Jul 1st, 12:00 AM

OntoWEDSS: an ontology-underpinned decision-support system for wastewater management

Luigi Ceccaroni
Ulises Cortés
Miquel Sánchez-Marrè

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Ceccaroni, Luigi; Cortés, Ulises; and Sánchez-Marrè, Miquel, "OntoWEDSS: an ontology-underpinned decision-support system for wastewater management" (2002). International Congress on Environmental Modelling and Software. 226.
https://scholarsarchive.byu.edu/iemssconference/2002/all/226

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
OntoWEDSS: an ontology-underpinned decision-support system for wastewater management

Luigi Ceccaroni\textsuperscript{a,}\textsuperscript{*}, Ulises Cortés \textsuperscript{b} and Miquel Sanchez-Marre\textsuperscript{b}

\textsuperscript{a}Fujitsu Laboratories of America
595 Lawrence expressway, Sunnyvale, CA 94085, USA
lc@a.fujitsu.com

\textsuperscript{b}Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya
Modul C5, Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, Catalunya, Spain
\{ia, miquel\}@lsi.upc.es

Abstract: This paper characterizes part of an interdisciplinary research on artificial intelligence techniques applied to environmental decision-support systems. The architecture’s design of OntoWEDSS, a decision support system for wastewater management, is presented. This system augments classic rule-based reasoning and case-based reasoning with a domain ontology. The integration of the newly created WaWO ontology provides a more flexible management capability to OntoWEDSS. The construction of the decision support system is based on a specific case study but the system is also of general interest, given that its ontology-underpinned architecture can be applied to any wastewater treatment plant and, at an appropriate level of abstraction, to other environmental domains. The OntoWEDSS system helps improve the diagnosis of faulty states of a treatment plant, it provides support for wastewater-related complex problem-solving, and it facilitates knowledge modeling and reuse by means of the WaWO ontology. In particular, the following issues are dealt with: (1) the improvement of the modeling of information about wastewater treatment processes and the clarification of a part of the existing terminological confusion in the domain, (2) the incorporation of ontology-modeled microbiologic knowledge related to the treatment process into the reasoning process and (3) the creation of a decision support system with three layers (perception, diagnosis and decision support) which combines knowledge through a novel integration between KBSs and ontologies, thus providing better results.

Keywords: ontologies; environmental modeling; artificial intelligence.

1 INTRODUCTION

This paper presents the design of an ontology-based environmental decision-support system (named OntoWEDSS\textsuperscript{2}) applied to the domain of wastewater treatment. This is a new and interdisciplinary approach to the management of knowledge in the problem-solving processes related to environmental issues. In fact, even if the application studied is specific, the architecture presented could serve as a basis for any environmental system.

\textsuperscript{*}Luigi Ceccaroni carried out the most part of the research related to this paper at Universitat Politècnica de Catalunya.
\textsuperscript{2}Ontology-based Wastewater Environmental Decision-Support System

Environmental Decision-Support Systems (EDSSs) are useful when dealing with complex environmental processes, which are not easily modeled because the knowledge is still incomplete and uncertain. Rule-based expert systems (RBES), case-based reasoning systems (CBRS) and ontologies have proven, individually, to be able to cope with some known difficulties and to have successfully faced several problems related to the wastewater domain. The synthesis of these different modeling and reasoning systems can result in great improvements in decision support. The introduction of an ontological component in an EDSS, in particular, allows to develop issues which will contribute to the improvement of the current state of the art in wastewater
management and in particular to: (1) a more stable wastewater treatment operation through ontology-based supervision and (2) the portability of the management system of a wastewater treatment plant (hereafter, WWTP).

Wastewater treatment plants are the physical element of the domain modeled by the ontology and managed by OntoWEDSS. They serve to decontaminate wastewaters prior to their discharge into a natural body of water. For that, they use techniques of physical, chemical and biological treatment. The wastewater-treatment process is very complex and it is difficult to develop a reliable supervisory technology based only on a classic chemical-engineering control approach.

1.2 Ontologies

Ontologies are being developed in AI to facilitate knowledge sharing and reuse. With respect to the research involved in this study, ontologies can provide: (1) a shared and common understanding of the knowledge domain that can be communicated among agents and application systems, and (2) an explicit conceptualization that describes the semantics of the data (Fensel et al. [2000]). Ontologies are considered to be critical in allowing software programs to communicate among themselves in meaningful ways, and attract attention not only from academic disciplines such as computer science, information science and artificial intelligence, but also from industries as diverse as the high-tech, financial, medical, educational and environmental sectors. A recent comprehensive document covering the main aspects of ontologies in AI research is the technical roadmap of the ontology field in Europe and worldwide produced by the OntoWeb project3. In perspective, on one hand ontologies represent a first step on the way for real portability of a system towards other similar domains and they could be effectively employed to address the problem of general model-construction (generalization); while on the other hand it is possible to instantiate/adapt an ontology to the specific configuration of a WWTP and to automatically construct and validate specific models (specification).

2 ONTOWEDSS

OntoWEDSS is a research tool built to explore the possibilities and the potential of introducing ontologies into decision support systems, using an envi-

The OntoWEDSS system uses its internal knowledge-bases and inference mechanisms to process information about a WWTP. It diagnoses the ongoing state of the treatment plant and predicts the evolution of that state. Eventually, the output of the system is represented by statements about actions to be taken or statements to support a human manager’s decisions, in order to maintain the correct operation of the plant. OntoWEDSS uses the WaWO ontology\(^4\) (Ceccaroni et al. [2000]), which has been designed and built following current mainstream ideas about ontology construction. WaWO is a hierarchically-structured set of terms and relations describing the domain of wastewater treatment. It is the manifestation of a shared understanding of the wastewater domain that is agreed upon by a number of experts in environmental and chemical engineering. The introduction of this agreed-upon ontology in the domain of wastewater treatment facilitates: (1) an accurate, effective communication and sharing of meanings, which leads to benefits such as knowledge reuse, (2) an advancement in environmental technologies for the management of biological and biochemical processes, and (3) an enhancement of the knowledge about the specific microbial ecology of environmental processes developing in treatment plants. Even though WaWO was designed on the basis of the specification of a few particular plants, the knowledge which it embodies is valid for any treatment plant of the same class.

Functionalities. The input (from the user or a file) for modeling and execution in OntoWEDSS is represented by (1) the list of descriptors to use and (2) the descriptor values of a new-problem. The user can use a predefined set of descriptors and can define new ones (in this second case, however, only case-based reasoning is readily available for diagnosis). Optionally, the weight of the descriptors can be provided. What follows is an example of input descriptors\(^5\) together with their range of possible values:


\(^5\)OntoWEDSS uses dozens of physical, chemical and biological descriptors, such as presence of various microorganisms (e.g., Acinetia uncinata, Acineta spp., Aspidsca cica), biochemical oxygen-demand (at effluent, inflow and primary-effluent), and BOD/N ratio, just to name a few (see also Table 1).

The output (to the user) of OntoWEDSS execution is represented by (1) a diagnosis of the current state of the WWTP (with a reliability factor), (2) a trace of the reasoning carried out, and (3) a list of actions to be taken according to the situation diagnosed.

The suggested activation cycle for OntoWEDSS is 1 hour (5 min in the case an emergency is detected). The accuracy in the classification of the current state of a WWTP (based on focused evaluation) ranges between 73\% and 100\%. The cost of this kind of system is related to the programming language used for implementation (Allegro Common LISP 5.0.1 in our case).
2.2 Model

The *model* of OntoWEDSS is how it works: the internal architecture, what happens when it is executed and how to monitor the execution.

The architecture of the system (Ceccaroni [2001], pp. 111) has a modular design, to improve understandability, reliability and, above all, the ability to make modifications. Many distinct, specialized sub-systems (such as perception, rule-based reasoning, case-based reasoning, ontology, modeling, planning and execution) are defined and then grouped into three layers, whose details are as follows: perception (data gathering and knowledge acquisition), diagnosis (reasoning and learning), decision support (prediction, evaluation of alternative scenarios, advising, actuation and supervision).

**Perception.** During the perception phase, all available information is gathered: this includes quantitative and qualitative descriptors (see Table 1).

Table 1: Some of the descriptors used in WWTPs.

<table>
<thead>
<tr>
<th>Type</th>
<th>Descriptor</th>
<th>Sampling rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line</td>
<td>dissolved oxygen, pH, water and sludge flow rates</td>
<td>seconds</td>
</tr>
<tr>
<td>Off-line</td>
<td>COD, BOD, TSS, TKN, NO$_2^-$, NO$_3^-$, PO$_4^{3-}$, Cl$^-$, conductivity, turbidity, MLSS, T, NH$_4^+$, V30, in situ observations, floc characterization, protozoa, metazoans, filamentous bacteria</td>
<td>daily, weekly</td>
</tr>
<tr>
<td>Calculated</td>
<td>COD and TSS removal</td>
<td>daily</td>
</tr>
<tr>
<td></td>
<td>SRT, HRT, F/M, SVI</td>
<td></td>
</tr>
</tbody>
</table>

**Diagnosis.** The diagnosis phase is characterized by a chicken-and-egg paradox related to process-modeling. The situations (set of descriptors’ values) cannot be defined without first knowing what diagnostics they correspond to. And most diagnostics can be hard to define as such until the corresponding situations have been identified. To overcome this problem, experts often have to use trial-and-error methods. Once the process is modeled, three modules, covering rule-based reasoning, case-based reasoning and the ontology, are used for diagnosis. With respect to the rule system, it is designed to be implemented in two separate layers. A more general one, which can be reused across WWTPs, and a more specific one to be used only...
in a particular WWTP. The essential addition of an ontology in the diagnosis layer helps to model the wastewater treatment process (see Figure 1), paying a special attention to the management of the qualitative knowledge, that is, the environmental information on micro-organisms presence. Within the layer, the RBES and the CBRS work independently and they both produce as output a diagnostics about the state of the plant. This output is passed to a diagnosis integrator, which shows the two outputs (together with an associated confidence value) to the user and then starts the reasoning schema illustrated in Figure 2. If the diagnostics of the two KBSs is the same, this result is communicated to the decision support layer. If the diagnostics exist and are different, the system prioritizes as follows. If the case similarity is higher than a predefined threshold (b), the case-based reasoner’s diagnostics prevails. Otherwise, the rule-based expert system’s diagnostics prevails. In case of impasse (no diagnosis), OntoWEDSS turns first to the ontology and then, if it fails, to the plant manager, demanding a diagnosis based on their microbiological deep knowledge. This external solution is always learned.

The WaWO ontology used is specialized on the wastewater domain. In WaWO, for example, Storm is an Operational-Problem, Bacterium is a Wastewater-Biological-Living-Object, and the only Metazoans represented are Nematode and Rotifer. The use of the ontology for reasoning is completely experimental and there are no other documented studies in a similar context. The hierarchical organization of categories of the WaWO ontology is expressed in the Ontolingua knowledge-representation language, and KIF axioms are used for answering queries, language analysis and general reasoning. The axioms of the ontology have been partially modeled, but not implemented in KIF, so that most of the reasoning is simulated.

In Figure 3, an example of the reasoning with the ontology is depicted. It can be partially read, using the terminology of Sowa [2000], as a sequence of occurrences. Simple rectangles are role categories (or phenomenon categories, or classes) and are always part of concept hierarchies; circles are relations. In the example, Filamentous-Bacteria is what causes (i.e., is the effector of) the Filamentous-Bacteria-Excessive-Proliferation occurrence. Being the effector part of taxonomic (Micro-fauna branch) and operational (Microthrix-Parvicella branch) semantic structures, the occurrence can then be linked both to a class of micro-organisms and to the Filamentous-Dominant-AT state of the WWTP. The result of the occurrence is the Bulking-Sludge-

**Filamentous** situation, which is itself the effector of the Bulking-Sludge-Consequences-Avoidance occurrence. The result of this last occurrence is the search for a Bulking-Solution within its concept hierarchy. The axioms (which are essentially rules) guide the search towards a specific or a non specific solution, according to the original effector. The final result can be, for instance, that the presence of a certain amount of filamentous bacteria triggers the addition of certain chemicals to the wastewater. Even if it is true that the same result can be achieved through a complex RBES, the very structure of the ontology guarantees much greater readability, easier consistency-checking, and reuse of knowledge in a way that is becoming a more and more recognized standard. Furthermore, the ontological knowledge representation is very Web oriented and could be useful in a future scenario of knowledge sharing over the Internet.

**Decision support.** This layer exploits available data and information to provide, through a friendly interface, active decision-support about the following key actuations in the WWTP: (1) execution monitoring of RBES and CBRS, and (2) concrete action suggestions, such as “Change Sludge-Recirculation-External to 120” or “Destruction of filaments via chlorine addition” or “Addition of inorganic coagulant”.

![Figure 4: Window for the creation of a domain in the CBRS of OntoWEDSS.](image-url)
2.3 Grounding

The grounding of OntoWEDSS is how the user accesses the system, that is, the interface for data exchange. It allows the user to communicate with the RBES and CBRS in a friendly way, via the selection of options from menus and buttons. The grounding has three main functionalities: (1) the introduction of the data of the problem in question (see Figure 4 for the case of CBRS), (2) consulting the RBES about the state of facts or rules, and (3) asking the user to confirm actions or about data values.

2.4 Implementation and performance

OntoWEDSS has been fully implemented in LISP, but not deployed in a full-scale facility. However, its application and evaluation are based on data coming from full-scale facilities. The ontology, in its current state, is fully reusable if transferred to any real facility. The same is true for the CBRS, while in the case of the RBES only the rules of the upper layer (see Diagnosis in section 2.2) can be reused without modification. The evaluation of the system was focussed on the most representative problematic situation that is possible to come upon in wastewater treatment: the presence of bulking sludge due to filamentous micro-organisms. The objective of the evaluation was to quantify the performance of the various paradigms and of the whole system when they react to a specific problem. In the three experiments carried out, the successful diagnosis coming from the system without the ontology ranges from 60% to 73% and impasse situations correspond to a set of 10 instances (out of 57). When the system operates with the WaWO ontology, these results improve. The advance in diagnosis is due to the following two circumstances: first, WaWO activates when an impasse situation has been reached and for this reason it includes more flexible axioms with respect to the RBES; second, WaWO has usually at its disposal additional information about micro-organisms that was not used in the earlier evaluation because the RBES and the CBRS are not able to deal with it. The final successful diagnosis coming from the system with the ontology ranges from 73% to 100%. We acknowledge that, in one of the experiments, the ontology could not improve the performance, which was 73%.

3 Conclusions

In the paper, we introduced the use of ontologies for the solution of complex problems related to environmental science and engineering. In particular, we studied the integration of an ontology with case-based reasoning and rule-based reasoning into an environmental decision-support system. This integration improved the modeling of the information about wastewater treatment processes and resolved existing impasses in the reasoning cycle. Specifically, we presented an ontological representation of two kinds of cause-effect relations: micro-organisms $\leftrightarrow$ problematic situations and state of the plant $\leftrightarrow$ suggested actions. We also used the ontology to improve the communication among different elements and agents of an environmental decision-support system, thus reducing ambiguities. The implementation of the system and an evaluation of the advantages related to the proposed approach are described in detail in Ceccaroni [2001].

ACKNOWLEDGMENTS

This research is supported by ATEAM (IST-1999-10176) and Agentcities (IST-2000-28384) European projects, and the CICYT TIC-2000-1011 Spanish project. We wish to thank Jonathan Dale for the feedback after having read a preliminary version of this paper.

REFERENCES


