained by a mixture of physical constraints and the mission

constraints defined previously. The mission constraints imposed are derived from a mission in which the UAV functions

as a stationary node in a communications network. Physical constraints on the system include limitations on the thrust,

angle of attack, bank angle, and battery charge and discharge rates. For the purposes of this study, the minimum battery

charge is left unconstrained. This permits the examination of cases that do not close the 24-hour energy loop, and are

thus technically infeasible.

The trajectory optimization is performed using the Python package GEKKO, which is a wrapper around APMonitor,

a freely available software suite for large-scale dynamic optimization [36, 37]. As formulated, the UAVmodel is a system

of differential and algebraic equations, or DAE system. The DAE system is converted to a system of algebraic equations

through orthogonal collocation on finite elements, also known as direct transcription. In this process, the differential

equations are approximated by Lagrange interpolating polynomials, with internal nodes selected by Lobatto quadrature.

The conversion to an algebraic system allows the application of large-scale nonlinear solvers to the optimization

problem. In this case the open-source IPOPT solver is used to solve the resulting system of equations [38]. Sparse

first- and second-derivatives of the objective function and equations are supplied through automatic differentiation.

The optimization problem is solved using a simultaneous approach, which involves solving the model equations and

optimizing the objective function in parallel.

Because of the small mission radius, the energy-optimal trajectory problem must be solved at a finer time resolution

than has been treated in the majority of the current literature. The effect of the time step on the shape of the trajectory is
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demonstrated in Figure 4. The choice of time resolution is especially critical because the mission radius constraint

requires that multiple turns be made within a short time window, which is impossible with a time step that is too

large. In addition, a larger time step allows the vehicle to turn nearly instantaneously, which skews the solar collection

calculations. However, although the increased granularity associated with a shorter time step is important for a good

solution, when a small time step is used for the entire 24-hour period, the optimization problem becomes large and

much more difficult to solve.
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Fig. 4 Effect of time step on trajectory solution. Each orbit comprises approximately 8 minutes of flight time
4 hours after dawn.

To resolve this issue, the trajectory optimization is posed as a nonlinear model predictive control or receding horizon

problem. The trajectory is optimized for a fifteen minute horizon at an eight second time step. The first 10 time steps of

the solution are saved, and the optimization moves forward 10 time steps, or 80 seconds. Solar position data is updated,

and the process is repeated until the full 24-hour solution is completed.

The eight-second time step is chosen as a balance between computational complexity and fully capturing the desired

system dynamics. Timing results for optimization solutions at a variety of time steps are shown in Table 9. These timing
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results were obtained on a Dell R815 Server, with a 2.3 GHz AMD Opteron Processor 6276, and 64 GB RAM. Each

used a horizon length of 15 minutes, and a time-shift of 80 seconds. .

Table 9 Timing results for time step study. These 24-hour trajectory optimizations were performed with a
horizon length of 15 minutes, and a time-shift of 80 seconds.

Time Step Solve Time
(sec) (hr)
60 2.00
45 1.25
30 2.35
20 4.13
15 6.05
12 7.24
10 9.62
8 13.51
6 21.46
5 27.26
4 37.30

The fifteen minute horizon is chosen to allow the UAV to complete approximately two complete orbits within the

time span of each optimal solution. A key observation is that the horizon needs to be long enough to allow at least one

complete orbit along the edge of the circular constrained path, with two orbits adding an extra safety margin. If not, the

optimizer will recommend a series of smaller circles that precess around the orbit, caused because it cannot see far

enough into the future to recognize that it will bank around and obtain solar energy again if it keeps to a wider orbit.

C. Steady-State Initialization and Benchmark Case

For comparison with the optimized case, a steady-state circular orbit trajectory is computed. This orbit path is

also used as an initial guess for the optimized trajectory. Before integrating the steady-state trajectory, trim conditions

for a constant radius orbit must be found. Additionally, for fair comparison with the optimized trajectory, these trim

conditions must correspond to a minimum power turn. Minimum power trim conditions for the circular orbit are found

by solving the following optimization problem.
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minimize PN (Tp, α, φ,V, h)

with respect to Tp, α, φ,V

subject to Ûv = 0

Ûγ = 0

ÛR = 0

R = Rmax

where R =
√

x2 + y2

(28)

This optimization problem is solved in a multi-layered approach, using the solvers available in the Python Scipy

optimization package. A root finder is used to find equilibrium conditions for the three differential terms by manipulating

Tp , φ, and α. The root finder is then wrapped into a larger constrained minimization problem using SLSQP to find the

minimum power flight velocity. As power required for flight decreases with decreasing altitude in this altitude range, the

optimization is done at the minimum altitude limit of 18,288 m, resulting in the conditions shown in Table 10. The

variable SOC represents the battery state of charge.

Table 10 Initial Conditions for Optimization.

Variable Initial Value
h 18288 m
V 31.9 m/s
γ 0 rad
α 0.05 rad
ψ 0 rad
φ 0.034 rad

Tp 86.5 N
SOC 0.20
Ebatt 9.86 kWh

Once the equilibrium conditions are found, they are used as inputs for the steady-state trajectory. The UAV system

equations are combined with solar data from SMARTS, and integrated forward over the 24-hour period using Python’s

odeint package. The resulting trajectory for the winter solstice case is shown in Figure 5a. This trajectory provides

a baseline for the energy needed for a 24-hour flight, as well as initial guesses for system states and inputs for the

optimized trajectory. Steady-state trajectories are computed using solar data corresponding to all four cases considered

in the optimization.
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D. State Machine Benchmark Case

In addition to the steady-state trajectory, the optimized trajectory is also compared against a state-machine-driven

trajectory. This state-machine-driven trajectory is another commonly studied path in which the aircraft flies in a circular

path, but ascends and descends throughout the day according to a set of rules. Essentially, the aircraft ascends on the

outer surface of a cylinder, levels out at the maximum height, and then descends along the same cylinder to the minimum

height. The state machine case presents an alternative study of the effects of potential energy storage on the total system

energy. In general, the following sequence occurs:

• Level flight until battery is filled

• Ascend until maximum height is reached or battery begins to drain

• Level flight until battery begins to drain

• Descend to minimum height

• Resume level flight

Throughout the flight, the state machine flies at the minimum power velocity for its current altitude, which is

computed using the same approach used in Section C. The climb angle is chosen as the average climb angle from the

optimized flight. The descent angle is adjusted throughout the descent as follows. First the thrust needed to maintain

minimum power level flight is computed. Then the flight path angle is decreased until the component of gravity in the

aircraft direction of motion is equal to the necessary thrust. This approach yields the shallowest possible zero power

dive. The thrust and flight path angle are recalculated repeatedly throughout the descent as the air density changes. A

sample of the trajectory generated by the state machine for the summer solstice is shown in Figure 5b.
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(a) Steady-state circular orbit trajectory.
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(b) State machine trajectory.

Fig. 5 The steady-state circular orbit path used both as a benchmark case and an initial guess for the opti-
mization (5a), and a sample of a trajectory generated by the state machine planner for the summer solstice
(5b).
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III. Results and Discussion
This section presents the results of the optimizations performed using the methods described in the previous two

sections.

A. Solar Data

Figure 6 shows the solar flux calculated using the SMARTS package for the winter solstice, using the settings

described in Table 6. This solar flux is the total solar energy passing through the atmosphere to the location of the

aircraft, prior to adjustments for orientation and panel efficiency. This raw solar flux data is used as an input to the

trajectory optimization.
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Fig. 6 Available solar flux calculated by SMARTS for the four test cases.

The second piece of solar information needed is the sun position, which is also obtained from SMARTS in the

form of azimuth and elevation angles throughout the day. The solar angles for the winter solstice at 35° N are shown in

Figure 7a. Note that in the winter at this latitude, the sun zenith angle reaches its minimum value at slightly over 60°,

which implies a maximum elevation angle of approximately 30°. As will be shown in the next section, this relatively

low elevation angle has a large impact on the optimal trajectory for the winter season.

B. Trajectory Results

This section examines the trajectories generated by the optimization process described above. The optimizer finds

unique orbit shapes for each season that evolve throughout the course of the day. Samples of shapes for the four seasons

are shown, as well as full trajectories for each of the test cases. The characteristic shape of the winter solstice orbit

is investigated in depth, as well as the effect of potential energy storage on the optimal solutions. The effect of the

station-keeping radius and the sensitivity of the solution to this mission constraint are also explored.
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Fig. 7 Solar azimuth and zenith calculated by SMARTS for the winter and summer solstices (daylight hours).
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Fig. 8 Solar azimuth and zenith calculated by SMARTS for the spring and fall equinoxes (daylight hours).

1. Full Trajectory Results and Characteristic Shape

To begin, Figure 9 shows the full trajectory results for the four optimization cases. It can easily be seen that in all

cases, the optimized solution differs significantly from the steady-state orbit. These changes and their significance are

examined in more detail in the following sections.

The optimal trajectory assumes a characteristic shape for each season. This shape optimizes the amount of solar

energy collected, while minimizing the power required for flight. The resulting orbits are shown in Figure 10. The

characteristic shape of the winter solstice trajectory is analyzed further in Section 2.

2. Single Orbit Analysis

As it can be somewhat difficult to understand the behavior of the optimized solution from the full trajectory, a single

orbit from the winter solstice trajectory will now be examined. The trajectory and accompanying information are shown

in Figure 11 with the aircraft traveling clockwise around the path. This orbit occurs two hours after dawn, and lasts
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Fig. 9 Full optimized trajectories for the four optimized cases at 35°N. These trajectories maximize the energy
gained from solar and potential energy storage while minimizing the power required for flight.

approximately eight minutes.

As seen in Figure 11, the optimized winter trajectory forms a roughly fabiform shape. The UAV begins at the

north-west corner of the orbit, then turns and flies towards the sun for approximately the first 3.5 minutes. During this

leg of the flight the UAV reduces the angle of attack, reducing drag and decreasing the angle of incidence between the

sun and the solar panels. The velocity increases as the UAV descends by 500 feet to the minimum altitude, and thrust is

simultaneously decreased, allowing the battery to charge during the short glide.

The UAV turns back towards the north-west at approximately four minutes into the trajectory. Notice that the major

axis aligns exactly with the orientation of the sun vector at this point in time. This alignment enables the optimized

solution to maximize the energy received by exhibiting the following behavior. First, the aircraft pitches upwards and

slows down while increasing thrust. The aircraft climbs by 500 feet during this leg of the path, and the bank angle is

also decreased to nearly zero. These maneuvers reduce the angle of incidence between the sun vector and the surface

normal of the wing, increasing the total solar flux received and the energy available for charging the battery. Although
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Fig. 10 The characteristic shape of the optimized trajectory in each of the four seasons two hours after dawn.
The pointer indicates the direction towards the sun.

the aircraft is traveling more slowly, it eventually reaches the boundary of the mission radius constraint, forcing it to

reverse its course and begin the cycle again.

The fabiform trajectory progresses throughout the day, with the major axis continually reorienting towards the sun.

When the sun goes down, the motivation for the shape disappears, and the aircraft begins to slowly circle the outer

edge of the mission radius in a configuration similar to the steady-state trajectory. This behavior results in the most

aerodynamically efficient path for the night-time hours.

Although each season induces the trajectory to assume a unique shape, the behaviors described in this section are

common to all the optimized solutions. In each case, the aircraft velocity and orientation is controlled to maximize the

time spent with the aircraft surface angled towards the sun, and to minimize the time spent facing away from the sun.
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Fig. 11 Optimized trajectory information for the winter solstice two hours after dawn. The golden marker
points towards the sun.

It is instructive to consider the variant on the described solution that is obtained by a different choice of objective

function. Figure 12 shows the orbit found by using an objective function that attempts only to maximize battery energy

without any consideration for potential energy. While the shape of the trajectory is nearly identical, several important

differences can be seen. The aircraft climbs only 150 ft, as opposed to over 500 ft. Battery charging is relegated almost

exclusively to the time when the aircraft is flying slowly away from the sun with a high angle of attack. As shown in

Table 11, the total energy objective gathers more solar power, but also uses more propulsion energy. Unexpectedly, the

total energy objective also charges the battery slightly more than the battery energy objective. It is hypothesized that

this outcome is related to the non-convex nature of the problem, combined with the gradient based solvers used, and that

the change in the objective function helps the optimizer escape a local minimum.
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Fig. 12 Optimized trajectory information for the winter solstice two hours after dawn using only a battery
energy objective without a potential energy term. The golden marker points towards the sun.

Table 11 Comparison of objective functions for a single orbit.

Total Energy Objective Battery Energy Objective

Solar Energy In (MJ) 3.689 3.379
Propulsion Energy Out (MJ) 1.482 1.371

Net Energy (MJ) 2.207 2.008

3. Trajectory Stages

An examination of the optimized trajectory for a 24-hour period reveals that the trajectory may be broken into

several intuitive stages: charge, climb, descend and power conservation.

Stage 1: Charge
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Fig. 13 Stages of the 24-hour optimized trajectory for the winter solstice.

The first stage begins at dawn, with the aircraft battery mostly discharged (Fig. 13a). A similar effect to that observed

by Edwards et al. is also found here, in that the aircraft maintains a tight circle at a steep bank angle near sunrise [20].

The radius of the circle gradually relaxes as the sun rises. The aircraft remains near the minimum height and uses the

fabiform shape described above to maximize the amount of solar energy captured. The fabiform trajectory progresses

throughout the morning, with the major axis continually reorienting towards the sun.

Stage 2: Climb

As the battery reaches full charge, the aircraft begins to store additional energy by climbing (Fig. 13b). The aircraft

climbs as quickly as possible given constraints on energy, thrust, and flight path angle. The climb is performed using a

modified version of the energy-optimal orbit. As the air density decreases with altitude, the fabiform shape gradually

morphs into a circular path. The climb continues until no excess energy is available for climbing, or until the maximum

height constraint is reached. Note that the charging stage precedes climbing because more power is required to fly at

higher altitudes, and the sooner the aircraft climbs the sooner the power requirement increases.

Stage 3: Descent

As the amount of sunlight begins to diminish in the evening, a point is eventually reached at which a full battery

charge can no longer be maintained. This point occurs up to an hour before sunset, and at this point the aircraft begins
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to descend. Again, as the sun nears the horizon the radius of the orbit begins to contract, and the bank angle increases.

When the sun goes down, the motivation for the tighter shape disappears, and the aircraft begins to slowly descend

along the outer edge of the mission radius in a low power glide (Fig. 13c). At this point, the only power drain on the

battery is that required by the payload.

Stage 4: Power Conservation

When the aircraft reaches the minimum elevation constraint, it continues to circle the outer edge of the mission

radius, maintaining altitude while maximizing aerodynamic efficiency and minimizing power usage (Fig. 13d). This

behavior is identical to the steady-state trajectory, and continues throughout the night.

4. Potential Energy Storage and Power Usage

Using the set of parameters outlined in Table 1, the aircraft battery is sized so that it reaches maximum capacity

during a steady-state orbit on the winter solstice, and no energy is stored in elevation during the steady-state cases. In

the optimized cases the battery is charged to maximum capacity during the day, and the aircraft begins to ascend, storing

potential energy in elevation. This stored energy is released by gliding during the evening and night-time hours. The

degree to which the aircraft ascends depends on the amount of excess energy available, and varies throughout the year.

The UAV is able to significantly reduce power requirements by gliding. Figure 14 shows the power input, power

output, and altitude throughout the flight for the winter solstice optimized trajectory. When the battery fills (1) the

aircraft begins to climb, and power requirements increase sharply. After sunset (2), the power required is temporarily

reduced from 2870 W at level flight to just 250 W for payload requirements in a low power glide. When the aircraft

reaches the minimum altitude, the power needed returns to the steady-state value. Gliding extends the amount of time

that the battery is at full charge, and increases the charge left at the end of the day. Energy results are further described

in Section C.

5. Station-Keeping Radius Effect

Another important factor is the station-keeping radius constraint. This constraint more than any other differentiates

these results from similar work in the literature, and gives rise to the unique trajectory solutions presented here. The

effect of this constraint is explored by varying the radius of the winter solstice solution from 1.5 km to 6 km. As seen in

Figure 15, the characteristic shape of the solution obtained changes with increasing or decreasing radius size. Note

however, that while the specific shape of the trajectory changes with changing radius constraints, the general behavior is

quite similar to that already presented. That is, the aircraft pitches upwards as it flies away from the sun, maximizing

solar energy capture. As the mission radius size increases, the path becomes more and more linear, similar to the

situations encountered by Ozoroski et al. [19]. Another effect of increased radius size is that each orbit takes longer,

leading to the angle of the path progressing farther with each orbit to track the sun. This progression can be seen in the
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Fig. 14 Power input and output for the optimized winter trajectory. The three vertical lines correspond to (1)
when the battery reaches full capacity, (2) sunset, and (3) reaching minimum height.

discontinuity in Fig. 15b, where the next orbit would be at a slightly different angle than the one shown.
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Fig. 15 Changing the mission maximum flight radius leads to different characteristic orbit shapes.

C. Total Energy Results

Perhaps the most important result from this study is the increase in total energy available to the system under the

optimized trajectory conditions. Maximizing total energy is the objective function of the optimization, and total energy

is an important factor in determining the endurance of the HALE system. Figures 16 and 17 show the total energy stored
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by the system for both the steady-state and optimized trajectories for all four seasons. As an additional comparison, the

steady-state and optimized trajectories are compared against the trajectory generated by a state machine.
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Fig. 16 Battery energy and total (battery + potential) energy stored in the system by the optimized and
steady-state trajectories for the winter and summer solstices.
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Fig. 17 Battery energy and total (battery + potential) energy stored in the system by the optimized and
steady-state trajectories for the spring and fall solstices.

As shown in these figures, the optimized solution provides a clear benefit in terms of total energy. In all cases, the

battery is charged more rapidly, and reaches full capacity sooner than in the steady-state orbit case. The battery remains

at full charge for some time in the middle of the day, opening an opportunity for the aircraft to store potential energy

by climbing as discussed above. The optimized trajectory also climbs and descends more efficiently than the state

machine trajectory, leading to an increased final energy. This behavior is especially important near sunset, when the

optimizer is able to match its descent to the optimal descent rate based on altitude and available solar power, whereas

the state-machine descends at a minimum-power rate. This result is discussed further in Section D.

The total energy available to the system at the end of the 24-hour flight period for each of the four optimized cases is

presented in Table 12 and Figure 18. For comparison, the table also lists the total energy information for the steady-state
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and state machine trajectories. As shown, the optimized trajectory outperforms the steady-state trajectory in terms of

energy for all the studied cases.

Table 12 Total Energy Results for Optimized Trajectories.

Season Trajectory Max Total Energy (kWh) Final Total Energy (kWh) Improvement (kWh)

Winter Steady State 47.83 5.51 -
Winter State Machine 47.84 5.53 0.02
Winter Optimized 53.29 9.44 3.93
Spring Steady State 48.05 12.55 -
Spring State Machine 53.56 15.71 3.16
Spring Optimized 53.56 16.48 3.92
Summer Steady State 48.07 19.18 -
Summer State Machine 53.56 22.05 2.87
Summer Optimized 53.56 23.04 3.87
Fall Steady State 48.05 12.55 -
Fall State Machine 53.56 15.61 3.06
Fall Optimized 53.56 16.46 3.91
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Fig. 18 Total energy results for optimized trajectories.

D. Discussion

The results presented have a number of implications. First, an aircraft design that is infeasible due to an inability to

close the energy gap may be brought to feasibility simply by changing the way that it flies. Alternatively, a feasible

aircraft design may be given an additional energy safety margin, as shown in the cases presented here. From a different

perspective, an aircraft that is unable to close the energy gap due to payload demands may not be able to function near

the winter solstice, but can increase the number of available days of service by using an optimized trajectory.

Another application of these results is the potential to adapt the design of the aircraft energy systems to take

advantage of the additional energy available. For example, due to the increased efficiency of solar capture in the
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optimized trajectory, the number or area of solar panels could be reduced, reducing the cost of the aircraft. Battery

sizing is also a potential area of benefit. Because the optimized solution moves the beginning of battery discharge

farther towards sunset, it may be possible to reduce the battery size and still fly through the night. This modification

would reduce both the cost and the weight of the aircraft, potentially enabling additional improvements. A major area of

future work is integrating the trajectory optimization with a full energy system design optimization.

An interesting takeaway from the total energy results is that for the majority of the year, both the optimized trajectory

and the state machine reach maximum total energy. The major difference between the two solutions thereafter appears

to be the descent rate. This observation means that in cases where the state machine is able to reach maximum energy,

it may be possible to match the performance of the optimizer simply by introducing a descent rate that more closely

matches that of the optimized trajectory . Such a solution would reduce the complexity required in the trajectory for

much of the year, leaving the optimizer to deal with the more difficult flights near the winter solstice when a simple orbit

does not produce excess energy for climbing.

There are several other important aspects of this problem that remain to be addressed in future work. High-altitude

winds are a major factor in HALE UAV flights, and further studies will adapt the kinematic and aerodynamic models

used in this paper to include wind, as well as creating models to predict wind speeds and directions at different

altitudes. The authors expect that including wind in the optimization will increase the difficulty of the optimization, and

significantly modify the results presented above.

Another area of work is to investigate the prospect of parameterizing the optimized trajectories. The results of the

optimization are relatively periodic, and it may be possible to predict them directly based on the input conditions. This

would greatly improve the practical usability of the solutions, as the current optimization methods used are relatively

slow, and require larger computational resources than may be onboard a UAV.

The battery model used in the current work is very simple, and does not include charge and discharge round trip

efficiencies. Including a higher fidelity battery model would improve the accuracy of the results, and may influence the

timing of the trajectory stages.

Another important effect is that of temperature. At the altitudes in question, average temperatures of approximately

-55°C are expected. Initial work by the authors indicates that there is a strong temperature effect on the battery and

solar panel subsystems, with lower temperatures improving solar panel performance but reducing battery performance.

Future work will include modeling these effects in greater detail, and incorporating them into the optimization so that

the optimizer will take these effects into account when planning the trajectory and speed of flight.

IV. Conclusion
To conclude, this paper has presented a solution to the trajectory planning and energy management problem for

solar-powered high-altitude long-endurance unmanned aerial vehicles. A mission is defined in which a solar aircraft
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must stay within a 3 km flight radius and an altitude range between 60,000 and 80,000 ft. System models are developed

for the aircraft and energy system, and experimental conditions described. A nonlinear model predictive control

formulation is proposed to make the problem computationally feasible, and used to solve the trajectory optimization at

an 8 second time step with a receding horizon approach. The optimization is tested at four different points during the

year, and total energy results are compared against a steady-state orbit trajectory. The optimized trajectory is shown to

outperform the steady-state orbit in all cases, with a maximum improvement in final battery energy of 8.2% over a

24-hour period.
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