
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

International Congress on Environmental 
Modelling and Software 

1st International Congress on Environmental 
Modelling and Software - Lugano, Switzerland - 

June 2002 

Jul 1st, 12:00 AM 

Improving the model development cycle by automatic Improving the model development cycle by automatic 

configuration of modelling tools configuration of modelling tools 

K. De Jong 

C. G. Wesseling 

D. Karssenberg 

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference 

De Jong, K.; Wesseling, C. G.; and Karssenberg, D., "Improving the model development cycle by automatic 
configuration of modelling tools" (2002). International Congress on Environmental Modelling and 
Software. 205. 
https://scholarsarchive.byu.edu/iemssconference/2002/all/205 

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU 
ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and 
Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact 
scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/iemssconference
https://scholarsarchive.byu.edu/iemssconference
https://scholarsarchive.byu.edu/iemssconference/2002
https://scholarsarchive.byu.edu/iemssconference/2002
https://scholarsarchive.byu.edu/iemssconference/2002
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2002/all/205?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2002%2Fall%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Improving the model development cycle
by automatic configuration of modelling tools

K. de Jong a, C.G. Wesseling b, D. Karssenberg a

aDepartment of Physical Geography, Utrecht University,
Heidelberglaan 2, PO box 80115, Utrecht, The Netherlands, (k.dejong@geog.uu.nl)

bPCRaster Environmental Software,
PO box 427, Utrecht, The Netherlands

Abstract: Model development is a difficult and timely process involving various steps to create, check and
improve the model. Typically all kinds of software tools are used to facilitate this process. Central to model
development is the model definition and we show that, apart from calculating model results, it can be used to
tailor some of the tools used to the model at hand. This speeds up model development and might lead to better
models.

Keywords: environmental modelling; model development cycle; model definition

1 INTRODUCTION

Model development is often a difficult and time con-
suming part of environmental modelling. During
development knowledge about the environmental
processes is translated into model statements. This
requires both field experience and modelling skills
and only the most trivial models are created correct
the first time. In practise model development is an
iterative process during which the model is defined,
tested and redefined again. Only after a number of
iterations does the development process result in a
model which adheres to the developers criteria. And
even then there are various reasons why in a later
stadium this ‘finished’ model has to be redefined
again, for example because better or other input data
has become available, further knowledge about the
physical processes at play has been acquired, other
output data is required, different model structures
for the same problem need to be compared [see for
example Van der Perk, 1997], or when the model is
applied in another area.

Clearly it is an advantage if the modelling envi-
ronment supports the creation of models in such a
way that they can be easily tested and adjusted. An
important aspect of the modelling environment is
the set of tools available to define the model, visu-
alise and analyse the data, debug and test the model.
Since these tools are used repeatedly they should

perform well and enable the developer to do his or
her work in the best possible way. A second im-
portant aspect is the language which is used to im-
plement the model. The advantages of high level
Environmental Modelling Languages (EML) com-
pared to system programming languages like For-
tran and C++ are described in Karssenberg [2002]
for the case of distributed hydrological model devel-
opment. It is concluded there that the main benefits
are: better re-usability of program code (compared
to re-implementing generic algorithms in a system
programming language), lack of technical details in
the model definition, short development time and
easier to learn. In general, when constructing con-
tinuously evolving models and if tailoring to study
aims and field data is important, then a modelling
environment with an EML is better suited than one
with a system programming language. In this ar-
ticle it is assumed that an EML is used to imple-
ment the model. Examples of EMLs are STELLA
[STELLA, 2002], ARC Macro Language (AML)
[AML, 2002] and PCRaster [Wesseling et al., 1996;
PCRaster, 2002]. In the examples presented the
PCRaster EML is used. PCRaster is an environmen-
tal modelling environment developed by the Depart-
ment of Physical Geography of Utrecht University
and PCRaster Environmental Software.

In the next sections we first describe the practise of
model development including the typical modelling

289



tools used. After that we propose a way to auto-
matically tailor some of the modelling tools to the
needs of the specific model created, in order to op-
timise the model development cycle. Examples will
demonstrate how these techniques can be used.

2 MODEL DEVELOPMENT CYCLE

An ideal and complete model development cycle
is shown in Figure 1. In practise, not every cycle
will consider all the phases shown: this depends on
the model characteristics, available field data and
other resources. We assume that the required in-
put data are already gathered and ready to be read
by the model. Data collection and collation are
not considered part of the model development pro-
cess. The iterative process of model development
starts with (re)defining the structure of the model.
This phase comprises analysis of model require-
ments, analysis of input data, literature study, trans-
lation of model concepts to model statements and
model documentation. The tools used in this phase
are: model script editor, data visualisation tool, Ex-
ploratory Data Analysis (EDA) tool and a statistical
tool. Apart from the editor these tools are used to
analyse the input data sets and generate hypotheses
about how they are related to the output data sets.
Next, the model is executed by the model engine.
In our case this tool is an interpreter which reads
and checks the model script and calculates the out-
put data. In case a system language is used to write
the model the tools used in this phase would be the
compiler used to create an executable model and the
executable itself. When syntactical and semantical
errors are found the script has to be adjusted. After
the model results are calculated they are analysed
by using the visualisation, EDA and statistical tools.
There are several reasons why the model has to be
adjusted before continuing, for example because the
output data values are out of range or the temporal
resolution is wrong. When the model generates out-
put as expected the value of the calibration param-
eters (if present) need to be determined. A calibra-
tion tool like PEST [PEST, 2002] can be used in this
phase. Again, it can be decided that the model has
to be adjusted. The most important reason for this is
that the model can’t be calibrated to field data at all.
After the model has been calibrated a validation tool
is used to validate the model results with a field data
set. When the results differ too much from the field
data, the model must be adjusted once again. In gen-
eral, redefining the model structure continues until
it satisfies the criteria of the study. And when these
criteria change often the structure has to change too.

No

No

No

Yes
run model

Yes

Yes

Yes

analyse results

calibrate model

validate model

application

script editor

as expected?

ok?

accurate?

EDA tool
statistical tool

calibration tool

validation tool

visualisation tool

visualisation tool

EDA tool
statistical tool

statistical tool

statistical tool

Tools Phases

model engine

errors?
No

(re)define
model structure

Figure 1: Model development cycle with tools used.

Only after validation proved that the model is ac-
curate enough in calculating output, it can be used
as a standard modelling tool by users who are not
necessarily familiar with model building, for exam-
ple most decision makers. Therefore an easy to use
graphical interface to the model might be needed.
During model application the model structure re-
mains fixed. For reasons already mentioned in the
Introduction it can be decided that the model must
be redefined in a later stadium by the developer.

3 PROBLEM AND IMPROVEMENTS

It should be clear by now that in general the model
is redefined often during the model development cy-
cle and that various tools are used repeatedly. Since
the tools are used so often even small improvements
in their functionality can make the whole model de-
velopment process more efficient.

A major disadvantage of most general modelling
tools like visualisation and statistical tools is that
every time they are used they need to be config-
ured. If, for example, we want to visualise the data
sets generated by the model, we have to explicitly
‘tell’ the visualisation tool to do so each time we
want to see the data. The problem in this case is
that the visualisation tool can’t figure out which data
sets are generated by the model. We might be able
to automate such often used tool configurations by
writing batch files, but these have the drawback that
each time the model is redefined, often they have
to be adjusted too. The approach described in the

290



next sections comes down to automatically convert-
ing the model script and adjusting the tools in such a
way that all model characteristics are readily avail-
able for the modelling tools to use.

4 MODEL DEFINITION

The model definition is a formal description of the
model concepts. This can be in the form of a model
script or a set of rules and formula’s on paper. In
case of a model script the Environmental Modelling
Language (EML) is used to write the model defi-
nition. It is designed to be as easy and powerful
as possible for the modeller. This results in a lan-
guage which is terse and often the models written in
it contain implicit model characteristics. Examples
of these are the data types (e.g.: raster map and time
series) and value types (e.g.: boolean and scalar)
of the datasets used and the spatial resolution and
extent. In the next example the slope function is
used to calculate the gradient of the digital elevation
model b.

a = slope(b);

Only the modeller and/or the model engine ‘know’
that b and a are both spatial data sets with scalar
value type and that as cells contain percentages.
This implicit information can be deduced (made
more explicit) from the definition but external in-
formation which is not present in the model script
is required (about the function prototypes for exam-
ple). The following example shows how the previ-
ous script fragment looks when made more explicit.
We use an application of the extensible markup lan-
guage (XML) [XML, 2002] in the examples. This
technique is suitable for passing information be-
tween applications.

<statement>
<output type="spatial" valuescale="scalar"

units="percentage">
a

</output>
<operator>=</operator>
<function type="window">

<name>slope</name>
<input type="spatial" valuescale="scalar">

b
</input>

</function>
</statement>

The explicit definition is more verbose and con-
tains more information than the original definition.
Apart from explicitly stating that the function used
is called slope it is also stated that the output data
is a spatial with scalar values.

5 TOOL ARCHITECTURE

By converting the model script to an explicit defi-
nition some of the modelling tools can use the in-
formation which is implicitly present in the model
script. While the model script can be regarded as the
interface from the model definition to the user, the
explicit definition can be regarded as the interface
from the model definition to the tools. The explicit
definition can be automatically generated from the
model script. This has the following important ad-
vantages: 1: the modeller doesn’t have to main-
tain different definitions of the same model and 2:
the tools which use the explicit definition, can auto-
matically change their behaviour after the developer
changes the model script.

In the original architecture without using the im-
plicit information in an explicit form, only the
model engine uses the model script to calculate the
output data sets from the input data sets (Figure 2).
The other tools need to be configured by the de-
veloper each time they are used. In the new sit-
uation the model script converter uses the model
script to produce the explicit model definition. The
other tools, including the model engine, read the
explicit definition for the information they can use
(Figure 3). This means that modelling tools can
configure themselves to the model at hand and that
changes in the model are automatically reflected
by changes in tool configuration. Since the model
script is changed often automatic tool configuration
can speed up the creation of a model.

model script

input data

output data

model engine

information
external

− EML syntax

Figure 2: Original architecture.

Technically this means that the model script parser
which reads and checks the model script is moved
from the model engine to the model script converter
and all relevant modelling tools will be provided

291



output data

− all information explicit

explicit model definition
− tool interface

external
information
− EML syntax

model script
− user interface
− some information

implicit

tools
other modellingmodel engine

model script
converter

Figure 3: New architecture.

with a parser for the explicit model definition. In
our case this definition is an XML file and the mod-
elling tools have an XML parser with which they
can query the definition for information. New mod-
elling tools can be written in any programming lan-
guage provided that they have XML parsing func-
tionality. The XML file itself is platform indepen-
dent.

6 EXAMPLES OF TOOL CONFIGURATION

In this section, examples are given of how the ex-
plicit model definition can be used for tailoring the
modelling tools used during the model development
cycle.

6.1 Script editor

During model development, a model builder spends
a lot of time using the script editor. This tool should
assist the modeller and prevent him or her from
making syntactical mistakes as much as possible.
Additional to features like syntax highlighting, syn-
tax checks, context sensitive help and auto comple-
tion the editor can give the modeller script-specific
information. As an example of this, the editor can
provide the developer with a list of valid input vari-
ables according to the properties of the function he
or she tries to use. This would prevent the devel-
oper for example from writing statements in which
the slope of a boolean map is calculated.

land = dem > 0; # Boolean map, height > 0.
gradient = slope(land); # Error!

This way the modeller is guarded against making
the most obvious semantical mistakes.

6.2 Visualisation and EDA

By reading the explicit model definition the visuali-
sation and EDA tools can automatically set up some
standard configurations from which the developer
can choose. For example, during development the
developer often wants to see the input data sets, the
output data sets or the data sets linked to a certain
function. The following examples demonstrate how
this can work in case of a visualisation tool called
visualise which is started from the command
line. Equivalent functionality can be available from
a menu of a model explorer environment for exam-
ple.

# All input data from model runoff.
$ visualise --inputs runoff.mod
# All output data.
$ visualise --outputs runoff.mod
# All data linked to slope function.
$ visualise --function slope runoff.mod

When the model is dynamic, the tools can support
animation of output data. Simulations can be com-
pared when the model is stochastic. And the EDA
tool can visualise the summary statistics and link el-
ements in a scatter-plot to the individual simulations
for example.

6.3 Documentation

When the model is redefined the documentation of
the model gets out of sync with it. Apart from the
reasoning behind the model structure, all character-
istics of it can be automatically described by reading
the explicit definition. A documentation tool can be
used every time the documentation must be updated.
Among other things the following information can
be present in the generated document: a description
of the required input data sets, whether the model
is static or dynamic, a description of the stochastic
parameters and a description of the output datasets.

In general, part of the model documentation is re-
dundant: it is a translation in human language of
model statements which are written in EML. By
generating this documentation automatically errors
can be prevented.

292



7 DISCUSSION

The described architecture has the advantage that
the Environmental Modelling Language (EML) and
the language used to implement the explicit defini-
tion (the XML application in our case) can evolve
independently when needed. It is possible that the
file format used for the explicit definition evolves
and more tools start to support it. In that case the
model developer would have a choice of tools to
use (given the fact that the tools also support the
data file formats used). This differs from the current
situation where most modelling tools are specific to
the modelling environment.

Another consequence is that the EML is likely to be
extended to better support the modelling tools be-
sides the model engine. For example, to support
calibration of parameters, value ranges for those pa-
rameters could be added to the model definition, to
restrict the range of values in which the calibration
tool will search for the optimal value.

Additionally, by using the explicit model definition
tools can be developed which would otherwise be
more difficult to implement. For example, as de-
scribed in Section 2, model users often need easy
to use graphical user interfaces to control the model
and a tool has been developed to automatically cre-
ate such an interface by reading the explicit model
definition. Using this default interface as a starting
point, the model developer can fine-tune it to allow
certain model parameters to be adjusted for exam-
ple. And when the model definition changes, the
interface changes too.

A final point to make about the presented approach
is that if the source code of the modelling tools is not
available, none of the improvements can be realised.
Changing a modelling tool to support the explicit
model definition requires at least adjustments to the
code which starts and initializes the tool.

8 CONCLUSIONS

Environmental model development is an iterative
process involving the different phases of the model
development cycle. Typically, different tools are
used to create and execute the model, analyse model
data, and calibrate and validate the model. In order
to improve the model development cycle we have
shown that the model script contains information
which is useful for configuring some of the tools
used. Currently the model definition is only used
as input for the model engine which executes the

model. By converting the model script to an explicit
model definition in which all implicit information is
made explicit it can be used to automatically tailor
some of the tools used during model development
to the model at hand, improving the model develop-
ment cycle.

REFERENCES

AML. ARC Macro Language, Environmen-
tal Systems Research Institute (ESRI).
http://www.esri.com, April 2002. Macro
language which is part of the ARC/INFO GIS
software.

Karssenberg, D. Higher level programming for
distributed hydrological model development. in
press: Hydrological Processes, 2002.

PCRaster. PCRaster Environmental Software
(PES). http://www.pcraster.nl, April 2002.

PEST. S.S. Papadopulos & Associates, Inc (SSPA).
http://www.sspa.com/pest, April 2002. SSPA dis-
tributes PEST.

STELLA. High Performance Sysytem, Inc.
http://www.hps-inc.com, April 2002.

Van der Perk, M. Effect of model structure on the
accuracy and uncertainty of results from water
quality models. Hydrological Processes, 11:227–
239, 1997.

Wesseling, C., D. Karssenberg, W. Van Deursen,
and P. Burrough. Integrating dynamic environ-
mental models in GIS: the development of a dy-
namic modelling language. Transactions in GIS,
1:40–48, 1996.

XML. Extensible Markup Language,
World Wide Web Consortium (W3C).
http://www.w3.org/XML, April 2002.

293


	Improving the model development cycle by automatic configuration of modelling tools
	

	tmp.1483583770.pdf.Kv17q

